Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Probing Higgs couplings to light quarks via Higgs pair production

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 14 November 2019
  • Volume 2019, article number 88, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Probing Higgs couplings to light quarks via Higgs pair production
Download PDF
  • Lina Alasfar1,
  • Roberto Corral Lopez  ORCID: orcid.org/0000-0002-5836-00712 &
  • Ramona Gröber1,3 
  • 423 Accesses

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider the potential of the Higgs boson pair production process to probe the light quark Yukawa couplings. We show within an effective theory description that the prospects of constraining enhanced first generation light quark Yukawa couplings in Higgs pair production are similar to other methods and channels, due to a coupling of two Higgs bosons to two fermions. Higgs pair production can hence also probe if the Higgs sector couples non-linearly to the light quark generations. For the second generation, we show that by employing charm tagging for the Higgs boson pair decaying to c\( \overline{c} \)γγ, we can obtain similarly good prospects for measuring the charm Yukawa coupling as in other direct probes.

Article PDF

Download to read the full article text

Similar content being viewed by others

An exploratory study of Higgs-boson pair production

Article Open access 27 August 2015

Probing vector-like quark models with Higgs-boson pair production

Article Open access 03 July 2017

Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV

Article Open access 29 March 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, arXiv:1909.02845 [INSPIRE].

  2. ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:1906.02025 [INSPIRE].

  3. L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].

  4. A. Falkowski and R. Rattazzi, Which EFT, JHEP 10 (2019) 255 [arXiv:1902.05936] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].

  6. T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].

  7. CMS collaboration, Search for a standard model-like Higgs boson in the μ+ μ− and e+ e− decay channels at the LHC, Phys. Lett. B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].

  8. A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].

  10. J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, arXiv:1905.03764 [INSPIRE].

  11. ATLAS collaboration, Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ → 4ℓ and ZZ → 2ℓ2ν final states with the ATLAS detector, Phys. Lett. B 786 (2018) 223 [arXiv:1808.01191] [INSPIRE].

  12. CMS collaboration, Measurements of the Higgs boson width and anomalous H V V couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE].

  13. F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].

  14. C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].

  15. M. König and M. Neubert, Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings, JHEP 08 (2015) 012 [arXiv:1505.03870] [INSPIRE].

  16. G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the H \( \overline{c} \)c coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].

  17. ATLAS collaboration, Search for exclusive Higgs and Z boson decays to 𝜙γ and ργ with the ATLAS detector, JHEP 07 (2018) 127 [arXiv:1712.02758] [INSPIRE].

  18. ATLAS collaboration, Searches for exclusive Higgs and Z boson decays into J/𝜓γ, 𝜓 (2S)γ and Υ(nS)γ at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 786 (2018) 134 [arXiv:1807.00802] [INSPIRE].

  19. CMS collaboration, Search for rare decays of Z and Higgs bosons to J/𝜓 and a photon in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 94 [arXiv:1810.10056] [INSPIRE].

  20. G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev. D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].

  21. ATLAS collaboration, Prospects for H → c\( \overline{c} \) using Charm Tagging with the ATLAS Experiment at the HL-LHC, ATL-PHYS-PUB-2018-016.

  22. CMS collaboration, Search for the standard model Higgs boson decaying to charm quarks, CMS-PAS-HIG-18-031.

  23. I. Brivio, F. Goertz and G. Isidori, Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production, Phys. Rev. Lett. 115 (2015) 211801 [arXiv:1507.02916] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining Light-Quark Yukawa Couplings from Higgs Distributions, Phys. Rev. Lett. 118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].

    Article  ADS  Google Scholar 

  25. Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP 12 (2016) 045 [arXiv:1606.09621] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C. Delaunay, R. Ozeri, G. Perez and Y. Soreq, Probing Atomic Higgs-like Forces at the Precision Frontier, Phys. Rev. D 96 (2017) 093001 [arXiv:1601.05087] [INSPIRE].

  27. U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].

  28. J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

  29. A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].

  30. F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].

  31. V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LH C (8, 14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].

  32. C.-T. Lu, J. Chang, K. Cheung and J.S. Lee, An exploratory study of Higgs-boson pair production, JHEP 08 (2015) 133 [arXiv:1505.00957] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Adhikary, S. Banerjee, R.K. Barman, B. Bhattacherjee and S. Niyogi, Revisiting the non-resonant Higgs pair production at the HL-LHC, JHEP 07 (2018) 116 [arXiv:1712.05346] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Alves, T. Ghosh and K. Sinha, Can We Discover Double Higgs Production at the LHC?, Phys. Rev. D 96 (2017) 035022 [arXiv:1704.07395] [INSPIRE].

  35. J. Chang, K. Cheung, J.S. Lee, C.-T. Lu and J. Park, Higgs-boson-pair production H (→ b\( \overline{b} \))H (→ γγ) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider, Phys. Rev. D 100 (2019) 096001 [arXiv:1804.07130] [INSPIRE].

  36. F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the (b\( \overline{b} \))(b\( \overline{b} \)) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].

    Article  Google Scholar 

  39. J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the b\( \overline{b} \)b\( \overline{b} \) final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].

  40. D. Wardrope, E. Jansen, N. Konstantinidis, B. Cooper, R. Falla and N. Norjoharuddeen, Non-resonant Higgs-pair production in the b\( \overline{b} \) b\( \overline{b} \) final state at the LHC, Eur. Phys. J. C 75 (2015) 219 [arXiv:1410.2794] [INSPIRE].

  41. ATLAS collaboration, Measurement prospects of the pair production and self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2018-053.

  42. CMS collaboration, Prospects for HH measurements at the HL-LHC, CMS-PAS-FTR-18-019.

  43. C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP 05 (2006) 074 [hep-ph/0509179] [INSPIRE].

  44. R. Gröber and M. Mühlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].

  45. R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini and A. Wulzer, Anomalous Couplings in Double Higgs Production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Gröber, M. Mühlleitner and M. Spira, Signs of Composite Higgs Pair Production at Next-to-Leading Order, JHEP 06 (2016) 080 [arXiv:1602.05851] [INSPIRE].

  47. S. Bar-Shalom and A. Soni, Universally enhanced light-quarks Yukawa couplings paradigm, Phys. Rev. D 98 (2018) 055001 [arXiv:1804.02400] [INSPIRE].

  48. G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].

  49. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  50. ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031.

  51. CMS collaboration, Measurement of the top quark Yukawa coupling from tt kinematic distributions in the lepton+jets final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CERN-EP-2019-119.

  52. D. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and Spontaneous Flavor Violation, Phys. Rev. Lett. 123 (2019) 031802 [arXiv:1811.00017] [INSPIRE].

  53. D. Egana-Ugrinovic, S. Homiller and P.R. Meade, Higgs bosons with large couplings to light quarks, arXiv:1908.11376 [INSPIRE].

  54. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

  55. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

  56. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  57. O.J.P. Éboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production, Phys. Lett. B 197 (1987) 269 [INSPIRE].

  58. E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].

  59. D.A. Dicus, C. Kao and S.S.D. Willenbrock, Higgs Boson Pair Production From Gluon Fusion, Phys. Lett. B 203 (1988) 457 [INSPIRE].

  60. T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].

  61. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

  62. S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].

  64. J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, Eur. Phys. J. C 79 (2019) 459 [arXiv:1811.05692] [INSPIRE].

  65. R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, Analytical Method for Next-to-Leading-Order QCD Corrections to Double-Higgs Production, Phys. Rev. Lett. 121 (2018) 162003 [arXiv:1806.11564] [INSPIRE].

  66. R. Gröber, A. Maier and T. Rauh, Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes, JHEP 03 (2018) 020 [arXiv:1709.07799] [INSPIRE].

  67. J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double Higgs boson production at NLO in the high-energy limit: complete analytic results, JHEP 01 (2019) 176 [arXiv:1811.05489] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].

  69. D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J. Davies, R. Gröber, A. Maier, T. Rauh and M. Steinhauser, Top quark mass dependence of the Higgs boson-gluon form factor at three loops, Phys. Rev. D 100 (2019) 034017 [arXiv:1906.00982] [INSPIRE].

  72. J. Davies and M. Steinhauser, Three-loop form factors for Higgs boson pair production in the large top mass limit, JHEP 10 (2019) 166 [arXiv:1909.01361] [INSPIRE].

    Article  ADS  Google Scholar 

  73. R.V. Harlander, M. Prausa and J. Usovitsch, The light-fermion contribution to the exact Higgs-gluon form factor in QCD, JHEP 10 (2019) 148 [arXiv:1907.06957] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  75. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

  76. A. Denner, S. Dittmaier and L. Hofer, COLLIER — A fortran-library for one-loop integrals, PoS(LL2014)071 (2014) [arXiv:1407.0087] [INSPIRE].

  77. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  78. D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09 (2015) 053 [arXiv:1505.07122] [INSPIRE].

    Article  Google Scholar 

  79. D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].

  80. C. Balázs, H.-J. He and C.P. Yuan, QCD corrections to scalar production via heavy quark fusion at hadron colliders, Phys. Rev. D 60 (1999) 114001 [hep-ph/9812263] [INSPIRE].

  81. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

  82. S. Dawson, C. Kao, Y. Wang and P. Williams, QCD Corrections to Higgs Pair Production in Bottom Quark Fusion, Phys. Rev. D 75 (2007) 013007 [hep-ph/0610284] [INSPIRE].

  83. A.H. Ajjath et al., Higgs pair production from bottom quark annihilation to NNLO in QCD, JHEP 05 (2019) 030 [arXiv:1811.01853] [INSPIRE].

  84. M. Spira, Higgs Boson Production and Decay at Hadron Colliders, Prog. Part. Nucl. Phys. 95 (2017) 98 [arXiv:1612.07651] [INSPIRE].

  85. V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].

  86. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

  87. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e− Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [INSPIRE].

    ADS  Google Scholar 

  88. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

  89. A. Djouadi, J. Kalinowski, M. Muehlleitner and M. Spira, HDECAY: Twenty++ years after, Comput. Phys. Commun. 238 (2019) 214 [arXiv:1801.09506] [INSPIRE].

  90. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  91. D.C. Hall, RootTuple: A library enabling ROOT n-tuple output from FORTRAN HEP programs, http://roottuple.hepforge.org.

  92. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

  93. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  94. CMS collaboration, Inclusive b-jet production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 04 (2012) 084 [arXiv:1202.4617] [INSPIRE].

  95. CMS collaboration, Performance of b tagging at \( \sqrt{s} \) = 8 TeV in multijet, ttbar and boosted topology events, CMS-PAS-BTV-13-001.

  96. ATLAS collaboration, Performance assumptions based on full simulation for an upgraded ATLAS detector at a High-Luminosity LHC, ATL-PHYS-PUB-2013-009.

  97. CMS collaboration, Photon ID performance with 19.6 fb−1 of data collected at \( \sqrt{s} \) = 8 TeV with the CMS detector, CMS-DP-2013-010.

  98. G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  99. D. Kim and M. Park, Enhancement of new physics signal sensitivity with mistagged charm quarks, Phys. Lett. B 758 (2016) 190 [arXiv:1507.03990] [INSPIRE].

  100. CMS collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev. D 89 (2014) 012003 [arXiv:1310.3687] [INSPIRE].

  101. ATLAS collaboration, Search for the bb decay of the Standard Model Higgs boson in associated (W/Z )H production with the ATLAS detector, JHEP 01 (2015) 069 [arXiv:1409.6212] [INSPIRE].

  102. N.A. Heard and P. Rubin-Delanchy, Choosing between methods of combining p-values, Biometrika 105 (2018) 239 [arXiv:1707.06897].

  103. ATLAS collaboration, Search for Scalar Charm Quark Pair Production in pp Collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 161801 [arXiv:1501.01325] [INSPIRE].

  104. ATLAS collaboration, Search for single top-quark production via FCNC in strong interaction in \( \sqrt{s} \) = 8 TeV ATLAS data, ATLAS-CONF-2013-063.

  105. M. Capeans et al., ATLAS Insertable B-Layer Technical Design Report, CERN-LHCC-2010-013.

  106. ATLAS collaboration, Track Reconstruction Performance of the ATLAS Inner Detector at \( \sqrt{s} \) = 13 TeV, ATL-PHYS-PUB-2015-018.

  107. M. Bauer, M. Carena and A. Carmona, Higgs Pair Production as a Signal of Enhanced Yukawa Couplings, Phys. Rev. Lett. 121 (2018) 021801 [arXiv:1801.00363] [INSPIRE].

  108. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489, Berlin, Germany

    Lina Alasfar & Ramona Gröber

  2. CAFPE and Departamento de Fìsica Téorica y del Cosmos, Universidad de Granada, E18071, Granada, Spain

    Roberto Corral Lopez

  3. Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131, Padova, Italy

    Ramona Gröber

Authors
  1. Lina Alasfar
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Roberto Corral Lopez
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Ramona Gröber
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Lina Alasfar.

Additional information

ArXiv ePrint: 1909.05279

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alasfar, L., Lopez, R.C. & Gröber, R. Probing Higgs couplings to light quarks via Higgs pair production. J. High Energ. Phys. 2019, 88 (2019). https://doi.org/10.1007/JHEP11(2019)088

Download citation

  • Received: 19 September 2019

  • Accepted: 04 November 2019

  • Published: 14 November 2019

  • DOI: https://doi.org/10.1007/JHEP11(2019)088

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phenomenological Models
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature