Showing posts with label Elementary. Show all posts
Showing posts with label Elementary. Show all posts

Friday, February 25, 2022

Early El Math Games

As my preservice teachers have had the opportunity to work with a K/1 classroom this year, I've been thinking a lot more about early math games. Mostly I'm trying to tie these to the components of number sense. 

Number Sense

In our class we discuss these as: 

  • one-to-one correspondence - as learners count, they have one (and only one!) number assigned to each object being counted.
  • hierarchical inclusion - (worst name candidate) the idea that a number contains smaller numbers. If you have 6 you also have 5, etc.
  • subitizing - visual recognition of quantities. Perceptual subitizing is immediate recognition of quantities, most commonly up to 5 or 6. Conceptual subitizing is visual chunking of a collection into smaller groups that can be perceptually subitized.
  • cardinality - the center and core. Recognition of numbers as quantities, a characteristic of a collection that doesn't change with rearrangement. Kids can have most of these other concepts but still not have assembled them into cardinality.
  • magnitude/comparison - both being able to directly compare quantities, and identify relative size - like locating where 7 is between 5 and 15.
If possible, my favorite thing for many of these games is for kids to have number cards which they have a hand in making. Similar to Tiny Polka Dot cards, which are a great commercial version. The idea is to make four suits, 0 or 1 to 10, where the suits are different representations of the numbers. Ten frames, symbols or shapes organized into patterns, randomly placed or groups of shapes to encourage subitizing, etc. You can have numerals or tally marks or number words if that's something you want your learners working on. I tend to prefer cards that involve counting and supportive structures. I used to have my own cards I'd print, but the opportunity for creativity, ownership and doing mathematics is strong with kids making the cards. (Not to mention some sneaky assessment.)






Once you have the cards, familiar games create terrific mathematical opportunities. Go Fish and Memory/Concentration create counting opportunities, and set up future games using those structures, like 10s or equation Go Fish or Concentration.


General Educational Game Advice
Many traditional games have a rule that when you're successful, you go again. I recommend against this because it increases wait time for other players, works against catch up, and can discourage the kids we want most to engage.

Similarly, I try to avoid games that emphasize speed, or require correctness to score and advance. I love for games to be an opportunity for collaboration and discussion, not a stand in for a quiz.

Divvy Up (Counting, Hierarchical Inclusion) Materials: Number Cards

Put about ten objects in the middle for each player. Using your number cards or dice, a player flips over a card and takes that many objects from the pile. Then counts up how many they have total. If appropriate, can have a score sheet where they write down that number. Game has two winners - one who takes the last object, one who has the most things.

Optional, arrange the 10 objects in two rows of five to sneak in some 5s structure and complements of 10.
Variation: if there are not enough to take, you have to pass. Encourages comparison, but can make the end take a while.

More or Less (Comparison, Strategy)
Materials: Number Cards

Idea: instead of War, which is not bad, in the math game sense, try this game. Draw 3 cards and teams take turns. The team whose turn it is chooses more or less. Both teams choose a card and hold it face down, then reveal. If more was chosen, the larger number wins, if less, the smaller. If it's a tie, you chose a 2nd card from your hand with the same rule.

More Together (Counting on, addition, hiearchical inclusion, decomposition)
Materials: Number cards mixed up in four piles.

Two teams: each turn over a card. Who has more? Then the teams turn over their 2nd card. Who has more together?

If learners are ready to count on, can just count from the first number. (6,5) Had 6, then 7, 8, 9, 10, 11 - pointing to pips on cards. If students would benefit from counting out blocks for how much (6 for this, 5 for that, count together), use blocks. Can introduce counting on here, too.

A tie? Flip over one more. No need for an overall winner, just who wins each turn.

Staircase  (Counting, counting on, hiearchical inclusion)

Materials: optional gameboard, a lot of stacking cubes and a die.


Play: roll a die, and build a stack of that many cubes, then roll another (or reroll) and add that many, with the two summands in different colors. Put them on your team’s track on the sum. If you already have that number, that’s okay, put it on the same space. Winner is the first to get three spaces in a row (make a staircase). Some students lay them down, some stand them up. Variation 1: If the three step game is too short, play to four or five steps. Variation 2: if you roll a sum you already have, you can choose to remove the same sum from your opponents’ board. (Increases interaction.) Variation 3: Playing with number cards 1-10. If you get a 1 or a 2 first card, you must take another. Otherwise it’s your choice. Bigger than 12 is a bust, you lose your turn. Probably best with a four or five step win condition, and can be combined with variation 2 as well. Lots of opportunity to notice and wonder. Notice the different ways to get the same sum, wonder how much you have together, notice that 2+5 is the same as 5+2, ask what you hope to get on that second die roll…


How many behind? (Decomposing, hiearchical inclusion, part part whole stories) Materials: 10 (or 12!) unifix cubes.
Show and count how many cubes in the stack. Now put the whole stack behind your back, and bring 1 cube out front. Ask: how many cubes behind my back? Next time, keep 1 behind your back, then show the rest. (If your partner’s there, have them go.) Learners and teachers take turns being the hider. If you want, you can always start with the same amount shown in front, or let people show a different number, then hide some behind. If the learners haven’t got the one less idea, try that one a few more times.

Big Three (Magnitude) Materials: deck of number cards. Idea: Players start with 3 face down cards. On your turn, draw a card from the deck or the top card of the discard pile. Replace one of your face down cards with it. No peeking! The goal is to find the biggest cards you can. The card you replace is then discarded, even if it was a high card. When someone thinks they have the biggest cards, they call “Last Turn” and everyone else takes one more turn. Players add up their cards to see who has the Big Three. Option: need more challenge? Play Big Four!
(Riff on Rat-a-Tat-Cat, a great commercial math game.)


Moving to Story & Operation
As kids have started to acquire number sense, we move into stories that provide the context for operations. The Cognitively Guided Instruction Framework, based on research analyzing how children acted out elemental math stories.
  • Join. One quantity, increasing over the story. Unknown could be the start, the change or the result.
  • Separate. One quantity, decreasing over the story. Unknown could be the start, the change or the result.
  • Comparison. Two quantities, related by the difference between them. Unknown could be the referent, the difference or the compared quantity.
  • Part Part Whole. Two quantities that are part of a group. Unknown could be either part or the whole.
  • Grouping. A number of groups, each group with a number of things, and a total. If the total is unknown, it's multiplication; if the number in the group is unknown, it's fair share/partative division; if the number of groups is unknown, it's measure/quotative division.

Comparison Game
Materials: number cards, especially if you have organized ones like dice face, hashmarks (if those are good for your kids), or ten frames. Plus 50-60 unifix cubes. Both players flip a card and build a stack that tall. Compare the stacks. Count the difference and take it off the taller stack. The player with more scores the difference. First player to 20 scored cubes wins. If it’s a tie, no score. Afterwards be sure to describe the score as 8 is 3 more than 5, or 5 is 3 less than 8. You could write down 5+3=8 (or 8-5=3 if they seem familiar with subtraction and super-comfortable with addition number sentence already.) Transition to them writing the number sentences and saying which is how many more than the other. If they are able to find the difference without counting blocks, make sure to have them describe their thinking. If they need challenge, don’t put the stacks together as they try to figure out how much more and less.

Making a Difference Materials: unifix cubes or counters about 30, number cards. Play: Both players have three cards. Choose a card to play. The lower card scores how many blocks it takes to make it equal to the other card - let the learners know that low cards are better.. If students can do with just numbers, that’s fine. But at least the first couple plays, build both numbers and count up how many cubes to make the difference. The person with the lower card scores those blocks. If it’s a tie, you have to play a second card from your hand. Draw back up to three cards. Winner is the first player or team to 12 cubes.

Facts
I feel like this is a place where games have made an inroad. But still, there's plenty of fun to be had.

10s Go Fish and Concentration Make 10
Pretty self explanatory. Remember to not let kids take extra turns. Both games I like to have kids score by counting their 10s.

Double Time (Doubles and counting on)
Materials: a game track, which can be numbered. 1 to 40 or 50 makes a good length with number cards, 30 is okay with dice. Bonus if you color or design the track in alternating spaces, to hint at the counting by 2s connection.

Play: students roll one die and move that plus the same. First to the finish line wins. I like to have students write down what they rolled and how far they went. 3+3=6, etc. If the track is numbered, you can start sneaking in some questions like 'Oh, you're on 24 and moving 8? Where will you end up?' For students working on counting on, this game provides lots of practice, since you don't start with 24, 1 is 25.

Ten Penny Game (Fives structure, sums to 10)
Have two ten frames out, the blocks, and some pennies or chips for scoring. Put a penny on the tenth spot of each. Players take turns rolling a die, and adding that many blocks to one of the ten frames. If they fill up the last spot, you get the penny as a point. Clear all the blocks and put on a new penny. There will be lots of opportunities for counting, counting on, and using the fives structure. "How many on this ten frame? How many more to fill it?" Are good questions here.

Cover All (Addition, decomposing)
This is the classic math game Shut the Box.

Cover All gameboard, but really all students need is a track from 1 to 10.
Play: roll two dice, and cover up any combination of numbers that add to the same amount.

With some kids, blocks help. If they set out how many they rolled, they can break them up in different ways. Consider questions to ask: what would be a good roll? What numbers might be harder to cover? What are different ways to split up our roll? (Helping them realize they have a choice.) What really makes this game a classic to me is that it really generates problems. Not how do you make 10, but how do you make 10 if I already used 7, 6 and 5. Is it even possible?

Dice Squares (adapted from Illustrative Math)
Materials: Gameboard, dice. This is a clever variation on dots and boxes. Roll two dice and fill in an edge next to that number. The player who puts the fourth edge on a box scores it! Mark with your symbol (X or O) or initials. 


Play with your students, thinking aloud at how you get your sums. For most of the kids, counting on would be a good strategy. 3 & 5, 5 -> 6,7,8. If students could benefit from using manipulatives to count, have them take as many as each roll, then find the total.


Make Your Own


Notice how simple some of these are? Really, some of these tiny math games are just born from thinking what do I want learners experiencing, and then adding dice or cards. Competition is fine - and a reason to engage for some learners, but try to avoid rewarding speed and correctness. Add in a representation (cards or the gameboard or a manipulative) and you probably have a classic in the making. (Then send it to me!) The easy wrinkle to add to the strategy and thinking required is to add choice. Much like More or Less above is basically War - with two layers of choice added in. Instead of flip a card, have a hand of two or three and choose one. Try to make choices real choices though. In More or Less, the choice of more or less makes the choice of the card much more significant.


Give Me More

Just two resources to end.

  • One of my favorite YouTube channels is Michael Minas, who makes up tiny math games with his kids and then demonstrates them. A lot of good games, but what's better is the spirit of invention.
  • Jenna Laib has a few easy, high leverage games. She writes about making games and then shares her favorites. We've used Number Boxes a lot this year, from 1st to 5th grade, just altering for what content the kids are thinking about. (Really, just read everything she writes.)

Just this week we were using ___ x ___ – ___ with a trash can ___ with 3rd graders. I wanted it not to be just who gets the biggest numbers, so added in the subtraction. I like having a trash can because it adds some choice, which gives even kids who have all their facts something to think about. There is so much thinking you can see and assessing you can do even just watching kids play these, and if you get to play with them... forget about it!


Game on!





Friday, January 27, 2017

Pentiremeter

New game! But a story first.

The idea came to me just before class, and the preservice teachers in my geometry & data for elementary course were willing to try and playtest. (Thank you!)

The class before we had defined and catalogued all the pentominoes. (Shapes made of 5 squares that only meet adjacent squares by sharing a full edge. In general, polynomioes.) I introduce them by asking about dominoes, and how do- is for two here. There's only one domino; that's when I impose the edge matching rule. Then triominoes, of which there are two. That's where we introduce the rule that if you can turn them to match, they are the same. On the board I drew
We skip right over 4, and I ask them to find all the pentominoes. We skip tetrominoes for several reasons. The objectives for this lesson are SMP 3 (construct and critique arguments) and running a mathematical discussion, in addition to the math content. We've been talking about persevering in problem-solving, too, so I'm trying to get them to be explicit about how they're trying to solve problems. Finding all the tetrominoes is sometimes a strategy that comes up for our big question: how do we know we have them all? I also want them to make the connection to tetris.

They work in groups (as usual) and occasionally I just ask the tables to say how many they've got. The first round was between 7 and 15. Second round between 10 and 13. Third round between 11 and 14. Time to put them on the board. The argument that usually comes up here is whether two pentominoes are the same if they are flips of each other. This day was a particularly lively discussion. Unusually, most of the class decided that the flips were different, with one main hold out. At one point, the chief counsel for flips are different asks "are we thinking of these as two-dimensional or three-dimensional?" "Ooh, good question!" I say. People argue both ways, and the square tiles we're using are the main argument for three. Then the holdout says "but a flip is just a turn in three dimensions!" We sort that out with lots of hand-waving and reference to snap-cubes, even though we don't have those out this day. (Point for Papert and the importance of physical experience.) Finally, they decide. Flips are different. They iron out to 18 and think they have all of them, despite the lack of a convincing argument that they do. And the frustrating refusal of the teacher to settle it by proclamation.

Next day, we're going to use the pentominoes for area and perimeter. The HW was there choice of questions about puzzles or making rectangles. One student found a 6x15 rectangle, which settled a question. I ask them for the area and perimeter of the pentominoes, and quickly someone says it's always 5 and 12. Conjecture! Rapidly disproved conjecture! Then I give some combo challenges: 3 pentominoes for a perimeter of 30 or more, 4 for 20 or under, 8 for exactly 26, 8 for exactly 36. The first is easy for most, but everyone gets stuck on one of the other three.  (So hard to get at the thinking here, though.) After a reflection, finally I ask if they're willing to try a new game. Here's the rules we finally decide:

Materials: Two teams and a set of pentominoes.
Players will add pentominoes to a figure and get points = to how much the perimeter increased. 
LOW SCORE WINS.
First team picks a pentomino and plays it. Instead of 12 points (unfair) they get one point for starters.
Second team picks a pentomino and adds it to the figure following polyomino rules. (Shared square edges.) 
Alternate until all pieces are played.

Sample game:
















Wow, team one was on fire at the end! It was pretty fun, and surprisingly strategic.  Students invented more and more efficient ways to find perimeter, moving from one by one counting, to side counting, to eventually getting to a  covered this many, added this many strategy. They were surprised you could score 0, and astonished when someone shared they scored negative points. The interesting question of whether trapped empty spaces count towards perimeter came up.

In the long run, I think the game gets repetitive, but it has given students a lot of experience with perimeter by then. If students wanted to play more, I'd challenge them to make a game board with obstacles. You could play this with the Blockus pentominoes, if you have a set, but making the pentominoes is a really good activity, too.

We're not sure about the name. Pentris was suggested. Reduce the Perimeter. Perimeduce. For now the placeholder is: Pentiremeter. But we're open to suggestions

PS: finally made a GeoGebra pentomino set that I like.

Saturday, August 23, 2014

Elementary Read

Planning my fall pre-service elementary math course, I was thinking about books. In the distant past we've read Deb Schifter's What's Happening in Math Class? (strong teacher narratives), and more recently Jo Boaler's What's Math Got to Do It. (Here's a recount of one of our book discussions about it.) But in my other classes, it's been very good to offer choice to students. (Here's a post about that.) I'm a big believer that teacher-to-teacher reflective conversation is the best PD, and book discussions make good context for those discussions. (A pdf of some research on this by Burbank, Kurchauk and Bates in The New Educator.)

I was finalizing my list for them to choose among, and thought to ask on Twitter. As usual, unexpected generosity in people thinking and answering. (I don't know why it's still unexpected.) Here's the responses:




A Mathematician's Lament.

I don't have a long list I'm drawing from, but Marilyn Burns' "Math for Smarty Pants" comes to mind. 


@j_lanier I second this. Have ordered to share with my elementary teachers in the district.


Rudin! Go big or go home ;-)

Children's Mathematics. 

Euclid’s Elements, because it’s comprehensive :P


Powerful Problem Solving. Lots of great examples.

 
Young Children Reinvent Arithmetic: Implications of Piaget's Theory by Constance Kamii


maybe "Creative Problem Solving in School Mathematics" by George Lenchner.


I second but I also like 10 Instructional Shifts by @steve_leinwand

making sense:teaching & learning with understanding by James Hiebert - geared k-8 but great for all math teachers


#1 for me is What's Math Got to Do With It? by , #2 is Knowing and Teaching Elementary Mathematics by Liping Ma ... #3 is Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School by Carpenter, Frankl, and Levi


Van de Walle, Teaching Student Centered Mathematics 

What a great bunch of suggestions. So my final list for them to choose from is below. I'm requiring at least two people per book, at most four. (24 students) In addition to the benefits of choice, I'm hoping that a variety of books enriches our classroom discussion.
  • Accessible Mathematics: Ten Instructional Shifts That Raise Student Achievement, Steven Leinwand, (Amazon) [Practical, pre-service teacher approved)]
  • Intentional Talk: How to Structure and Lead Productive Mathematical Discussions, Kazemi & Hintz, (Amazon) [Applies to more than math; good support for helping students learn to converse productively]
  • Making Sense: Teaching and Learning Mathematics with Understanding, Carpenter, Fennema, Fuson, Hiebert, Murray & Wearne (Amazon) [Writers and researchers of the best elementary math curricula around tell what they think is important.]
  • Math Exchanges: Guiding Young Mathematicians in Small Group Meetings, Kassia Omohundro Wedekind, (Amazon) [Similar to intentional talk, more strongly based in literacy routines.]
  • Math for Smarty Pants, Marilyn Burns (Amazon) [Collection of entertaining problems across all kinds of math from a master math teacher.]
  • A Mathematician's Lament: How School Cheats Us Out of Our Most Fascinating and Imaginative Art Form, Paul Lockhart (Amazon) [Not sure about putting this on. Many readers are disappointed in the 2nd part, but the 1st part people see as a powerful argument for why math teaching has to change.]
  • Powerful Problem Solving, Max Ray (Amazon) [New book from a very deep thinker about how to teach math.] 
  • What's Math Got to Do with It?: How Parents and Teachers Can Help Children Learn to Love Their Least Favorite Subject, Jo Boaler (Amazon) [If I was picking one book for everybody this would be it. Dr. Boaler is doing a lot to research and share how to make math better.]
Last cuts: Moebius Noodles,  The Math Book by Clifford Pickover (beautiful history of math), and Deb Schifter's What's happening in Math Class.

5 Practices by Smith and Stein (dropped for Intentional Talk and Exchanges) and the NCTM's Principle to Actions were just not accessible enough in this structure. I think if everyone was reading the same book, those would work better.

This course focuses on pattern, geometry and statistics, with number and operation in another course. Otherwise CGI would be on for sure. The Young Mathematicians at Work books are a fine series we use with our elementary teacher math majors.

P.S. And then, like any modern story, it ends with a sequel invitation...

Good question, extend. If you could get your child's HS math teacher to read one book, what would it be?


Monday, August 2, 2010

Elementary Homeschool

It has a been a couple of years since I really looked at what was available for elementary homeschoolers, but a recent question has me looking at this again.

The main focus has got to be curriculum, but that's a difficult question.  Many of the pointedly homeschool curricula are drill and kill to the extreme.  For example, one homeschooler who reported 132 practice problems per lesson.  This post is not going to be for those who are looking for that.

What to teach?  
The core standards are definitely the wave of the next decade.   Many states are going to have exactly these as content objectives and most states will be close.  There are still too many objectives, and too little attention to process, but it's a place to start.  The NCTM standards are practically venerable, now, but still the best guide to worthwhile content that there is.  The NCTM Focal Points would have made a better start to a common core, but still could help a homeschooler know what to center on.

Doing Math
The toughest thing for a homeschooler is the same as for a school teacher - shifting from a weak tea vision of math being grinding calculations to a rich frothy mug of math as an active way of thinking.  The key to this transformation is best exemplified in the NCTM Process Standards.  Center your time spent in mathematics with the student engaged in:
  • Problem Solving.  The big one.  Working on finding answers to questions when you not only don't know the answer, but you also don't know how to find the answer.  The trying and finding of methods to investigate is the heart of mathematics.
  • Representing.  Making, interpreting, translating between and choosing ways of showing and displaying mathematical information.  Numbers, equations, functions, tables, charts, mind maps, written descriptions, pictures, diagrams, physical enactments, etc.  Typically this is the biggest support to problem-solving, and one of the key means of differentiating in mathematics.
  • Connecting.  Seeing how what you know, mathematical information, and the real world relate and what they can tell us about each other.  Many problem solving strategies boil down to
  • Reasoning.  Following connections in a particular direction (forward or backwards) or examining the strength of those connections.  Answering why and how does this work questions.  One framework for this is a) Making sense b) Conjecturing c) Arguing (which includes Proving).
  • Communicating.  Sharing or recording what you know.  Strive to be clear, coherent, complete, correct and consolidated.
These can also be used to evaluate curricula, activities or problems.  If the materials do not offer opportunities to do these processes, they will not support the teacher or student in doing math.

Curricula
My favorite curriculum, bar none, is Contexts for Learning Mathematics.  Excellent activities, literacy integration, and student and teacher support.  I use these materials with my preservice elementary teachers.  Issues are price (though they are almost half off right now), and focus on number to the exclusion of geometry.  So a little bit of supplementary materials might be needed.  Strong on pre-algebraic thinking and reasoning though.

Second choice, or for the whole span of content objectives would be Investigations in Number, Data, and Space.  There's an option for online access to games for practice, too.  Unfortunately, it can be a daunting task teaching it for someone who might feel shaky on the math themselves.  If you want quality activities, and are willing to explore along with your student(s), this might be the series for you.  Unfortunately it is priced like college textbooks, $420 for a year's worth of teacher books.  You can buy by unit to supplement another curriculum.

An interesting option is the relatively recent translation of the Japanese curriculum.  They're available by grade level or the overview.  It does not cover all of our objectives, because the Japanese have a more reasonable curriculum, but it definitely covers what's important.  There are workbooks, too.

The cheapest option I've seen that has some value is the Jump Math program.  It's a bit worksheet centered, so you would have to supplement activities and problem solving, but there's a try at conceptual focus and it's a start.

Sue Van Hattum  thinks it's worth looking at the Mathematics Enhancement Programme (it's English) - and I'll be looking at it.  (You can always trust the Math Mama.)

Resources
  • A membership in NCTM gets you access to the standards and the journal of your choice.  Probably the single greatest resource for learning about the math, the teaching of the math, and finding worthwhile activities.  The Calculation Nation games are free to all, though.
  • NRich.  Best single source for math problems I know.  Searchable by topic, filterable by grade level and challenge level.
  • Let's Play Math.  Terrific blog of Denise, a homeschooling mother.  Resources, links, activities, discussion.  Also maintains a collection of Mostly Free Math Resources.
  • Homeschool Math is run by Maria and is also worth a look.
  • Me - write with questions and I'll help however I can.
Wishing Well
Good math teaching is the same wherever it happens - it's supporting worthwhile and significant student learning.  My main advice would be to try to transfer from the areas where you feel your teaching is strongest.  Science, reading, etc.  What's making that work, and how would it look in math?  Emphasize making sense.  Don't you and don't let your student do anything just because.  Connect with other teachers (blogging, commenting, or tweeting) and discuss your teaching.