Kelvin on the sun
On Friday 21 January 1887 Sir William Thomson (he became Lord Kelvin in 1892) addressed the Friday Evening Discourse in Physical Science at the Royal Institution in London. He addressed the audience on The Sun's Heat. In the tradition of the lectures he assumed that members of the audience had no expert scientific knowledge. It is worth commenting that Thomson is, of course, entirely wrong but there was no way before the discovery of the structure of the atom that he could possibly have produced a correct theory. The lecture is interesting both in showing the knowledge of the period, and also in showing how the leading scientists pushed forward the bounds of knowledge.
The Sun's Heat
Sir William Thomson, LL.D. F.R.S. M.R.L.
Professor of Natural Philosophy in the University of Glasgow.
From human history we know that for several thousand years the sun has been giving heat and light to the earth as at present, possibly with some considerable fluctuations, and possibly with some not very small progressive variation. The records of agriculture, and the natural history of plants and animals within the time of human history, abound with evidence that there has been no exceedingly great change in the intensity of the sun's heat and light within the last three thousand years; but for all that, there may have been variations of quite as much as 5 or 10 per cent, as we may judge by considering that the intensity of the solar radiation to the earth is per cent greater in January than in July; and neither at the equator nor in the northern or southern hemispheres has this difference been discovered by experience or general observation of any kind. But as for the mere age of the sun, irrespective of the question of uniformity, we have proof of something vastly more than three thousand years in geological history, with its irrefragable evidence of continuity of life on the earth in time past for tens of thousands, and probably for millions of years.
Here, then, we have a splendid subject for contemplation and research in Natural Philosophy or Physics - the science of dead matter. The sun, a mere piece of matter of the moderate dimensions which we know it to have, bounded all round by cold ether, has been doing work at the rate of four hundred and seventy-six thousand million million million horse-power for three thousand years; and at possibly a higher, certainly not much lower, rate for a few million years. How is this to be explained? Natural philosophy cannot evade the question, and no physicist who is not engaged in trying to answer it can have any other justification than that his whole working time is occupied with work on some other subject or subjects of his province by which he has more hope of being able to advance science.
It may be taken as an established result of scientific inquiry that the sun is not a burning fire, and is merely a white hot fluid mass cooling, with some little accession of fresh energy by meteors occasionally falling in, but of very small account in comparison with the whole energy of heat which he gives out from year to year. Helmholtz's form of the meteoric theory of the origin of the sun's heat, may be accepted as having the highest degree of scientific probability that can be assigned to any assumption regarding actions of prehistoric times. The essential principle of the explanation is this; at some period of time, long past, the sun's initial heat was generated by the collision of pieces of matter gravitationally attracted together from distant space to build up his present mass; and shrinkage due to cooling gives, through the work done by the mutual gravitation of all parts of the shrinking mass, the vast heat-storage capacity in virtue of which the cooling has been, and continues to be, so slow.
In some otherwise excellent books it is "paradoxically" stated that the sun is becoming hotter because of the condensation. Paradoxes have no place in science. Their removal is the substitution of true for false statements and thoughts, not always so easily effected as in the present case. The truth is, that it is because the sun is becoming less hot in places of equal density that his mass is allowed to yield gradually under the condensing tendency of gravity and thus from age to age cooling and condensation go on together.
An essential detail of Helmholtz's theory of solar heat is that the sun must be fluid, because even though given at any moment hot enough from the surface to any depth, however great, inwards, to be brilliantly incandescent, the conduction of heat from within through solid matter of even the highest conducting quality known to us, would not suffice to maintain the incandescence of the surface for more than a few hours, after which all would be darkness. Observation confirms this conclusion so far as the outward appearance of the sun is concerned, but does not suffice to disprove the idea which was so eloquently set forth by Sir John Herschel, and which prevailed till thirty or forty years ago, that the sun is a solid nucleus enclosed in a sheet of violently agitated flame. In reality, the matter of the outer shell of the sun, from which the heat is radiated outwards, must in cooling become denser, and so becoming unstable in its high position must fall down, and hotter fluid from within must rush up to take its place. The tremendous currents thus continually produced in this great mass of flaming fluid constitute the province of the newly-developed science of solar physics, which, with its marvellous instrument of research - the spectroscope - is yearly and daily giving us more and more knowledge of the actual motions of the different ingredients, and of the splendid and all-important resulting phenomena.
To form some idea of the amount of the heat which is being continually carried up to the sun's surface and radiated out into space, and of the dynamical relations between it and the solar gravitation, let us first divide that prodigious number () of horse-power by the number () of square metres in the sun's surface, and we find 78,000 horse-power as the mechanical value of the radiation per square metre. Imagine, then, the engines of eight ironclads applied, by ideal mechanism of countless shafts, pulleys, and belts, to do all their available work of, say 10,000 horse-power each, in perpetuity driving one small paddle in a fluid contained in a square metre vat. The same heat would be given out from the square metre surface of the fluid as is given out from every square metre of the sun's surface.
But now to pass from a practically impossible combination of engines, and a physically impossible paddle and fluid and containing vessel, towards a more practical combination of matter for producing the same effect: still keep the ideal vat and paddle and fluid, but place the vat on the surface of a cool, solid, homogeneous globe of the same size (697,000 kilometres radius) as the sun, and of density (1.4) equal to the sun's mean density. Instead of using steam-power, let the paddle be driven by a weight descending in a pit excavated below the vat. As the simplest possible mechanism, take a long vertical shaft, with the paddle mounted on the top of it so as to turn horizontally. Let the weight be a nut working on a screw-thread on the vertical shaft, with guides to prevent the nut from turning - the screw and the guides being all absolutely frictionless. Let the pit be a metre square at its upper end, and let it be excavated quite down to the sun's centre, everywhere of square horizontal section, and tapering uniformly to a point in the centre. Let the weight be simply the excavated matter of the sun's mass, with merely a little clearance space between it and the four sides of the pit, and with a kilometre or so out off the lower pointed end to allow space for its descent. The mass of this weight is 326 million tons. Its heaviness, three-quarters of the heaviness of an equal mass at the sun's surface, is 244 million tons solar surface-heaviness. Now a horse-power is, per hour, 270 metre-tons, terrestrial surface-heaviness; or 10 metre-tons, solar surface-heaviness, because a ton of matter is twenty-seven times as heavy at the sun's surface as at the earth's. To do 78,000 horsepower, or 780,000 metre-tons solar surface-heaviness per hour, our weight must therefore descend at the rate of one metre in 313 hours, or about 28 metres per year.
To advance another step, still through impracticable mechanism, towards the practical method by which the sun's heat is produced, let the thread of the screw be of uniformly decreasing steepness from the surface downwards, so that the velocity of the weight, as it is allowed to descend by the turning of the screw, shall be in simple proportion to distance from the sun's centre. This will involve a uniform condensation of the material of the weight; but a condensation so exceedingly small in the course even of tens of thousands of years, that, whatever be the supposed material, metal or stone, of the weight, the elastic resistance against the condensation will be utterly imperceptible in comparison with the gravitational forces with which we are concerned. The work done per metre of descent of the top end of the weight will be just four-fifths of what it was when the thread of the screw was uniform. Thus, to do the 78,000 horse-power of work, the top end of the weight must descend at the rate of 35 metres per year: or 70 kilometres per 2000 years.
Now let the whole surface of our cool solid sun be divided into squares, for example as nearly as may be of one square metre area each, and lot the whole mass of the sun be divided into long inverted pyramids or pointed rods, each 697,000 kilometres long, with their points meeting at the centre. Let each be mounted on a screw, as already described for the long tapering weight which we first considered; and let the paddle at the top end of each screw-shaft revolve in a fluid, not now confined to a vat, but covering the whole surface of the sun to a depth of a few metres or kilometres. Arrange the viscosity of the fluid and the size of each paddle so as to let the paddle turn just so fast as to allow the top end of each pointed rod to descend at the rate of 35 metres per year. The whole fluid will, by the work which the paddles do in it, be made incandescent, and it will give out heat and light to just about the same amount as is actually done by the sun. If the fluid is a few thousand kilometres deep over the paddles, it would be impossible, by any of the appliances of solar physics, to see the difference between our model mechanical sun and the true sun.
To do away with the last vestige of impracticable mechanism in which the heavinesses of all parts of each long rod are supported on the thread of an ideal screw cut on a vertical shaft of ideal matter, absolutely hard and absolutely frictionless: first, go back a step to our supposition of just one such rod and screw working in a single pit excavated down to the centre of the sun, and let us suppose all the rest of the sun's mass to be rigid and absolutely impervious to heat. Warm up the matter of the pyramidal rod to such a temperature that its material melts and experiences as much of Sir Humphry Davy's "repulsive motion" as suffices to keep it balanced as a fluid, without either sinking or rising from the position in which it was held by the thread of the screw. When the matter is thus held up without the screw, take away the screw or let it melt in its place. We should thus have a pit from the sun's surface to his centre, of a square metre area at the surface, full of incandescent fluid, which we may suppose to be of the actual ingredients of the solar substance. This fluid, having at the first instant the temperature with which the paddle left it, would at the first instant continue radiating heat just as it did when the paddle was kept moving; but it would quickly become much cooler at its surface, and to a distance of a few metres down. Currents of less hot fluid tumbling clown, and hotter fluid coming up from below, in irregular whirls, would carry the cooled fluid down from the surface, and bring up hotter fluid from below, but this mixing could not go on through a depth of very many metres to a sufficient degree to keep up anything approaching to the high temperature maintained by the paddle; and after a few hours or days, solidification would commence at the surface. If the solidified matter floats on the fluid, at the same temperature, below it, the crust would simply thicken as ice on a lake thickens in frosty weather; but if, as is more probable, solid matter, of such ingredients as the sun is composed of, sinks in the liquid when both are at the melting temperature of the substance, thin films of the upper crust would fall in, and continue falling in, until, for several metres downwards, the whole mass of mixed solid and fluid becomes stiff enough (like the stiffness of paste or of mortar) to prevent the frozen film from falling down from the surface. The surface film would then quickly thicken, and in the course of a few hours or days become less than red-hot on its upper surface, the whole pit full of fluid would go on cooling with extreme slowness until, after possibly about a million million million years or so, it would be all at the same temperature as the space to which its upper end radiates.
Let precisely what we have been considering be done for every one of our pyramidal rods, with, however, in the first place, thin partitions of matter impervious to heat separating every pit from its four surrounding neighbours. Precisely the same series of events as we have been considering will take place in every one of the pits.
Suppose the whole complex mass to be rotating at the rate of once round in twenty-five days, which is, about as exactly as we know it, the time of the sun's rotation about his axis.
Now at the instant when the paddle stops let all the partitions be annulled, so that there shall be perfect freedom for currents to flow unresisted in any direction, except so far as resisted by the viscosity of the fluid, and leave the piece of matter, which we may now call the Sun, to himself. He will immediately begin showing all the phenomena known in solar physics. Of course the observer might have to wait a few years for sunspots, and a few quarter-centuries to discover periods of sunspots, but they would, I think I may say probably, all be there just as they are, because I think we may feel that it is most probable that all these actions are due to the sun's own substance, and not to external influences of any kind. It is, however, quite possible, and indeed many who know most of the subject think it probable, that some of the chief phenomena due to sunspots arise from influxes of meteoric matter circling round the sun.
The energy of chemical combination is as nothing compared with the gravitational energy of shrinkage, to which the sun's activity is almost wholly due. A body falling forty-six kilometres to the sun's surface or through the sun's atmosphere, has as much work done on it by gravity, as corresponds to a high estimate of chemical energy in the burning of combustible materials. But chemical combinations and dissociations may, as urged by Lockyer, in his book on the 'Chemistry of the Sun,' just now published, be thoroughly potent determining influences on some of the features of non-uniformity of the brightness in the grand phenomena of sunspots, hydrogen flames, and corona, which make the province of solar physics. But these are questions belonging to a very splendid branch of solar science to which only allusion can be made at the present time.
What concerns us as to the explanation of sun-light and sun-heat may be summarised in two propositions:-
- Gigantic currents throughout the sun's liquid mass are continually maintained by fluid, slightly cooled by radiation falling down from the surface, and hotter fluid rushing up to take its place.
- The work done in any time by the mutual gravitation of all the parts of the fluid, as it shrinks in virtue of the lowering of its temperature, is but little less than (so little less than, that we may regard it as practically equal to) the dynamical equivalent of the heat that is radiated from the sun in the same time.
The rate of shrinkage corresponding to the present rate of solar radiation has been proved to us, by the consideration of our dynamical model, to be 35 metres on the radius per year, or one ten-thousandth of its own length on the radius per two thousand years. Hence, if the solar radiation has been about the same as at present for two hundred thousand years, his radius must have been greater by one per cent two hundred thousand years ago than at present. If we wish to carry our calculations much farther back or forward than two hundred thousand years, we must reckon by differences of the reciprocal of the sun's radius, and not by differences simply of the radius, to take into account the change of density (which, for example, would be three per cent for one per cent change of the radius). Thus the rule, easily worked out according to the principles illustrated by our mechanical model, is this:-
Equal differences of the reciprocal of the radius correspond to equal quantities of heat radiated away from million of years to million of years.
Take two examples-
- If in past time there has been as much as fifteen million times the heat radiated from the sun as is at present radiated out in one year, the solar radius must have been four times as great as at present.
- If the sun's effective thermal capacity can be maintained by shrinkage till twenty million times the present year's amount of heat is radiated away, the sun's radius must be half what it is now. But it is to be remarked that the density which this would imply, being 11.2 times the density of water, or just about the density of lead, is probably too great to allow the free shrinkage as of a cooling gas to be still continued without obstruction through overcrowding of the molecules. It seems, therefore, most probable that we cannot for the future reckon on more of solar radiation than, if so much as, twenty million times the amount at present radiated out in a year. It is also to be remarked that the greatly diminished radiating surface, at a much lower temperature, would give out annually much less heat than the sun in his present condition gives. The same considerations led Newcomb to the conclusion:-
... that it is hardly likely that the sun can continue to give sufficient heat to support life on the earth (such life as we now are acquainted with, at least) for ten million years from the present time.
In our calculations we have taken Pouillet's number for the total activity of solar radiation, which practically agrees with Herschel's. Forbes showed the necessity for correcting the mode of allowing for atmospheric absorption used by his two predecessors in estimating the total amount of solar radiation, and he was thus led to a number 1.6 times theirs. Forty years later Langley, in an excellently worked out consideration of the whole question of absorption by our atmosphere, of radiant heat of all wave-lengths, accepts and confirms Forbes's reasoning, and by fresh observations in very favourable circumstances on Mount Whitney, 15,000 feet above the sea-level, finds a number a little greater still than Forbes (1.7, instead of Forbes' 1.6, times Pouillet's number). Thus Langley's measurement of solar radiation corresponds to 133,000 horse-power per square metre, instead of the 78,000 horse-power which we have taken, and diminishes each of our times in the ratio of 1 to 1.7. Thus, instead of Helmholtz's twenty million years, which was founded on Pouillet's estimate, we have only twelve millions, and similarly with all our other time reckonings based on Pouillet's results. In the circumstances, and taking fully into account all possibilities of greater density in the sun's interior, and of greater or less activity of radiation in past ages, it would, I think, be exceedingly rash to assume as probable anything more than twenty million years of the sun's light in the past history of the earth, or to reckon on more than five or six million years of sunlight for time to come.
We have seen that the sun draws on no external source for the heat he radiates out from year to year, and that the whole energy of this heat is due to the mutual attraction between his parts acting in conformity with the Newtonian law of gravitation. We have seen how an ideal mechanism, easily imagined and understood, though infinitely far from possibility of realisation, could direct the work done by mutual gravitation between all the parts of the shrinking mass, to actually generate its heat-equivalent in an ocean of white-hot liquid covering the sun's surface, and so keep it white-hot while constantly radiating out heat at the actual rate of the sun's heat-giving activity. Let us now consider a little more in detail the real forces and movements actually concerned in the process of cooling by radiation from the uttermost region of the sun, the falling inwards of the fluid thus cooled, the consequent mixing up of the whole mass of the sun, the resulting diminished elastic resistance to pressure in equi-dense parts, and the consequent shrinkage of the whole mass under the influence of mutual gravitation. I must first explain that this "elastic resistance to pressure" is due to heat, and is, in fact, what I have, in the present lecture, called "Sir Humphry Davy's repulsive motion". I called it so because Davy first used the expression "repulsive motion" to describe the fine intermolecular motions to which he and other founders of the Kinetic Theory of Heat attributed the elastic resistance to compression presented by
gases and fluids.
Imagine, instead of the atoms and molecules of the various substances which constitute the sun's mass, a vast number of elastic globes, like schoolboys' marbles or billiard balls. Consider first, anywhere on our earth a few million such balls put into a room, large enough to hold a thousand times their number, with perfectly hard walls and ceiling, but with a real wooden floor; or, what would be still more convenient for our purpose, a floor of thin elastic sheet steel, supported by joists close enough together to prevent it from drooping inconveniently in any part. Suppose in the beginning the marbles to be lying motionless on the floor. In this condition they represent the atoms of a gas, as for instance, oxygen, nitrogen, or hydrogen, absolutely deprived of heat, and therefore lying frozen, or as molecular dust strewn on the floor of the containing vessel.
If now a lamp be applied below the oxygen, nitrogen, or hydrogen, the substance becoming warmed by heat conducted through the floor, will rise from its condition of absolutely cold solid, or of incoherent molecular dust, and will spread as a gas through the whole enclosed space. If more and more heat be applied by the lamp the pressure of the gas outwards in all directions against the inside of the enclosing vessel will become greater and greater.
As a rude mechanical analogue to this warming of a gas by heat conducted through the floor of its containing vessel, from a lamp held below it, return to our room with floor strewn with marbles, and employ workmen to go below the floor and strike its underside in a great many places vehemently with mallets. The marbles in immediate contact with the floor will begin to jump from it and fall sharply back again like water in a pot on a fire simmering before it boils. If the workmen work energetically enough there will be more and more of commotion in the heap, till every one of the balls gets into a state of irregular vibration, up and down, or obliquely, or horizontally, but in no fixed direction; and by mutual jostling the heap swells up till the ceiling of the room prevents it from swelling any further. Suppose now the floor to become, like the walls and ceiling, absolutely rigid. The workmen may cease their work of hammering, which would now be no more availing to augment the motions of the marbles within, than would be a lamp applied outside to warm the contents of a vessel, if the vessel were made of ideal matter impermeable to heat. The marbles being perfectly elastic will continue for ever flying about in their room striking the walls and floor and ceiling and one another, and remaining in a constant average condition of denser crowd just over the floor and less and less dense up to the ceiling.
In this constant average condition the average velocity of the marbles will be the same all through the crowd, from ceiling to floor, and will be the same in all directions, horizontal, or vertical, or inclined. The continually repeated blows upon any part of the walls or ceiling will in the aggregate be equivalent to a continuous pressure which will be in simple proportion to the average density of the crowd at the place. The diminution of pressure and density from the floor upwards will be precisely the same as that of the density and pressure of our atmosphere calculated on the supposition of equal temperature at all heights, according to the well-known formula and tables for finding heights by the barometer.
In reality the temperature of the atmosphere is not uniform from the ground upwards, but diminishes at the rate of about 1° C for every 162 metres of vertical ascent in free air, undisturbed by mountains, according to observations made in balloons by the late Mr Welsh, of Kew, through a large range of heights. This diminution of temperature upwards in our terrestrial atmosphere is most important and suggestive in respect to the constitution of the solar atmosphere, and not merely of the atmosphere or outer shell of the sun, but of the whole interior fluid mass with which it is continuous. The two cases have so much in common that there is in each case loss of heat from the outer parts of the atmosphere by radiation into space, and that in consequence circulating currents are produced through the continuous fluid, by which a thorough mixing up and down is constantly performed. In the case of the terrestrial atmosphere the lowest parts receive by contact heat from the solid earth, warmed daily by the sun's radiation. On the average of night and day, as the air does not become warmer on the whole, it must radiate out into space as much heat as all that it gets, both from the earth by contact, and by radiation of heat from the earth, and by intercepted radiation from the sun on its way to the earth. In the case of the sun the heat radiated from the outer parts of the atmosphere is wholly derived from the interior. In both cases the whole fluid mass is kept thoroughly mixed by currents of cooled fluid coming down and warmer fluid rising to take its place, and to be cooled and descend in its turn.
Now it is a well-known property of gases and of fluids generally (except some special cases, as that of water within a few degrees of its freezing temperature, in which the fluid under constant pressure contracts with rise of temperature) that condensation and rarefactions, effected by augmentations and diminutions of pressure from without, produce elevations and lowerings of temperature in circumstances in which the gas is prevented from either taking heat from or giving heat to any material external to it. Thus a quantity of air or other gas taken at ordinary temperature (say 15° C or 59° F) and expanded to double its bulk becomes 71° C cooler; and if the expansion is continued to thirty-two times its original bulk it becomes cooled 148° farther, or down to about 200° C below the temperature of freezing water, or to within 73° of absolute cold. Such changes as these actually take place in masses of air rising in the atmosphere to heights of eight or nine kilometres, or of twenty or twenty-five kilometres. Corresponding differences of temperature there certainly are throughout the fluid mass of the sun, but of very different magnitudes because of the twenty-seven fold greater gravity at the sun's surface, the vastness of the space through which there is free circulation of fluid, and last, though not least, the enormously higher temperature of the solar fluid than of the terrestrial atmosphere at points of equal density in the two. This view of the solar constitution has been treated mathematically with great power by Mr J Homer Lane, of Washington, U.S., in a very important paper read before the National Academy of Sciences, of the United States in April 1869, and published with further developments in the 'American Journal of Science,' for July 1870. Mr Lane, by strict mathematical treatment finds the law of distribution of density and temperature all through a globe of homogeneous gas left to itself in space, and losing heat by radiation outwards so slowly that the heat-carrying currents produce but little disturbance from the globular form.
One very remarkable and important result which be finds is, that the density at the centre is about twenty times the mean density; and this, whether the mass be large or small, and whether of oxygen, nitrogen, or hydrogen, or other substance; provided only it be of one kind of gas throughout, and that the density in the central parts is not too great to allow the condensation to take place, according to the ordinary gaseous law of density, in simple proportion to pressure for the same temperatures. We know this law to hold with somewhat close accuracy for common air, and for each of its two chief constituents, oxygen and nitrogen, separately, and for hydrogen, to densities of about two hundred times their densities at our ordinary atmospheric pressure. But when the compressing force is sufficiently increased, they all show greater resistance to condensation than according to the law of simple proportion, and it seems most probable that there is for every gas a limit beyond which the density cannot be increased by any pressure however great. Lane remarks that the density at the centre of the sun would be "nearly one-third greater than that of the metal platinum," if the gaseous law held up to so great a degree of condensation for the ingredients of the sun's mass; but he does not suggest this supposition as probable, and he no doubt agrees with the general opinion that in all probability the ingredients of the sun's mass, at the actual temperatures corresponding to their positions in his interior, obey the simple gaseous law through but a comparatively small space inwards from the surface; and that in the central regions they are much less condensed than according to that law. According to the simple gaseous law, the sun's central density would be thirty-one times that of water; we may assume that it is in all probability much less than this, though considerably greater than the mean density, 1.4. This is a wide range of uncertainty, but it would be unwise at present to narrow it, ignorant as we are of the main ingredients of the sun's whole mass, and of the laws of pressure, density, and temperature, even for known kinds of matter at very great pressures and very high temperatures.
The question, Is the sun becoming colder or hotter? is an exceedingly complicated one, and, in fact, either to put it or to answer it is a paradox, unless we define exactly where the temperature is to be reckoned. If we ask, How does the temperature of equi-dense portions of the sun vary from age to age? the answer certainly is that the matter of the sun of which the density has any stated value, for example, the ordinary density of our atmosphere, becomes always less and less hot, whatever be its place in the fluid, and whatever be the law of compression of the fluid, whether the simple gaseous law or anything from that to absolute incompressibility. But the distance inwards from the surface at which a constant density is to be found diminishes with shrinkage, and thus it may be that at constant depths inwards from the bounding surface the temperature is becoming higher and higher. This would certainly be the case if the gaseous law of condensation held throughout, but even then the effective radiational temperature, in virtue of which the sun sheds his heat outwards, might be becoming lower, because the temperatures of equi-dense portions are clearly becoming lower under all circumstances.
Leaving now these complicated and difficult questions to the scientific investigators who are devoting themselves to advancing the science of solar physics, consider the easily understood question, What is the temperature of the centre of the sun at any time, and does it rise or fall as time advances? If we go back a few million years to a time when we may believe the sun to have been wholly gaseous to the centre, then certainly the central temperature must have been augmenting; again, if, as is possible though not probable at the present time, but may probably be the case at some future time, there be a solid nucleus, then certainly the central temperature would be augmenting, because the conduction of heat outwards through the solid would be too slow to compensate the augmentation of pressure due to augmentation of gravity in the shrinking fluid around the solid. But at a certain time in the history of a wholly fluid globe, primitively rare enough throughout to be gaseous, shrinking under the influence of its own gravitation and its radiation of heat outwards into cold surrounding space, when the central parts have become so much condensed as to resist further condensation greatly more than according to the gaseous law of simple proportions, it seems to me certain that the early process of becoming warmer, which has been demonstrated by Lane, and Newcomb, and Ball, must cease, and that the central temperature must begin to diminish on account of the cooling by radiation from the surface, and the mixing of the cooled fluid throughout the interior.
Now we come to the most interesting part of our subject - the early history of the Sun. Five or ten million years ago he may have been about double his present diameter and an eighth of his present mean density, or 0.175 of the density of water; but we cannot, with any probability of argument or speculation, go on continuously much beyond that. We cannot, however, help asking the question, What was the condition of the sun's matter before it came together and became hot? It may have been two cool solid masses, which collided with the velocity due to their mutual gravitation; or, but with enormously less of probability, it may have been two masses colliding with velocities considerably greater than the velocities due to mutual gravitation. This last supposition implies that, calling the two bodies A and B for brevity, the motion of the centre of inertia of B relatively to A, must, when the distances between them was great, have been directed with great exactness to pass through the centre of inertia of A; such great exactness that the rotational momentum, or "moment of momentum," after collision was no more than to let the sun have his present slow rotation when shrunk to his present dimensions. This exceedingly exact aiming of the one body at the other, so to speak, is, on the dry theory of probability, exceedingly improbable. On the other hand, there is certainty that the two bodies A and B at rest in space if left to themselves undisturbed by other bodies and only influenced by their mutual gravitation, shall collide with direct impact, and therefore with no notion of their centre of inertia, and no rotational momentum of the compound body after the collision. Thus we see that the dry probability of collision between two neighbours of a vast number of mutually attracting bodies widely scattered through space is much greater if the bodies be all given a rest, than if they be given moving in any random directions and with any velocities considerable in comparison with the velocities which they would acquire in falling from rest into collision. In this connection it is most interesting to know from stellar astronomy, aided so splendidly as it has recently been by the spectroscope, that the relative motions of the visible stars and our sun are generally very small in comparison with the velocity (612 kilometres per second) which a body would acquire in falling into the sun, and are comparable with the moderate little velocity (29.5 kilometres per second) of the earth in her orbit round the sun.
To fix the ideas, think of two cool solid globes, each of the same mean density as the earth, and of half the sun's diameter; given at rest, or nearly at rest, at a distance asunder equal to twice the earth's distance from the sun. They will fall together and collide in exactly half a year. The collision will last for about half an hour, in the course of which they will be transformed into a violently agitated incandescent fluid mass flying outward from the line of the motion before the collision, and swelling to a bulk several times greater than the sum of the original bulks of the two globes. How far the fluid mass will fly out all round from the line of collision it is impossible to say. The motion is too complicated to be fully investigated by any known mathematical method; but with sufficient patience a mathematician might be able to calculate it with some fair approximation to the truth. The distance reached by the extreme circular fringe of the fluid mass would probably be much less than the distance fallen by each globe before the collision, because the translational motion of the molecules constituting the heat into which the whole energy of the original fall of the globes become transformed in the first collision, is probably about three-fifths of the whole amount of that energy. The time of flying out would probably be less than half a year, when the fluid mass must begin to fall in again towards the axis. In something less than a year after the first collision the fluid will again be in a state of maximum crowding round the centre, and this time probably even more violently agitated than it was immediately after the first collision; and it will again fly outward, but this time axially towards the places whence the two globes fell. It will again fall inwards, and after a rapidly subsiding series of quicker and quicker oscillations it will subside, probably in the course of two or three years, into a globular star of about the same dimensions, heat, and brightness as our present sun, but differing from him in this, that it will have no rotation.
We supposed the two globes to have been at rest when they were let fall from a mutual distance equal to the diameter of the earth's orbit. Suppose, now, that instead of having been at rest they had been moving in opposite directions with a velocity of two (more exactly 1.89) metres per second. The moment of momentum of these motions round an axis through the centre of gravity of the two globes perpendicular to their lines of motion is just equal to the moment of momentum of the sun's rotation round his axis. It is an elementary and easily proved law of dynamics that no mutual action between parts of a group of bodies, or of a single body, rigid, flexible, or fluid, can alter the moment of momentum of the whole. The transverse velocity in the case we are now supposing is so small that none of the main features of the collision and of the wild oscillations following it, which we have been considering, or of the magnitude, heat, and brightness of the resulting star, will be sensibly altered; but now, instead of being rotationless, it will be revolving once round in twenty-five days and so in all respects like to our sun.
If instead of being at rest initially, or moving with the small transverse velocities we have been considering, each globe had a transverse velocity of three-quarters (or anything more than 0.71) of a kilometre per second, they would just escape collision, and would revolve in ellipses round the centre of inertia in a period of one year, just grazing each other's surface every time they came to the nearest points of their orbits.
If the initial transverse velocity of each globe be less than, but not much less than, 0.71 of a kilometre per second, there will be a violent grazing collision, and two bright suns, solid globes bathed in flaming fluid, will come into existence in the course of a few hours, and will commence revolving round their common centre of inertia in long elliptic orbits in a period of a little less than a year. Tidal interaction between them will diminish the eccentricities of their orbits, and if continued long enough will cause the two to revolve in circular orbits round their centre of inertia with a distance between their surfaces equal to 6.44 diameters of each.
Suppose now, still choosing a particular case to fix the ideas, that twenty-nine million cold solid globes, each of about the same mass as the moon, and amounting in all to a total mass equal to the sun's, are scattered as uniformly as possible on a spherical surface of radius equal to one hundred times the radius of the earth's orbit, and that they are left absolutely at rest in that position. They will all commence falling towards the centre of the sphere, and will meet there in two hundred and fifty years, and every one of the twenty-nine million globes will then, in the course of half an hour, be melted, and raised to a temperature of a few hundred thousand or a million degrees centigrade. The fluid mass thus formed will, by this prodigious heat, be exploded outwards in vapour or gas all round. Its boundary will reach to a distance considerably less than one hundred times the radius of the earth's orbit on first flying out to its extreme limit. A diminishing series of out and in oscillations will follow, and the incandescent globe thus contracting and expanding alternately, in the course it may be of three or four hundred years, will settle to a radius of forty times the radius of the earth's orbit. The average density of the gaseous nebula thus formed would be , or one six hundred and thirty-six thousand millionth of the sun's mean density; or one four hundred and fifty-four thousand millionth of the density of water; or one five hundred and seventy millionth of that of common air at an ordinary temperature of 10° C. The density in its central regions, sensibly uniform through several million kilometres, is one twenty thousand millionth of that of water; or one twenty-five millionth of that of air. This exceedingly small density is nearly six times the density of the oxygen and nitrogen left in some of the receivers exhausted by Bottomley in his experimental measurements of the amount of heat emitted by pure radiation from highly heated bodies. If the substance were oxygen, or nitrogen, or other gas or mixture of gases simple or compound, of specific density equal to the specific density of our air, the central temperature would be 51,200° C, and the average translational velocity of the molecules 6.66 kilometres per second, being of 10.2, the velocity acquired by a heavy body falling unresisted from the outer boundary (of 40 times the radius of the earth's orbit) to the centre of the nebulous mass.
The gaseous nebula thus constituted would in the course of a few million years, by constantly radiating out heat, shrink to the size of our present sun, when it would have exactly the same heating and lighting efficiency. But no motion of rotation.
The moment of momentum of the whole solar system is about eighteen times that of the sun's rotation; seventeen-eighteenths being Jupiter's and one-eighteenth the Sun's, the other bodies being not worth taking into account in the reckoning of moment of momentum.
Now instead of being absolutely at rest in the beginning, let the twenty-nine million moons be given each with some small motion, making up in all an amount of moment of momentum about a certain axis, equal to the moment of momentum of the solar system which we have just been considering; or considerably greater than this, to allow for effect of resisting medium. They will fall together for two hundred and fifty years, and though not meeting precisely in the centre as in the first supposed case of no primitive motion, they will, two hundred and fifty years from the beginning, be so crowded together that there will be myriads of collisions, and almost every one of the twenty-nine million globes will be melted and driven into vapour by the heat of these collisions. The vapour or gas thus generated will fly outwards, and after several hundreds or thousands of years of outward and inward oscillatory motion, may settle into an oblate rotating nebula extending its equatorial radius far beyond the orbit of Neptune, and with moment of momentum equal to or exceeding the moment of momentum of the solar system. This is just the beginning postulated by Laplace for his nebular theory of the evolution of the solar system which, founded on the natural history of the stellar universe, as observed by the elder Herschel, and completed in details by the profound dynamical judgment and imaginative genius of Laplace, seems converted by thermodynamics into a necessary truth, if we make no other uncertain assumption than that the materials at present constituting the dead matter of the solar system have existed under the laws of dead matter for a hundred million years. Thus there may in reality be nothing more of mystery or of difficulty in the automatic progress of the solar system from cold matter diffused through space, to its present manifest order and beauty, lighted and warmed by its brilliant sun, than there is in the winding up of a clock and letting it go till it stops. I need scarcely say that the beginning and the maintenance of life on the earth is absolutely and infinitely beyond the range of all sound speculation in dynamical science. The only contribution of dynamics to theoretical biology is absolute negation of automatic commencement or automatic maintenance of life.
I shall only say in conclusion: - Assuming the sun's mass to be composed of materials which were far asunder before it was hot, the immediate antecedent to its incandescence must have been either two bodies with details differing only in proportions and densities from the cases we have been now considering as examples; or it must have been some number more than two - some finite number - at the most the number of atoms in the sun's present mass, a finite number (which may probably enough be something between and ) as easily understood and imagined as number 4 or 140. The immediate antecedent to incandescence may have been the whole constituents in the extreme condition of subdivision - that is to say, in the condition of separate atoms; or it may have been any smaller number of groups of atoms making minute crystals or groups of crystals - snowflakes of matter, as it were; or it may have been lumps of matter like a macadamising stone; or like the stone, which you might mistake for a macadamising stone, and which was actually travelling through space till it fell on the earth at Possil, in the neighbourhood of Glasgow, on 5 April 1804; or like that which was found in the Desert of Atacama, in South America, and is believed to have fallen there from the sky - a fragment made up of iron and stone, which looks as if it has solidified from a mixture of gravel and melted iron in a place where there was very little of heaviness; or the splendidly crystallised piece of iron, a slab cut out of the celebrated aërolite which fell at Lenarto, in Hungary; or the wonderfully-shaped specimen of the Middlesburgh meteorite, having corrugations showing how its melted matter has been scoured off from the front part of its surface in its final rush through the earth's atmosphere when it was seen to fall on 14 March 1881, at 3.35 p.m.
For the theory of the sun it is indifferent which of these varieties of configurations of matter may have been the immediate antecedent of his incandescence, but I can never think of these material antecedents without remembering a question put to me thirty years ago by the late Bishop Ewing, Bishop of Argyll and the Isles: "Do you imagine that piece of matter to have been as it is from the beginning; to have been created as it is, or to have been as it is through all time till it fell on the earth?" I had told him that I believed the sun to be built up of meteoric stones, but be would not be satisfied till he knew or could imagine, what kind of stones. I could not but agree with him in feeling it impossible to imagine that any one of such meteorites as those just described has been as it is through all time, or that the materials of the sun were like this for all time before they came together and became hot. Surely such a stone has an eventful history, but I shall not tax your patience by trying just now to trace it conjecturally. I shall only say that we cannot but agree with the common opinion which regards meteorites as fragments broken from larger masses, and we cannot be satisfied without trying to imagine what were the antecedents of those masses.
Last Updated April 2007