
HBase+Phoenix for OLTP

 Andrew Purtell
 Architect, Cloud Storage @ Salesforce
 Apache HBase VP @ Apache Software Foundation
apurtell@salesforce.com
apurtell@apache.org
 @akpurtell
 

v4

 Architect, Cloud Storage at Salesforce.com

 
Open Source Contributor, since 2007

•  Committer, PMC, and Project Chair, Apache HBase

•  Committer and PMC, Apache Phoenix

•  Committer, PMC, and Project Chair, Apache Bigtop

•  Member, Apache Software Foundation

Distributed Systems Nerd, since 1997

whoami

Agenda

http://riverlink.org/wp-content/uploads/2014/01/grab-bag11.jpg

 Common use case characteristics

  Live operational information

  Entity-relationship, one row per instance, attributes mapped to columns

  Point queries or short range scans

  Emphasis on update

 Top concerns given these characteristics

  Low per-operation latencies

  Update throughput

  Fast fail

  Predictable performance

HBase+Phoenix for OLTP

http://www.cn-vehicle.com/prodpic/2011-3-21-16-23-37.JPG

 Major latency contributors

  Excessive work needed per query

  Request queuing

  JVM garbage collection

  Network

  Server outages

  OS pagecache / VMM / IO

Low Per-Operation Latencies

Typical HBase 99%-ile latencies by operation

NOTE: Phoenix supports HBase’s timeline consistent gets as of version 4.4.0

 Avoid joins, unless one side is small, especially on frequent queries

 Limit the number of indexes on frequently updated tables

 Use covered indexes to convert table scans into efficient point lookups or range scans over the
index table instead of the primary table

  CREATE INDEX index ON table (…) INCLUDE (…)

 Leading columns in the primary key constraint should be filtered in the WHERE clause

  Especially the first leading column

  IN or OR in WHERE enables skip scan optimizations

  Equality or <, > in WHERE enables range scan optimizations

Let Phoenix optimize query parallelism using statistics

  Automatic benefit if using Phoenix 4.2 or greater in production

Limit The Work Needed Per Query

hbase.regionserver.handler.count (hbase-site)

  Set to cores x spindles for concurrency

Optionally, split the call queues into separate read and write queues for differentiated service

  hbase.ipc.server.callqueue.handler.factor

•  Factor to determine the number of call queues: 0 means a single shared queue, 1 means one queue for
each handler

  hbase.ipc.server.callqueue.read.ratio (hbase.ipc.server.callqueue.read.share in 0.98)

•  Split the call queues into read and write queues: 0.5 means there will be the same number of read and
write queues, < 0.5 for more read than write, > 0.5 for more write than read

  hbase.ipc.server.callqueue.scan.ratio (HBase 1.0+)

•  Split read call queues into small-read and long-read queues: 0.5 means that there will be the same
number of short-read and long-read queues; < 0.5 for more short-read, > 0.5 for more long-read

Tune HBase RegionServer RPC Handling

Use the CMS collector

  -XX:+UseConcMarkSweepGC

 Keep eden space as small as possible to minimize average collection time. Optimize for low
collection latency rather than throughput.

  -XX:+UseParNewGC – Collect eden in parallel

  -Xmn512m – Small eden space

  -XX:CMSInitiatingOccupancyFraction=70 – Avoid collection under pressure

  -XX:+UseCMSInitiatingOccupancyOnly – Turn off some unhelpful ergonomics

Limit per request scanner result sizing so everything fits into survivor space but doesn’t tenure

  hbase.client.scanner.max.result.size (in hbase-site.xml)

•  Survivor space is 1/8th of eden space (with -Xmn512m this is ~51MB)

•  max.result.size x handler.count < survivor space

Tune JVM GC For Low Collection Latencies

 Disable Nagle’s algorithm

  TCP delayed acks can add up to ~200ms to RPC round trip time

  In Hadoop’s core-site and HBase’s hbase-site

•  ipc.server.tcpnodelay = true

•  ipc.client.tcpnodelay = true

  In HBase’s hbase-site

•  hbase.ipc.client.tcpnodelay = true

•  hbase.ipc.server.tcpnodelay = true

  Why are these not default? Good question

Disable Nagle for RPC

 Detect regionserver failure as fast as reasonable (hbase-site)

  zookeeper.session.timeout <= 30 seconds – Bound failure detection within 30 seconds (20-30 is good)

 Detect and avoid unhealthy or failed HDFS DataNodes (hdfs-site, hbase-site)

  dfs.namenode.avoid.read.stale.datanode = true

  dfs.namenode.avoid.write.stale.datanode = true

Limit Impact Of Server Failures

Skip the network if block is local (hbase-site)

  dfs.client.read.shortcircuit = true

  dfs.client.read.shortcircuit.buffer.size = 131072 – important to avoid OOME

 Ensure data locality (hbase-site)

  hbase.hstore.min.locality.to.skip.major.compact = 0.7 (0.7 <= n <= 1)

 Make sure DataNodes have enough handlers for block transfers (hdfs-site)

  dfs.datanode.max.xcievers >= 8192

  dfs.datanode.handler.count – match number of spindles

Server Side Configuration Optimization for Low Latency

Use FAST_DIFF block encoding

  CREATE TABLE … (
  …
 ) DATA_BLOCK_ENCODING=‘FAST_DIFF’

  FAST_DIFF encoding is automatically enabled on all Phoenix tables by default

  Almost always improves overall read latencies and throughput by allowing more data to fit into
blockcache

  Note: Can increase garbage produced during request processing

Schema Considerations
Block Encoding

Use salting to avoid hotspotting

  CREATE TABLE … (
  …
 ) SALT_BUCKETS = N

  Do not salt automatically. Use only when experiencing hotspotting

  Once you need it, for optimal performance the number of salt buckets should approximately
equal the number of regionservers

Schema Considerations
Salting

 Primary key design is the single most important design criteria that drives performance

 Make sure that what ever you're filtering on in your most common queries drives your primary key
constraint design

 Filter against leading columns in the primary key constraint in the WHERE clause, especially the
first

 Further advice is use case specific, suggest writing user@phoenix.apache.org with questions

Schema Considerations
Primary key (row key) design

 Optimize UPSERT for throughput

  UPSERT VALUES

•  Batch by calling it multiple times before commit()

•  Use PreparedStatement for cases where you're calling UPSERT VALUES again and again

  UPSERT SELECT

•  Use connection.setAutoCommit(true), pipelines scan results out as writes without unnecessary
buffering

•  If your rows are small, consider increasing phoenix.mutate.batchSize

•  Number of rows batched together and automatically committed during UPSERT SELECT, default
1000

Optimize Writes For Throughput

Phoenix query timeout (hbase-site, client side)

  phoenix.query.timeoutMs – max tolerable wait time

HBase level client retry count and wait (hbase-site, client side)

  hbase.client.pause = 1000

  hbase.client.retries.number = 3

  If you want to ride over splits and region moves, increase hbase.client.retries.number substantially (>= 20)

 RecoverableZookeeper retry count and retry wait (hbase-site, client side)

  zookeeper.recovery.retry = 1 (no retry)

 ZK session timeout for detecting server failures (hbase-site, server side)

  zookeeper.session.timeout <= 30 seconds (20-30 is good)

Fast Fail
For applications where failing quickly is better than waiting

HBase timeline consistency (HBASE-10070)

  With read replicas enabled, read-only copies of regions (replicas) are distributed over the cluster

  One RegionServer services the default or primary replica, which is the only replica that can service writes

  Other RegionServers serve the secondaries replicas, follow the primary RegionServer and only see
committed updates. The secondary replicas are read-only, but can serve reads immediately while the
primary is failing over, cutting read availability blips from ~seconds to ~milliseconds

Phoenix supports timeline consistency as of 4.4.0

1.  Deploy HBase 1.0.0 or later

2.  Enable timeline consistent replicas on the server side

3.  ALTER SESSION SET CONSISTENCY = 'TIMELINE’

 or set the connection property ‘Consistency’ to “timeline” in the JDBC connect string

 or set ‘phoenix.connection.consistency’ = “timeline” in client hbase-site for all connections

Timeline Consistent Reads
For applications that can tolerate slightly out of date information

 Turn transparent huge pages (THP) off

  echo never > /sys/kernel/mm/transparent_hugepage/enabled

  echo never > /sys/kernel/mm/transparent_hugepage/defrag

 Set vm.swappiness = 0

 Set vm.min_free_kbytes to at least 1GB (8GB on larger memory systems)

 Disable NUMA zone reclaim with vm.zone_reclaim_mode = 0

OS Level Tuning For Predictable Performance

 Check the computed physical plan using EXPLAIN

 Consider rewriting queries when:

  Prefer operations on SERVER, not CLIENT

•  SERVER ops are distributed over the servers and execute in parallel

•  CLIENT ops execute within the single client JDBC driver

•  Consider tweaking your query to increase the use of SERVER side operations

  Scanning strategy is TABLE SCAN, prefer RANGE SCAN or SKIP SCAN

•  Filter against leading columns in the primary key constraint, PK may need redesign

•  Possibly means you need to introduce a global index that covers your query or local index

•  If you have an index but the optimizer is missing it, try hinting the query (SELECT /*+ INDEX(<table> <index>) */ …)

If using JOINs, please read https://phoenix.apache.org/joins.html

EXPLAINing Predictable Performance

 Functional Indexes

 Spark integration

  Make RDDs or data frames out of fast Phoenix queries for Spark streaming and batch workflows

Transactions (WIP)

  Using Tephra (http://tephra.io/), supports REPEATABLE_READ isolation level

  Need to manage the Tephra Transaction Manager as a new system component

  Work in progress, but close to release, try out the ‘txn’ branch

Calcite Integration for federated query (WIP)

  Interoperate and federate queries over other Apache Calcite adopters (Drill, Hive, Samza, Kylin) and any
data source with Calcite driver support (Postgres, MySQL, etc.)

  See the ‘calcite’ branch

What’s New?
Exciting new or upcoming features for OLTP use cases

 Query Server

  Builds on Calcite’s Avatica framework for thin JDBC drivers

  Offloads query planning and execution to different server(s) – The “fat” parts of the Phoenix JDBC driver
become hosted on a middle tier, enablig scaling independent from clients and HBase

  Shipping now in 4.5+

  Still evolving, so no backward compatibility guarantees yet

  A more efficient wire protocol based on protobufs is WIP

What’s New?
Exciting new or upcoming features for OLTP use cases

Thank you

apurtell@salesforce.com
apurtell@apache.org
@akpurtell

Q&A

