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Brute force quantum-assisted 
computation

G. Aeppli (UCL/NEC)
J. Brooke (NEC/UChicago) 

T. F. Rosenbaum (UChicago)
D. Bitko (UChicago)
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Standard approach to 
computation

• Set up problem as that of computing F(x,y,z,…)
• Define a series of gate operations which will achieve 

computation
• Present input values x,y,z…
• Display output F
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CLASSICAL INFORMATION PROCESSING:

Information represented 
as binary digits (0 or 1)

Processing of information 
performed by logic gates 
(e.g. AND gates)
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realisation: the silicon MOSFET
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Simulated annealing approach 
to computation

(Kirkpatrick et al)
• Cast computation as a minimization problem, 

i.e. want to find global minimum for F(x,y,z,…) 
subject to some constraints

• Instead of developing gate-based algorithm 
for searching phase space(x,y,z…), introduce 
‘temperature’ to weight state probabilities, 
‘warm’ the system up & cool slowly to find 
optimum, exactly as happens for natural 
systems settling into their ground states
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Traveling salesman
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Circuit optimization
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•Traveling Salesman

•Circuit Optimization

Computation:
Solve Complex problems

Via
Simulated Annealing

Materials physics:
Solve Complex 

problem
Via

Thermal Annealing
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What happens when we add 
quantum mechanics?

Is there added efficiency?
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Experimental test

• Find a material with a complex free energy 
surface where quantum and thermal 
fluctuations can be tuned independently

• Establish that tunneling picture is appropriate
• Try thermal and quantum annealing protocols 

to see if anything different
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Simplest quantum magnet

Γc~kTc~J
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Ising model in a
transverse field:

Quantum
fluctuations
matter for Γ ≠ 0:
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Ferromagnet

J<0

Anti-
ferromagnet

J>0

Interactions Jij can be simple …
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Disorder 
FM with 
some 
AFM 
bonds in 
addition 
to FM

Why is the disordered magnet problem 
hard?

Or, they can introduce complexity..
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frustration

or
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Need a magnet with 
independently adjustable Jij and 

Γ...
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Realizing the transverse field 
Ising model, where can vary Γ –

LiHoF4
c

a
b

Ho

Li

F

•g=14 doublet
•9K gap to next state
•dipolar coupled
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Realizing the transverse field 
Ising model, where can vary Γ –

LiHoF4

•g=14 doublet
•9K gap to next state
•dipolar coupled
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Susceptibility

dh
dm

≡χ

• Real component diverges at 
FM ordering

• Imaginary component 
shows dissipation

( ) ( ) ( )fiff χχχ ′′+′=
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χ vs T for Ht=0
•D. Bitko, T. F. Rosenbaum, G. Aeppli, Phys. Rev. Lett.77(5), pp. 940-943, (1996)
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Mean-Field Ferromagnet
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Diverging χ
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dipolar interaction between randomly 
placed spins leads to frustration

E=S1S2g2MB
2[1-3(rz/r)2]/r3

ferro for (rz/r)2 >1/3
antiferro for (rz/r)2 <1/3

Introducing complexity via randomness
& dipolar interaction …
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Experimental realization of 
Ising model in transverse field

LiHoF4

•g=14 doublet
•9K gap to next state
•dipolar coupled
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Experimental realization of 
Ising model in transverse field

LiHoF4

•g=14 doublet
•9K gap to next state
•dipolar coupled

Y



13

11/5/2003

London Centre for NanotechnologyLondon Centre for NanotechnologyLondon Centre for Nanotechnology

c

a
b

Ho

Li

F

Experimental realization of 
Ising model in transverse field

LiHoF4

•g=14 doublet
•9K gap to next state
•dipolar coupled

Y
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A domain wall state pinned by random configurations of Y 
not much different from that at 300K in PdCo-

What about 
domain
wall dynamics?

Y-A. Soh and G.A.,unpublished(2002)

11/5/2003

London Centre for NanotechnologyLondon Centre for NanotechnologyLondon Centre for Nanotechnology

How to see?

• Measure small signal response
M(t)=χ’(ω)hcos(ωt)+χ(ω)”hsin(ωt) 
where 
• χ=χ’+iχ” is complex susceptibility
• hcos(ωt) is excitation
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Experimental Setup

Γ ~ Ht
2
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The Spectral Response

Four parameters:
1. χ(f∞)

2. fo
3. log slope
4. frolloff

J.Brooke, T.F.Rosenbaum & G.A, Nature 413,610(2001)
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LiHo0.44Y0.56F4
Domain Wall Dynamics
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Classical route
(T-dependent)

Quantum route(T-independent)
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Quantum Tunneling
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Map onto a magnetic system…
•Particle (E, M) Domain Wall (E, M=Nm)
•Barrier (Vo, w) Pinning&Exchange Potentials(Vo, w)
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Domain Wall Tunneling
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Evolution of the
most mobile

Domain Walls
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Domain Wall Parameters
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Tunable quantum tunneling of 
ferromagnetic domain walls

• Simplest WKB approach where domain walls are 
particles works

• collective tunneling of wall segments with 
area=10 spins

• Mass of particles varied by external field
• potential energy landscape fixed by combination 

of field and random Y,Ho configuration
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Back to optimization problems-
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• Can be cast as energy minimization problems 
involving spin variables

• H=ΣhiSi+JijSiSj + …
• in real world problems, couplings are 

‘random’ , leading to complicated energy 
landscape as function of configuration 
coordinates {Si}
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•Traveling Salesman

•Circuit Optimization

Computation:
Solve Complex 

Problems via
Simulated Annealing

Real-World:
Solve Complex 
Problems via

Thermal Annealing
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Quantum Tunneling
adds a new path

Which channel is more efficient?
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Complex problem to solve: 
positioning ferromagnetic 
domain walls in a random 

ferromagnet
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Quantum and
Classical 

“Algorithms”

•J. Brooke, D. Bitko, T. F. Rosenbaum, G. Aeppli, Science 284, pp. 779-781, (1999)
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Process Flowchart

input

printout

quantum
process

classical
process

output

Feynmann’s
‘quantum’ computer
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Process Flowchart

input

printout

quantum
process

classical
process

output

quantum
anneal

classical
anneal

iΨ

fΨ

( )ωχ

LiHo0.44Y0.54F4

Feynmann’s
‘quantum’ computer
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Fluctuation 
Response

•J. Brooke, D. Bitko, T. F. Rosenbaum, G. Aeppli, Science 284, pp. 779-781, (1999)
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Results
• Quantum annealing is more efficient than thermal 

annealing at “uncovering” χ ~ log(f).
• It pays off to look for quantum channels.
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Santoro,Martonak,Tosatti & Car(2002)



26

11/5/2003

London Centre for NanotechnologyLondon Centre for NanotechnologyLondon Centre for Nanotechnology

Free
Energy

Tlow

Thigh
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summary
• A different, brute-force approach to quantum 

computing – quantum annealing
• Identified a model solid state system to test quantum 

annealing ideas – Li(Ho,Y)F4 where quantum 
fluctuations and ground state complexity can be 
regulated independently

• Tunneling picture of domain wall dynamics applies –
introduces multiple spin moves into ‘computation’

• Quantum annealing allows search of different minima 
than thermal annealing
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Relation to ‘conventional’ 
quantum computation

coherent region – computes as
if gate-based

total system-evolves
incoherently
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