!!! This is a SiteProxy proxied website, do not enter your personal information. Refer to: https://github.com/netptop/siteproxy for details !!!×

Supplement to Relevance Logic

The Logic E

Here is a Hilbert-style axiomatisation of the logic \(\mathbf{E}\) of relevant entailment.

Our language contains propositional variables, parentheses, negation, conjunction, and implication. In addition, we use the following defined connectives:

\[\begin{align} A\vee B &=_{df} \neg(\neg A \amp \neg B) \\ A \leftrightarrow B &=_{df} (A \rightarrow B) \amp(B \rightarrow A) \end{align}\]
Axiom Scheme Axiom Name
1. \(A \rightarrow A\) Identity
2. \(((A \rightarrow A) \rightarrow B) \rightarrow B\) EntT
3. \((A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))\) Suffixing
4. \((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)\) Contraction
5. \((A \amp B) \rightarrow A,(A \amp B) \rightarrow B\) & -Elimination
6. \(A \rightarrow(A\vee B), B \rightarrow(A\vee B)\) \(\vee\)-Introduction
7. \(((A \rightarrow B) \amp(A \rightarrow C)) \rightarrow(A \rightarrow(B \amp C))\) & -Introduction
8. \(((A\vee B) \rightarrow C)\leftrightarrow((A \rightarrow C) \amp(B \rightarrow C))\) \(\vee\)-Elimination
9. \((A \amp(B\vee C)) \rightarrow((A \amp B)\vee(A \amp C))\) Distribution
10. \((A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A)\) Contraposition
11. \(\neg \neg A \rightarrow A\) Double Negation
Rule Name
1. \(A \rightarrow B, A\vdash B\) Modus Ponens
2. \(A, B\vdash A \amp B\) Adjunction

Copyright © 2020 by
Edwin Mares <Edwin.Mares@vuw.ac.nz>

Siteproxy

Siteproxy

搜索引擎


常用网站


新闻网站


海外论坛