

Journal of Pure and Applied Algebra 104 (1995) 109-122

Grothendieck topology, coherent sheaves and Serre's theorem for schematic algebras

Fred Van Oystaeyen*, Luc Willaert1

Department of Mathematics and Computer Science, University of Antwerp U.I.A., Universiteitsplein 1, 2610 Antwerpen, Belgium

Dedicated to the memory of Albert Collins

Communicated by C.A. Weibel; received 22 December 1993; revised 9 June 1994

Abstract

We define schematic algebras to be algebras which have "enough" Ore-sets. Many graded algebras studied nowadays are schematic. We construct a generalised Grothendieck topology for the free monoid on all Ore-sets of a schematic algebra R. This allows us to develop a sheaf theory which is similar to the scheme theory for commutative algebras. In particular, we obtain an equivalence between the category of all coherent sheaves and the category Proj R as it is defined in (Artin; 1992).

1. Introduction

For a positively graded commutative algebra C, Serre's theorem (cf. [4]) states that the category of coherent sheaves on the scheme $Proj\ C$ is equivalent to a certain category which is completely defined in terms of C-gr. In [1], Artin observed that this last category also makes sense for a noncommutative positively graded algebra R and used this observation to define Proj.

We want to study this *Proj* by developing a kind of scheme theory similar to the commutative theory. It is obvious that this theory will be possible only if the algebra *R* considered contains "enough" Ore-sets in a sense to be made precise. We call such an algebra schematic.

Once there are enough Ore-sets in the algebra, one thinks one is able to prove Serre's theorem by mimicking the commutative case, i.e. over the intersection of two open sets S and T, one would like to put the localisation at $S \vee T$, the Oreset generated by S and T. This fails, mainly because the composition of two

^{*}Corresponding author. E-mail: willaert@wins.uia.ac.be.

¹Research assistant of the NFWO, Belgium.

Ore-localisations is not necessarily a localisation. We circumvent this problem by considering more open sets than the ones induced from Ore-sets. This is not a topology since the intersection of two open sets is no longer equal to the intersection of the same open sets in reverse order. However, in Section 3 we prove that our model, called the noncommutative site, satisfies generalisations of the axioms of the categorical definition of a topology, the so-called Grothendieck topology.

The main part of this paper is Section 4: we define sheaves on the noncommutative site and show that there is a functor from R-gr to the category of sheaves. A second price we have to pay for this generalised topology is that not all sections of the structure sheaf, i.e. the sheaf induced by the R-module R, are rings. However, this anomaly does not prevent us to establish our main goal: an equivalence between $Proj\ R$ and the category of coherent sheaves, just as in the commutative case. We can also give a criterion to decide whether there exists an R-module whose localisations at Ore-sets T_i are isomorphic to given $Q_{T_i}(R)$ -modules.

This paper will have a sequel [6] in which we provide some general theorems in order to prove that a given algebra is schematic. This allows us to exhibit a lot of interesting schematic algebras.

2. Preliminaries

We will need a minimum of torsion theory throughout this paper, so we provide a short introduction which also settles notation. For more details, we refer to [5].

Let \mathcal{L} be a set of left ideals of an arbitrary ring R. We call \mathcal{L} a filter if it satisfies the following three axioms:

```
T_1 If I \in \mathcal{L} and I \subseteq J then J \in \mathcal{L}.

T_2 If I, J \in \mathcal{L} then I \cap J \in \mathcal{L}.

T_3 If I \in \mathcal{L} and a \in R then (I : a) \stackrel{\text{def}}{=} \{x \in R \mid xa \in I\} \in \mathcal{L}
```

The functor $\kappa: R \to R$ defined by $\kappa(M) = \{m \in M \mid \exists I \in \mathcal{L}: Im = 0\}$ is then a left exact preradical, i.e. a left exact subfunctor of the identity functor on R-mod. Modules M with $\kappa(M) = M$ are called torsion modules while a module M with $\kappa(M) = 0$ is torsion free. The filter \mathcal{L} is idempotent when it satisfies:

$$T_4$$
 If $I \triangleleft_l R$ and $\exists J \in \mathcal{L}$ such that $\forall a \in J$, $(I:a) \in \mathcal{L}$ then $I \in \mathcal{L}$.

This implies that \mathcal{L} is closed under products and that κ is a radical, meaning that $\kappa(M/\kappa(M)) = 0$ for all R-modules M. In this case, one defines the module of quotients of M with respect to κ as follows:

$$Q_{\kappa}(M) = \underset{I \in \mathscr{L}}{\lim} \operatorname{Hom}_{R}(I, M/\kappa(M)),$$

 $Q_{\kappa}(M)$ turns out to be a module over the ring $Q_{\kappa}(R)$. The following idempotent filters play an important role in the sequel:

- 1. If R is a positively graded Noetherian ring and R_+ denotes the two-sided ideal $\bigoplus_{n>0} R_n$ then $\mathcal{L}(\kappa_+) = \{I \triangleleft_l R \mid \exists n \in \mathbb{N} : (R_+)^n \subseteq I\}$ is an idempotent filter. We denote the corresponding left exact radical by κ_+ .
- 2. Let S be a left Ore-set in an arbitrary ring R, then $\mathcal{L}(S) = \{I \triangleleft_I R \mid I \cap S \neq \emptyset\}$ is an idempotent filter. If κ_S denotes the corresponding radical and $Q_S(M)$ the module of quotients of M then it is easy to see that $Q_S(M)$ is isomorphic to $S^{-1}M$, the usual Ore-localisation of M at S.

3. The noncommutative site

We assume the reader is acquainted with the theory of schemes as it can be found in [2]. Let $C = k \oplus C_1 \oplus \cdots$ be a positively graded *commutative* Noetherian ring generated in degree one. Put Y = Proj C and $Y(f) = \{p \in Y \mid f \notin p\}$, the Zariski open set corresponding to a homogeneous element $f \in C$. Then there is a (finite) subset $\{f_i \mid f_i \in C_1\}$ such that $Y = \bigcup_i Y(f_i)$, in other words: for every choice of $d_i \in \mathbb{N}$ there exists an $n \in \mathbb{N}$ with $(C_+)^n \subseteq \sum_i C f_i^{d_i}$. It follows that for any finitely generated graded C-module M

$$\Gamma_*(M) \stackrel{\text{def}}{=} \bigoplus_{n \in \mathbb{Z}} \Gamma(Y, \widetilde{M(n)}) = Q_{\kappa_+}(M) \stackrel{\text{def}}{=} \varinjlim_{p} Hom(C_+^p, M/\kappa_+(M))$$
$$= \lim_{\longleftarrow} Q_{f_i}(M),$$

where $\widetilde{M(n)}$ denotes the sheaf of modules associated to the shifted module M(n) and $Q_{f_i}(M)$ is the localization of M at $\{1, f_i, f_i^2, \dots\}$. Similarly,

$$Q_f(M) = \lim_{\longleftarrow i} Q_{ff_i}(M),$$

where the inverse systems are defined as follows: $g \le h \Leftrightarrow Y(g) \subseteq Y(h)$. This result is the key to prove Serre's theorem which says that the category of coherent \mathcal{O}_Y -modules is equivalent with a certain quotient category.

Now look at a noncommutative positively graded Noetherian k-algebra $R = k \oplus R_1 \oplus \cdots$, such that $R = k[R_1]$. In [1], Artin observed that the quotient-category mentioned in Serre's theorem also makes sense for the noncommutative algebra R and called it Proj R. Let us explain this definition in some detail. Since the filter $\mathcal{L}(\kappa_+)$ is idempotent, we can form the quotient ategory (R, κ_+) -gr, i.e. the full subcategory of $Q_{\kappa_+}(R)$ -gr consisting of modules of the form $Q_{\kappa_+}(M)$ for some graded R-module M. Call a graded R-module M κ_+ -closed whenever the canonical maps $M \to \operatorname{Hom}_R(R^n_+, M)$ are isomorphisms for all $n \in \mathbb{N}$. It is then well-known that (R, κ_+) -gr is equivalent to the full subcategory of R-gr consisting of the κ_+ -closed modules. There are now three equivalent ways to define Proj R:

1. The Noetherian objects in (R, κ_+) -gr, i.e. those objects of (R, κ_+) -gr which satisfy the ascending chain condition on subobjects.

- 2. The full subcategory of $Q_{\kappa_+}(R)$ -gr consisting of all modules of the form $Q_{\kappa_+}(M)$ for some finitely generated R-module M.
- 3. The full subcategory of R-gr consisting of all κ_+ -closed modules which are torsion over a finitely generated R-submodule.

Our goal is a description of the objects of *Proj R* by means of objects of usual module categories in the same way as above for commutative algebras, i.e. we want modules to be determined by (Ore-)localisations. It is obvious that for this reason there should be "enough" Ore-sets in R. This prompts the definition of schematic algebras:

Definition 1. We say that R as above is schematic if there is a finite set I of homogeneous left Ore-sets of R such that for every $S \in I$, $S \cap R_+ \neq \emptyset$ and such that one of the following equivalent properties is satisfied:

- 1. for each $(x_S)_{S \in I} \in \prod_{S \in I} S, \exists m \in \mathbb{N}$ such that $(R_+)^m \subseteq \sum_{S \in I} Rx_S$,
- 2. $\bigcap_{S \in I} \mathscr{L}(S) = \mathscr{L}(\kappa_+),$
- 3. $\bigcap_{S \in I} \kappa_S(M) = \kappa_+(M) \ \forall M \in R\text{-mod},$ 4. $\bigwedge_{S \in I} \kappa_S = \kappa_+ \text{ where } \bigwedge \text{ denotes the infimum of torsion theories.}$

In the sequel [6] to this paper, we will prove that several fancy algebras are schematic, a.o. Rees rings of enveloping algebras of Lie algebras and three-dimensional Sklyanin algebras.

Assume from now on that R is schematic. The straightforward generalisation of the commutative scheme does not work; the canonical map

$$Q_{\kappa_S \wedge \kappa_T}(M) \to \varprojlim \left(\begin{array}{c} Q_S(M) \\ Q_{S \vee T}(M) \\ Q_T(M) \end{array}\right)$$

is an isomorphism for all $M \in R$ -gr if and only if S and T are compatible, i.e. the functors Q_S and Q_T commute. As the Ore-sets of a schematic algebra are rarely two-by-two compatible, it is clear that we will have to change the inverse system, but we want it to originate from (a kind of) Grothendieck topology. Classically, a Grothendieck topology consists of a category \mathscr{C} such that for each object U in \mathscr{C} , there is a set Cov(U) consisting of subsets of morphisms with common target U, satisfying three axioms:

$$\begin{aligned} & G_1 \ \{U \to U\} \in Cov(U), \\ & G_2 \ \{U_i \to U \mid i \in I\} \in Cov(U) \text{ and } \forall i \in I \colon \{U_{ij} \to U_i \mid j \in I_i\} \\ & \in Cov(U_i) \text{ then } \{U_{ij} \to U_i \to U \mid i \in I, j \in I_i\} \in Cov(U), \\ & G_3 \ \text{if } \{U_i \to U \mid i \in I\} \in Cov(U) \text{ and } U' \to U \text{ then the pull-back} \\ & U' \times_U U_i \text{ exists and } \{U' \times_U U_i \to U' \mid i \in I\} \in Cov(U'). \end{aligned}$$

Every topology is a Grothendieck topology by taking as objects the open sets. The morphisms are just the inclusions and a set of morphisms $\{U_i \to U\}$ is in Cov(U) if and only if $\bigcup_{i \in I} U_i = U$. For more details on Grothendieck topologies, we refer to [3].

We will now define the Grothendieck topology which induces the right inverse system. Let $\mathscr O$ be the set $\{S \text{ homogeneous left Ore-set of } R \mid 1 \in S, 0 \notin S, S \cap R_+ \neq \emptyset \}$. Denote the free monoid on $\mathscr O$ by $\mathscr W$. If $W = S_1 \dots S_n \in \mathscr W$ then by $w \in W$ we mean an element of R of the form $w = s_1 \dots s_n$ with $s_i \in S_i$. We define a category $\mathscr W$ as follows: the objects are the elements of $\mathscr W$ and for two words $W = S_1 \dots S_n$ and $W' = T_1 \dots T_m$ in $\mathscr W$ we put

$$\operatorname{Hom}(W',W) = \begin{cases} \{W' \to W\} & \text{if } \exists \alpha \colon \{1,\ldots,n\} \to \{1,\ldots,m\} \\ & \text{such that } i < j \implies \alpha(i) < \alpha(j) \text{ and } S_i = T_{\alpha_{(i)}}, \end{cases}$$

$$\emptyset & \text{otherwise.}$$

Although there may be many possible increasing injections from the letters of W to the letters of W' we only consider one morphism between W' and W in our category, i.e. Hom(W', W) is always empty or a singleton.

Because we have to deal with arbitrary compositions of Ore-localisations, we introduce the following *important notation*: if $W = S_1 \dots S_n \in \mathcal{W}$, then we denote

$$Q_W(M) = (Q_{S_n} \circ \cdots \circ Q_{S_1})(M) = Q_{S_n}(R) \otimes_R \cdots \otimes_R Q_{S_1}(R) \otimes_R M$$

each $Q_{S_i}(R)$ being the localisation of R at the Ore-set S_i .

We stress that all modules in this paper will be (graded) left R-modules and consequently, all localisations will be on the left.

We also associate a set of left ideals to W, namely $\mathscr{L}(W) = \{I \triangleleft_I R \mid \exists w \in W \text{ such that } w \in I\}$. $\mathscr{L}(W)$ is a filter in the sense of the preliminaries. The verification of the three axioms is easy (an induction on the second Ore-condition) but it is useful for the sequel to restate T_2 and $T_3: T_2$ means that for two elements of the same word, say $w, w' \in W$ there is a common multiple in W, i.e. $\exists w'' \in W$ such that w'' = aw and w'' = bw' for some $a, b \in R$. T_3 tells us that $\mathscr{L}(W)$ satisfies a kind of generalised second Ore-condition: if $w \in W$, $a \in R$, then $\exists w' \in W$, $b \in R$ with w'a = bw. The corresponding left exact preradical κ_W maps an R-module M to its submodule $\kappa_W(M) = \{x \in M \mid \exists w \in W \text{ such that } wm = 0\} = \text{Ker}(M \to Q_W(M))$ and induces a left exact preradical on R-gr. In general, $\mathscr{L}(W)$ is not an idempotent filter, e.g. $\mathscr{L}(ST)$ is idempotent if and only if S and T are compatible. Note that, if $W' \to W$ in \mathscr{W} then $\mathscr{L}(W) \subseteq \mathscr{L}(W')$ and for any $V \in \mathscr{W}$, $W'V \to WV$ and $VW' \to VW$ are in \mathscr{W} .

By a global cover, we understand a finite subset $\{W_i | i \in I\}$ of \mathcal{W} such that $\bigcap_{i \in I} \mathcal{L}(W_i) = \mathcal{L}(\kappa_+)$. The existence of at least one global cover is guaranteed by the schematic condition. Now for $W \in \mathcal{W}$ we define Cov(W) to be the set of all sets of \mathcal{W} -morphisms of the form $\{W_iW \to W | i \in I\}$ where $\{W_i|i \in I\}$ is a global cover. Topologically, this means that every cover of an open set is induced by a global cover, but note that this is also the case in the commutative theory. Since it is obvious that the pull-back of two morphisms in \mathcal{W} may not exist, we will have to modify the axiom G_3 .

Proposition 1. The category $\underline{\mathscr{W}}$ together with the sets Cov(W) for $W \in \underline{\mathscr{W}}$ satisfies G_1, G_2 and

$$G'_3$$
 if $\{U_iW \to W \mid i \in I\} \in Cov(W), W' \to W \in \underline{\mathscr{W}}, say$
 $W = S_1S_2 \dots S_n, W' = VS_1V_1S_2V_2 \dots S_nV_n$ and if we define
 $U_iW \times_W W' = U_iW' = U_iVS_1V_1S_2V_2 \dots S_nV_n$ then
 $\{U_iW \times_W W' \to W' \mid i \in I\} \in Cov(W').$

Therefore, we call $\underline{\mathscr{W}}$ a noncommutative Grothendieck topology. The proof of this proposition follows immediately from the next lemma:

Lemma 1. If $\{W_i | i \in I\}$ is a global cover, i.e. $\bigcap_{i \in I} \mathcal{L}(W_i) = \mathcal{L}(\kappa_+)$, then for all $V \in \mathcal{W}$: $\bigcap_{i \in I} \mathcal{L}(W_i V) = \mathcal{L}(V)$.

Proof. One inclusion is obvious, so take $L \in \cap \mathcal{L}(W_i V)$, say $w_i v_i \in L \ \forall i \in I$ with $v_i \in V$, $w_i \in W_i \ \forall i \in I$. Since I is finite and because of property T_2 for $\mathcal{L}(V)$, we can find a common multiple of the v_i in V, say $v = a_i v_i \in V$. Using property T_3 for $\mathcal{L}(W_i)$ yields that $\exists w_i' \in W_i$ such that $w_i' a_i \in Rw_i$. Because $\{W_i | i \in I\}$ is a global cover, we can find a natural number n with $(R_+)^n \subseteq \sum_i Rw_i'$. Consequently, $(R_+)^n v \subseteq L$. If T denotes the first letter of V then there is a $t \in T \cap (R_+)^n$. Now $tv \in L$ and $tv \in V$, yielding that $L \in \mathcal{L}(V)$.

The category $\underline{\mathscr{W}}$ with this noncommutative Grothendieck topology defined by the Cov(W), $W \in \mathscr{W}$ is called the *noncommutative site* and we denote this again by $\underline{\mathscr{W}}$.

4. Sheaves on the noncommutative site

In this section, sheaves on the category \underline{W} are defined. We will show that each R-module induces a sheaf in a natural way. Conversely, to each sheaf we will associate its global sections. The notion of a coherent sheaf naturally extends to this noncommutative setting and the main theorem states that the category of coherent sheaves on \underline{W} is equivalent to the quotient category Proj R just as in the commutative theory. An important corollary is that a module over a schematic algebra is still determined by its localisations at the Ore-sets of a global cover. The hypothesis on R are the same as in Section 3.

Definition 2. A presheaf \mathscr{F} on $\mathscr{\underline{W}}$ is a contravariant functor from $\mathscr{\underline{W}}$ to the category R-gr such that for all $W \in \mathscr{W}$ the sections $\mathscr{F}(W)$ of \mathscr{F} on W is a graded $Q_S(R)$ -module where S denotes the last letter of W.

If R is a commutative algebra, then this just means that \mathscr{F} is a presheaf of graded \mathscr{O}_X -modules, \mathscr{O}_X being the graded structure sheaf on $X = \operatorname{Proj} R$. Of course one could

take parts of degree zero in order to establish complete similarity with the (ungraded) \mathscr{O}_X -modules one usually works with in the commutative theory. Note that if W=1 we require that the global sections $\mathscr{F}(1)$, which we denote by $\Gamma_*(\mathscr{F})$, is a $Q_{\kappa_+}(R)$ -module. We will denote the restriction map $\mathscr{F}(V \to W)$ by $\rho_V^W : \mathscr{F}(W) \to \mathscr{F}(V)$. If W=1, then we will simplify this notation further to $\rho_V : \Gamma_*(\mathscr{F}) \stackrel{\text{def}}{=} \mathscr{F}(1) \to \mathscr{F}(V)$. Recall that a finite subset $\{W_i \mid i \in I\}$ of \mathscr{W} is a global cover if $\bigcap_i \mathscr{L}(W_i) = \mathscr{L}(\kappa_+)$.

Definition 3. A presheaf \mathscr{F} on \mathscr{W} is a *sheaf* if and only if it satisfies the following two properties:

- 1. Separatedness: $\forall W \in \mathcal{W}, \forall \text{ global covers } \{W_i | i \in I\}: m \in \mathcal{F}(W) \text{ such that } \forall i \in I: \rho_{W_iW}^W(m) = 0 \text{ in } \mathcal{F}(W_iW) \Rightarrow m = 0.$
- 2. Gluing: $\forall W \in \mathcal{W}$, \forall global covers $\{W_i | i \in I\}$: given $(m_i) \in \prod_i \mathcal{F}(W_i W)$ such that:

$$\rho_{W_iW_jW}^{W_iW}(m_i) = \rho_{W_iW_jW}^{W_jW}(m_j) \quad \forall (i,j) \in I \times I$$

then there exists an element m in $\mathcal{F}(W)$ such that

$$\rho_{W_iW}^W(m) = m_i \quad \forall i \in I.$$

Of course the element m whose existence is guaranteed in 2. is unique by the separatedness condition.

If we let a presheaf \mathscr{F} act on the full subcategory of \mathscr{W} consisting of all W_iW and W_iW_jW for a fixed word W and a fixed global cover $\{W_i|i\in I\}$, we get an inverse system represented by the picture

$$\mathcal{F}(W_iW) \longrightarrow \mathcal{F}(W_iW_jW)$$

$$\mathcal{F}(W_jW) \longrightarrow \mathcal{F}(W_jW_iW)$$

We denote the inverse limit of this system by

$$\lim_{\overleftarrow{i,j}} \mathscr{F}(W_i W).$$

This should not cause any confusion since an element of the inverse limit is already determined by its components in $\mathscr{F}(W_iW)$. We have that \mathscr{F} is a sheaf if and only if, whenever $\{W_i | i \in I\}$ is a global cover, then the inverse limit of the above inverse system is isomorphic with $\mathscr{F}(W)$ for every $W \in \mathscr{W}$.

Just as in the commutative case, we want a graded module M to determine a sheaf \tilde{M} . It is obvious that we have to define \tilde{M} in the following way: $\tilde{M}(1) = Q_{\kappa_+}(M)$, $\tilde{M}(W) = Q_W(M) \forall W \in \mathcal{W} \setminus 1$ and if $V \to W$ then the restriction morphism $\rho_V^W: Q_W(M) \to Q_V(M)$ is the obvious morphism which makes the following diagram commute:

$$Q_{W}(M) \xrightarrow{\rho_{V}^{W}} Q_{V}(M)$$

Unlike the commutative case, the sections of the sheaf associated to $_RR$ are not necessarily rings, e.g. $Q_TQ_S(R)$ is a ring $\Leftrightarrow Q_TQ_S(R)\cong Q_{S\vee T}(R)\Leftrightarrow S$ and T are compatible. However, $\forall T\in \mathcal{O}$ we have that the sections $Q_T(R)$ are strongly graded rings since R is supposed to be generated in degree 1. In particular, $Q_T(R)$ -gr is equivalent to $(Q_T(R))_0$ -mod.

Notation. If $W = S_1 \dots S_n$ and $w \in W$, say $w = s_1 \dots s_n$, then the element $1/s_n \otimes \cdots \otimes 1/s_1 \otimes m$ of $Q_W(M)$ will be denoted by m/w. In particular, m/1 stands for $1 \otimes m$ in $Q_S(M)$, for $1 \otimes 1 \otimes m$ in $Q_T(Q_S(M))$ etc.; which element is meant depends on the module it belongs to, and that should always be clear from the context.

We need some lemmas in order to prove that \tilde{M} is a sheaf in the above sense.

Lemma 2. Given $m/w \in Q_W(R)$ and $a \in R$, then $\exists w' \in W$, $b \in R$ such that w'a = bw and $a(m/w) = (bm)/w' \in Q_W(R)$.

Proof. Suppose $W = S_1 \dots S_n$ and $w = s_1 \dots s_n$ $(s_i \in S_i)$. We put $a_n = a$ and we define inductively the a_i $(i = n, \dots, 0)$ by using repeatedly the second Ore-condition as follows: $s_i'a_i = a_{i-1}s_i$, $s_i' \in S_i$. Then $a(m/w) = a(1/s_n) \otimes \cdots \otimes 1/s_1 \otimes m = 1/s_n' \otimes a_{n-1}$ $(1/s_{n-1}) \otimes \cdots \otimes 1/s_1 \otimes m = \cdots = 1/s_n' \otimes \cdots \otimes 1/s_n' \otimes a_0 m$. It is then easy to see that $b = a_0$ and $w' = s_1' \dots s_n'$ satisfy both statements above. \square

Proposition 2. The presheaf \tilde{M} is separated.

Proof. Fix a global cover $\{W_i | i \in I\}$. The case W = 1 being trivial, it suffices to show $\rho_{W_iW}^W(m) = 0 \Rightarrow m = 0$ for words $W \in \mathcal{W} \setminus \{1\}$. We arrange this by induction on the length of W:

- (a) If W is a letter S and we have an element $m/s \in Q_S(M)$ such that $1/s \otimes 1 \otimes m = 0$ in $Q_S(Q_{W_i}(M)) \ \forall i \in I$ then $\exists s' \in S$ such that $s'm \in \bigcap_i \operatorname{Ker}(M \to Q_{W_i}(M))$ but the latter module is $\kappa_+(M)$ because R is schematic. This yields in particular that s'm is S-torsion, so m is S-torsion and consequently m/s = 0 in $Q_S(M)$.
- (b) Assume that $\rho_{W_iV}^V(m) = 0 \Rightarrow m = 0$ for all words V of length smaller than or equal to n and let W be a word of length n+1, say $W = S_1 \dots S_n S$. Let $1/s \otimes 1/s_n \otimes \dots \otimes 1/s_1 \otimes m$ be an element of $Q_W(M)$ such that $1/s \otimes 1/s_n \otimes \dots \otimes 1/s_1 \otimes 1 \otimes m = 0$ in $Q_W(Q_{W_i}(M))$ for all $i \in I$ then there exists a s' in S such that $s' \cdot 1/s_n \otimes \dots \otimes 1/s_1 \otimes 1 \otimes m = 0$ in $Q_W(Q_{W_i}(M))$ for all $i \in I$. The previous lemma yields $s'_1 \dots s'_n \in V = S_1 \dots S_n$ and $a \in R$ such that

$$0 = s'(1/s_n) \otimes \cdots \otimes 1/s_1 \otimes 1 \otimes m = 1/s'_n \otimes \cdots \otimes 1/s'_1 \otimes 1 \otimes am$$

in $Q_V(Q_{W_i}(M))$. By induction, we find that $1/s_n' \otimes \cdots 1/s_1' \otimes am = 0$ in $Q_V(M)$, but this element equals $s'(1/s_n) \otimes \cdots \otimes 1/s_1 \otimes m$. This implies that $1/s \otimes 1/s_n \otimes \cdots \otimes 1/s_1 \otimes m = 0$ in $Q_S(Q_V(M)) = Q_W(M)$. \square

Lemma 3. If $m/w = 1 \otimes \cdots \otimes 1 \otimes n$ in $Q_W(M)$ for some $n \in M$ then there exists $\tilde{w} \in W$ and an $x \in R$ such that $\tilde{w} = xw$ and $\tilde{w}n = xm$.

Proof. The proof proceeds by induction on the length n of the word $w = s_1 \dots s_n$, the case n = 1 being well-known. Suppose the statement is true for words of length smaller than n. Write $w' = s_1 \dots s_{n-1}$ then $1/s_n \otimes m/w' = 1 \otimes n/1$. This is an equality in the Ore-localisation of $Q_{W'}(M)$, W' being $S_1 \dots S_{n-1}$, at the Ore-set S_n , so $\exists a, b \in R$ such that $a(m/w') = bn/1 \in Q_{W'}(M)$, $as_n = b \in S_n$. Using the previous lemma yields $\exists w'' \in W'$, $c \in R$ with w''a = cw' and bn/1 = a(m/w') = (cm)/w''. Induction yields that there exists $w''' \in W'$ and $d \in R$ with w''' = dw'' and w'''bn = dcm. Putting $\tilde{w} = w'''b$ and x = dc finishes the proof. \square

Proposition 3. The separated presheaf \tilde{M} is a sheaf, i.e. it satisfies the gluing condition.

Proof. Fix a global cover $\{W_i | i \in I\}$. It is easy to see that it suffices to prove that the canonical map from $\widetilde{M}(W) = Q_W(M)$ to the inverse limit $\Gamma_W(\widetilde{M})$ of the inverse system

$$Q_{W}(Q_{W_{i}}(M)) \xrightarrow{Q_{W}(Q_{W_{i}}(Q_{W_{i}}(M)))}$$

$$Q_{W}(Q_{W_{i}}(M)) \xrightarrow{Q_{W}(Q_{W_{i}}(Q_{W_{i}}(M)))}$$

is an isomorphism. In the particular case that W=1, we will denote the inverse limit by $\Gamma_*(\tilde{M})$ rather than by $\Gamma_1(\tilde{M})$. Because a finite inverse limit and an exact functor commute, we find that $\Gamma_W(\tilde{M}) \cong Q_W(\Gamma_*(\tilde{M}))$, so we are done if we can prove that $\Gamma_*(\tilde{M}) \cong Q_{\kappa_+}(M)$. There is a unique R-linear map $\varphi: M \to \Gamma_*(\tilde{M})$ by the universal property of the inverse limit. It is easily seen that the kernel of this map is exactly $\kappa_+(M)$ due to the fact that R is schematic. If we are able to show that $\operatorname{Coker} \varphi$ is κ_+ -torsion, then it will follow from general torsion theory that $Q_{\kappa_+}(M) \cong \Gamma_*(\tilde{M})$.

Consider an element $\xi = (m_i/w_i)_i$ of $\Gamma_*(\tilde{M})$, i.e. $w_i \in W_i$ and $1/w_i \otimes 1 \otimes m_i = 1 \otimes 1/w_j \otimes m_j \ \forall i,j$. We claim that there exists a natural number n such that $\forall j$: $(R_+)^n m_j/w_j$ is contained in the image of the canonical map $M \to Q_{W_j}(M)$. Fix j, then the previous lemma entails for each i the existence of $w_i' = a_i w_i \in W_i$ such that $w_i'(m_j/w_j) = a_i m_i/1 \in Q_{W_j}(M)$. By definition of a covering, we can find a natural number n such that $(R_+)^n m_j/w_j$ is contained in the image of $M \to Q_{W_j}(M)$. This n depends on j but since we assume the $(W_i)_i$ to be a finite cover, we can take n big enough to work for all j.

Given a in $(R_+)^n$, then $a\xi = (n_i/1)_i$ for some n_i in M such that $1 \otimes 1 \otimes n_i = 1 \otimes 1 \otimes n_j$ in $Q_{W_i}(Q_{W_j}(M))$ for all i, j. Fix i, then for all j there exists $w_j \in W_i$ such that $w_j(n_i/1) = w_j(n_j/1)$ in $Q_{W_j}(M)$ by the previous lemma. Since we are working with a finite cover, we can find $w \in W_i$ such that $w(n_i/1) = w(n_j/1)$ for all j, i.e. $wa\xi = \varphi(wn_i)$. This being true for all i yields that there exists a natural number n(a) (depending on a) such that $(R_+)^{n(a)}a\xi \subseteq \varphi(M)$. Finally, the ideal $(R_+)^n$ is finitely

generated, say by a_1, \ldots, a_r . Put $m = \max\{n(a_k) | k = 1, \ldots, r\}$ then $(R_+)^{m+n}\xi$ is contained in the image of $\varphi: M \to \Gamma_*(\tilde{M})$. \square

Definition 4. An affine cover is a finite subset $\{T_i | i \in I\}$ of \mathcal{O} such that $\bigcap_{i \in I} \mathcal{L}(T_i) = \mathcal{L}(\kappa_+)$.

Definition 5. A sheaf \mathscr{F} is quasi-coherent if and only if there exists an affine cover $\{T_i | i \in I\}$ and for each i in I there exists a graded $Q_{T_i}(R)$ -module M_i such that for all morphisms $V \to W$ in \mathscr{W} we have a commutative diagram:

in which the vertical maps are isomorphisms in R - gr. \mathcal{F} is called *coherent* if moreover all M_i are finitely generated $Q_{T_i}(R)$ -modules.

Example 1. The sheaf \tilde{M} is quasi-coherent (resp. coherent) for each graded (resp. finitely generated graded) R-module M.

In fact, we will prove that every quasi-coherent sheaf has to be of the form \tilde{M} for some graded R-module M.

Remark 1. One may ask why we only require isomorphisms between sections on words beginning with a letter of the affine cover. It seems reasonable to ask for isomorphisms $Q_W(M_i) \cong \mathscr{F}(W)$ on all words which admit a morphism to some T_i , i.e. for all words which contain some letter of the affine cover. The reason is that one can then not expect that each finitely generated module induces a coherent sheaf: in fact we can prove that if each \tilde{M} were coherent in this way then all T_i and T_j have to be compatible.

Theorem 1. If \mathscr{F} is a quasi-coherent sheaf on \mathscr{W} and $\Gamma_*(\mathscr{F})$ denotes its global sections $\mathscr{F}(1)$ then \mathscr{F} is isomorphic to $\Gamma_*(\mathscr{F})$, the sheaf associated to $\Gamma_*(\mathscr{F})$.

Proof. We have to prove that $\mathscr{F}(W) \cong Q_W(\Gamma_*(\mathscr{F}))$ for all W in \mathscr{W} . Let $\{T_i | i \in I\}$ be an affine cover as in the definition of a quasi-coherent sheaf and fix a word W in \mathscr{W} . Now

$$Q_{W}(\Gamma_{*}(\mathscr{F})) \cong \varprojlim_{i} Q_{W}(\mathscr{F}(T_{i}))$$
 (finite inverse limit),

$$\mathscr{F}(W) \cong \lim_{i \to \infty} \mathscr{F}(T_i W)$$
 (\$\mathcal{F}\$ is a sheaf).

From the coherence of \mathscr{F} , we know that we have isomorphisms $\psi_i: Q_W$ $(\mathscr{F}(T_i)) \to \mathscr{F}(T_iW)$ and $\psi_{ij}: Q_W(\mathscr{F}(T_iT_j)) \to \mathscr{F}(T_iT_jW)$. We will need the explicit form of these canonical maps, that is why we introduce the next convenient notation. If W is $S_1 \ldots S_n$ then we define W_i to be $S_1 \ldots S_i$. In particular, $W_n = W$ and $W_1 = S_1$. Then

$$\psi_i\left(\frac{1}{s_n}\otimes\cdots\otimes\frac{1}{s_1}\otimes m\right) = s_n^{-1}\rho_{T_iW_n}^{T_iW_{n-1}}(s_{n-1}^{-1}\rho_{T_iW_{n-1}}^{T_iW_{n-2}}(\ldots s_2^{-1}\rho_{T_iW_2}^{T_iW_1}(s_1^{-1}\rho_{T_iW_1}^{T_i}(m))\ldots))$$

and

$$\psi_{ij}\left(\frac{1}{s_n}\otimes \cdots \otimes \frac{1}{s_1}\otimes m\right)$$

$$= s_n^{-1} \rho_{T_iT_jW_n^{-1}}^{T_iT_jW_{n-1}}(s_{n-1}^{-1} \rho_{T_iT_jW_{n-1}}^{T_iT_jW_{n-2}}(\ldots s_2^{-1} \rho_{T_iT_jW_2}^{T_iT_jW_1}(s_1^{-1} \rho_{T_iT_jW_1}^{T_iT_j}(m)) \ldots)).$$

We want to show that these isomorphisms induce an isomorphism between the inverse limits of the inverse systems $\mathscr{F}(T_iW)$ and $Q_W(\mathscr{F}(T_i))$. Thus we must check that the following diagram commutes:

$$Q_{W}(\mathscr{F}(T_{i})) \xrightarrow{Q_{W}(\rho_{T_{i}T_{j}}^{T_{i}})} Q_{W}(\mathscr{F}(T_{i}T_{j}))$$

$$\downarrow^{\psi_{i}} \qquad \qquad \downarrow^{\psi_{ij}}$$

$$\mathscr{F}(T_{i}W) \xrightarrow{\rho_{T_{i}T_{j}W}^{T_{i}W}} \mathscr{F}(T_{i}T_{j}W)$$

Take $\xi = 1/s_n \otimes \cdots \otimes 1/s_n \otimes m$ in $Q_W(\mathcal{F}(T_i))$. On one hand,

$$\begin{split} \psi_{ij}(Q_{W}(\rho_{T_{i}T_{j}}^{T_{i}})(\xi)) \\ &= \psi_{ij}\left(\frac{1}{s_{n}} \otimes \cdots \otimes \frac{1}{s_{1}} \rho_{T_{i}T_{j}}^{T_{i}}(m)\right) \\ &= s_{n}^{-1} \rho_{T_{i}T_{j}W_{n}-1}^{T_{i}T_{j}W_{n}-1}(s_{n-1}^{-1} \rho_{T_{i}T_{i}W_{n-1}}^{T_{i}T_{j}W_{n-1}}(\ldots s_{2}^{-1} \rho_{T_{i}T_{i}W_{2}}^{T_{i}T_{j}W_{1}}(s_{1}^{-1} \rho_{T_{i}T_{i}W_{1}}^{T_{i}T_{j}}(\rho_{T_{i}T_{i}}^{T_{i}}(m))) \ldots)). \end{split}$$

On the other hand,

$$\rho_{T_{i}T_{j}W}^{T_{i}W}(\psi_{i}(\xi))$$

$$= \rho_{T_{i}T_{j}W}^{T_{i}W}(s_{n}^{-1}\rho_{T_{i}W_{n}^{-1}}^{T_{i}W_{n-1}}(s_{n-1}^{-1}\rho_{T_{i}W_{n-2}}^{T_{i}W_{n-2}}(\dots s_{2}^{-1}\rho_{T_{i}W_{2}}^{T_{i}W_{1}}(s_{1}^{-1}\rho_{T_{i}W_{1}}^{T_{i}}(m))\dots)).$$

Since both $\mathcal{F}(T_iW)$ and $\mathcal{F}(T_iT_jW)$ are $Q_{S_n}(R)$ -modules, we find that $\rho_{T_iT_jW}^{T_iW}$ is $Q_{S_n}(R)$ -linear. Using this and the fact that

$$\rho_{T_{i}T_{i}W_{n}}^{T_{i}W} \circ \rho_{T_{i}W_{n}}^{T_{i}W_{n-1}} = \rho_{T_{i}T_{i}W_{n}}^{T_{i}T_{i}W_{n-1}} \circ \rho_{T_{i}T_{i}W_{n-1}}^{T_{i}W_{n-1}},$$

we find that the above element is equal to:

$$s_n^{-1} \rho_{T_i T_j W_n}^{T_i T_j W_{n-1}} (\rho_{T_i T_j W_{n-1}}^{T_i W_{n-1}} (s_{n-1}^{-1} \rho_{T_i W_{n-1}}^{T_i W_{n-2}} (\dots s_2^{-1} \rho_{T_i W_2}^{T_i W_1} (s_1^{-1} \rho_{T_i W_1}^{T_i} (m)) \dots))).$$

Using this argument repeatedly, we end with:

$$s_n^{-1} \rho_{T_i T_j W_n}^{T_i T_j W_{n-1}} (s_{n-1}^{-1} \rho_{T_i T_j W_{n-1}}^{T_i T_j W_{n-2}} (\dots s_2^{-1} \rho_{T_i T_j W_2}^{T_i T_j W_1} (s_1^{-1} \rho_{T_i T_j W_1}^{T_i W_1} (\rho_{T_i W_1}^{T_i} (m))) \dots))$$

and of course this is the same as the result of the first calculation. Strictly speaking, we should also prove that the following diagram is commutative:

$$Q_{W}(\mathscr{F}(T_{i})) \xrightarrow{Q_{W}(\rho_{T_{j}T_{i}}^{T_{i}})} Q_{W}(\mathscr{F}(T_{j}T_{i}))$$

$$\downarrow \psi_{i} \qquad \qquad \downarrow \psi_{ji}$$

$$\mathscr{F}(T_{i}W) \xrightarrow{\rho_{T_{j}T_{i}W}^{T_{i}W}} \mathscr{F}(T_{j}T_{i}W)$$

but we omit its proof since it is completely similar. Thanks to these commutative diagrams, we conclude that the two inverse limits

$$\lim_{i \to i} Q_{W}(\mathcal{F}(T_{i})) \quad \text{and} \quad \lim_{i \to i} \mathcal{F}(T_{i}W)$$

are isomorphic. Consequently, we get an isomorphism $Q_W(\Gamma_*(\mathscr{F})) \cong \mathscr{F}(W)$. We claim that it maps an element $\xi = 1/s_n \otimes \cdots \otimes 1/s_1 \otimes x \in Q_W(\Gamma_*(\mathscr{F}))$ to $s_n^{-1} \rho_{W_n-1}^{W_{n-1}} (s_{n-1}^{-1} \rho_{W_{n-1}}^{W_{n-2}} (\ldots s_2^{-1} \rho_{W_2}^{W_1} (s_1^{-1} \rho_{W_1}(x)) \ldots))$. It is easy to see that ξ is mapped to the element

$$(s_n^{-1}\rho_{T_iW_n}^{T_iW_{n-1}}(s_{n-1}^{-1}\rho_{T_iW_{n-1}}^{T_iW_{n-2}}(\ \dots\ s_2^{-1}\rho_{T_iW_2}^{T_iW_1}(s_1^{-1}\rho_{T_iW_1}(x))\ \dots\)))_i\in\varprojlim\mathscr{F}(T_iW).$$

Then it suffices to prove that

$$\rho_{T_iW}^{W}(s_n^{-1}\rho_{W_n}^{W_{n-1}}(s_{n-1}^{-1}\rho_{W_{n-1}}^{W_{n-2}}(\dots s_2^{-1}\rho_{W_2}^{W_1}(s_1^{-1}\rho_{W_1}(x))\dots)))$$

$$= s_n^{-1}\rho_{T_iW_n}^{T_iW_{n-1}}(s_{n-1}^{-1}\rho_{T_iW_{n-1}}^{T_iW_{n-2}}(\dots s_2^{-1}\rho_{T_iW_2}^{T_iW_1}(s_1^{-1}\rho_{T_iW_1}(x))\dots))$$

for all i in I. This is done using essentially the same argument as before, i.e. a repeated combination of the $Q_{S_k}(R)$ -linearity of the restriction morphism between two words ending on S_k and the fact that $\rho_{TSW}^{SW} \circ \rho_{SW}^{W} = \rho_{TSW}^{TW} \circ \rho_{TW}^{W}$. There remains one thing to be proved, namely that these maps patch together to a sheaf isomorphism, that is we have to prove that for each morphism $V \to W$ in $\underline{\mathscr{W}}$ the following diagram commutes:

$$Q_{W}(\Gamma_{*}(\mathscr{F})) \longrightarrow Q_{V}(\Gamma_{*}(F))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

We omit the proof since this is again done in the same way, up to a minor modification taking into account the imbedding of W into V. \square

Now we are ready for:

Theorem 2. The category of quasi-coherent sheaves is equivalent to (R, κ_+) -gr.

Proof. As in the commutative case, the functors establishing the equivalence will be $\tilde{\ }$ and Γ_* . We still have to prove that the global sections functor takes its values in (R, κ_+) -gr, i.e. that $\Gamma_*(\mathscr{F})$, the global sections of a quasi-coherent sheaf \mathscr{F} , is a κ_+ -closed R-module. Choose a natural number n and consider the canonical map $\varphi: \Gamma_*(\mathscr{F}) \to \operatorname{Hom}_R((R_+)^n, \Gamma_*(\mathscr{F})). \quad \varphi \text{ is injective because } \operatorname{Ker} \varphi \subseteq \kappa_+(\Gamma_*(\mathscr{F})) =$ $\bigcap_{i \in I} \kappa_{T_i}(\Gamma_{\star}(\mathscr{F})) = 0$, the latter equality holds because \mathscr{F} is separated. To prove the surjectivity of φ , we take an element f in $\operatorname{Hom}_{R}((R_{+})^{n}, \Gamma_{*}(\mathscr{F}))$. Composing this map with the restriction morphisms yields elements $\rho_{T_i} \circ f$ in $\operatorname{Hom}_R((R_+)^n,$ $\mathscr{F}(T_i)\cong\mathscr{F}(T_i)$. Thus for each $i\in I$, there is a $x_i\in\mathscr{F}(T_i)$ such that $\rho_{T_i}(f(a))=ax_i$ for all $a \in (R_+)^n$. The calculation $a \rho_{T_i T_j}^{T_i}(x_i) = \rho_{T_i T_j}^{T_i}(\rho_{T_i}(f(a))) = \rho_{T_i T_j}^{T_j}(\rho_{T_j}(f(a))) = \rho_{T_i T_j}^{T_i}(\rho_{T_i}(f(a))) = \rho_{T_i T_j}^{T_i}(\rho_{T_i}(f(a))$ $a\rho_{T_iT_i}^{T_j}(x_i)$ for all $a \in (R_+)^n$ yields that $\rho_{T_iT_i}^{T_i}(x_i) = \rho_{T_iT_i}^{T_j}(x_i)$. The gluing condition on \mathscr{F} implies that $\exists x \in \Gamma_*(\mathscr{F})$ such that $\rho_{T_i}(x) = x_i$ and of course this x is mapped to f by φ . We conclude that $\Gamma_*(\mathscr{F})$ is a κ_+ -closed module. At this moment, we know that there is a functor from the category of quasi-coherent sheaves to (R, κ_+) -gr and one in the reverse direction. The fact that these functors are equivalences follows readily from Proposition 3 and Theorem 1.

Theorem 3. The category of coherent sheaves is equivalent to Proj R.

Proof. The coherence of \mathscr{F} yields the existence of a finite number of global sections $x_1, \ldots, x_t \in \Gamma_*(\mathscr{F})$ such that $\forall i \in I : \rho_{T_i}(x_1), \ldots, \rho_{T_i}(x_t)$ generate $\mathscr{F}(T_i)$ as a $Q_{T_i}(R)$ -module. It is now easy to show that $\Gamma_*(\mathscr{F})$ is torsion over the R-submodule generated by x_1, \ldots, x_t . \square

In practice, one is interested in the following question: given some modules over some localisations of the ring R, do they come from an R-module? The next theorem provides a criterion in case R is schematic:

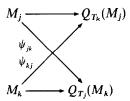
Theorem 4. Let $\{T_i | i \in I\}$ be an affine cover and suppose we are given a graded $Q_{T_i}(R)$ -module M_i for each i and homomorphisms $\psi_{ij} : M_i \to Q_{T_i}(M_j)$ in R-gr such that for each triple (i, j, k) the next diagram commutes:

$$M_{i} \xrightarrow{\psi_{ij}} Q_{T_{i}}(M_{j})$$

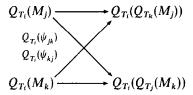
$$\downarrow Q_{T_{i}}(\psi_{jk}) \qquad \qquad Q_{T_{i}}(Q_{T_{i}}(M_{k}))$$

then there exists a graded R-module M such that for each i in I we have that $Q_{T_i}(M) \cong M_i$.

Proof. Put M equal to the inverse limit of the inverse system



Since this is a finite inverse limit, we get that $Q_{T_i}(M)$ is isomorphic with the inverse limit of



and we use this module, denoted by N, to construct an isomorphism to M_i . We have a well-defined map $M_i \to N$ because of the gluing condition above and we have a map ψ from $Q_{T_i}(M)$ to M_i defined by $\psi((m_j)_j/s) = s^{-1}m_i$ where $m_j \in M_j$ such that $\psi_{jk}(m_j) = m_k/1 \in Q_{T_j}(M_k) \ \forall j,k \in I$ and $s \in T_i$. It is now an easy exercise to prove that these two maps are each others inverse. \square

The gluing condition above looks the same as in the commutative case, but then it implies that $Q_{T_i}(M_i) \cong Q_{T_i}(M_j)$ as $Q_{T_i \vee T_i}(R)$ -modules.

One of the reasons why we did not want to assume the existence of compatible covers is that this property does not lift from the associated graded of a filtered ring to its Rees-ring. At the cost of introducing completions (the so-called micro-localisations), this property does lift and consequently, for a wide variety of algebras is the usual (commutative) Grothendieck-topology sufficient again.

References

- [1] M. Artin, Geometry of quantum planes, Cont. Math. 124 (1992).
- [2] R. Hartshorne, Algebraic Geometry (Springer, New York, 1977).
- [3] Séminaire de Géométrie Algébrique du Bois Marie 1963/64 SGA 4, Théorie des Topos et Cohomologie Etale des Schémas, Dirigé par M. Artin, A. Grothendieck and J.L. Verdier, Lecture Notes in Mathematics, Vol. 269 (Springer, Berlin).
- [4] J.-P. Serre, Faisceaux algébriques cohérents, Ann. Math. 61 (1955) 197-278.
- [5] B. Stenström, Rings of Quotients, An Introduction to Methods of Ring Theory, Die Grundlehren der mathematischen Wissenschaften, Vol. 217 (Springer, Berlin, 1975).
- [6] F. Van Oystaeyen and L. Willaert, Examples and quantum sections of schematic algebras, to appear.