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The current Go language memory model was written in 2009, with minor up-
dates since. It is clear that there are at least a few details that we should add to
the current memory model, among them an explicit endorsement of race detec-
tors and a clear statement of how the APIs in sync/atomic synchronize pro-
grams.

This post restates Go’s overall philosophy and the current memory model and
then outlines the relatively small adjustments I believe that we should make to
the Go memory model. It assumes the background presented in the earlier posts
“Hardware Memory Models” and “Programming Language Memory Models.”

I have opened a GitHub discussion to collect feedback on the ideas present-
ed here. Based on that feedback, I intend to prepare a formal Go proposal later
this month. The use of GitHub discussions is itself a bit of an experiment, con-
tinuing to try to find a reasonable way to scale discussions of important changes.

Go’s Design Philosophy

Go aims to be a programming environment for building practical, efficient sys-
tems. It aims to be lightweight for small projects but also scale up gracefully to
large projects and large engineering teams.

Go encourages approaching concurrency at a high level, in particular through
communication. The first Go proverb is “Don’t communicate by sharing mem-
ory. Share memory by communicating.” Another popular proverb is that “Clear
is better than clever.” In other words, Go encourages avoiding subtle bugs by
avoiding subtle code.

Go aims not just for understandable programs but also for an understandable
language and understandable package APIs. Complex or subtle language fea-
tures or APIs contradict that goal. As Tony Hoare said in his 1980 Turing award
lecture:

I conclude that there are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies
and the other way is to make it so complicated that there are no obvi-
ous deficiencies.

The first method is far more difficult. It demands the same skill,
devotion, insight, and even inspiration as the discovery of the simple
physical laws which underlie the complex phenomena of nature. It also
requires a willingness to accept objectives which are limited by physi-
cal, logical, and technological constraints, and to accept a compromise
when conflicting objectives cannot be met.

This aligns pretty well with Go’s philosophy for APIs. We typically spend a long
time during design to make sure an API is right, working to reduce it to its min-
imal, most useful essence.

Another aspect of Go being a useful programming environment is having
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well-defined semantics for the most common programming mistakes, which
aids both understandability and debugging. This idea is hardly new. Quoting
Tony Hoare again, this time from his 1972 “Quality of Software” checklist:

As well as being very simple to use, a software program must be very
difficult to misuse; it must be kind to programming errors, giving clear
indication of their occurrence, and never becoming unpredictable in its
effects.

The common sense of having well-defined semantics for buggy programs is not
as common as one might expect. In C/C++, undefined behavior has evolved into
a kind of compiler writer’s carte blanche to turn slightly buggy programs in-
to very differently buggy programs, in ever more interesting ways. Go does not
take this approach: there is no “undefined behavior.” In particular, bugs like null
pointer dereferences, integer overflow, and unintentional infinite loops all have
defined semantics in Go.

Go’s Memory Model Today

Go’s memory model begins with the following advice, consistent with Go’s over-
all philosophy:

Programs that modify data being simultaneously accessed by multiple
goroutines must serialize such access.

To serialize access, protect the data with channel operations or other
synchronization primitives such as those in the sync and sync/atomic

packages.
If you must read the rest of this document to understand the behav-

ior of your program, you are being too clever.
Don’t be clever.

This remains good advice. The advice is also consistent with other languages’
encouragement of DRF-SC: synchronize to eliminate data races, and then pro-
grams will behave as if sequentially consistent, leaving no need to understand
the remainder of the memory model.

After this advice, the Go memory model defines a conventional happens-be-
fore-based definition of racing reads and writes. Like in Java and JavaScript, a
read in Go can observe any earlier but not yet overwritten write in the happens-
before order, or any racing write; arranging to have only one such write forces
a specific outcome.

The memory model then goes on to define the synchronization operations
that establish cross-goroutine happens-before edges. The operations are the usu-
al ones, with some Go-specific flavoring:

– If a package p imports package q, the completion of q’s init functions
happens before the start of any of p’s.

– The start of the function main.main happens after all init functions
have finished.

– The go statement that starts a new goroutine happens before the gor-
outine’s execution begins.

– A send on a channel happens before the corresponding receive from
that channel completes.

– The closing of a channel happens before a receive that returns a zero
value because the channel is closed.
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– A receive from an unbuffered channel happens before the send on that
channel completes.

– The k’th receive on a channel with capacity C happens before the
k+C’th send from that channel completes.

– For any sync.Mutex or sync.RWMutex variable l and n < m, call n of
l.Unlock() happens before call m of l.Lock() returns.

– A single call of f() from once.Do(f) happens (returns) before any
call of once.Do(f) returns.

This list notably omits any mention of sync/atomic as well as newer APIs in
package sync.

The memory model ends with some examples of incorrect synchronization.
It contains no examples of incorrect compilation.

Changes to Go’s Memory Model

In 2009, as we set out to write Go’s memory model, the Java memory model was
newly revised, and the C/C++11 memory model was being finalized. We were
strongly encouraged by some to adopt the C/C++11 model, taking advantage of
all the work that had gone into it. That seemed risky to us. Instead, we decid-
ed on a more conservative approach to what guarantees we would make, a de-
cision confirmed by the subsequent decade of papers detailing very subtle prob-
lems in the Java/C/C++ line of memory models. Defining enough of a memo-
ry model to guide programmers and compiler writers is important, but defining
one in complete formality—correctly!—seems still just beyond the grasp of the
most talented researchers. It should suffice for Go to continue to say the mini-
mum needed to be useful.

This section list the adjustments I believe we should make. As noted earlier,
I have opened a GitHub discussion to collect feedback. Based on that feedback,
I plan to prepare a formal Go proposal later this month.

Document Go’s overall approach

The “don’t be clever” advice is important and should stay, but we also need to say
more about Go’s overall approach before diving into the details of happens-be-
fore. I have seen multiple incorrect summaries of Go’s approach, such as claim-
ing that Go’s model is C/C++‘s “DRF-SC or Catch Fire.” Misreadings are under-
standable: the document doesn’t say what the approach is, and it is so short (and
the material so subtle) that people see what they expect to see rather than what
is or is not there.

The text to be added would be something along the lines of:

Overview

Go approaches its memory model in much the same way as the rest of
the language, aiming to keep the semantics simple, understandable, and
useful.

A data race is defined as a write to a memory location happening
concurrently with another read or write to that same location, unless
all the accesses involved are atomic data accesses as provided by the
sync/atomic package. As noted already, programmers are strongly en-
couraged to use appropriate synchronization to avoid data races. In
the absence of data races, Go programs behave as if all the goroutines
were multiplexed onto a single processor. This property is sometimes
referred to as DRF-SC: data-race-free programs execute in a sequential-
ly consistent manner.
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Other programming languages typically take one of two approach-
es to programs containing data races. The first, exemplified by C and
C++, is that programs with data races are invalid: a compiler may break
them in arbitrarily surprising ways. The second, exemplified by Java
and JavaScript, is that programs with data races have defined seman-
tics, limiting the possible impact of a race and making programs more
reliable and easier to debug. Go’s approach sits between these two. Pro-
grams with data races are invalid in the sense that an implementation
may report the race and terminate the program. But otherwise, pro-
grams with data races have defined semantics with a limited number of
outcomes, making errant programs more reliable and easier to debug.

This text should make clear how Go is and is not like other languages, correct-
ing any prior expectations on the part of the reader.

At the end of the “Happens Before” section, we should also clarify that cer-
tain races can still lead to corruption. It currently ends with:

Reads and writes of values larger than a single machine word behave
as multiple machine-word-sized operations in an unspecified order.

We should add:

Note that this means that races on multiword data structures can lead
to inconsistent values not corresponding to a single write. When the
values depend on the consistency of internal (pointer, length) or (point-
er, type) pairs, as is the case for interface values, maps, slices, and
strings in most Go implementations, such races can in turn lead to ar-
bitrary memory corruption.

This will more clearly state the limitations of the guarantees on programs with
data races.

Document happens-before for sync libraries

New APIs have been added to the sync package since the memory model was
written. We need to add them to the memory model (issue #7948). Thankfully,
the additions seem straightforward. I believe they are as follows.

– For sync.Cond: Broadcast or Signal happens before the return of
any Wait call that it unblocks.

– For sync.Map: Load, LoadAndDelete, and LoadOrStore are read op-
erations. Delete, LoadAndDelete, and Store are write operations.
LoadOrStore is a write operation when it returns loaded set to
false. A write operation happens before any read operation that ob-
serves the effect of the write.

– For sync.Pool: A call to Put(x) happens before a call to Get return-
ing that same value x. Similarly, a call to New returning x happens be-
fore a call to Get returning that same value x.

– For sync.WaitGroup: A call to Done happens before the return of any
Wait call that it unblocks.

Users of these APIs need to know the guarantees in order to use them effective-
ly. Therefore, while we should keep the text in the memory model for illustra-
tive purposes, we should also include it in the doc comments in package sync.
This will also help set an example for third-party synchronization primitives of
the importance of documenting the ordering guarantees established by an API.
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Document happens-before for sync/atomic

Atomic operations are missing from the memory model. We need to add them
(issue #5045). I believe we should say:

The APIs in the sync/atomic package are collectively “atomic opera-
tions” that can be used to synchronize the execution of different gorou-
tines. If the effect of an atomic operation A is observed by atomic op-
eration B, then A happens before B. All the atomic operations execut-
ed in a program behave as though executed in some sequentially con-
sistent order.

This is what Dmitri Vyukov suggested in 2013 and what I informally promised
in 2016. It also has the same semantics as Java’s volatiles and C++’s default
atomics.

In terms of the C/C++ menu, there are only two choices for synchronizing
atomics: sequentially consistent or acquire/release. (Relaxed atomics do not cre-
ate happens-before edges and therefore have no synchronizing effect.) The deci-
sion between those comes down to, first, how important it is to be able to reason
about the relative order of atomic operations on multiple locations, and, second,
how much more expensive sequentially consistent atomics are compared to ac-
quire/release atomics.

On the first consideration, reasoning about the relative order of atomic op-
erations on multiple locations is very important. In an earlier post I gave an
example of a condition variable with a lock-free fast path implemented using
two atomic variables, broken by using acquire/release atomics. This pattern ap-
pears again and again. For example, a past implementation of sync.WaitGroup
used a pair of atomic uint32 values, wg.counter and wg.waiters. The Go
runtime implementation of semaphores also depends on two separate atomic
words, namely the semaphore value *addr and the corresponding waiter count
root.nwait. There are more. In the absence of sequentially consistent seman-
tics (that is, if we instead adopt acquire/release semantics), people will still write
code like this; it will just fail mysteriously, and only in certain contexts.

The fundamental problem is that using acquire/release atomics to make a
program data-race-free does not result in a program that behaves in a sequen-
tially consistent manner, because the atomics themselves don’t. That is, such
programs do not provide DRF-SC. This makes such programs very difficult to
reason about and therefore difficult to write correctly.

On the second consideration, as noted in the earlier post, hardware design-
ers are starting to provide direct support for sequentially consistent atomics.
For example, ARMv8 adds the ldar and stlr instructions for implementing se-
quentially consistent atomics, and they are also the recommended implemen-
tation of acquire/release atomics. If we adopted acquire/release semantics for
sync/atomic, programs written on ARMv8 would be getting sequential con-
sistency anyway. This would undoubtedly lead to programs that rely on the
stronger ordering accidentally, breaking on weaker platforms. This may even
happen on a single architecture, if the difference between acquire/release and se-
quentially consistent atomics is difficult to observe in practice due to race win-
dows being small.

Both considerations strongly suggest we should adopt sequentially consistent
atomics over acquire/release atomics: sequentially consistent atomics are more
useful, and some chips have already completely closed the gap between the two
levels. Presumably others will do the same if the gap is significant.

The same considerations, along with Go’s overall philosophy of having mini-
mal, easily understood APIs, argue against providing acquire/release as an addi-
tional, parallel set of APIs. It seems best to provide only the most understand-
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able, most useful, least misusable set of atomic operations.
Another possibility would be to provide raw barriers instead of atomic op-

erations. (C++ provides both, of course.) Barriers have the drawback of mak-
ing expectations less clear and being somewhat more architecture-specific. Hans
Boehm’s page “Why atomics have integrated ordering constraints” presents the
arguments for providing atomics instead of barriers (he uses the term fences).
Generally, the atomics are far easier to understand than fences, and since we al-
ready provide atomic operations today, we can’t easily remove them. Better to
have one mechanism than two.

Maybe: Add a typed API to sync/atomic

The definitions above say that when a particular piece of memory must be ac-
cessed concurrently by multiple goroutines without other synchronization, the
only way to eliminate the race is to make all the accesses use atomics. It is not
enough to make only some of the accesses use atomics. For example, a non-
atomic write concurrent with atomic reads or writes is still a race, and so is an
atomic write concurrent with non-atomic reads or writes.

Whether a particular value should be accessed with atomics is therefore a
property of the value and not of a particular access. Because of this, most lan-
guages put this information in the type system, like Java’s volatile int and
C++‘s atomic<int>. Go’s current APIs do not, meaning that correct usage re-
quires careful annotation of which fields of a struct or global variables are ex-
pected to only be accessed using atomic APIs.

To improve program correctness, I am starting to think that Go should define
a set of typed atomic values, analogous to the current atomic.Value: Bool, Int,
Uint, Int32, Uint32, Int64, Uint64, and Uintptr. Like Value, these would
have CompareAndSwap, Load, Store, and Swap methods. For example:

type Int32 struct { v int32 }

func (i *Int32) Add(delta int32) int32 {

return AddInt32(&i.v, delta)

}

func (i *Int32) CompareAndSwap(old, new int32) (swapped bool) {

return CompareAndSwapInt32(&i.v, old, new)

}

func (i *Int32) Load() int32 {

return LoadInt32(&i.v)

}

func (i *Int32) Store(v int32) {

return StoreInt32(&i.v, v)

}

func (i *Int32) Swap(new int32) (old int32) {

return SwapInt32(&i.v, new)

}

I’ve included Bool on the list because we have constructed atomic booleans out
of atomic integers multiple times in the Go standard library (in unexported
APIs). There is clearly a need.

We could also take advantage of upcoming generics support and define an
API for atomic pointers that is typed and free of package unsafe in its API:
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type Pointer[T any] struct { v *T }

func (p *Pointer[T]) CompareAndSwap(old, new *T) (swapped bool) {

return CompareAndSwapPointer(... lots of unsafe ...)

}

(And so on.) To answer an obvious suggestion, I don’t see a clean way to use
generics to provide just a single atomic.Atomic[T] that would let us avoid in-
troducing Bool, Int, and so on as separate types, at least not without special cas-
es in the compiler. And that’s okay.

Maybe: Add unsynchronized atomics

All other modern programming languages provide a way to make concurrent
memory reads and writes that do not synchronize the program but also don’t
invalidate it (don’t count as a data race). C, C++, Rust, and Swift have relaxed
atomics. Java has VarHandle’s “plain” mode. JavaScript has non-atomic access-
es to the SharedArrayBuffer (the only shared memory). Go has no way to do
this. Perhaps it should. I don’t know.

If we wanted to add unsynchronized atomic reads and writes, we could add
UnsyncAdd, UnsyncCompareAndSwap, UnsyncLoad, UnsyncStore, and Unsync-

Swap methods to the typed atomics. Naming them “unsync” avoids a few prob-
lems with the name “relaxed.” First, some people use relaxed as a relative com-
parison, as in “acquire/release is a more relaxed memory order than sequential
consistency.” You can argue that’s not proper usage of the term, but it happens.
Second, and more important, the critical detail about these operations is not
the memory ordering of the operations themselves but the fact that they have
no effect on the synchronization of the rest of the program. To people who are
not experts in memory models, seeing UnsyncLoad should make clear that there
is no synchronization, whereas RelaxedLoad probably would not. It’s also nice
that Unsync looks at a glance like Unsafe.

With the API out of the way, the real question is whether to add these at
all. The usual argument for providing an unsynchronized atomic is that it real-
ly does matter for the performance of fast paths in certain data structures. My
general impression is that it matters most on non-x86 architectures, although I
don’t have data to back this up. Not providing an unsynchronized atomic can be
argued to penalize those architectures.

A possible argument against providing an unsynchronized atomic is that on
x86, ignoring the effect of potential compiler reorderings, unsynchronized atom-
ics are indistinguishable from acquire/release atomics. They might therefore be
abused to write code that only works on x86. The counterargument is that such
subterfuge would not pass muster with the race detector, which implements the
actual memory model and not the x86 memory model.

With the lack of evidence we have today, we would not be justified in adding
this API. If anyone feels strongly that we should add it, the way to make the
case would be to gather evidence of both (1) general applicability in code that
programmers need to write, and (2) significant performance improvements on
widely used systems arising from using non-synchronizing atomics. (It would be
fine to show this using programs in languages other than Go.)

Document disallowed compiler optimizations

The current memory model ends by giving examples of invalid programs. Since
the memory model serves as a contract between the programmer and the com-
piler writers, we should add examples of invalid compiler optimizations. For ex-
ample, we might add:
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Incorrect compilation

The Go memory model restricts compiler optimizations as much as it
does Go programs. Some compiler optimizations that would be valid
in single-threaded programs are not valid in Go programs. In particu-
lar, a compiler must not introduce a data race in a race-free program.
It must not allow a single read to observe multiple values. And it must
not allow a single write to write multiple values.

Not introducing data races into race-free programs means not mov-
ing reads or writes out of conditional statements in which they appear.
For example, a compiler must not invert the conditional in this pro-
gram:

i := 0

if cond {

i = *p

}

That is, the compiler must not rewrite the program into this one:

i := *p

if !cond {

i = 0

}

If cond is false and another goroutine is writing *p, then the original
program is race-free but the rewritten program contains a race.

Not introducing data races also means not assuming that loops ter-
minate. For example, a compiler must not move the accesses to *p or
*q ahead of the loop in this program:

n := 0

for e := list; e != nil; e = e.next {

n++

}

i := *p

*q = 1

If list pointed to a cyclic list, then the original program would never
access *p or *q, but the rewritten program would.

Not introducing data races also means not assuming that called
functions always return or are free of synchronization operations. For
example, a compiler must not move the accesses to *p or *q ahead of
the function call in this program (at least not without direct knowledge
of the precise behavior of f):

f()

i := *p

*q = 1

If the call never returned, then once again the original program would
never access *p or *q, but the rewritten program would. And if the call
contained synchronizing operations, then the original program could
establish happens before edges preceding the accesses to *p and *q, but
the rewritten program would not.

Not allowing a single read to observe multiple values means not
reloading local variables from shared memory. For example, a compil-
er must not spill i and reload it a second time from *p in this program:
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i := *p

if i < 0 || i >= len(funcs) {

panic("invalid function index")

}

... complex code ...

// compiler must NOT reload i = *p here

funcs[i]()

If the complex code needs many registers, a compiler for single-thread-
ed programs could discard i without saving a copy and then reload i =

*p just before funcs[i](). A Go compiler must not, because the val-
ue of *p may have changed. (Instead, the compiler could spill i to the
stack.)

Not allowing a single write to write multiple values also means not
using the memory where a local variable will be written as temporary
storage before the write. For example, a compiler must not use *p as
temporary storage in this program:

*p = i + *p/2

That is, it must not rewrite the program into this one:

*p /= 2

*p += i

If i and *p start equal to 2, the original code does *p = 3, so a racing
thread can read only 2 or 3 from *p. The rewritten code does *p = 1

and then *p = 3, allowing a racing thread to read 1 as well.
Note that all these optimizations are permitted in C/C++ compilers:

a Go compiler sharing a back end with a C/C++ compiler must take
care to disable optimizations that are invalid for Go.

These categories and examples cover the most common C/C++ compiler opti-
mizations that are incompatible with defined semantics for racing data access-
es. They establish clearly that Go and C/C++ have different requirements.

Conclusion

Go’s general approach of being conservative in its memory model has served us
well and should be continued. There are, however, a few changes that are over-
due, including defining the synchronization behavior of new APIs in the sync

and sync/atomic packages. The atomics in particular should be documented to
provide sequentially consistent behavior that creates happens-before edges syn-
chronizing the non-atomic code around them. This would match the default
atomics provided by all other modern systems languages.

Perhaps the most unique part of the update is the idea of clearly stating that
programs with data races may be stopped to report the race but otherwise have
well-defined semantics. This constrains both programmers and compilers, and it
prioritizes the debuggability and correctness of concurrent programs over con-
venience for compiler writers.
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