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The What and Why of Binding: Review
The Modeler’s Perspective

our parlance, mechanisms of organization). Neurosci-
ence and neural modeling, on the other hand, have the
ambition to find general answers. It is this commitment
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to generality that results in the binding problem being44780 Bochum
a fundamental feature of the neural code.Federal Republic of Germany
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Before discussing the answers to the above questionsLos Angeles, California 90089
that are postulated by classical neural networks, it is
important to introduce an important parameter. Al-
though not often made explicit, it is important to fix a

In attempts to formulate a computational understanding temporal scale T, which we will refer to as the “psycho-
logical moment” (in the sense of “short period”). At timesof brain function, one of the fundamental concerns is
shorter than T, one speaks of mental state or brain state,the data structure by which the brain represents infor-
whereas at times greater than T one sees a successionmation. For many decades, a conceptual framework
of states or a “state history.” Whereas state history ishas dominated the thinking of both brain modelers and
subject to conscious scrutiny (that is, it potentially getsneurobiologists. That framework is referred to here as
reflected in all modalities—memory, language, etc.), no“classical neural networks.” It is well supported by ex-
such conscious analysis is possible below T. State his-perimental data, although it may be incomplete. A char-
tory is ignored by most or all models, and the conceptualacterization of this framework will be offered in the next
disagreement about the binding issue focuses exclu-section.
sively on the definition of state, that is, on times belowDifficulties in modeling important functional aspects
T. It is difficult to pin down a definite value for T, but aof the brain on the basis of classical neural networks
plausible range may be from 50 to 200 msec. Regardlessalone have led to the recognition that another, general
of the exact value, it is important to realize that the arenamechanism must be invoked to explain brain function.
for the discussion of the binding problem is at a timeThat mechanism I call “binding.” Binding by neural signal
scale less than T.synchrony had been mentioned several times in the liter-
Classical Neural Networks: Answers to the Issuesature (Legéndy, 1970; Milner, 1974) before it was fully
of Brain Functionformulated as a general phenomenon (von der Malsburg,
Classical neural networks are described by a deeply1981). Although experimental evidence for neural syn-
engrained set of concepts, often attributed to Hebbchrony was soon found, the idea was largely ignored
(1949) and Hayek (1952) but in reality much older, whichfor many years. Only recently has it become a topic of
give definite answers to the questions 1–4 above.animated discussion. In what follows, I will summarize

(A) The neural code: neurons are taken as concretethe nature and the roots of the idea of binding, especially
symbols, as semantic atoms. They can be interpreted inof temporal binding, and will discuss some of the objec-
relation to patterns and events external to the organism.tions raised against it.
Neurophysiology has provided a solid experimental ba-
sis for this statement, although some extrapolation is

Classical Neural Networks needed to extend it to all neurons in the brain. The
Classical neural networks were developed as models interpretation of neurons as semantic atoms is generally
of brain function. In developing these models, several accepted and is not the matter of much dispute. How-
questions needed to be addressed: ever, the following addition will have to be a focus of

(1) How are brain states to be interpreted as represen- our discussion:
tations of actual situations? In other words, how is neural (A9) A neuron has only one degree of freedom for a
activity interpreted as a neural code, or, in computer given psychological moment: it is either on or off (or it
parlance, as a data structure? is on to a certain degree). Thus, the brain state is de-

(2) What is the nature of the mechanisms by which scribed by a list—or vector—of neural activities. In order
brain states are organized? to know what the brain is about in a given psychological

(3) In what format is information laid down perma- moment, it is only necessary to know this vector, as well
nently in the brain? as, of course, a description of the symbolic meanings

(4) How is memory laid down? In other words, what of all neurons. This interpretation of brain activity delib-
are the mechanisms of learning? erately ignores the fact that actually recorded neural

The questions remain open, but, as we shall see, plau- signals are not constant in any sense over T—or over
any fixed time scale, for that matter. It is rather main-sible answers have been offered by classical neural net-
tained that the observed microstate history is inconse-works. Interestingly, in the context of the field of Artificial
quential for the function of the brain.Intelligence, no general answers to these questions are

(B) The mechanism of organization of brain states isprovided, in the conviction that specific problems need
based on the fluxes of excitation and inhibition, a neuronspecific data structures and specific algorithms (or, in
collecting incoming signals and firing when a threshold
is surpassed (see, for instance, the switching rule of
McCulloch and Pitts [1943]). The dynamics of the system*E-mail: malsburg@usc.edu.
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Figure 2. The Superposition Catastrophe

If two sets of active neurons (left and middle panel) are simultane-
ously activated (right panel), information on their membership in the
original sets is automatically lost.

to the network it responds adequately, e.g., with (trian-
gle, top) or (square, bottom). A problem arises, however,
when two objects are present simultaneously. If the out-
put reads (triangle, square, top, bottom) it is not clear
whether the triangle or the square is in the upper posi-
tion. This is the binding problem: the neural data struc-
ture does not provide for a means of binding the proposi-

Figure 1. Rosenblatt’s Example tion top to the proposition triangle, or bottom to square,
See text for explanation. if that is the correct description. In a typographical sys-

tem, this could easily be done by rearranging symbols
and adding brackets: [(triangle, top), (square, bottom)].

is regulated so that it stabilizes activity within the psy- The problem with the code of classical neural networks
chological moment. (In associative memory models, this is that it provides neither for the equivalent of brackets
is, for instance, achieved by requiring connections be- nor for the rearrangement of symbols.

This is a fundamental problem with the classical neuraltween any pair of neurons to be symmetric, with the
network code: it has no flexible means of constructingconsequence that the system displays attractor dynam-
higher-level symbols by combining more elementaryics.) Without this restriction, a McCulloch and Pitts sys-
symbols. The difficulty is that simply coactivating thetem would be a general digital machine without any
elementary symbols leads to binding ambiguity wheninherent tendency to organize, kept on track only by the
more than one composite symbol is to be expressed.force majeure of a programmer with detailed insight into
Let’s assume it was vital for an organism to trigger somethe switching process.
action in response to a triangle if it was in an upper(C) Long-term memory is stored in terms of synaptic
position but not in a lower one. The reaction would thenweights.
have to be tied to the coincidence of activity in cells(D) Long-term memory is laid down by mechanisms
(triangle) and (top), which, however, would also occur ifof synaptic plasticity, based on the statistics of neural
the triangle were at the bottom and a square at the top.signals, especially their temporal correlations.
The animal therefore would respond to a so-called falseThese postulates will be referred to as the framework
conjunction, perhaps with grave consequences. Anfor “classical neural networks.” It forms the conceptual
analogous situation occurs in the brain. Correspon-basis for a large and important part of current neurosci-
dence between object type and position is explicit onences, especially for the genre of brain modeling usually
the retinal level. Its loss on the way to the output of thereferred to as Neural Networks or Connectionism. Since
circuit is due to the generalization that is taking placeexisting neural models cover only a small range of the
within the circuit: for instance, in the brain’s “what” andbrain’s functional repertoire, an all-important issue is
“where” pathways in the temporal and parietal pathwayswhether the above framework constitutes an adequate
of primate cortex.basis from which to conquer the rest solely by con-

This problem is a general one, with implications farstructing appropriate specific wiring diagrams and con-
beyond that of vision. Imagine a mental object that istrol parameters.
represented by the set P of neurons (refer to Figure 2)
and another mental object represented by set Q (possi-

The Binding Problem bly overlapping with P, but that is not a point here). Now
It has been argued that the classical code of neural it becomes important to activate both objects in the
networks is very poor, too narrow in its possibilities to same mental operation (when, for instance, comparing
serve as a basis for an expansion of the functional range them). What would be more natural than to coactivate
of current brain models (von der Malsburg, 1986; Fodor both sets in the same brain state? Such coactivation,
and Pylyshin, 1988). The underlying weakness is best however, leads to what we call the “superposition catas-
illustrated by a classic example due to Frank Rosenblatt trophe”: the two sets will merge into one, and the neural
(1961): imagine a specific neural network for visual rec- code will not express the information needed to subdivide
ognition, which is internally structured such that it can the composite state into its components (see Figure 2).
derive four propositions and represent them by output
neurons. Two neurons recognize objects, a triangle or Combination Coding as a Solution
a square, both generalizing over position. The other two to the Binding Problem
indicate the position of objects in the image: in the upper Rosenblatt’s problem has a simple solution in terms of
half or in the lower half, both generalizing over the nature combination-coding cells. It would suffice if there ex-

isted a neuron that reacted to a triangle in the topof the object (see Figure 1). When showing single objects
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position (or to a set P or Q of neurons). This could be experiments (Treisman and Gelade, 1980), in which sub-
realized with the help of connections from the lower, jects are asked to find an object with a specific combina-
elemental levels, on which generalization has not yet tion of features in an array of distractors with one of
taken place. However, a problem arises where appro- those features each, show that reaction times scale lin-
priate combination-coding cells do not exist or cannot early with the total number of elements in the display.
exist (due to the impracticality of the large numbers From these types of experiments, one can conclude that
required, or to the previous history of the system) and relevant combinations of features are not represented
where there are connection patterns that could cause by combination-coding cells and that the brain requires
confusion. The assumption that combination coding time to form or ascertain the correct bindings.
cells are available when and where required is problem-
atic when the system to be modeled is a general purpose Are Classical Neural Networks Universal?
device. There is a widespread opinion that classical neural net-

Most symbol systems have means of combining ele-
works are a universal medium with no limits to their

mentary symbols into more complex ones, which can
abilities and that consequently they are not subject tothen be handled as units without danger of ambiguity
the binding problem. I will address this claim in twoand which have explicit structure on the basis of which
steps. First, I will discuss whether universality sufficesthey can be compared, recognized, decomposed, and
as a solution to the brain’s problems and then I willfurther combined to build even higher structures. That
raise doubts as to whether classical neural networksthe classical code of neural networks doesn’t have such
are indeed a universal medium.means is the root of the binding problem. It is a very

The idea of universality was crystallized with Alan Tu-curious proposition that the brain, the ultimate handler
ring’s formulation of the Turing machine and his demon-of symbol systems, shouldn’t have a general mechanism
stration that no effective procedure can be conceivedfor combining subsymbols. Other symbol systems (such
that cannot be realized as the program of a Turing ma-as mathematics or natural languages) suggest that more
chine. Thus, any completely specified function can becomplex binding patterns may be required than just
realized as a program, or algorithm, run on a computer,grouping a number of elements into one block with no
the only limits to this being storage space and time.internal structure. The visual image of an extended ob-
From this, it was extrapolated that mental processes, ifject may need to be represented as an array of local
only made concrete in terms of rules, could be realizablefeatures that are bound together in a way that expresses
in machines. Under this view, the brain is a digital ma-the topological neighborhood relationships within the

figure or even a hierarchy of object parts (Biederman, chine and has the same universality as the computer or
1987); similarly, the representation of natural language the Turing machine, if only sufficiently many neurons
structures requires binding arrangements with hierarchi- are available. McCulloch and Pitts (1943) applied this
cal structure. idea to modeling of the nervous system, proving that

Why not have a purely hierarchical system of combi- any logical function can be realized as a network of
nation-coding cells? There may be good reasons that threshold elements if they are appropriately connected.
certain combination-coding cells should not exist. The But what does universality buy? It can be compared
more complex the combination a cell represents, the to the universality of a pen and sufficiently many sheets
more special the context to which it refers. Any experi- of white paper as a universal medium for formulating
ence gained in a particular context (and recorded in novels. You still have to write them. Over time, the field
terms of changed synaptic connections) should be af- of Artificial Intelligence discovered that it is not a practi-
fixed to the most general description of the situation, cal task at all to write a program that emulates the
so it can be exploited in other contexts. If, for instance, capabilities of the brain. It is becoming increasingly clear
something was associated with the appearance of a that the only goal we can hope for is to establish a
triangle that just happened to be in an upper position, system that constitutes a basis for self-organization and
it would be inefficient to affix the association only to an learning, as the equivalent of a newborn, or better still,
upper-triangle cell, for then the experience would have the genetic program for the development of a brain, and
to be repeated and relearned for all positions of the

to let it learn from experience and from communication
triangle. In a similar vein, the absolute location of a speck

with others.of ink on paper is of very little relevance; what counts
Brain theorists realized this in the late 1950s and modi-is its relative location in a pattern. Our environment is

fied McCulloch and Pitts’ networks to accommodatecomplex because it is combinatorial: complex objects
self-organization and learning. The resulting frameworkand situations are constructed by combining simpler
of classical neural networks has a tendency to fall intoelements. To try to represent this complexity in a non-
stable patterns and learns by synaptic plasticity. How-combinatorial way, letting single cells stand for external
ever, these changes may have come at a price: it isobjects of any complexity, appears to be a terribly ineffi-
not clear whether neural networks are universal in anycient strategy. Any combinatorial symbol system, how-
sense, although the community seems to have inheritedever, needs a mechanism to bind elements into groups.
the implicit belief that they are and that any brain func-Some evidence exists that suggests that the brain does
tion can be modeled on the basis of those few abstrac-not simply use combination-coding cells to process stim-
tions from the real nervous system that went into theuli. Psychophysical studies show that under certain con-
formulation of neural networks. It is not even clear howditions the brain’s binding mechanism may fail, and peo-
to formulate a new universality theorem. Classical uni-ple will report “illusory conjunctions” (see Wolfe and
versality states, “give me a procedure and I’ll tell youCave, 1999 [this issue of Neuron]). When given enough
how to implement it.” The neural network version ofviewing time, subjects do not commit such “false con-

junction” errors. In a related vein, conjunction search universality would have to be, “give me a brain problem
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and I will be able to implement it in classical neural To understand the general idea of temporal binding,
the exact nature of the signal fluctuations is not relevant.networks.” But how can we characterize brain problems
There has been much discussion over the experimentalin any general and satisfactory way? It would be foolish
evidence concerning whether oscillatory signals are orto argue that “this is a particular problem I have solved
are not important in this respect, but that discussion ison the basis of classical neural networks, which proves
a side issue that shouldn’t cloud the more fundamentalthat all of them can be solved this way.”
question of whether binding is a problem and whetherIn the context of the present discussion, the particular
neural signal correlations are a solution to that problem.version of universality that some critics of the binding
Although much of the discussion of signal correlationsproblem uphold, is “state a concrete problem, and I will
focuses on the binary case, the correlation of just twosolve it with a classical neural network without ever
neurons, it should be emphasized that the much morerunning into a binding ambiguity.” The common argu-
relevant and important type of event concerns correla-ment to support this posits that any binding ambiguity
tions of higher order: the simultaneous firing of largerimplicit in a stated problem can be dealt with by the
groups of neurons. The reason is this: for correlationsconcrete combination-coding cells in the model network
to play an important role in the brain it must be possiblethat solves it (for example, see Riesenhuber and Poggio,
for them to be evaluated quickly and reliably. Since1999a [this issue of Neuron]). A concrete example of this
for any given set of impulses there may be accidentalapproach is Mel and Fiser’s model (1999) for recognizing
coincidences, it is vitally important to discern true corre-words from text. The network codes text in terms of
lations from noisy background. For binary correlations,triplets of contiguous letters and is based on the statisti-
this is only possible for long observation times, but forcal observation that in English no two words agree in
correlations of sufficiently high order, even individualall their letter triplets. Thus, in this special case, the
coincident events can become highly significant.model completely avoids the binding problem and ensu-

With regard to the plausibility of temporal binding,ing compositional ambiguity that would beriddle a
there are the several fundamental questions that needmodel based on a representation by single-letter cells
to be discussed:only.

(1) How do correlations in temporal signal structureAlthough such examples are meant to support a gen-
arise? Ultimately, the purpose of temporal binding is toeral universality claim, it is very doubtful that such a
express significant relations between data items, e.g.,claim can ever be established. It is too easy to state
of causal or spatial nature; the physical interactions es-problems that are far beyond the abilities of present
tablishing such relations must be represented by signalneural network models. Just think of the task, “emulate
correlations. Since many of these interactions are al-the human ability to segment visual scenes, with all the
ready present in the external world, temporal correla-necessary cue integration.” Although the problem is old,
tions can be imposed by external stimuli triggering thethere exists no classical neural network solution to it,
neural signals. That this happens with causally relatedand perhaps for good reason.
external events is evident, but it is less often realized
that the same can be due to our own bodily and eyeBinding by Temporal Synchrony
movements, which create a stream of sensory impres-

How could binding be implemented in the brain? The
sions whose temporal structure expresses spatial struc-

basic idea of temporal binding is that signals of neurons ture of the environment. Thus, some of the signal corre-
that are to be grouped together are correlated in time. lations relevant for binding are already implicit in the
Neural signals can thus be evaluated in two ways: one perceptual input (see also Singer, 1999b [this issue of
of them is the classical concept of neural firing rate, in Neuron]).
which the relevant parameter is the running average of As a short aside, the argument is often raised that the
the number of spikes arriving within any period T. The use of temporal patterns for expressing binding may
second concerns temporal correlations of signal fluctua- clash with the use of temporal patterns for other pur-
tions happening on time scales faster than T, and it is poses, such as the representation of temporal structure
these correlations that express binding. The subdivision as given in the external world. This is especially relevant
of the time scales above and below T is on final account to the auditory, language, and motor modalities. This
arbitrary (unless one sticks to the distinction that clash may be avoided by the nervous system by recod-
changes slower than T are accessible to introspection ing temporal signals into a format that does not involve
while faster changes are not). Pick a scale T, and then rapid signal changes. Single neurons responding to and
evaluate signal fluctuations below T in terms of correla- representing syllables would be an example of this.
tions, while calling fluctuations above T rate changes More correlations (probably the overwhelming major-
(there is, of course, a lower bound, that depends on the ity) are created within the nervous system by synaptic
fastest temporal scale that can be processed by neural connections. If neuron a fired neuron b, the signals of
tissue). For the brain, T is related to the psychological the two would be correlated (disregarding a small delay).
moment, ill-defined as it may be, so we will take T to Correlations induced by synaptic connections also sig-
be of the order of 50 to 200 msec (although scales up nify causality. In addition, activity in neurons without
to minutes and beyond are also of potential relevance). connections between them but with connections from
Throughout this discussion, I discuss signal correlations a common input can be correlated. In the Rosenblatt
as if they were to be evaluated without taking into account example, the binding problem could be solved if the
relative delays. However, it may be necessary to also neurons in V1 that are activated by a triangle in a given
consider delayed coincidences as argued in Bienen- position pass the temporal signature of their signals on

to neurons expressing shape identity on the one handstock (1995).
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and position on the other, such that those signals came be able to create significant firing patterns nor be able
to express their common origin. to distinguish them. Many of the arguments raised

(2) How are signal correlations evaluated in the brain? against the validity of the idea of temporal binding, e.g.,
If two action potentials arrive at a common target neu- Shadlen and Newsome (1995) and Shadlen and Mov-
ron, their relative timing exerts a strong influence. If shon (1999 [ this issue of Neuron]), are implicitly or ex-
signals arrive simultaneously, they can cooperate to plicitly based on the assumption of random connectivity.
raise the neuronal membrane potential above firing If, however, the nervous system is endowed with the
threshold. If, however, they miss each other in time, so capacity to self-organize using synaptic plasticity of
that the effect of the first impulse has decayed before slow (von der Malsburg and Singer, 1991) or fast (von
the second arrives, they might both fail to fire the target der Malsburg, 1981, 1985) time scales, attractor net-
neuron. Thus, neurons act as coincidence detectors and works will form that are able to support significant corre-
do evaluate signal correlations (Abeles, 1982b; Marsalek lation patterns and that are in turn stabilized by exactly
et al., 1997). The exact details of this interaction depend those correlation patterns. For examples see below.
upon many complex factors, including membrane time (5) How can the signal correlation patterns that ex-
constants, nonlinear effects, and dendritic geometry. In press binding relations be found experimentally? One
consequence, current neurophysiology cannot solidly could well imagine that the brain’s function could be
predict the temporal resolution at which spike coinci- dominated by well-organized correlation patterns and
dences are evaluated; however, a likely range is 1–10 yet that available experimental techniques could be un-
msec. able to reveal them. If the essential patterns were of

If all correlations were to be evaluated globally by high order, say 100, and occurred only a few times in
single neurons, a combination-coding cell would be re- any given stimulus situation, it would be difficult with
quired for each binding pattern, defeating the purpose of only a few electrodes to ascertain their existence. Even
binding. However, complex correlation patterns created using many electrodes at a time, one could be reduced
by a circuit of interconnected neurons can be evaluated to blind search, as neither the circuits producing the
by other circuits of appropriately interconnected neu- relevant correlations nor the circuits evaluating them
rons, each individual neuron checking only a small sub- would be known. Just finding correlation patterns, even
pattern. Thus, pairs of circuits may or may not resonate if their occurrence is context dependent (Abeles et al.,
with each other in terms of the correlation patterns that 1994; Bair and Koch, 1995; Buračas et al., 1998), proves
they produce. This point is probably most easily under- that the brain can reliably process temporal patterns
stood with reference to the concrete models of invariant but does not prove their relevance to the binding issue.
object recognition that are discussed below. Another fundamental difficulty for the experimental

It was proposed (von der Malsburg, 1981) that correla- verification of binding correlations may be created by a
tion patterns are also evaluated by rapid reversible tendency of the nervous system to produce correlations
synaptic plasticity (in addition to slow plasticity). A con- (or rather decorrelations) only where needed to disam-
nection that is physically present and would cause con- biguate a situation and suppress false conjunctions. As
fusion in a given situation could be temporarily inactivated soon as the network had reacted to the signal by switch-
when activity on both the presynaptic and postsynaptic ing off the connections that would create confusion,
side is sensed, but is uncorrelated. Confusion could signal correlations could disappear again without any
thus be suppressed in the given situation, even if the further functional consequences. As psychophysical or
signals involved were to develop stray coincidences, neurophysiological experiments tend to stress repeti-
until the switched-off connection returned to near its tions of stimuli within narrowly defined experimental par-
previous value on the time scale of seconds or minutes. adigms, most of the signal patterns relevant for binding

(3) How can correlation patterns be effective on physi- may be gone after the initial training or set-up period.
ological timescales? If they are to play a role in the However, if we are lucky, nature will extend the grace
brain’s function, it is mandatory that they be evaluated

of producing low-order correlations that moreover could
within short time intervals. Finding a pair of correlated

be interpreted functionally on the basis of applied stim-neurons in a set of others firing stochastically may take
uli. Figure-ground separation may be a unique experi-unrealistically long integration times. The situation can
mental opportunity, as the required binding pattern isbe improved in two ways. As previously mentioned, one
very simple—requiring just distinction of the figure fromway relies on coincidences of high order. Even when
the ground, which should be expressed by the creationsuperimposed on stochastic signals, a single event of
of correlations between neurons within the figure andn simultaneous spikes, with n large enough (say, 50 or
suppression of correlations between neurons within the100), can be of high statistical significance. The other
figure and those within the ground. Because each newway relies on the suppression of accidental correlations
stimulus may be a unique combination of local cues, theby appropriate inhibitory circuits. Thus, if a large set
nervous system probably cannot suppress erroneousof neurons needs to be subdivided into several bound
conjunctions by permanently adjusting circuits.subsets, inhibition between the subsets can make sure

that no coincident spikes between neurons in different
Beyond Temporal Bindingsubsets occur at all. This is an integral part of many
In one extreme and untenable view, all of the thalamo-models, e.g., von der Malsburg and Buhmann (1992) or
cortical apparatus would be a collection of cells withWiskott and von der Malsburg (1995).
rather low-level meaning, defined since birth by their(4) How are the network patterns created that are
efferent or afferent connections, and all higher-levelrequired for the production and evaluation of significant

firing patterns? Random connection patterns will neither symbols would be constructed as temporal correlation
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patterns, supported by appropriate connectivity pat- although at a sequence too fast for distant parts of the
brain to follow. In order to couple larger areas of theterns. This view is untenable for several reasons. First,

experimental results have revealed neurons with rather brain, slower time courses are required (due to longer
and more widely spread transmission delays), but thehigh-level and specialized symbolic meaning. However,

a more fundamental reason is the rather limited temporal coupling mechanisms very likely are of the same nature.
Importantly, the mechanism of temporal binding canresolution of neural signals that can be processed by

cortical circuits. The exact value of this resolution is at serve as the basis for rapid, and in the extreme case,
single-trial learning of the connections required for thepresent a matter of contention, but hardly anybody

would argue it lies far outside the range 1 to 10 millisec- circuits to replace it. Since evidence for the combina-
tions of cells to be represented is produced in the formonds. The ultimate reason for this limitation is probably

not to be found in neural membrane properties but rather of correlations, combination-coding cells can be formed
quickly by synaptic plasticity (if the plasticity mechanismin the temporal spread of signals over various pathways

between one point and another. Thus, the capacity of is sensitive to the fine temporal structure implicit in tem-
poral binding, a condition called “refined synaptic plas-the system for expressing binding patterns within the

psychological moment is very limited, and the amount ticity” in von der Malsburg [1981]). Single-trial learning
on this basis was demonstrated in Konen and von derof binding ambiguity that a network can tolerate is corre-

spondingly small. Consequently, there must be other Malsburg (1993) and represents a great potential that
yet has to be fully exploited. This is in sharp contrastmechanisms at work in the developing and learning

brain that reduce binding ambiguities as they arise. What to conventional neural network learning, which is based
entirely on evidence implicit in the statistics of consecu-could such other mechanisms be?

So far, the only one seriously studied in the context of tive stimuli and is therefore much slower. (For neuro-
physiological evidence supporting refined plasticity, seeclassical neural networks relies on combination-coding

cells. These are to represent meaningful subpatterns Singer, 1999b [this issue of Neuron]).
It is very unlikely that all binding structures can beand have to dominate the system such that meaningless

subpatterns do not evoke a response. In Rosenblatt’s represented by combination-coding cells. The arrays of
point-to-point correspondences that bind the image ofexample, a cell that is to represent “triangle on top”

must have appropriate connections that let it fire only an object to a stored model (Wiskott and von der Mals-
burg, 1995) may be an example for which it would beif indeed a triangle is shown on top, and its activity must

be a necessary condition for any reaction to triangle- difficult. Perhaps the brain has at its disposal other
mechanisms by which ordered arrays of bound repre-on-top, that is, simultaneous activity from a triangle cell

and a top cell must be prevented from eliciting such sentations can be stored and quickly retrieved as con-
nectivity patterns. The logical structure of such a mecha-reactions because they could constitute a false conjunc-

tion. As soon as such wiring is in place, temporal binding nism has been worked out (von der Malsburg, 1985;
Bienenstock and von der Malsburg, 1987), but that im-is relieved of the necessity to keep the now-represented

subpatterns apart, and the binding problem for this par- plementation still relied on temporal synchrony for acti-
vating stored connectivity patterns and thus is slow. Ifticular context has vanished. The importance of tempo-

ral binding lies in the fact that it is a ubiquitous medium there were mechanisms in the brain by which connec-
tions could directly excite or inhibit each other, fastthat steps in wherever a situation requires a binding

distinction for which those other means are not, or not retrieval of associatively stored connectivity patterns
could be realized. Several authors have proposed theyet, in place. In these cases, temporal binding can bring

out structural information that is implicit in the connec- existence of connector cells (Dev, 1975; Sejnowski,
1981; Phillips et al., 1988), to implement rapidly varyingtivity acquired previously and in the input. However,

ultimately, binding structures must be off-loaded to circuits. A connector cell can be excited or inhibited like
any other neuron, but its sole purpose is to representother mechanisms before the capacity of temporal cor-

relations is surpassed. and control the connection between a fixed pair of other
neurons. Connector cells could be the basis for the rapidMany scientists view focused attention as an alterna-

tive to temporal binding (see Reynolds and Desimone, activation of connectivity patterns. However, as their
signals cannot easily be interpreted in terms of concrete1999 [this issue of Neuron]). Focal attention is a mecha-

nism to functionally suppress stimuli that do not belong symbolic meaning, they would amount to a somewhat
wasteful use of neurons, and their expected anatomyto the theme of current interest and to activate those

that do. Attention acts in a sequential manner—we can wouldn’t correspond to any of the known cell types in
the brain. In addition, it would be desirable to have aattend to only one thing at a time. Thus, attention is a

mechanism of temporal binding, although on a time clear picture of how appropriate connector cells could
develop ontogenetically.scale longer than the psychological moment. The reason

there is so much agreement about the existence of this Another important proposal for implementation of
quickly variable connection patterns in the brain isform of temporal binding, which acts on the scale of

large fractions of a second or longer, is that the different based on presynaptic control of connections (Anderson
and Van Essen, 1987) or three-terminal devices (Hinton,time slices are open to scrutiny, both via introspection,

and externally, by way of a person’s actions, words, 1981). According to the idea, command neurons can
switch on individual connections or whole connectionand eye movements. It seems plausible that temporal

binding on the one hand and attentional mechanisms patterns. Anderson’s “shifter circuits” set up precise
one-to-one connections (or rather a cascade of suchon the other are just two points on an uninterrupted

continuum. Local circuits have their own “attentional connections) between primary cortices and area IT. As
with the connector cells, one difficulty with this proposalmechanism,” flashing from one microtopic to the next,
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is the lack of a clear picture of how the correct control be almost 400,000 neurons. With coarse coding, on the
other hand, that same space is defined by using neuronscould be put in place, that is, how information about
to fill not the entire volume but only the axes. Thus, inthe quality of match between potential correspondence
the case above, one would need M 1 N 5 40 neuronspoints could be communicated to the control neurons,
only. An individual entity would then be represented withor how these circuits could come about ontogenetically.
the help of N neurons, each one specifying a value forClearly, more theoretical work is needed here on all
one of the parameters.sides. What is needed is to develop a theory describing

If only one item were present at any given time, thishow binding patterns are first “discovered” by the circuit
would be a perfect solution. If, however, several entitieswith the help, for instance, of a temporal correlation
must be represented at the same time, the binding prob-mechanism on the basis of pattern similarities and are
lem arises, as those neurons that refer to one entitythen “burned into the network” as reliable and quick-to-
need to be bundled to avoid conjunction errors. Thus,retrieve connection patterns, not requiring further time-
the availability of a binding mechanism makes coarseconsuming signal correlations. Temporal binding would
coding possible. It seems impossible to use coarse cod-therefore only be necessary in the first stage of discov-
ing without a binding mechanism, and many functionalery, when no appropriate binding circuits are yet in
models, as those discussed below, cannot well be real-place.
ized without coarse coding.If indeed temporal binding were nothing but a make-
Sensory Segmentationshift means for the nervous system to solve binding
Another important application of binding—in the eyesproblems as they unexpectedly turned up, and if they
of many, the application of binding—deals with the seg-would always be quickly obviated by the system by
mentation problem of perception. In all sensory modal-appropriate changes to the network, it would be very
ities, natural stimuli are a mixture of signals that originatedifficult to find evidence for binding experimentally: one
with independent sources in the environment. Exampleswould have to set up series of one-time experiments,
of this include the cocktail party problem of keepingas has been proposed in Triesch and von der Malsburg
track of individual voices in the hubbub of a social envi-(1996). On the other hand, certain binding problems can-
ronment, and in the visual modality of separating imagesnot be made to go away and will always require temporal
of individual objects from one another before any onesignal structure. It is very likely that sensory segmenta-
of them can be separately recorded or recognized. Seg-tion is one such problem, which would then lend itself
mentation is a classical binding problem, as individualwell to experimental demonstration of the mechanism of
neural signals need to be bound together so they cantemporal binding. Repeating experiments of the Gestalt
be handled as units corresponding to whole objects orpsychologists with behaving animals, where a clear cor-
coherent stimuli. The difficulty in solving the problemrelation was demonstrated between psychophysical
lies in the fact that a number of different subcues needgrouping on the one hand and the occurrence of signal
to be integrated with each other to yield reliable segmen-correlations in the relevant cells on the other, would
tation. In the visual modality, for instance, relevantconvince the last doubter.
subcues are motion, color, texture, stereo depth, coher-
ent edges, and simple or known shapes. Any one cue

Applications
on its own is unreliable. Simple filter mechanisms (“sup-

The original proposal for a general binding mechanism press all points for which cue x doesn’t have value y”)
(von der Malsburg, 1981) arose from the attempt to solve therefore break down in natural scenes.
a number of conceptual problems that stood in the way Concrete models have been presented that express
of understanding important functional aspects of the sensory segmentation by signal correlations and anti-
brain on the basis of neural models. One form of evi- correlations (see for example von der Malsburg and
dence that would argue for the existence of a binding Schneider, 1986; Wang et al., 1990; Sporns et al., 1991;
mechanism in the brain should therefore come from von der Malsburg and Buhmann, 1992; Eckes and Vor-
visible progress with those conceptual problems. In my brüggen, 1996). Except for one model (von der Malsburg
own experience, the assumption of the existence of a and Schneider, 1986), which was based entirely on tem-
binding mechanism removes a major roadblock and poral structure already in the input, all these models rely
leads to the dissolution of many formerly difficult on permanent excitatory connections between cortical
problems. neurons to encode the likelihood for them to be acti-
Coarse Coding of Multiple Representations vated by the same figure. These connections reflect the
One problem in brain function is how to represent an Gestalt laws of perceptual grouping. Thus, for example,
entity that is described by a number of parameters. One two neurons should have a connection if they corre-
possible way of doing so would be to create a space spond to similar local features (e.g., color, texture, or
with as many dimensions as there are parameters and stereo depth), although they occupy different locations
to fill that space with neurons, allocating one neuron in the visual field. Similarly, two neurons should excite
for each possible combination of parameter values. For each other if they correspond to the same location in
instance, to describe a small object in terms of retinal the input space, reflecting the fact that most of the time
position, stereo depth, velocity, and color would require a location is occupied by a single object. In addition,
eight dimensions (not counting parameters to describe two neurons should be connected (indirectly or directly)
the object’s shape). Unfortunately, this is a very expen- if they are part of a familiar pattern. According to one
sive proposition, as with N dimensions and M values to particular model (Wang et al., 1990), this latter rule is
be distinguished per dimension, the number of neurons the sole basis for the ability of our olfactory system to

parse a composite odor into known components, therequired would be MN. With N 5 8 and M 5 5, this would
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necessary connections having been previously learned
via associative memory.

In all these models, the combined action of all excit-
atory connections is to bind the neurons that are acti-
vated by the same figure into one composite whole, by
synchronizing their activity in time. Inhibitory connec-
tions are used to suppress simultaneous activity in cells
belonging to figure and ground, thus making the sig-
nal correlations within figure and within ground stand
out unambiguously, and minimizing accidental coinci-
dences. The excitatory connections necessary for seg-

Figure 3. Invariant Pattern Recognition by Dynamic Link Matchingmentation might in large part be established by plastic
A visual input pattern is represented in the primary areas of visualprocesses as the result of previous experience with per-
cortex as an array of local features, symbolized by the lower row

ceptual segmentation, although the synaptic plasticity of letters. It is to be recognized on the basis of its isomorphy to
must surely be boot-strapped by innate structure. All one of many patterns stored in secondary cortex (perhaps area

IT), symbolized by the upper row of letters. The two domains arethe different excitatory connections in the system con-
connected by feature type-preserving connections. As the pre-spire to create global correlations within a figure (or
sented figure can vary in position (and other parameters), an invari-ground), and this fact is a natural basis for the subcue
ant feature cell in secondary cortex must have connections from

fusion that is necessary for segmentation in natural envi- cells for the same feature type in all positions (and other variants)
ronments. It has been shown that natural visual input in primary cortex. This is indicated just for the feature “a,” which

occurs repeatedly in the figure. Only a subset of these connectionscan be segmented with pixel accuracy with the help of
run between corresponding points (solid vertical lines). These con-subcue fusion based on a binding mechanism (Eckes
nections are distinguished by the fact that they form a consistentand Vorbrüggen, 1996; Adam, 1998).
system connecting neighboring (and synaptically coupled) points

At least in the visual and auditory modalities, it cannot on one level to neighboring points in the other. Others form a haze of
be expected that all necessary excitatory connections false correspondences (dashed lines). During a recognition process,
be realized within the primary areas, V1 or A1. Although wrong correspondences are suppressed. This is possible by a rapid

process of self-organization, by which temporal correlations areit is not necessary for connections to span a whole figure
established and synaptic links are stabilized between correspondingglobally to create the required correlations, it is still
points in image and model, whereas links between noncorrespond-necessary to bridge gaps produced by partial occlusion
ing points (dashed lines) are temporarily switched off by rapid re-

of a figure. Also, some of the relevant features are not versible synaptic plasticity (Wiskott and von der Malsburg, 1995).
even computed within primary cortex. Thus, color and (This link suppression must only be temporary, as for the next figure

presentation a dashed link may be a required one.) In addition tomotion processing require participation of areas V4 and
recognition of a figure, dynamic link matching supports also itsMT. Also, the cue of familiar form presumably requires
interpretation, the links forming pointers from abstract model fea-a detour to infero-temporal cortex, where known forms
tures to the concrete features of the actual figure. Thus, the process

are stored. Back projection from there to the primary supports pattern instantiation.
cortices is necessary to combine low-level and high-
level information, since both types of cues on their own
would in many situations not be able to disambiguate object deformation, illumination, background, partial oc-
complex visual stimuli. That back projections from clusion, surface reflections, noise, and other parame-
higher to lower levels seem to lack the necessary preci- ters. Many theories of vision assume that invariance is
sion is an issue that I will address below. achieved via decomposition of sensory patterns into

As for the expected time course of signals that ex- elementary features, which are represented by individ-
press binding of all parts of a figure to each other, it is ual neurons that then connect to invariant feature cells
not necessary to require simultaneity from one end of by “feature type-preserving connections.” Thus, an in-
the figure to the other. This would only be required if a variant cell receives connections from the cells of the
single neuron were to evaluate the figure as a whole, same feature type in all different locations (or whatever
which is unlikely to ever happen in the brain. If a figure the parameter to be generalized might be). A binding
is evaluated by individual neurons only in terms of (over- problem arises from such a structure, for since general-
lapping) local subpatterns, what is necessary is that ization is performed independently for each feature, in-
signals be fairly synchronous within the subregions de- formation about relative position, size, and orientation
fining those patterns. On the global level of the figure, is lost. For a given set of feature types, this lack of
signals have to be coherent, but the timing of events information can lead to the inability to distinguish be-
may drift from one end of the figure to the other in a tween patterns that are composed of the same set of
continuous fashion. features, though in different relative positions, sizes, or
Invariant Object Recognition orientations.
Invariant representation and recognition of objects and The conflict between generalization and unambiguous
patterns is one of the fundamental functions of percep- feature relations can be resolved with the help of tempo-
tion. Invariance is required to link the infinite variety of ral signal correlations that are created on an early level
sensory patterns that may be created by any one exter- of processing where feature relations are still explicit.
nal object or process to an individual representation. In Different spatial arrangements of features in the input
vision, this variety of sensory patterns is due to differ- layer thus lead to different binding patterns between

the features involved. These binding patterns can beences in retinal position, size, orientation, perspective,
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decoded by object-specific circuits embedded in higher- of feature correspondence ambiguities, respectable
recognition rates can be achieved if the deformationlevel cortical areas (presumably IT among them) that are

composed of invariant feature cells that are connected between training and test figures is not too great
(Wiskott, 1999). If a time-economic mechanism for theamong each other in a way that is isomorphic to the

arrangement and connectivity of the feature cells in the binding involved in coarse coding of local features could
be identified, rapid recognition rates could thus be ac-primary cortices. Thus, any two activated feature cells

that are neighbors in primary cortex and correspond- counted for.
There is evidence that sensory input can be seg-ingly have an excitatory connection are to be repre-

sented by two mutually connected invariant feature mented on the basis of recognized form. This could
be implemented by projecting the couplings implicit incells. Low-level activity can thus be made to resonate

with and selectively activate an isomorphic high-level high-level form recognition circuits back to the primary
cortices. It is true that anatomical studies indicate thatcircuit. This principle has been proposed independently

(in von der Malsburg, 1981; Hummel and Biederman, back projections from high-order areas such as IT to
primary visual cortex are too imprecise for this purpose.1992) and has been demonstrated to work in computer

simulations (von der Malsburg, 1988; Hummel and Bied- However, if dynamic link matching can disambiguate
feed-forward connections, it is conceivable that theerman, 1992). On this basis, it is possible even to distin-

guish patterns that contain identical features in different same disambiguation may also occur for back projec-
tions, as is indeed implicit in Wiskott and von der Mals-configurations (von der Malsburg and Bienenstock,

1987) (see Figure 3). burg (1995). After such disambiguation, the back projec-
tions from form recognition circuits on higher levels canAnother possibility for reducing feature-correspon-

dence ambiguities relies on more complex feature types, then produce precise couplings between points within
a figure at a low level.which have a lower probability of occurring multiply in

the same input figure. There is little evidence of high- Whatever the mechanism for recognition, many tasks
require the system to establish correspondences be-level features in the primary cortices, but the same goal

can conveniently be achieved by coarse coding, by cou- tween parts of a stored model and the image. A recogni-
tion mechanism that relies exclusively on the identifica-pling the low-level features activated at any point of the

sensory surface into one complex feature. This has been tion of a summary list of invariant features cannot serve
as a basis for this important type of operation.realized on the basis of elementary feature types closely

corresponding to those actually found in primary visual Instantiation
Pattern instantiation is a very fundamental capability forcortex, formalized as Mallat or Gabor wavelets (Mar-

celja, 1980; Jones and Palmer, 1987). Such models are any intelligent system. It is the mechanism by which
new sensory input is interpreted by relating it to knownhighly successful in recognizing arbitrary objects from

natural scenes (Konen et al., 1994; von der Malsburg patterns. Patterns may be innate and may be known
from previous examples or even from the same sensoryand Reiser, 1995; Wiskott and von der Malsburg, 1995;

Würtz, 1997; Kefalea, 1998; Massad et al, 1998). On the input to which they are applied. Pattern instantiation
promises to be a very potent basis for learning. If anbasis of these principles, a face recognition system has

been built (Okada et al., 1998) that outperformed all animal comes genetically equipped with the representa-
tion of an abstract schema that describes a class ofcompetitors in terms of robustness with respect to light-

ing, pose, and aspect changes in a blind test (Phillips patterns that is biologically important for it, it can identify
instances in its environment and extract and store themet al., 1998). It is important to note that some of the

image variations tested (notably, illumination changes) selectively. Even without preexisting schemas, very effi-
cient learning is made possible if the organism can findhad not been part of previously delivered training sets

and had not been addressed explicitly in the construc- and extract repeating patterns in the environment (Ko-
nen and von der Malsburg, 1993).tion of the system, underscoring the generalization

power of binding-based systems. Comparison of a sim- Pattern instantiation requires that an abstract pattern,
composed of certain elements (“roles”) and relations, beple version of the system (Lades et al., 1993) to human

psychophysics of face recognition (Biederman and Ka- applied to some sample material by identifying concrete
fillers for all the roles in the pattern while preservinglocsai, 1997) has shown that both the model and human

performance scale the same way with task difficulty (i.e., their relations. For instantiation to work, bindings be-
tween roles and fillers must be kept track of to ensurechange in pose or expression).

All systems cited in the last two paragraphs make use that there is a one-to-one correspondence between
roles and role fillers. Many of the proposed neural mech-of a process called “dynamic link matching,” that is,

they rely on reorganization of the connections between anisms of pattern recognition content themselves with
checking whether all the features expected to be presentprimary and secondary cortices to get rid of ambiguous

connections. A problem with this scheme, when based in the pattern are indeed present in the input, but such
mechanisms can neither account for multiple fillers foron temporal binding, is the time needed for this reorgani-

zation: it usually takes hundreds of iterations to com- the same role nor exclude that a single feature erron-
eously fills several roles, nor is there a provision forpletely decouple noncorresponding regions. Assuming

a temporal resolution of a few milliseconds, this trans- checking whether relations that are specified in the ab-
stract pattern are actually satisfied in the instance. Onlylates into several seconds for the recognition of an ob-

ject, much too long in comparison with observed recog- on the basis of explicit handling of binding relations can
these problems be solved.nition times, which can be as short as a few dozen

milliseconds in the adult (Potter and Levy, 1969). It has The examples discussed above amply illustrate the
importance and usefulness of a binding mechanism forbeen shown, however, that even without any reduction



Neuron
104

the brain. Whereas conventional, nonbinding neural net-
work models are mostly still confined to solutions of toy
problems and fail when it comes to natural perceptual
input, binding-based models for perceptual segmenta-
tion and invariant object recognition outdo or at least
compare favorably with the best available nonbinding
systems. Thus, the conceptual framework of temporal
binding has been worked out well enough to serve as
a solid basis for neural modeling that goes well beyond
the achievements of classical neural networks, at least
in the directions probed so far. The examples moreover
illustrate that some functional problems of the brain
are binding problems, which can only be awkwardly
circumvented by classical neural networks.

Conclusion
Although there is a widespread and more or less explicit
conviction that classical neural networks are universal
(in the sense, “give me a concrete problem and I will
devise a network that solves it”), there is no basis for this
claim whatsoever. But even if there were, universality
cannot solve the brain’s problem, which is rather charac-
terized by, “given the concrete network that an individual
is born with, learn to cope with situations and problems
as they arise” The difference between these two state-
ments is, first the problem, then the network (the princi-
ple of universality) versus first the network, then the
problem (the requirement of flexibility)—a very big differ-
ence indeed. Any concrete classical neural network,
even with arbitrary collections of combination-coding
cells, cannot avoid running into binding ambiguities
when faced with unexpected problems. Thus, the issue
remains to identify in the brain a neural architecture that
has the capacity for learning and self-organization and
is a fertile basis for all the flexibility and creativity ob-
served in humans and animals. As long as such funda-
mental problems as instantiation and learning from natu-
ral environments remain unsolved (to name but two),
there is little reason for anyone to be complacent about
the achievements of classical neural networks.
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