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Abstract

In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently
specific to distinguish between objects, but that are also sufficiently flexible to generalise across changes in
location, rotation and scale. A standard method for learning perceptual representations that are invariant to
viewpoint is to form temporal associations across image sequences showing object transformations. However,
this method requires that individual stimuli are presented in isolation and is therefore unlikely to succeed in
real-world applications where multiple objects can co-occur in the visual input. This article proposes a simple
modification to the learning method, that can overcome this limitation, and results in more robust learning of
invariant representations.

Index Terms: Computational models of vision, Neural Nets.

1 Introduction

Information about object identity is processed by a series of cortical regions along the ventral pathway leading
from primary visual cortex to the temporal lobe (Ungerleider and Mishkin, 1982; Goodale and Milner, 1992).
At each stage along this processing pathway, neurons selectively respond to increasingly complex stimuli. In
addition, receptive field sizes also become progressively larger, such that responses are increasingly invariant to
stimulus location and scale. For example, cells in area V1 are responsive to simple stimuli, such as oriented edges,
at specific locations (Hubel and Wiesel, 1977), while neurons in temporal areas are selective to complex objects,
such as faces, appearing anywhere in the visual field (Perrett et al., 1992; Tovee et al., 1994; Tanaka, 1996; Perrett,
1996; Logothetis and Sheinberg, 1996; Booth and Rolls, 1998; Rolls, 2000). Hence, cortical cells along the ventral
pathway learn increasing specificity together with increasing invariance (Kobatake and Tanaka, 1994; Tovee et al.,
1994). In each cortical region, neurons learn to respond to specific patterns of activity generated by the neurons in
more peripheral cortical regions from which they receive their inputs. Higher-level perceptual representations are
thus learnt from lower-level ones, and this process can be repeated hierarchically, such that at each stage neurons
become tuned to ever more specialised and invariant features of the environment (Clark and Thornton, 1997;
Thornton, 1996). This process makes tractable the task of learning complex perceptual representations (Clark and
Thornton, 1997) and has formed the basis for many hierarchical neural network models of object recognition.

Different mathematical processes are required for learning more specific representations and for learning more
invariant representations. A more specific representation results from a node responding to a combination of co-
active lower-level features. A node must thus learn to represent aconjunctionof pre-synaptic inputs. In contrast,
a more invariant representation results from a node responding to multiple, non-coactive, lower-level features. A
node must thus learn to represent adisjunctionof pre-synaptic inputs. Hence, several existing architectures for
invariant object recognition (e.g., the Neocognitron (Fukushima, 1980, 1988), and the HMAX model (Riesenhuber
and Poggio, 1999a,b)) consist of alternating stages of neural populations that perform these two operations. A
simple, two stage, neural hierarchy of this kind is shown in figure1. It has been proposed (Fukushima, 1988;
Templeman and Loew, 1989; Riesenhuber and Poggio, 1999b) that these two forms of processing correspond to
the functionality of simple and complex cells observed in the primary visual cortex (Hubel and Wiesel, 1962).

What operation is performed by a node depends critically on how its inputs are combined to determine its
output (i.e., whatcombination functionis employed). To respond to a conjunction of inputs, a standard weighted
sum of pre-synaptic activation values can be used. Such a function will cause the output of the node to be
a maximum when all the lower-level features, to which it responds, are simultaneously active. In contrast, to
respond to a disjunction of inputs, a function can be used which causes the output to depend on the maximum
input activity (Riesenhuber and Poggio, 1999a,b). Such a function enables a node to respond invariantly across
a number of inputs while maintaining the feature specificity of its response. Hence, an appropriate combination
function for responding to a disjunction is obtained by taking themaxover the inputs, while an appropriate function
for representing conjunctions is obtained by taking thesumover the inputs.
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While many neural networks employ learning rules appropriate to finding conjunctions of inputs, methods
for learning disjunctions are not so well established. For example, in the Neocognitron, learning occurs for
conjunctions. However, weight-sharing is used to ensure the same feature is learnt at different locations and
fixed weights are used to pool responses from these nodes to achieve translation invariance (Fukushima, 1980,
1988). Similarly, in the HMAX model all the weights are predefined, except those that associate the output of the
hierarchy with specific object or category representations (Riesenhuber and Poggio, 1999a,b). Hence, viewpoint
invariance is built in to both of these architectures, rather than being learnt.

To learn a conjunction, it is necessary for a node to form strong connection weights with a set of coactive
inputs. By doing so, a neuron learns to become selective for statistical regularities across the input space (Földiák,
1990; Barlow, 1990). To learn a disjunction, it is necessary for a node to form strong connection weights with a set
of non-coactive inputs. The problem is to decide when distinct input patterns result from the same object. “One
possible solution to this problem is to associate those images whose appearance is closely temporally correlated,
on the assumption that multiple views of an object are frequently experienced in close temporal succession” (Wal-
lis, 2002). By doing so, a neuron learns to become selective for statistical regularities across time. This suggestion
(Hinton, 1989) has formed the basis for a large number of algorithms that learn invariance from sequences of
images (e.g., Templeman and Loew, 1989; Földiák, 1991; O’Reilly and McClelland, 1992; Becker, 1993, 1999;
O’Reilly and Johnson, 1994; Stone and Bray, 1995; Stone, 1996; Ebdon, 1996; Oram and F̈oldiák, 1996; Wallis
et al., 1993; Wallis, 1994, 1996, 1998a; Wallis and Rolls, 1997; Bartlett and Sejnowski, 1996, 1998; Stringer and
Rolls, 2000; Rolls and Milward, 2000; Körding and K̈onig, 2001; Wiskott and Sejnowski, 2002). This approach
is justified on the grounds that objects are seen for periods of time, during which they may undergo a number
of transformations or be observed from a number of viewpoints. Furthermore, both psychophysical and physio-
logical evidence indicates that object representations are learnt from temporal associations (Wallis, 1998b, 2002;
Wallis and B̈ulthoff, 2001; Sinha and Poggio, 1996; Stone, 1998; Stryker, 1991; Miyashita, 1988). One popular
implementation of this form of learning modifies an activity-dependent learning rule such that a moving average
(or short-termtrace) of previous activity is used instead of a value for instantaneous activity. This enables previous
activity to influence learning of subsequent input patterns and hence transforms temporal regularities into spatial
ones (Wallis, 1994).

Despite the large number different algorithms that have been developed to exploit temporal correlations in
learning invariant representations, none have been proposed that can work in more realistic environments that
may contain multiple objects or background clutter. Previous algorithms thus require stimuli to be presented in
isolation (Földiák, 1991; Oram and F̈oldiák, 1996; Wallis, 1996; Stringer and Rolls, 2000), and hence would be
inappropriate for real-world applications. The following section describes a simple modification to the learning
method that can overcome this limitation. The proposed learning rule can not only successfully function when
multiple objects co-occur, but its performance is actually enhanced in such circumstances. The proposed algorithm
thus provides a more robust and more efficient mechanism for learning invariance.

2 Method

When multiple objects are present in a scene, learning invariance purely by finding temporal associations across
image sequences would require knowledge of which representations derived from each image corresponded to the
same object. This is a temporal version of the correspondence problem that occurs in stereo vision. Solving this
complex binding problem for every pair of images in a sequence would be computationally expensive. However,
it is also possible to employ another constraint in the learning process, in order to learn invariant representations
without solving the correspondence problem. In terms of translation, this constraint exploits the fact that the same
object cannot occupy two distinct locations at once. However, the proposed method is not limited to learning
invariance under translation, but is applicable to any form of transformation. In more general terms, the proposed
additional constraint exploits the fact that the same object cannot generate two distinct percepts at once. Since
the proposed method takes advantage of an additional source of information within the image data, learning of
invariance is actually improved by having multiple objects appear simultaneously.

Current methods for learning invariant representations using a short-term trace of previous activity, cause
synaptic weights to be increased when there is correlation between previous outputs and the current inputs (or
between the current outputs and previous inputs, depending on the implementation details). In contrast, the pro-
posed method allows such synaptic weight increases for only one input, and decreases the weights from all other
simultaneously active inputs (implemented by equation6 below). Hence, when multiple object representations
are active in response to a single image, the proposed learning mechanism biases disjunctive learning in the next
stage of the hierarchy so that only one of these representations is encoded by any individual node.

In addition, the proposed algorithm does not employ a trace of previous activity, but learns correlations be-
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Figure 1: The proposed neural network architecture for learning perceptual invariances. Nodes in the
lower region receive connections from an input image, and learn to represent conjunctions of these pre-
synaptic inputs, thus forming more specific representations. Nodes in the upper region receive connec-
tions from all the nodes in the lower region, and learn to represent disjunctions of these pre-synaptic
inputs, thus forming more invariant representations.

tween the current input and the output generated in response to the previous image. Hence, temporal associations
are learnt between consecutive pairs of images, rather than across longer sequences of images. With this proposed
mechanism, the output generated by the current image does not affect learning at the current iteration (it will only
affect learning at the next iteration). This was also the case for the learning rule employed byRolls and Milward
(2000), who found that learning was improved when a trace of previous activity was used that did not include a
contribution from the current iteration. However, the proposed method not only excludes the activity in response
to the current image from affecting learning, but it also excludes affects from all activity generated prior to the
previous image, and hence eliminates the trace completely. This has the advantage that there is no need to cal-
culate or remember a trace of previous activity. Furthermore, there is no parameter controlling the length of the
trace, and hence no requirement to adjust the trace time constant to be appropriate for different tasks (Oram and
Földiák, 1996; Wallis and Rolls, 1997; Rolls and Milward, 2000).

Several previous models which learn invariance have calculated node activity using a weighted sum of the
inputs (e.g., Földiák, 1991; Oram and F̈oldiák, 1996). As mentioned in the introduction themax operator has
been proposed as a more appropriate combination function for generating invariant responses (Riesenhuber and
Poggio, 1999a,b). Summation allows multiple, non-optimal, stimuli to generate as strong a response as the optimal
stimulus. For example, rather than selectively responding to a particular object, a node employing summation
might be fully activated by disjoint object parts occurring at a range of locations. Furthermore, a node employing
summation would be more active in response to multiple occurrences of the same object, than to a single object.
To avoid these problems, the algorithm proposed here employs themax operator for finding disjunctions (see
equation1 below). The proposed model is thus distinct in that it both learns invariance and employs themax
operator. In contrast, previous models that employ an appropriate combination function for generating invariant
responses fail to learn those invariances (e.g., Riesenhuber and Poggio, 1999a,b), while those models that do learn
invariances use an inappropriate combination function (e.g., Földiák, 1991; Oram and F̈oldiák, 1996).

2.1 Implementation Details

The performance of the proposed algorithm was explored using a simple neural hierarchy consisting of two stages,
or regions (see figure1). One region learnt conjunctions and the other region learnt disjunctions. The conjunctive
region was implemented using the algorithm presented inSpratling and Johnson(2002, 2004), but with minor
modifications which improve performance. Implementation details for both types of region are given below.

2.1.1 Activation

As discussed above, different combination functions are appropriate for learning disjunctions and conjunctions.
Hence, in the proposed algorithm, the activations of nodes in the disjunctive region were calculated using themax
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and, the activations of nodes in the conjunctive region were calculated using summation:
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Whereyt
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Wherext
ijk is the input activity received at inputi of nodej in regionk, yt−1

pk is the activation of nodep in region
k at timet− 1, n is the total number of nodes in the region,αt is a scale factor controlling the strength of lateral
inhibition, and(v)+ is the positive half-rectified value ofv. The pre-synaptic activity values (xt

ijk) are either the

activations of nodes in the lower region at the previous time step (i.e., yt−1
j′k−1) or are external, sensory, inputs

supplied to the hierarchy.
The value ofZt

ijk depends upon the strength of pre-synaptic activity and the strength of the weight received
from that input (i). This value is adjusted using both post- and pre-synaptic weight normalisation. Such normal-
isation causes the value ofZt

ijk to be reduced if the node receives a stronger connection from another input, or
if another node receives a stronger connection from inputi. The value ofZt

ijk is thus dependent on prior weight
changes that have taken place in this and other nodes. The first form of normalisation, biases the node to respond
to an active input to which it has previously responded. While, the second form of normalisation, biases the net-
work to respond to each input using a single node. Through activity-dependent learning (see section2.1.2), nodes
thus become selective for disjunctive sets of input patterns and each disjunctive set is represented by an individual
node.

The value ofXt
ijk depends upon the strength of pre-synaptic activity and the strength of the lateral inhibition

directed towards that particular input. The value ofXt
ijk will be strongly inhibited if another node (p) is strongly

activated by the overall stimulus (i.e., if yt−1
pk has a high value relative to all other node activations) and that

other node receives a strong synaptic weight from inputi (i.e., if wipk has a high value relative to all the other
weights received by nodep). Hence, this form of lateral inhibition provides competition by enabling each node to
‘block’ its preferred inputs from activating other nodes. There is thus strong competition which causes nodes to
become selective for distinct conjunctive sets of inputs, but which does not prevent multiple nodes from responding
simultaneously to the presentation of multiple, distinct, stimuli. To help ensure that a steady-state solution is
reached, it has been found useful to gradually increase the value ofαt at each iteration from an initial value of
zero. In the simulations described in this article, the value ofαt was increased from zero to ten in steps of 0.25,
while the input image was kept fixed. Activation values generally reached a steady-state at lower alpha, in which
case the competition was terminated prior toαt reaching its maximum value.

Finally, the activity of each node was also modified by a small amount of noise, such that:

yt
jk = yt

jk (1 + ρ) (5)

The noise values,ρ, were logarithmically distributed positive real numbers in the range [0,0.01]. This noise is
essential to cause nodes to learn to represent distinct stimuli. Since the magnitude of the noise is small it has very
little effect on neural activity except when multiple nodes have virtually identical synaptic weights. When this
occurs, the noise causes one of these nodes to win the competition to be active in response to the current stimulus.

2.1.2 Learning

All synaptic weights were initially given equal values. Weights were modified using the final, steady-state, activa-
tion values found using the equations given above (thet superscript is thus dropped from subsequent equations).
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For nodes in a disjunctive region, the following learning rule was employed:

∆wijk = ± γxijk∑n
p=1 y∗pk

(
y∗jk − ȳ∗k

)+
(6)

Whereγ is a parameter controlling the learning rate (γ = 1
4 was used in the simulations presented in this article),

y∗jk was the activity of the node in response to the previous input pattern, andȳ∗k was the mean of the output
activations in response to the previous input pattern (i.e., ȳ∗k = 1

n

∑n
j=1 y∗jk). Usingy∗jk causes learning of the

correlation between the current input activity and the previous output activity. Learning only occurs for nodes
that were more active than average at the previous iteration, and at synapses with currently active inputs. This
learning rule has a positive value at synapses whereZijk = yjk and a negative value otherwise. Hence, only the
weight of the most active input was increased, and weights to all other active inputs were decreased. This learning
rule thus encourages each node to learn weights selective for a set of non-coactive inputs. This is achieved since
when a node is more active than average it increases its synaptic weights to a single active input and decreases
its weights to all other active inputs. Hence, only sets of inputs which are seldom coactive will generate strong
afferent weights. This rule thus enforces the proposed additional constraint for learning disjunctions: that the same
object cannot generate two distinct percepts (i.e., inputs) at the same time. Following learning, synaptic weights
were clipped at zero such thatwijk = (wijk)+ and were normalised such that

∑n
j=1 wijk = 1. This normalisation

process provides an implicit form of competition between different disjunctive nodes, since if one node strengthens
its connection to a particular input, then connections from that input to all other nodes are weakened.

For nodes in a conjunctive region, the following learning rule was employed for weights with values greater
than or equal to zero:

∆wijk =
β (xijk − x̄jk)∑m

p=1 xpjk
(yjk − ȳk)+ (7)

Whereβ is a parameter controlling the learning rate (β = 1 was used in the simulations presented in this article),
x̄jk is the mean of the input activations (i.e., x̄jk = 1

m

∑m
i=1 xijk), andȳk is the mean of the output activations

(i.e., ȳk = 1
n

∑n
j=1 yjk). Following learning, synaptic weights were clipped at zero such thatwijk = (wijk)+

and were normalised such that
∑m

i=1 (wijk)+ = 1. This learning rule encourages each node to learn weights
selective for a set of coactive inputs. This is achieved since when a node is more active than average it increases
its synaptic weights to active inputs and decreases its weights to inactive inputs. Hence, only sets of inputs which
are consistently coactive will generate strong afferent weights. In addition, the learning rule is designed to ensure
that nodes can represent stimuli which share input features in common (i.e., to allow the network to represent
overlapping patterns). This is achieved by rectifying the post-synaptic term of the rule so that no weight changes
occur when the node is less active than average. If learning was not restricted in this way, whenever a pattern
was presented, all nodes which represented patterns with overlapping features would reduce their weights to these
features.

For weights with values less than or equal to zero, the following learning rule was employed:

∆wijk =
β (Xijk − 0.5xijk)−∑n

p=1 ypk
(yjk − ȳk) (8)

WhereXijk is the input activation from sourcei to nodej after inhibition (see equation4), and (v)− is the
negative half-rectified value ofv. Negative weights were constrained such that0 ≥

∑m
i=1 (wijk)− ≥ −1. This

learning rule is only applied to synapses which have a weight of zero (or less than zero) caused by application of
the learning rule given in equation7 (or prior application of equation8). Negative weights are generated when a
node is active and inputs, which are not part of the nodes’ preferred stimulus, are inhibited. This can only occur
when multiple nodes are coactive. If the pattern, to which this set of coactive nodes are responding, re-occurs then
the negative weights will grow. When the negative weights are sufficiently large the response of these nodes to
this particular pattern will be inhibited, enabling other nodes to successfully compete to represent this pattern. On
the other hand, if the pattern, to which this set of coactive nodes are responding, is just due to the coactivation of
independent input patterns then the weights will return towards zero on subsequent presentations of these patterns
in isolation.

2.1.3 Comparison with Previous Methods

In contrast to previous methods, the above algorithm for learning temporal correlations employs the activity at the
previous iteration, rather than a trace of previous activity. To determine the effects of this, certain experiments
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were repeated, using an identical procedure to that described above, but with they∗jk value in equation6 replaced
by a trace of previous activity, such that:

y∗jk = 0.2yjk + 0.8y∗jk

An identical equation for calculating a trace of previous activity has been employed in several articles (e.g.,
Földiák, 1991; Wallis, 1994, 1996)

To compare the results of the proposed algorithm with previous methods, certain experiments were also re-
peated, using the algorithm proposed in (Földiák, 1991) for the disjunctive region. Hence, equation6 was replaced
by:

∆wijk = 0.02 (xijk − wijk) y∗jk

wherey∗jk was a trace of previous activity, calculated as above, and equation1 was replaced by:

yt
jk =

m∑
i=1

(
wijkxt

ijk

)
following which a winner-takes-all competition was applied so that the node receiving the strongest weighted
input was given an activity of one, and all other nodes were given an activity of zero. This algorithm has formed
the basis for many previous methods of learning invariance (e.g., Wallis, 1994, 1996; Oram and F̈oldiák, 1996;
Stringer and Rolls, 2000), and so will be referred to as the standard method.

3 Results

The proposed algorithm was applied to the task of learning line orientation invariant to translation. A similar task
was used previously to test other methods (Földiák, 1991; Oram and F̈oldiák, 1996; Körding and K̈onig, 2001).
A two-region hierarchy of neural networks was used. The lower region received input from images of training
stimuli and learnt conjunctions of features within these images, while the upper region received input from all
the nodes in the lower region and learnt disjunctions across the activity patterns generated in the lower region. A
network consisting of 32 nodes was used for the lower region and a network containing five nodes was employed
for the upper region. Learning, in both networks proceeded from the start of training (i.e., there was no pre-training
of the lower network before training the upper network).

Training data consisted of a series eight-by-eight pixel images, within which one-pixel wide horizontal, vertical
and diagonal bars could appear. Two methods for generating the training data were used. Bars could be selected
such that orientations were mutually exclusive or the bar orientations present in each image could be independently
selected:

Mutually exclusive orientations: each image contained only one bar at a time. At each iteration, the orientation
of this bar could be changed with a fixed probability.

Independently selected orientations:each image could contain an arbitrary number of bars at different orienta-
tions. At each iteration, each orientation could be changed from being present to absent (or vice versa) with
a fixed probability.

In both cases, specific bars at the chosen orientation(s), were selected at random. The algorithm was tested using
a range of values for the probability of successive images containing bars of the same orientation, and with either
two or four different orientations being used (i.e., images could contain only horizontal and vertical bars in some
experiments, but horizontal, vertical and diagonal bars1 in others). Figure2 shows typical examples of the type of
image sequences that were used.

To succeed in the task, nodes in the lower region needed to learn to represent all the individual bars at all
locations, and distinct sets of nodes in the upper region needed to learn weights such that they received the
strongest connections projected by all the nodes in the lower region which represented bars of a single orientation.
Figure 3 shows a typical example of the weights learnt when the hierarchy succeeds in learning to represent
horizontal and vertical bars. For each combination of orientation selection method, number of bar orientations,
and probability of successive images containing bars of the same orientation, the hierarchy was trained ten times
using different randomly generated sequences of input patterns. The number of these trials for which the task was
successfully learnt, are shown in figure4. For trails in which two orientations were present the hierarchy was
trained for 5000 iterations, and for trials in which four orientations were used, since there were twice as many
representations to be learnt, the hierarchy was trained for 10000 iterations.

6



(a)

(b)

(c)

(d)

Figure 2: Typical examples of image sequences used for learning bar orientations invariant to translation.
Bars were selected such that orientations were mutually exclusive in (a) and (b) and bar orientations were
independently selected in (c) and (d). Images could contain bars at two orientations (horizontal and
vertical) in (a), and four orientations (horizontal, vertical and both diagonals) in (b), (c), and (d). The
probability that successive images contained bars of the same orientation was 0.9 in (a), (b), and (c) and
0.6 in (d).
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(a)

(b)

Figure 3: A typical example of the synaptic weights formed by learning to represent horizontal and
vertical bars. A 5-node disjunctive network received input from a 32-node conjunctive network which in
turn received input from an 8 by 8 pixel input array. The synaptic weights, learnt after 5000 iterations,
for (a) the 32 nodes in the lower network, and (b) the 5 nodes in the upper network. For each node in
the upper network, the weights received from each of the 32 nodes in the lower network are shown in the
same order as these nodes are presented in (a). The darkness of each pixel is proportional to the strength
of that weight. Nodes in the lower network have become selective for sets of pixels which correspond to
individual bars at each location. One node in the upper network has learnt to represent horizontal bars,
while another has learnt to represent vertical bars: each of these nodes is selective for all the nodes in the
lower network which represent bars of that orientation.

It can be seen that the proposed algorithm reliably learns to represent bar orientation, invariant to position,
across a wide range of conditions. As with previous methods, learning relies on different views of the same object
being presented across sequences of images. Hence, decreasing the probability that successive images contain
bars of the same orientation (i.e., shortening the average length of image sequences containing bars of the same
orientation), leads to a reduction in performance and eventually to failure to learn the task in all trials. The point
at which the algorithm fails to learn reliably, occurs at shorter sequence lengths when images contain multiple
rather than isolated bars (compare the top and bottom rows of figure4). Hence, the presence of multiple objects
within the visual input improves learning using the proposed method. This is to be expected, since the proposed
algorithm can exploit an additional source of information when multiple objects appear simultaneously. Note that
all bar orientations were present in every image for the condition in which independent selection was used together
with a probability of one that the same orientation is present in successive images. The failure to successfully learn
in this condition, when using four bar orientations, resulted from the lower-region failing to represent all the bars
in nine out of ten trials. It is thus primarily a failure of conjunctive rather than disjunctive learning. Hence, when
the probability that successive images contain bars of the same orientation is very high, the lower (conjunctive)
network can fail to learn successfully, while at low probabilities the upper (disjunctive) network fails.

The proposed learning mechanism assumes when multiple object representations are active in response to a
single image, that these representations cannot correspond to different views of the same object. This assumption
will be invalid in rare situations when two, or more, identical objects are present in the same scene. To ensure that
the proposed method is still robust even in such circumstances, experiments were repeated so that ten percent of
images would contain two bars of the same orientation. Results are shown as a dashed line in the top-left hand
plot of figure4. It can be seen that when images may contain multiple views of the same object, a reduction in the

1the seven longest diagonals in each direction.
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Figure 4: Reliability of learning representations of line orientation invariant to translation. Each graph
shows the percentage of trails for which the hierarchy successfully learnt distinct representations for bars
of each orientation, at all image locations. Within each graph, the number of successful trials is plotted
for varying the probability that successive images will contain bars of the same orientation. The left
column shows results when two orientations of bars (horizontal and vertical) were used and the right
column shows results when four orientations of bars (horizontal, vertical and both diagonals) were used.
The top row shows results when bar orientations were independently selected (i.e., when multiple bars
could be present within the same image) and the bottom row shows results when bar orientations were
mutually exclusive (i.e., each image contained only one bar). Plots are shown for the proposed algorithm,
for the proposed algorithm using a trace of previous activity, and for the standard algorithm. The dashed
line shows the performance of the proposed algorithm when 10% of images contained two bars of the
same orientation.

number of successful trials only occurs for very short sequence lengths. For longer sequence lengths learning is
still reliable.

The proposed algorithm learns correlations between the current input and the output generated in response
to the previous image. When the proposed learning rule was modified to use a trace of previous output activity,
results were worse in all conditions where images contained only single bars. When trained using isolated bars,
the proposed algorithm using a trace learning rule produces similar results to the standard method of learning
invariance (which also uses a trace). When training images contained multiple bar orientations, employing a trace
of previous output activity with the proposed algorithm also generally resulted in worse performance. However,
when only two bar orientations were used and bars of the same orientation were presented for very short sequence
lengths, employing a trace in the proposed learning rule appears to improve performance. However, in these
conditions the trace does not provide any useful information, and replacingy∗jk in equation6 with a value of
1 + ρ (whereρ is a random variable in the range [0,0.01]) produced even better results (i.e., a 100% success rate
for both two and four orientations and a probability of 0.4 that successive stimuli contain exemplars of the same
orientation). Hence, it appears that for very short sequence lengths, excluding node output activity from making
any contribution to learning, enables the constraint that coactive stimuli should not be represented by the same
node to be even more successful in detecting distinct bar orientations. In contrast, the standard method completely
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fails when images contain multiple objects. The standard method requires objects to be presented in isolation, and
the proposed method is therefore far more robust in situations were this does not occur.

The above results provide examples of learning invariance to translation. However, the proposed method can
also be applied to learning invariant perceptual representations under other forms of transformation. An upper
region node learns to respond to a disjunctive set of lower region nodes. Hence, if the lower region nodes learn to
represent distinct views of an object under arbitrary transformations, then the upper region can learn to represent
all these different views of the same object. As a simple illustration of this point, the neural hierarchy described
above was trained using eight-by-eight pixel images, within which the letters ‘F’ and ‘I’ could appear, either at
two different scales, or at different in-plane rotations (see figure5 for typical examples of the image sequences that
were used). For each of a range of probabilities that successive images contained exemplars of the same letter, the
hierarchy was trained ten times using different randomly generated sequences of input patterns. Training occurred
for 2500 iterations, in each case. The number of these trials for which the task was successfully learnt, are shown
in figure6. It can be seen that the results are similar to those obtained above for learning different bar orientations
invariant to translation.

4 Conclusions

Generalisation is a vital component of intelligence. In vision, generalisation underlies the formation of concepts by
enabling the categorisation of perceptually distinct objects. In addition, generalisation underlies the recognition
of individual objects, by enabling identification despite changes in appearance. While much fruitful work in
machine vision has explored the use of perspective invariants as a mechanism for object recognition, this does
not appear to be the method employed by the brain (Palmer, 1999). In the cortex, object representations are built
up over a hierarchy of processing stages through learning (Gilbert, 1996; Logothetis, 1998; Mountcastle, 1998;
Wallis and B̈ulthoff, 1999) and the viewpoint invariance of these representations results from learning associations
across time (Wallis, 1998b, 2002; Wallis and B̈ulthoff, 2001; Sinha and Poggio, 1996; Stone, 1998; Stryker,
1991; Miyashita, 1988). Many neural network models have been proposed which exploit this form of learning
to develop invariant object representations. However, existing algorithms require training to be performed with
isolated stimuli presented against blank backgrounds. This article has suggested a simple modification to such
methods that enables learning to succeed when the training environment contains multiple, co-occurring, stimuli.
This suggested modification biases learning so that coincident objects will be represented by distinct nodes. The
proposed algorithm also improves on previous methods by employing a more appropriate combination function,
and by learning correlations between consecutive image pairs, rather than across sequences of images. It was
shown that these modifications improved performance on a simple task where training data could contain co-
occurring stimuli, such that, the reliability with which learning succeeded went from zero to 100 percent, across
a range of conditions. Performance was also improved in experiments where stimuli were presented in isolation.
The proposed algorithm thus provides a more robust method of learning invariant representations, and could form
the basis for the development of more powerful algorithms for learning invariance in real-world applications.
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