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Abstract 
We propose ongoing emergence as a core concept in 
epigenetic robotics. Ongoing emergence refers to the 
continuous development and integration of new skills 
and is exhibited when six criteria are satisfied: (1) 
continuous skill acquisition, (2) incorporation of new 
skills with existing skills, (3) autonomous development 
of values and goals, (4) bootstrapping of initial skills, (5) 
stability of skills, and (6) reproducibility. In this paper 
we: (a) provide a conceptual synthesis of ongoing 
emergence based on previous theorizing, (b) review 
current research in epigenetic robotics in light of ongoing 
emergence, (c) provide prototypical examples of ongoing 
emergence from infant development, and (d) outline 
computational issues relevant to creating robots 
exhibiting ongoing emergence. 

 
1. Introduction 
 
Epigenetic robotics is a new field that focuses on 
modeling cognitive development and creating robots that 
show autonomous mental development (Lungarella, 
Metta, Pfeifer, & Sandini, 2003; Weng, McClelland, 
Pentland, Sporns, Stockman, Sur, & Thelen, 2001). For 
example, robots have been implemented that generate 
visual discrimination behavior using large-scale neural 
networks (Seth, McKinstry, Edelman, & Krichmar, 
2004), that model early infant-caregiver interaction using 
behavioral rules (Breazeal & Scassellati, 2000), and that 
explore the knowledge needed by infants to succeed in 
perceptual object permanence experiments (Chen & 
Weng, 2004; Lovett & Scassellati, 2004; see also: 
Schlesinger & Casey, 2003). Given these and other 
diverse contributions to this new field (for a review, see 
Lungarella et al., 2003) it seems an opportune time to 
synthesize a few core concepts from this corpus of 
research. 

In this paper, we distill one such core concept, 
ongoing emergence, which refers to the continuous 
development and integration of new skills. An agent 
exhibiting ongoing emergence, in a motivationally 
autonomous manner, will continue develop and refine its 
skills across development. This vision of open-ended 
development is evident in recent work. For example, in 
efforts to “allow a mobile robot to incrementally progress 
through levels of increasingly sophisticated behavior” (p. 
1, ms., Blank, Kumar, Meeden, & Marshall, 2005), in 

efforts to build robots that exhibit “new behavior, which 
in turn, becomes a precursor for successive stages of 
development” (p. 27, Grupen, 2003), and in efforts to 
achieve robots exhibiting a “successive emergence of 
behaviors in a developmental progression of increasing 
processing power and complexity” (p. 1, ms., Dominey & 
Boucher, 2005). Unfortunately, while humans clearly 
show such long-term progressions, epigenetic robots as 
yet do not—they are typically designed to achieve 
particular behaviors or to learn specific tasks. 

To escape this impasse, we propose a theoretical 
framework for achieving ongoing emergence. To this 
end, in Section 2 we review previous theoretical 
conceptions regarding ongoing emergence and synthesize 
the current state of the art in terms of six criteria. Section 
3 considers how current examples of robotic systems fare 
with respect to these criteria for ongoing emergence. In 
Section 4, we look to infant developmental research for 
examples of ongoing emergence. Section 5 outlines some 
computational issues for designing robots that exhibit 
ongoing emergence. We close with a discussion. 

 
2. Conceptual Synthesis 
 

2.1. Background 
 
Blank et al. (2005) discuss the possibility that a robot can 
use a developmental algorithm to learn, via a process of 
self-exploration, its repertoire of behaviors and mental 
capabilities, instead of being preprogrammed with “the 
capabilities of a human body and human concepts” (p. 2, 
ms). Robots are proposed to discover even the most 
primitive behaviors through a process of exploration. 

A possible benefit of providing such a developmental 
algorithm is avoiding specification of task-goals for the 
robot. Instead, “it is the goal of developmental robotics to 
explore the range of tasks that can be learned (or grown) 
by a robot, given a specific developmental algorithm and 
a control architecture” (p. 2, ms). These authors consider 
three mechanisms to be essential to developmental 
algorithms: abstraction, anticipation, and self-motivation. 
Abstractions are seen as necessary to focus the robot’s 
attention on relevant environmental features, given the 
“constant stream of perceptual information” (p. 2, ms.). 
Anticipations enable the robot to predict environmental 
change to “go beyond simple reflexive behavior to 
purposeful behavior” (p. 3, ms.). And self-motivation 
“push[es] the system toward further abstractions and 
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more complex anticipations” (p. 3, ms.). It is thought that 
a developmental algorithm incorporating these three 
mechanisms could be successively applied to move an 
agent from a discovery of initial behaviors (“reflexes”) to 
more complex behaviors. 

Weng (Weng, 2004; Weng et al., 2001) also 
emphasizes the need for robots to autonomously generate 
their own task-specific representations in order to cope 
with dynamic, unknown, or uncontrolled environments. 
“A developmental program for robots must be able to 
generate automatically representations for unknown 
knowledge and skills” (Weng et al., 2001) so as to adapt 
to these environmental variations. An agent with the 
capacity to construct its own representations has the 
potential of understanding these representations. 
“Without understanding, an agent is not able to select 
rules when new situations arise, e.g. in uncontrolled 
environments” (p. 205, Weng, 2004). These processes are 
viewed as open-ended and cumulative. “A robot cannot 
learn complex skills successfully without first learning 
necessary simpler skills, e.g., without learning how to 
hold a pen, the robot will not be able to learn how to 
write” (Weng et al., 2001). 

Grupen (2003) is similarly concerned with  
enabling robots to solve “open tasks in unstructured 
environments” (p. 2, ms.). The approach he advocates is 
to use “developmental processes [that] construct 
increasingly complex mental representations from a 
sequence of tractable incremental learning tasks” (p. 1, 
ms.). He proposes “computational mechanisms whereby a 
robot can acquire hierarchies of physical schemata” 
(Grupen, 2003, p. 1, ms.). Physical schemata provide 
parameterized, and in that sense reusable, sensorimotor 
control knowledge. 

Dominey and Boucher (2005) model linguistic 
grammar acquisition, based on visual and auditory pre-
processing of sensory inputs and connectionist models. 
The authors use the developmental theory of Mandler 
(1999), who “suggested that the infant begins to construct 
meaning from … scene[s] based on the extraction of 
perceptual primitives. From simple representations such 
as contact, support, and attachment … the infant [may] 
construct progressively more elaborate representations of 
visuospatial meaning” (p. 244, Dominey & Boucher, 
2005). 
 
2.2. Synthesis 
 
From this earlier thinking, we wish to synthesize a picture 
of what we refer to as ongoing emergence. We propose 
six defining criteria for ongoing emergence (see Table 1). 
Our first two criteria are: (1) An agent creates new skills 
by utilizing its current environmental resources, internal 
state, physical resources, and by integrating current skills 
from the agent’s repertoire, and (2) These new skills are 
incorporated into the agent’s existing skill repertoire and 
form the basis from which further development can 
proceed. By “skills” we include overt behaviors, 
perceptual abilities, and internal representational 
schemes. 

These first two criteria express the notion that when 
we view agents as developing systems, with certain skills 

in their repertoire, they have the potential to develop 
related skills. For example, under this view a 
developmental robot that can learn to kick a ball might 
then later develop skills for playing soccer. Ongoing 
emergence thus has the property of developmental 
systematicity1. In developmental systematicity if an agent 
demonstrates skill aRb, then we also expect competence 
with directly related skills, bRa (i.e., systematicity; Fodor 
& Pylyshyn, 1988). Furthermore, we expect the 
emergence of developmentally related skills such as f(a) 
and g(aRb), where f(x) and g(y) are developmental 
processes producing emergent skills in the agent’s 
repertoire over time. This process would in part be based 
on earlier skills (e.g., x and y in f(x) and g(y) above). For 
example, if a robot exhibits a range of object tracking 
behaviors (aRb, bRa) through the composition of blob 
tracking skill (a) and motion finding skill (b), and the 
robot is a developing agent, we would have further, 
developmental expectations about its future behaviors 
such as facial tracking and gaze following (e.g., f(a), 
g(aRb)).  
 Another central notion in the work described in 
Section 2.1 is that of autonomy: avoidance of 
specification of task goals, autonomous generation of 
task-specific representations, and the ability to solve open 
tasks. We include this as a third criterion for ongoing 
emergence: (3) An agent that exhibits ongoing emergence 
autonomously develops adaptive skills on the basis of 
having its own values (e.g., see Sporns, 2005; Sporns & 
Alexander, 2002) and goals, with these values and goals 
being developed by the system in a manner similar to its 
skills. If an agent develops its own values and goals, it 
can use these for self-supervision and to determine the 
tasks that need to be solved. In brief, the agent needs 
some way to evaluate its own behaviors, and determine 
when a particular skill is useful2. This is true in both the 
short and long term. For example, in the short-term, a 
robotic agent might tradeoff energy output for the gain of 
information, while long-term goals might include 
improving communication amongst the robot’s cohorts. 

To these initial three criteria for ongoing emergence 
we add three additional criteria: (4) bootstrapping (when 
the system starts, some skills rapidly become available), 
(5) stability (skills persist over an interval of time), and 
(6) reproducibility (the same system started in similar 
initial states and in similar environments also displays 

                                                             
1 We introduce the concept of developmental systematicity to avoid 
viewing behavior generation an infinite domain. This is analogous to the 
way that Fodor & Pylyshyn (1988) introduced systematicity to avoid 
viewing language generation as an infinite domain. 
2 We refrain from adopting the idea that skills that emerge in 
development should necessarily be more complex (i.e., be more 
powerful in some sense) than prior skills. From our view, this criterion 
is too strong for several reasons. First, strictly increasing adaptation is 
violated in some instances of child development (e.g., the “U” shaped 
curves of child performance on various tasks over time; see Siegler, 
2004). Second, a view of strictly increasing complexity of skills does 
not allow for escape (“detours”) from local maxima, where behavior 
needs to get worse before it can get better. Third, strictly increasing skill 
complexity may remove the possibility of discovering simpler means to 
achieve the same (or similar) ends as existing skills—as in evolution, 
“different” is sometimes at least as good as “better.” Relatedly, a strict 
view of building complexity does not seem to allow for the loss (e.g., 
forgetting) of some skills over time. 
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similar ongoing emergence). We include bootstrapping as 
a criterion for ongoing emergence because it seems 
inevitable that a robot either needs to have some means of 
spontaneously developing its own set of initial skills or, 
more conventionally, will need to have some initial skills 
pre-programmed prior to its being turned on. While pre-
programming of bootstrap skills is not consistent with the 
concept of skills being developed by the agent itself, we 
consider this an acceptable practice if for no other reason 
than keeping the scope of research projects tractable. 
However, in our view, the preferred method to establish 
bootstrapping skills is to represent those skills in the 
same manner as later emerging skills such that both the 
bootstrapping and developed skills comprise a uniform 
part of the agent’s skill repertoire. 

Stability of skills is in part a practical matter: in order 
for a skill to be measured (i.e., by researchers), it must 
exist for a measurable duration. In terms of the robot, 
however, stability may be more than merely a practical 
matter in that, in order for ongoing emergence to be 
achieved, a certain degree of skill stability over time will 
likely prove necessary. If the behaviors exhibited by the 
robot are merely transient then those behaviors may not 
contribute to the basis for the acquisition of new skills. 

The reproducibility criterion asks the question: Under 
what starting-state and environmental conditions does a 
given developmental algorithm produce an ongoing 
emergence of behavior? We presume that if a 
developmental algorithm is well-understood, then the 
starting-state and conditions under which it produces 
ongoing emergence will also be well-understood. These 
conditions may be limited (e.g., to specific values of 
initial variables), but once known can reproducibly 
generate ongoing emergence. 
 
3. Current Research & Ongoing 
Emergence 
 
In this section, we review examples of epigenetic robotic 
research (see Table 2) in light of our criteria for ongoing 
emergence. Our selection of these particular papers is not 
intended to reflect some a prior sense that they have 
achieved ongoing emergence. Rather they simply reflect 
our subjective impression of good illustrative examples 
of research in this area. 

Several lines of research satisfy Criterion 1 (new skill 
acquisition). For example, a swinging behavior emerges 
in the robot of Berthouze and Lungarella (2004), and the 
skill of tracking a face view to an object emerges in the 
robot of Nagai et al. (2003). To varied extents, some 
research has also satisfied Criterions 3 through 6. 
Criterion 3 (autonomy of goals and values) is satisfied to 
some degree by the robot of Seth et al. (2004), and also 
the work of Kaplan and Oudeyer (2003). Seth et al. 
(2004) utilize a value system in the Darwin VIII robot to 
signal the occurrence of salient sensory events. Initially, 
Darwin VIII’s value system was activated by sounds 
detected by the robot’s auditory system, but through 
learning became activated by particular visual stimulus 
attributes. Criterion 4 (bootstrapping) is satisfied by the 
Dominguez and Jacobs (2003) system in that the system 

uses progressive changes in visual acuity to increase its 
binocular disparity sensitivity. Criterion 5 (stability) 
appears satisfied, for example, by the Lungarella and 
Berthouze (2002) system in that the robots’ swinging 
behavior reaches stable states. Criterion 6 
(reproducibility) is satisfied by studies which replicated 
their robots’ behavior, perhaps under varied conditions. 
For example, Chen and Weng’s (2004) experiments were 
replicated with 12 separate robot “subjects” (the same 
robot and algorithms, but with different environmental 
conditions). 

To give a more extended example of how these 
criteria can be applied, we consider the work of Nagai et 
al. (2003). These authors modeled joint visual attention 
behavior using a robot. Joint attention occurs when 
individuals both look at the same object, and may include 
knowledge of shared attentional states (e.g., Carpenter, 
Nagell, & Tomasello, 1998). The Nagai et al. (2003) 
robot learned to track the face view of a person to the 
object the person was looking at. Learning started with 
the robot (a) knowing how to visually detect faces and 
salient objects, (b) knowing to switch its gaze from a face 
to an object when both the object and face were in its 
field of view, and (c) having a predefined transition 
function (a sigmoidal) to switch from how salient objects 
were found—either directly in its visual field, or 
indirectly by first looking at a face3. Initially the robot did 
not know how much to turn its head based on a particular 
view of a face to find the object that the person was 
looking at, and learning acquired this skill. The transition 
function enabled this skill to be gradually applied.  

The Nagai et al. (2003) robot has some behaviors that 
are programmed into the system (e.g., bootstrapping, 
Criterion 4). A new behavior is constructed from the 
initial behaviors (e.g., visually detecting faces and 
objects) and environmental interaction—i.e., the robot 
learns to track faces to the objects that they are looking at 
(Criterion 1 is satisfied). However, once the new behavior 
has emerged, there is no further potential for 
development. That is, the new skill was not incorporated 
into the system in such a way that it contributed to the 
basis for further skill development. Thus, Criterion 2 is 
not satisfied. Reproducibility (Criterion 6) was 
demonstrated in the system by conducting experimental 
runs with 1, 3, 5, or 10 objects in which the emergent 
behavior was maintained. In summary, while some of the 
criteria for ongoing emergence are satisfied, the behavior 
of the Nagai et al. (2003) robot seems best classified as 
demonstrating emergence and not ongoing emergence.  

Notably absent in this review of current work is full 
evidence for Criterion 2 (incorporation of new skills with 
existing skills so that those new skills can be used as part 
of the basis for further development). We have yet to find 
examples of robots exhibiting this ability (but we hope to 
be corrected on this point!). This leads us to view current 

                                                             
3 The use of this sigmoidal seems unnecessary, but in our view should 
not be viewed as a shortcoming of this research. In principle, the 
authors could have used a method of self-supervised learning to 
transition between modes: when the robot was sufficiently able to 
predict the amount of head turn required for accurately turning to face 
an object, it could have then begun utilizing its self-generated head turn. 
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examples of epigenetic robots (e.g., see Table 2) as 
demonstrating emergence, but not ongoing emergence.  
 
4. Human Infant Developmental 
Examples 
 
In contrast to the state of the art in epigenetic robotics, 
human infants clearly exhibit ongoing emergence. 
Development is an unending process that continually 
produces new skills by making use of currently available 
skills, environmental conditions, and other resources. In 
this section, we provide prototypical examples of ongoing 
emergence in infants from three developmental areas: 
walking, language, and visual object skills.  
 
4.1 Emergence of Walking 
 
As any one-year-old would acknowledge, walking is 
more difficult than it may first appear. To properly walk, 
children must achieve the right mix of balance, head 
control, and coordinated oscillation of the limbs that have 
thousands of muscle fibers and billions of nerves as well 
as their own length, mass and transitory inertia. The 
degrees of freedom for the task are enormous (Bernstein, 
1967).  

Further complicating this process, children grow 
physically. They begin life top-heavy, which makes 
stabilizing this system all the more difficult. Their growth 
is also erratic and dramatic—children can go up to 63 
days with no measurable change in height and then 
suddenly grow up to 2.5cm in a single night (Lampl, 
Veldhuis, & Johnson, 1992). As if this wasn’t difficult 
enough, children must learn to navigate different slopes 
and uneven terrain, perhaps while carrying objects 
(Adolph & Avolio, 2000). Yet somehow nearly all 
children learn to walk, and continue to walk, despite the 
complexity of achieving the right mix of skills, changes 
in body morphology, and varying situations. 

Current theory (Thelen, 1995) views this process as a 
dynamic self-organizing system in which integration of 
diverse skills plays a key role. Because the world, the 
task, and even children’s bodies are constantly changing, 
each component is constantly being weighted differently, 
as dictated by the interaction of the nervous system and 
the environment. For example, while all infants posses a 
stepping and a kicking reflex at birth, the stepping reflex 
disappears after a few months. Why? In short, babies 
don’t have the strength to keep up this reflex as they 
grow heavier—even though the nervous system is still 
sending the signals. Stepping and, by extension, walking 
must wait for stronger muscles to grow before infants can 
take their first steps. If one makes the task easier, by 
supporting the infants (on a treadmill or underwater), 
even newborns can walk (Thelen & Fisher, 1982). In 
contrast, if one makes the task harder by placing weights 
on older infants, their walking again approximates that of 
younger infants (Thelen & Fisher, 1982). Thus, it is the 
dynamic interaction between current skills, the state of 
the system, and the environment that allows for walking 
behavior to self-organize into coherent patterns across 
changes in morphology and task. This illustrates Criterion 

1 for ongoing emergence—namely that skills are created 
through the integration of resources including 
environment and existing skills. 
 
4.2 Emergence of Language 
 
While purely physical skills like walking show ongoing 
emergence, skills that are more cognitive also require the 
use and integration of multiple developing skills. For 
example, word learning can be seen as the product of 
social skills (e.g., sensitivity to eye gaze), domain-general 
skills (e.g., sensitivity to statistical structure such as 
invariances), and linguistic skills (e.g., a bias toward 
labeling objects based on shape). 

Just as in walking, the weight placed on each of these 
skills likely changes with time and situation. In the 
beginning, infants may depend on a range of perceptual 
biases and statistical relations to establish the meaning of 
each new word (Hollich, Hirsh-Pasek, & Golinkoff, 
2000). However, as more words are learned, children use 
their knowledge of known words to help them learn 
additional words. This illustrates another property 
(Criterion 2) of systems exhibiting ongoing emergence: 
incorporation of new skills into a skill repertoire. For 
example, Smith (1999) provides evidence that infants 
may notice how particular types of words get extended 
(e.g., nouns are generalized, a.k.a. extended, to different 
objects on the basis of shape). Infants then use this 
knowledge to guide their own extensions of novel words. 
When told a U-shaped object is a “dax,” infants will 
spontaneously extend that word to other U-shaped 
objects. Even so the system is flexible—infants will not 
extend a word based on shape if the object happens to 
have eyes (or even shoes), suggesting that children have 
noticed that living creatures can often change their 
overall shape in ways that static objects do not. 

Related to the use of multiple skills, the more skills 
that an agent can bring to bear, the more fault-resistant 
and flexible the system. Loss of one skill does not cause 
the system to fail entirely, and the interaction among 
skills insures that children can successfully acquire a 
language under extremely impoverished conditions. For 
example, even deaf children growing up in an area 
without exposure to any fully formed language will create 
their own language (Sengas, 1995). With both biological 
and robotic systems, more pathways to success imply 
greater adaptivity and increased likelihood of organism 
survival.  With regular upheaval at the neurological and 
muscular levels, it is no wonder that developmental 
architectures are massively fault tolerant with multiple, 
redundant skills. Thus, the self-organization of new skills 
combined with an increasing skill repertoire can lead to a 
process of ongoing emergence. 
 
4.3. Object Skill Developments 
 
At the same time that human infants are developing the 
walking and language acquisition skills discussed above, 
they also show an ongoing emergence of physical and 
mental capabilities related to visual objects. Starting from 
birth, infants are able to extract information about object 
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size and shape (Slater & Morison, 1985), remember 
objects over time (Slater, Morison, & Rose, 1982), and 
perceive similarities and differences between visual 
stimuli (Slater, Morison, & Rose, 1984). Newborn infants 
are also able to track a moving target with eye and head 
movements (albeit in a jerky fashion, e.g., Aslin, 1981; 
von Hofsten 1982), and can recognize the constancy of an 
object’s identity across transformations in orientation and 
movement (Slater, Morison, Town & Rose, 1985). 

While constituting a perhaps surprisingly robust set of 
initial skills, developing and incorporating these skills 
into more complex behaviors takes time. For example, it 
is not until 4 months of age that an infant’s muscular 
control and object understanding have matured to the 
point of allowing an infant to successfully reach for and 
grasp an object (e.g., von Hofsten, 1989). Also at 4 
months, infants begin to perceive (measured via looking-
time) a partially occluded object as a single unified object 
(Kellman & Spelke, 1983; Johnson & Nanez, 1995). 
However, it is not until about 6 months of age that infants 
combine their object tracking skills, their understanding 
of object unity, and their reaching skills to reach for an 
object that has been partially obscured from view by an 
occluding object (von Hofsten & Lindhagen, 1979; 
Shinskey & Munakata, 2001). 

Also in the realm of visual-object skills is object 
permanence, which relates to the child’s understanding 
that an object continues to exist even when the object 
cannot be seen. It has been shown that 3.5-month-old 
infants show recognition of an impossible object event 
(i.e., a violation of object permanence), such as a 
drawbridge closing despite a solid object appearing to 
have been blocking its path (Baillargeon, 1987, 1993, 
1995). However, this sort of “perceptual object 
permanence” is not manifested as a behavior indicating 
an understanding of physical (i.e., more conventional) 
object permanence until much later, when 8- to 10-
month-old infants will begin to search for an object that 
has been hidden from view (Piaget, 1954). Still, infant 
searching behavior at this age is not free of difficulties 
and is subject to the “A-not-B error” (the infant searches 
for a hidden object at location A when the object was 
initially uncovered at location A but subsequently hidden 
at location B). Infants perseverate in this error until 
roughly 12 months of age (at which time infants will 
correctly search for the hidden object at location B; e.g., 
see Wellman, Cross, & Bartsch, 1986; Newcombe & 
Huttenlocher, 2000). 

In developing from initial skills of being able to 
identify and track objects (birth), to perceptually 
distinguishing impossible object events (3.5 months), to 
being able to maintain perception of object unity despite 
an occlusion (4 months), to successfully reaching for an 
object (4 months), to successfully reaching for an object 
despite an occlusion (6 months), to searching for a hidden 
object (8-10 months), to searching for a hidden object 
without displaying the A-not-B error (12 months), infants 
demonstrate an ongoing emergence of behavior. Changes 
occurring in the visual, conceptual, and motor systems of 
the infants interact to produce unique, observable 
behaviors at multiple points along the developmental path 
of these visual object skills, with each developed skill 

being incorporated and providing a contributing factor to 
the emergence of subsequent skills.  
 
5. Designing For Ongoing Emergence 
 
Past a theoretical understanding of ongoing emergence, 
our most burning question was well-expressed by one of 
the anonymous referees of this paper: How can we design 
robots so that the behaviors exhibited by the robot 
continue to be adaptive and open to further development 
throughout their duration of use (e.g., either as models of 
infants, or deployed in some industrial environment)? 
That is, how do we design robots that exhibit ongoing 
emergence? Our thinking here divides broadly into two 
possibilities. The first possibility we address is that of 
designing robots that exhibit ongoing emergence where 
the bootstrapping components (see Criterion 4) of the 
system are not generated by ongoing emergence. 
Effectively, this corresponds to basing the design of the 
robots on existing research (e.g., the robotic systems in 
Table 2). The second possibility we address is that of 
designing robots that exhibit ongoing emergence where 
the bootstrapping components themselves are generated 
by processes of ongoing emergence. This corresponds to 
discovering a different way of approaching the design of 
the initial components of a robotic system. 
 
5.1. Bootstrapping Ongoing Emergence 
Without Primitive Ongoing Emergence 
 
Ongoing emergence in humans results in part from the 
dynamic integration of multiple skills with the 
environment (i.e., Criterion 1). One way to achieve an 
analog of this in robots may be to add an integration layer 
on top of an existing system or systems (see Table 2), 
providing soft-assembly of the component skills. For 
example, we might combine robotic behaviors across 
several systems, such as the perceptual object 
permanence behavior of Cheng and Weng (2004), the 
joint attention of Nagai, et al. (2003) and the social skills 
of Breazeal and Scassellati (2000). For this integration 
layer to satisfy Criterion 1, it would be appropriate for 
these skills, in interaction with the environment, to 
produce new, adaptive, emergent skill(s). For example, 
given the integration of the above three prior research 
projects, the integrated system might express surprise 
towards a caregiver when an object permanence situation 
was violated. 

An approach that might be useful for this integration 
layer was given by Cheng, Nagakubo, and Kuniyoshi 
(2001). These authors proposed an integration 
mechanism to combine components in a humanoid 
robotic system, involving integrating the results of 
various component mechanism, which themselves show 
adaptation over time. Combining components involves 
weighting the components for their relative contributions, 
and such contributions may vary according to factors 
such as learning and context. The authors use a sensory-
cue competition approach to integration, and generating 
motor outputs. They define the motor output of a robot as 
the vector 

! 

U
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(t) , expressed by equation [1]. 
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gives the output for motor sub-system i (e.g., a head 
control motor), at time t. 
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In equation [1], 

! 

v
k
(t)  is a vector giving the current 

sensory input from sensory subsystem k (e.g., a joint 
angle or a camera) at time t, 

! 

a
k
(t)  is a measure of the 

reliability (confidence) of sensory subsystem k (a scalar), 
and 

! 

"
k
(t) , defines the strength (e.g., priority) of a 

particular sensory input (also a scalar). 
In a perceptual context, the weighted component 

integration (or democratic integration) algorithm 
forwarded by Triesch and von der Malsburg (2001) offers 
similar ideas, and presents a more detailed investigation 
of the integration concept than Cheng et al. (2001). In 
Triesch and von der Malsburg (2001), a group of 
perceptual components such as motion, color, and shape 
detection are adapted both in terms of the weighting of 
the components and in terms of prototypes for the 
perceptual components. 

Unfortunately, the integration mechanisms proposed 
by both Cheng et al. (2001) and Triesch and von der 
Malsburg (2001) do not focus on or provide specific 
means of incorporating skills that result from the process 
of integration—leaving Criterion 2 unsatisfied. Two 
additional computational mechanisms would seem 
needed past Cheng et al. (2001) and Triesch and von der 
Malsburg (2001) in order to provide skill incorporation. 
First, the system needs a (at least implicit) means of 
determining that a soft-assembled skill is re-occurring. 
That is, the system needs a way to determine when that 
skill should be considered “stable” (Criterion 5). Second, 
once stable, the skill needs to be represented in a manner 
similar to the existing skills. This last part, at least in 
terms of this present scenario seems particularly difficult. 
We have been working from the design premise of 
utilizing current results from epigenetic robotics to form 
the bootstrapping components of a robot, intended to 
display ongoing emergence.  But, in this case, there is no 
particular means to add to this static collection of 
bootstrapping skills. Presumably, a computational 
mechanism would be needed to learn the aspects of the 
new, now-stable soft-assembled skill. This new skill 
would, after this learning, be part of the repertoire of the 
system and with the other skills would form the basis for 
further development (i.e., it would then be termed 
incorporated; Criterion 2). 
 
5.2. Bootstrapping Ongoing Emergence 
With Primitive Ongoing Emergence 
 
A possible limitation of adopting the strategy proposed 
above is that one may miss common underlying 
mechanisms that helped create the individual skills in the 
first place. That is, in the ideal case, the goal would be to 
create a robot that exhibits ongoing emergence, where the 
bootstrapping primitives themselves are emergent. Thus, 

in this ideal case the bootstrapping primitives are 
generated by the same processes that underlie subsequent 
skill development.  

This presents a rather different problem than in 
Section 5.1. On the one hand, a robot that has a pre-
programmed set of behaviors can presumably exhibit 
those behaviors (e.g., in a sequence, or through a 
blending of behaviors, such as shown in Breazeal, 
Buchsbaum, Gray, Gatenby, & Blumberg, 2005), but is in 
need of mechanisms to incorporate stabilized soft-
assembled behaviors into its skill repertoire. On the other 
hand, a robot without a pre-programmed set of behaviors, 
in addition to needing mechanisms to provide ongoing 
emergence itself, is in need of an initial set of skills—it 
needs initial means of perceiving, representing, and 
behaving.  

One conceptual way that such initial—and 
emergent—skills might be created is through self-
exploration. A number of authors in epigenetic robotics 
have suggested the need for some form of “self” in these 
robotic systems. For example, Weng (2004) proposes that 
developing robots must be SASE—Self-Aware and Self-
Effecting agents, Blank et al. (2005) talk about self-
motivation and self-organization, and Steels (2004) 
suggests that robotic agents should self-regulate their 
build-up of skills and knowledge as a way to increase 
their rate of learning. In the present context of 
bootstrapping a developing agent without pre-
programmed skills, self-exploration could be used to 
facilitate differentiation between self and other (e.g., see 
Michel, Gold, & Scassellati, 2004), which is important 
because such a developing agent would likely need to 
figure out what parts of its “environment” are part of the 
agent (e.g., its own limbs) versus part of the external 
world. We hypothesize that the basic properties of 
ongoing emergence (i.e., Criterion 1 through 6) could 
also provide the basis for these self-other discrimination 
skills, and hence can provide the means to bootstrap the 
skills of a developing robot. 
 
6. Discussion 
 
The foregoing has been a largely theoretical discussion of 
ongoing emergence. Ongoing emergence describes, in 
brief, behavioral growth in humans and (hopefully, in the 
future) in robots. If we have achieved our goal, this paper 
will stimulate further theoretical and empirical research 
towards these ends. We hope that this is but one of many 
entries to follow in the continuing discussion of 
behavioral growth in robots. In closing this paper, we 
want to argue for a relation between ongoing emergence 
and theorizing in cognitive science, we discuss additional 
means by which ongoing emergence may be achieved 
incrementally in epigenetic robotics research, and we 
close with a view to the future. 

In Section 5 we raised a distinction between using 
pre-programmed initial skills (Section 5.1) and not using 
pre-programmed initial skills but instead relying purely 
on the properties of ongoing emergence (Section 5.2). In 
the pre-programmed initial skills case, we take this to be 
analogous to Fodor’s concept of modularity (Fodor, 
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1983). We take this position because the amount of 
interaction between the components will be limited and 
because the components show limited development. This 
provides another way to view the Section 5 alternatives: 
ongoing emergence through separate modules versus 
ongoing emergence through “modules” that develop. 

It seems crucial to establish methodological ways to 
achieve research progress in ongoing emergence. While 
we have implicitly offered some ideas to this end in the 
body of the paper, three further ideas come to mind. First, 
it seems conceptually possible that ongoing emergence 
could be exhibited strictly within particular domains. For 
example, a robot might exhibit ongoing emergence only 
in its language and communication skills, or only in its 
object manipulation skills. Second, it also seems 
conceptually possible that ongoing emergence may be 
achieved in a primarily perceptual manner. We feel 
justified in part for this statement by the productivity of 
psychological methods with infants that have focused 
largely on the development of perceptual knowledge 
(e.g., Baillargeon, 1995; Hollich et al., 2000). Third, a 
potentially useful research step towards a full sense of 
ongoing emergence may be a linear emergence of a 
limited number of skills. In this case, a single skill would 
emerge, that skill would then be incorporated into the 
robot’s existing skill repertoire, and then this new pool of 
skills would be used to develop one additional skill. 

In closing, we recollect the statements of György 
Gergely, in his invited address at EpiRob 2003. György 
suggested that “recent research in epigenetic robotics has 
been strongly preoccupied with and [has] made 
significant advances towards modeling the ‘lower level’ 
mechanisms and ‘bottom–up’ processes involved in 
systems of action perception and production and the ways 
in which these systems [may be] inherently interrelated” 
(p. 192, Gergely, 2003). Clearly, with goals including 
modeling cognitive development, epigenetic robotics 
should not be limited to modeling ‘lower level’ 
mechanisms. But, how do we make progress? In the 
terms of this paper, we advocate directly tackling the 
challenge of ongoing emergence, and in particular our 
Criterion 2 (incorporation of skills) seems in most need 
of further research. If cognitive skills arise out of ongoing 
emergence, then if we achieve robots with ongoing 
emergence, there is a good chance that those robots will 
have instantiated models of cognitive skills. 
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