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ABSTRACT 

     Natural variation plays an important but 

subtle and often ignored role in 

neuromechanical systems. This is especially 

important when designing for living or 

hybrid systems which involve a biological or 

self-assembling component. Accounting for 

natural variation can be accomplished by 

taking a population phenomics approach to 

modeling and analyzing such systems. I will 

advocate the position that noise in 

neuromechanical systems is partially 

represented by natural variation inherent in 

user physiology. Furthermore, this noise can 

be augmentative in systems that couple 

physiological systems with technology. 

There are several tools and approaches that 

can be borrowed from computational 

biology to characterize the populations of 

users as they interact with the technology. In 

addition to transplanted approaches, the 

potential of natural variation can be 

understood as having a range of effects on 

both the individual's physiology and 

function of the living/hybrid system over 

time. Finally, accounting for natural 

variation can be put to good use in human-

machine system design, as three 

prescriptions for exploiting variation in 

design are proposed.  

 

 

INTRODUCTION 

     Variation can be a good thing in 

engineered systems, especially when one or 

more component is a living entity. In 

neuromechanical systems and more 

generally in bioengineering applications, 

variation plays an important role in adaptive 

and maladaptive processes alike. Ultimately, 

the existence of variation allows for 

adaptation to new environments without the 

recurring need for specialization (for 

example, see Appendix 1, Number 1). This 

is a lesson the engineering community is 

currently learning by working with 

biomimetic materials and structures [1, 2]. 

Biologically-inspired designs often include 

materials or control strategies that are both 

compliant (e.g. adaptive) and specialized to 

a certain task [3, 4]. This broad survey and 

conceptual framework will focus on how 

this lesson can be transferred to the context 

of neuromechanical technology design by 

relating variation exhibited during 

performance and across individuals to the 

unique optimality criteria for such systems. 

 

Standardization and its discontents 

     The role of standardization in modern 

engineering design has many advantages 

from a mass production standpoint [5]. In 

human-machine systems, however, mass 

customization plays more of a role in 

minimizing functional defects. Much as is 

the case with internet technologies [6], 

neuromechanical and bionic systems (for 

definitions, see Appendix 1, Numbers 2 and 

3) rely on user characteristics to achieve this 

mass customization. However, the 

characteristics of interest in the latter type of 

system are biological and physiological in 

scope.  

 

     One interesting outcome that arises from 

this is a general research approach that 

distinguishes between fully synthetic 

technologies (e.g. automobiles or laptop 

computers) and living/hybrid technologies 

(e.g. domesticated animals or prosthetic 

limbs). A particular question can also be 

posed: why is standardization generally a 



 

 

good thing for fully synthetic machines (e.g. 

automobiles), but bad for living industrial 

systems (e.g. domesticated animals)? For 

additional discussion, see Appendix 1, 

Number 4. The short answer to this question 

involves recognizing that what generally 

holds true for synthetic technologies may 

not hold true for living/hybrid ones.     

 

Variation and Noise 

     The relationship between variation and 

noise is also important in the design of both 

synthetic and living/hybrid systems. Noise 

arising from variation can serve a 

constructive role [9]. One example of this is 

stochastic resonance, which is based on a 

combination of a patterned signal generated 

from inside the system functionally coupled 

with environmental noise. Stochastic 

resonance can be defined as the alteration or 

enhancement of a signal through the 

addition of a stochastic, or noisy, component 

[10]. In more technical terms, Mitaim and 

Kosko [11] define stochastic resonance as 

noise that enhances an external forcing 

signal in a nonlinear dynamical system. This 

is particularly important in neuromechanical 

systems that involve vibrational or 

oscillatory components. This could improve 

the designs of a series of products ranging 

from motorcycles to heart pacemakers.  

 

     Another example of beneficial noise, 

which happens to be a particularly powerful 

force in shaping living/hybrid systems, is the 

intrinsic generation of randomness [12]. 

This type of noise involves randomness 

expressed as part of processes internal to the 

system. According to Wolfram [12], this 

type of noise allows highly complex systems 

to be constructed from rather simple rules, 

thus demonstrating the constructive role of 

noise and the need to consider living/hybrid 

systems apart from purely synthetic ones. 

 

     In living/hybrid systems, these forms of 

beneficial noise are closely tied to variation 

observed both in real-time and over the 

course of extended interaction. Specifically, 

variation in living/hybrid systems involves 

baseline genetic characteristics, 

physiological processes, and regulatory 

mechanisms. The expression of this 

variation over the course of interaction is 

triggered by these forms of beneficial noise.  

 

The need for variation in living/hybrid 

engineered systems 

     In both living/hybrid and synthetic 

contexts, variation comes in two forms: 

behavioral and structural. In synthetic 

systems, behavioral and structural variation 

not accounted for in the original design 

often plays a deleterious role
1
. Likewise, 

structural and behavioral variation in 

living/hybrid systems can play a deleterious 

role. However, the inherent existence of this 

variation can also allow the entity to adapt 

given a range of environmental conditions. 

In systems with a living/bionic component, 

the ability to adapt allows for a diverse set 

of responses. Two of these that will be 

covered in this paper are 1) population- 

based, genome-wide variation that sets the 

baseline for performance in an individual, 

and 2) expression mechanisms that augment 

the differences characterized by these 

baselines over the course of interaction 

between living and non-living components.  

 

INTRODUCTION TO NATURAL 

VARIATION FOR ENGINEERING 

     Natural variation can be defined as the 

genetic, hormonal, and morphological 

diversity found among what will be referred 

to herein as in situ populations. This is 

especially important for understanding the 

function of neuromechanical systems, which 

can be defined as the biologically-salient 

                                                
1 For examples from bridge structural mechanics, see 

[7, 8]. 



 

 

study of how neuromuscular, environmental, 

and movement variables are interrelated.  

In situ populations 

     In situ populations can be defined in 

contrast to statistical populations. In situ 

populations represent groups belonged to by 

the individual (e.g. familial or ethnic) being 

sampled. While the full extent of variation in 

each population not known, several 

approaches based on existing techniques 

used in organismal biology may allow us to 

uncover the structure and relevance of this 

variation.  

 

     There are three approaches I will 

introduce in the next section that are, in the 

context of this paper, specially tailored for 

better understanding standing variation in 

living/hybrid systems applied to in situ 

populations. These are population genetics, 

artificial selection, and gene expression and 

transcriptional regulation models. However, 

before we delve into methodology, the 

specific role of natural variation on 

living/hybrid must be clarified. 

 

     Understanding the role of biological 

variation in hybrid/living systems involves 

taking into consideration existing variation, 

expression of variation across the lifespan, 

and the by-products of evolutionary and 

demographic processes. One aspect of this 

variation involves biological differences 

which may be amplified or repressed in 

particular environments [13]. For example, 

two individuals who carry unique genetic 

and performance profiles to the task may 

respond similarly in one environment but 

much differently in another environment. 

Furthermore, these differences may be 

further mitigated and/or augmented by the 

effects of aging or adaptation to the 

environment in question. 

 

     On the other hand, switching between 

two environments in a rapid and patterned 

manner may encourage the expression of 

previously hidden variation [14]. Such 

results have been found in animal and 

bacterial models in response to 

environmental fluctuations, and may also 

apply in a limited sense to human 

neuromuscular systems. In a general sense, 

environmental switching involves an 

internal response to an oscillation. When 

coupled with environmental settings where 

external forces are applied to the body in 

this fashion, complex physiological 

responses may result that may only be 

understood by looking at variation in the 

structure and expression of the genome.     

 

Population phenomics: an approach for 

living/hybrid engineered systems. 

     In biology, phenomics [15] is the study 

of phenotypes as they relate to 

physiological, cellular, and genetic 

regulation. This is an important 

consideration for design in a number of 

technological systems. In this section, three 

means to understand this diversity will be 

covered: the use of population genetics 

techniques, artificial selection experiments, 

and gene expression and transcriptional 

regulation models. 

 

Population genetics techniques. Population 

genetics tells us that traits are heritable [16]. 

Therefore, specific traits can be confined to 

familial or ethnic lineages, which make up 

varying proportions of any particular in situ 

population. The relevance of population-

level variation to neuromechanical systems 

is that such variants set the baseline for 

response during performance. One 

promising technique that can be used to 

better understand how these types of variant 

are distributed among in situ populations is 

SNP genotypic [17]. Fortunately, emerging 

technologies such as the HapChip 550K [18] 

allow us to explore thousands of SNP 

markers from across the genome in parallel. 



 

 

 

Artificial selection experiments. Artificial 

selection experiments with wearable devices 

have the potential to trigger both adaptive 

and maladaptive responses in cell 

populations. These include epigenetic and 

metabolic mechanisms which might be 

selected for by using specially-designed 

training regimens. This is in addition to the 

normal use of neuromechanical 

technologies.  

 

     One approach that might be developed 

further is the use of prosthetic devices which 

change the force and surface properties that 

the human user normally encounters during 

movement [19]. One such device is a wand 

with a large moment of inertia (Io) and a 

forcing chamber at its end filled with 

different types of materials. These materials 

can be isotropic (such as water or sand), 

electrorheological, or a matrix of custom-

made compliant, soft materials. When 

swung or used to reach for objects in virtual 

simulations, a degree of mismatch can occur 

that decouples forces normally produced 

during like movements under non-simulated 

conditions. Changing the surface properties 

in the forcing chamber and selectively using 

the forcing chamber over time might either 

mitigate or augment this effect in relation to 

an evaluatory function described in the next 

paragraph. 

 

     Artificial selection experiments are 

typically used in an across-generation 

context using model organisms [20]. 

However, artificial selection can also be 

used to understand how variation affects 

performance in behavioral contexts [21]. 

Artificial selection can be used to uncover 

advantageous traits in an in situ population. 

Given that all individuals in a given 

population have a specific function for 

evaluating performance
2
, selection for 

performance can be applied by introducing 

novel forces built into the neuromechanical 

technological device. 

 

Gene expression and transcriptional 

regulation models. Of particular interest is 

how the regulation of gene expression as a 

functional response to external stimuli plays 

a role in regulating performance. This 

regulation is characterized by the output of a 

physiological system. We can characterize 

this variation in a theoretical manner, using 

known information about the structure of the 

genome and how environmental pressures 

produce an adaptive response. The 

techniques that can be borrowed from this 

domain include gene regulatory networks 

[22] and metabolic engineering models [23]. 

The take-home message is that physiological 

regulation forced by a specific 

neuromechanical technology can yield 

differential results in different individuals. 

Overall, the interaction between 

transcriptional regulation, metabolic 

networks, and environmental stimuli can 

trigger the additional expression of variation 

in situ [14].  

 

POTENTIAL OF NATURAL 

VARIATION FOR SYSTEM DESIGN 

     The potential of natural variation in 

system design can be characterized as the 

relationship between robustness and 

brittleness. Noise and variation are the most 

important concepts that define these 

variables. However, robustness and variation 

can also be defined in terms of numbers and 

relationships between real-world physics 

                                                
2 a hypothetical specific function for evaluating 

performance is analogous to fitness as defined in an 
evolutionary context. Rather than being based on the 

ability to produce greater or fewer offspring, the goal 

of artificial selection in the context of this evaluatory 

function is to favor specific adaptations and/or 

maladaptations over a finite period of time. 



 

 

(see Appendix 2, Sections 1 and 2, 

respectively).  

 

     One way noise and variation play a role 

in physiological responses and performance 

outputs for specific performance settings is 

by contributing to the nonlinear control 

mechanisms needed to control complex 

interacting systems. More specifically, the 

interaction between environmental force 

feedback and physiological response can 

lead to effects such as dampening and 

saturation, which result from the unfolding 

of physiological processes over time as they 

are selectively perturbed by variation 

inherent in environmental feedback. 

 

Examples of adaptation and 

maladaptation 

     Another way in which noise and 

variation affect performance in 

neuromechanical systems is by mediating 

how individuals adapt to a particular 

interface or wearable device. When provided 

with an environmental challenge, biological 

mechanisms can rise to this challenge and 

adapt immediately, adapt with some 

training, or fail to adapt altogether. To better 

characterize this phenomena, two variables 

must be defined while specific examples of 

adaptation and maladaptation must be given. 

 

Specific example of adaptation: feedback 

from interaction to physiology. During the 

course of interaction between humans and 

neuromechanical technologies, closed-loop 

control is established between the 

individual's physiology and control over the 

technology at any one point in time. This is 

why good ergonomic design usually requires 

technological design to conform to natural 

postures and do not introduce a lot of 

extreme stresses, strains, and torsional 

forces. This is hypothesized to lead to a 

normal physiological response to technology 

use.  

 

Specific example of maladaptation: 

dystonia. Dystonia is one example of how 

mechanical technologies and individual 

variation interacts in a deleterious manner 

(see Figure 1). Dystonias of skeletal muscle 

can be defined as muscle contractions that 

cause twisting and repetitive movements and 

overall abnormal function [24]. Focal 

dystonia afflicts a specific set of muscles in 

the hand and fingers. One classic example of 

focal dystonia is the dysfunction of finger 

muscles after the extended use of a stringed 

instrument [25]. In this case, open-loop 

control is responsible for the mismatch 

between the mechanical system (in this case 

a musical instrument) and the biological 

system (in this case, muscles in a specific 

part of the body). 

 

APPLICATION OF VARIATION TO 

NEUROMECHANICAL SYSTEM 

DESIGN 

     The variation found in a single individual 

or group of individuals can be the basis for 

nonlinear control strategies [26, 27]. It also 

allows us to better understand how short-

term decrements in performance can lead to 

more substantial long-term gains. Examples 

might include the rate-limiting effects of 

pharmaceutical agents, the dampening 

effects of muscle and connective tissues, and 

the feedback effects of physical training on 

the regulation of gene expression. The 

following sections explore and propose 

ways in which this variation can be better 

characterized in the context of 

neuromechanical technology design.  

 

Tool for design #1: variation and control 

strategy curve. 

     One tool that can be generated from the 

population phenomics approach to predict 

performance in specific systems is the 

variation and control strategy curve. This 

curve is based on understanding how control 



 

 

strategies employed during use of 

neuromehcanical technologies relates to 

expressed variation across a population.  

     We can use the Segway™ motor scooter 

and Figure 1 as an example of how this 

theoretical model works. For purposes of 

expediency, we can characterize the 

physiological metric as being the thigh-to-

shank ratio of the human lower extremity. In 

the theoretical example, the thigh-to-shank 

ratio across the population yields a Gaussian 

probability density function (pdf). Within 

the area of this pdf, other control strategies 

are nested. It is of note that while other 

control strategies are predicted to be nested 

within the population-wide Gaussian, these 

sub-functions need not be Gaussian 

distributed themselves.  

   

 
Figure 1. Graphical representation of the 

variation and control strategy model.  

 

     In Figure 1, a sample distribution derived 

from pseudodata is shown. As demonstrated 

in Figure 1, subsets of the population are 

representative of specific trait values. Of all 

individuals characterized by this trait value 

(a bin in standard histogram parlance), a 

certain proportion of them will exhibit a 

unique control strategy for a task give to the 

entire population. In Figure 1, for the bin 

characterizing a z-score of 0, 18% of 

individuals exhibit a second-order 

dampening strategy. Likewise, 24% of 

individuals exhibit a first-order dampening 

strategy, and 58% a simple linear strategy.   

     In the case of a gyroscopically-

controlled, electric powered scooter, a 

plurality of individuals may use different 

physiological control strategies when 

challenged with a simple balance problem. 

Artificially and biologically-controlled 

physical models [28, 29] suggest that a 

simple linear control strategy is sufficient 

for solving this problem using a passive 

dynamic methods or a neural controller. 

However, the above model suggests that 

biologically-generated balancing using a 

range of morphological parameters that 

interface with a mechanical device can 

produce multistability. Adding in ability to 

produce muscle power might yield an even 

greater number of control strategies used 

across the population. 

 

Tool for design #2: designing for fault-

tolerance using natural variation.  

     A better understanding of variation and 

its functional consequences during 

interaction with neuromechanical 

technologies may open the door to fault-

tolerant neuromechanical system design. 

The standard approach to fault-tolerant 

design in the field of computer networks 

includes designing interactive systems with 

several goals in mind [see 30, 31 for 

inspiration of approach taken here]. Natural 

variation can play a role in several of these 

goals for neuromechanical systems, which 

we will now review in a point-by-point 

manner. 

 

Redundancy. An understanding of how 

physiological regulation responds to induced 

loads allows us to distribute loads to 

multiple anatomical points. This allows for 

multiple modes of use across different 

components of the population.  

 



 

 

Isolation and containment of system 

malfunction. A detailed understanding of 

how genetic variants and biomechanical 

function are interrelated allows for a way to 

better contain maladaptive responses to 

neuromechanical system use. This is 

especially true over long periods of time 

during which metabolic and other 

physiological stresses induced by transitory 

features of the mechanical system can turn 

into deleterious conditions. Isolation and 

containment at an early enough stage can 

prevent these deleterious conditions. This 

can also be accomplished in part by building 

in safety mechanisms called reversion 

modes. 

 

Existence of safety mechanisms or 

reversion modes. The ability to revert to 

safe modes of operation in cases of 

malfunction can be augmented by 

accounting for natural variation in the design 

of neuromechanical systems. One common 

example of a reversion mode is the 

Windows™ “safe mode”. The safe mode 

can be deployed when the normal operating 

parameters become corrupted. Likewise, a 

neuromechanical system should allow for 

the emergency shut-down of all non-

essential and potentially harmful 

components of the interface once 

maladaptation is considered probable by 

means of physiological indicators, 

functional genomic data, and predictive 

genomic markers.  

 

EXPLOITING VARIATION IN DESIGN 

     There are three ways in which we might 

exploit variation in design contexts: 

genotyping individuals, designing for the 

mapped physiological substrate, and 

engaging specific traits with design. These 

are not potential variables and relationships. 

Rather, they are strategies for defining the 

connection between measured/observed 

physiological variation and the technological 

and physical environment.   

 

Individual variation in time-frequency 

space. There is a need to redefine the 

standard Gaussian definition of variation in 

human physiology which will not be further 

discussed here. In anthropometry, the sizes 

of body segments and dimensions are 

distributed according to a "bell curve" 

model. While this is adequate for static 

traits, such a model may be inadequate for 

appreciating how these static traits 

contribute to performance over the course of 

technological interaction.  

 

 
Figure 2. Top frame: relationship 

between human and machine according 

to traditional view (top frame) and 

proposed view (bottom frame)
3
. 

 

     One example of this stems from a 

prediction of population genetics: 

polymorphisms which contribute to different 

                                                
3 in Figure 2, the letter a) represents dystonia, a 

specific maladaptive condition. Bottom frame: three 

different humans interacting with the same machine. 

Letter a) represents Human A being prone to 
maladaptation, letter b) represents Human B having a 

'normal' response to interaction with the machine, and 

letter c) represents Human C having a dampened 

response to maladaptive stimuli. The hypothetical 

response observed in Human C is example of how a 

high degree of robustness translates into system 

design. 

 



 

 

trait states are distributed according to a 

power-law. In cases where there is diversity 

at a particular locus, there tend to be a few 

predominant variants and potentially many 

variants at very low frequencies [32]. Rather 

than a percentile model of understanding 

variation, this new way of viewing variation 

might be based on time-frequency 

decomposition (for more information, see 

Appendix 2, Section 3). 

 

Defining a “mapped physiological 

substrate”. There is also a need to 

understand the relationship between 

genotype and phenotype [33]. In the context 

of the population phenomics approach, the 

mapped physiological substrate can be 

defined as what phenotypic precursors make 

an individual more or less susceptible to 

maladaptation. Getting at this question 

allows us to better understand what we are 

perturbing in the physiology with particular 

technological designs. A more detailed 

understanding of these new ergonomic 

considerations may lead to the modification 

of technology for specific components of the 

population. 

 

Integrating specific biological traits with 

design. This point stems from defining a 

mapped physiological substrate. Phenotypic 

traits with complex regulatory 

underpinnings have greater opportunities for 

adaptation during interaction. The dynamics 

of a neuromechanical system in settings 

such as this introduces a level of complexity 

that goes well beyond the focal dystonia 

example provided earlier. In such cases, a 

nonlinear control system may be used to 

tease out the complex effects of interaction 

in various subsets of the in situ population 

being sampled. For points on how this could 

be applied to real-world systems, see 

Appendix 2, Section 4. 

 

CONCLUSIONS 

     In this paper, a number of concepts were 

introduced that serve as a conceptual 

framework for better understanding how 

human variation plays a role in 

neuromechanical system function and 

ultimately effective design. These concepts 

can be grouped into three general categories: 

the role of noise and statistical distributions 

of variation, methods for discovering 

biological variation in so-called in situ 

populations, and the integration of 

mechanical and physiological function. Of 

the three, the last of these points holds the 

greatest potential for future development.   

 

 

APPENDIX 1: EXAMPLES AND 

DEFINITIONS. 

 

Number 1: Specialization. 

     A simple example of this can be found 

among bird's beaks. Among one group of 

birds (species A), there is a single 

morphology specialized to perform specific 

tasks such as fighting or feeding. Members 

of species A are said to be ecological 

specialists. Among birds of species B, single 

beak morphologies are also exhibited among 

its members. However, in this species, 

individual birds can exploit a wide range of 

resources and perform a multitude of tasks. 

Members of species B are said to be 

ecological generalists. In species C, a range 

of beak morphologies might exist. Members 

of species C all perform the same sets of 

tasks with divergent morphologies. It is this 

latter type of variation seen in human traits 

that might serve as an untapped resource 

rather than a hindrance for purposes of 

system design. 

 

Number 2: Neuromechanics, 

Neuromechanical.  

     Neuromechanics can be defined as the 

study of anatomical mechanics as it relates 

to the nervous system. In many 



 

 

neuromechanical systems, there is a tight 

relationship between kinematics, 

biochemical and muscle kinetics, and neural 

control. Neuromechanical systems can be 

better understood by examining examples 

from humans, non-human animals, and 

robots.  

 

Number 3: Bionic systems. 

     Bionic systems are technological systems 

that interface either closely or explicitly with 

physiological systems. Biomedical 

applications are the most high-profile 

examples of bionic systems. However, 

technologies that affect the nervous system 

in a transformative manner can also be 

considered to be bionic systems. Examples 

include wearable or manipulable interfaces 

that induce the effects of resistance exercise, 

or technologies that induce specific 

neuromuscular disorders such as dystonias.  

 

Number 4: Differential standardization 

considerations in synthetic and 

living/hybrid systems. 

     This definition is closely related to 

specialization in that variation in different 

types of technological systems is proposed 

to have opposing effects. For example, 

variation in synthetic systems may have 

deleterious effects including production 

defects which lead to malfunction. On the 

other hand, variation in living systems 

introduces additional levels of complexity to 

product design.  

     In older products such as bicycles, the 

recognition of variation as an assistive 

component of the design process already 

exists, albeit in limited form. In emerging 

technologies such as brain-machine 

interfaces, individual variation may be both 

an aid to customization and a barrier to 

understanding uniform responses across 

human populations.  

 

APPENDIX 2: PARAMETER AND 

ANALYTICAL DEFINITIONS 

 

Section 1: Robustness definition 

     Robustness can be defined as the ability 

of the living/hybrid system to absorb 

environmental noise challenges. In 

neuromechanical systems, this absorption is 

a function of a technology designed to 

minimize the resistance forces encountered 

during movement. Robustness can be 

measured using the parameter A
4
. In the case 

of brittleness, A should be above 0.5 and in 

extreme cases near 1.0. 

 

Section 2: Brittleness definition 

     Brittleness must be defined as the 

inability of the living/hybrid to respond to 

an environmental noise challenge. 

Brittleness is typically a function of 

technologies that create a large number of 

resistance forces against some set of 

muscles. Brittleness can also be measured 

using the parameter A. In the case of 

brittleness, however, the value of A should 

be above 0.5 and in extreme cases near 1.0. 

 

Section 3: Time-frequency approach to 

variation 

     This provides inspiration for a new 

approach to understanding biological 

variation in the context of technological 

systems. Specifically, a time-frequency 

decomposition of combined physiological 

and performance data is necessary. Such an 

analysis is hypothetical at this point, but 

may inspire future applications to specific 

datasets. The proposed time-frequency 

approach might involve the analysis of 

genetic variants, the expression of genes 

over time, and other variables that 

                                                
4 the parameter A can be defined as the degree of 

adaptability, which is the ratio of external forces 

(measured in Newtons) against muscle power 

(measured in Joules / meter · meter and representative 

of internal forces). 



 

 

characterize movement or muscle activity 

over time [34].  

 

Section 4: Approach to nonlinear control 

and natural variation 

     One way this can be applied to design is 

by mapping A) specific physiological traits 

and B) suites of traits that define a 

population to 1) specific trait states and 2) 

their potential to be affected by feedback 

from environmental forces. These 

relationships can be combinatorial so that 

single and multiple trait relationships can be 

related to either specific trait states such as 

muscle hypertrophy or the robustness and 

brittleness parameters (which define the 

potential to be affected by feedback from 

environmental forces). 
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