
Abstract
Different features have different relevance to a
particular learning problem. Some features are less
relevant; while some very important. Instead of
selecting the most relevant features using feature
selection, an algorithm can be given this
knowledge of feature importance based on expert
opinion or prior learning. Learning can be faster
and more accurate if learners take feature
importance into account. Correlation aided Neural
Networks (CANN) is presented which is such an
algorithm. CANN treats feature importance as the
correlation coefficient between the target attribute
and the features. CANN modifies normal feed-
forward Neural Network to fit both correlation
values and training data. Empirical evaluation
shows that CANN is faster and more accurate than
applying the two step approach of feature selection
and then using normal learning algorithms.

1 Introduction
Feature selection is a popular method to improve
performance of inductive machine learning algorithms.
Many learning problems have a large feature set with many
redundant features. Thus, extracting useful features for
learning improves performance considerably [Guyon &
Elisseeff, 2003]. However, feature selection algorithms are
only preprocessors that select and modify a dataset,
discarding less relevant features. After this preprocessing
stage, machine learning algorithms treat all the features with
equal importance. However, less-relevant features may still
contribute much in the learning problem, so totally
discarding them may impede accuracy; This is the reason
feature selection degrades performance in some cases.
While some features can be more important to the learning
problem. So, a ranking based on importance towards the
learning problems can be generated. In fact, such ranking
measures are used in many feature selection algorithms
[Leray & Gallinari, 1998; Bekkerman et al., 2003; Ruck et
al., 1990].

Moreover, the principal problem in machine learning is
not just having accuracy. But it is to maintain high accuracy

if given less amount of data. Training data is scarce in most
fields. In the data mining problems, having data is not an
issue as the goal is to learn from massive data warehouses.
However, most learning problems in which we have not
made good progress are the ones where data is limited.
Hence, high accuracy with scarce data is a must for real
world use of machine learning.

But most machine learning algorithms are inductive and
require large portion of data. The amount of data needed is
the focus of statistical learning theory [Kearns & Vazirani,
1994]. However, developing more and more refined
inductive algorithms is not the solution to the scarcity of
data problem. As per learning theory, there is a fundamental
limit on how much knowledge can be learned from a set of
data. So, the only solution is to provide external knowledge
along with data.

The focus of this paper is to learn faster if given external
knowledge in the form of feature importance weight. Instead
of treating all features equally, if the learners treat features
based on their importance and use this knowledge of
importance in learning, then they have been shown to
perform better. [Iqbal, 2011; ZHANG & WANG, 2010].
This is a new field in machine learning research that has
been gaining attention. IANN (Importance aided Neural
Network) [Iqbal, 2011] extended Multilayer Perceptrons
[Mitchell, 1997] to use Feature Importance values. Domain
knowledge was provided as feature weights, a real value in
[0,1] range to represent the importance of a feature. IANN
performed better than many empirical learning algorithms.
IANN also required significantly less training data to
perform well. Which is much more important than improved
accuracy as acquiring training data is expensive in most
domains [Scott, 1991; Marcus, 1989] .

Our research uses a different approach than the IANN
system. We present CANN (Correlation aided neural
network) a neural network system that can use feature
importance values in the learning process to attain better
performance. It is more robust and theoretically sound than
IANN. While IANN is based on heuristics with little
theoretical justification, CANN is based on the same
principles as Neural Network (NN) Backpropagation itself.

Using Feature Weights to Improve Performance of Neural Networks

Ridwan Al Iqbal
American International University-Bangladesh

Dhaka, Bangladesh
stopofeger@yahoo.com

IANN algorithm used the feature importance values by
changing the learning rate based on importance. The
connections between the input features and the first hidden
layer nodes had different learning rates scaled by the feature
importance value. The weights were also initialized so that
the more important features have higher probability of
having a larger initial weight. The heuristic being, more
important features have overall higher connection weight
while redundant features will have less influence and thus
less overall connection weight. This heuristic has been
shown to be successful experimentally; even if it doesn’t
have theoretical foundation.

CANN uses a different design by changing the search
objective instead of variation in the learning rate. CANN
considers feature weights to be the correlation between
input features and the output. The algorithm thus tries to fit
the given correlation as well as fitting data. Thus, CANN is
adding additional constraints into Backpropagation.

In this paper, CANN is applied in several real world
datasets of different domains. The performance is analyzed
and compared with many popular learning algorithms. Brief
outline of the paper: Section 2 provides the theoretical
background behind CANN, section 3 describes the actual
algorithm while section 4 shows the experimental results.
Section 5 concludes the paper.

We now describe the notation used in this paper. N is the
number of instances while K is the number of features. Ik, is
used to refer the feature importance of feature Xk. X
represents the set of all features in the data set D of a
learning model L. cov(x,y) is the covariance between x and
y. The output from a neural network is y(X) given an
instance x. Consequently, y also represents the actual output
node whenever mentioned in a subscript. The components
of neural networks are represented in a layered fashion. A
superscript always represents the source layer while
subscripts represent nodes between successive layers.
Therefore, 𝑤𝑤𝑖𝑖𝑖𝑖

𝑘𝑘 is the weight from node i of layer k to node j
of layer k+1. In the fashion, ℎ𝑖𝑖𝑛𝑛 is the output of a node j in
layer n. 𝜃𝜃𝑖𝑖 is the bias of node j. 𝛿𝛿j represents the error of unit
j; 𝛼𝛼 is the learning rate. Layerk or Lk is the set of units of
layer k, where k is 1 for the first hidden layer; Inputs(k) is
the set of all units that is input to k. 𝜇𝜇 represents mean. U is
the set of all network units.

2 Description of CANN
The notion that some features are more important to a
learning problem than others is central to machine learning.
There has been many research that attempts to provide a
measure of importance e.g FIRM [Zien et al., 2009];
Saliency [Ruck et al., 1990]. The goal of these researches
primarily was to aid feature selection. However, instead of
calculating importance, our algorithm is given the
importance values. And we would like to quantify that
importance into something in the learning model. Therefore,

before we can use the feature importance values we must
choose what feature importance means to a dataset.

Correlation coefficient is a very popular measure of the
relationship between two random variables [Rodgers &
Nicewander, 1984]. Correlation coefficient measures how
two variables linearly influence each other. In other words,
if both variables are strongly correlated, then they are
expected to change together. The correlation coefficient
between a feature and the target variable will measure how
much influence a feature has over the target variable. This is
a very good measure of importance for a feature.

We consider feature importance to be the correlation
coefficient between the output variable and the input feature
in consideration.
Definition 1. Feature Importance Ik for a feature Xk is the
true correlation coefficient between output variable y and
Xk.

𝐼𝐼𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)
𝜎𝜎𝑦𝑦𝜎𝜎𝑋𝑋𝑘𝑘

 (1)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)
𝜎𝜎𝑦𝑦𝜎𝜎𝑋𝑋𝑘𝑘

 (2)

 =
𝐸𝐸�� 𝑋𝑋𝑘𝑘 − 𝜇𝜇𝑋𝑋𝑘𝑘 � �𝑦𝑦 − 𝜇𝜇𝑦𝑦��

𝜎𝜎𝑦𝑦𝜎𝜎𝑋𝑋𝑘𝑘

𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘) = 𝐸𝐸�� 𝑋𝑋𝑘𝑘 − 𝜇𝜇𝑋𝑋𝑘𝑘��𝑦𝑦 − 𝜇𝜇𝑦𝑦��

 = 𝐸𝐸(𝑋𝑋𝑘𝑘𝑦𝑦)−𝐸𝐸(𝑦𝑦) 𝐸𝐸(𝑋𝑋𝑘𝑘)
True mean can be estimated based on the dataset as sample
mean:

𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘) =
1
n�� 𝑋𝑋𝑘𝑘𝑖𝑖 − 𝑋𝑋𝑘𝑘����� �𝑦𝑦𝑖𝑖 − 𝑦𝑦��

N

i

 = 𝑋𝑋𝑘𝑘𝑦𝑦����� − 𝑋𝑋𝑘𝑘����.𝑦𝑦� (3)

CANN algorithm is given both the training data and the
correlation values of features. The feature importance values
can be derived in different ways. It can be deduced by
experts or it can be calculated from other different datasets.
Normal Multilayer Perceptrons (MLP) only fits the training
dataset. Our goal in CANN algorithm is that the learned
neural network fits both the dataset and the correlation
values given. Thus, we would like to minimize correlation
error as well.

Let L(I , D) be the learned model over training set D and
Feature Importance set I. The learned model L will have an
output for each instance in the dataset from which
correlation coefficient can be generated. Feature Importance
is the target correlation value we want the learned model to
have over the training set.

We define correlation error Ec to be the squared error
between target correlation value Ik and the correlation
coefficient between the output of the learned model y and
input set X over training set D.

𝐸𝐸𝑐𝑐(𝐷𝐷, 𝐼𝐼) =
1
2�

[𝐼𝐼𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)]2

𝑘𝑘

 (4)

However, dataset for training is already given before
learning begins. Thus 𝜎𝜎𝑦𝑦𝜎𝜎𝑋𝑋𝑘𝑘 is a constant for this particular
training set and can be calculated beforehand from the data.
As Ik is considered the target correlation value, so using (1)
we can see that instead of fitting Ik we can fit.
𝑐𝑐𝑘𝑘 = 𝜎𝜎𝑦𝑦𝜎𝜎𝑋𝑋𝑘𝑘 Ik

𝐸𝐸𝑐𝑐(𝐷𝐷, 𝐼𝐼) =
1
2�

[ck − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)]2

𝑘𝑘

 (5)

Multilayer Perceptrons or feed-forward neural networks
have neurons or nodes that connected in a feed forward
fashion in many layers. Connection is allowed only between
successive layers. It normally has 1 input and output layer
and N hidden layers. The logistic activation function
𝜎𝜎(𝑥𝑥) = (1 + 𝑒𝑒−𝑥𝑥)−1 is the most popular. The nodes are then
trained to minimize error in a backward manner. This
algorithm is known as Backpropagation which tries to
minimize least squared error over dataset using stochastic
gradient descent to find the suitable weights for the
connections between nodes [Mitchell, 1997].
The general form of a feed-forward neural network is:

𝑦𝑦(𝒳𝒳) = 𝜎𝜎 �� 𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛 ℎ𝑖𝑖𝑛𝑛
𝑖𝑖 𝜖𝜖 𝐿𝐿𝑛𝑛

+ 𝜃𝜃𝑦𝑦� (6)

ℎ𝑖𝑖𝑘𝑘 = 𝜎𝜎 � � 𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘−1ℎ𝑖𝑖𝑘𝑘−1

𝑖𝑖 𝜖𝜖 𝐿𝐿𝑘𝑘−1

+ 𝜃𝜃𝑖𝑖 �

ℎ𝑖𝑖0 = 𝑋𝑋𝑖𝑖

The training rule for general Backpropagation is derived by
taking a partial derivative of the training error ED.

𝛥𝛥𝐸𝐸𝐷𝐷 =
1
2
𝜕𝜕𝐸𝐸𝐷𝐷
𝜕𝜕𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛

=
𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛
� (𝑡𝑡𝑑𝑑 − 𝑦𝑦𝑑𝑑)2

𝑑𝑑 𝜖𝜖 𝐷𝐷

 ∀𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛 𝜖𝜖 𝑊𝑊𝑁𝑁

 = − � (𝑡𝑡𝑑𝑑 − 𝑦𝑦𝑑𝑑)𝑦𝑦𝑑𝑑(1−𝑦𝑦𝑑𝑑)ℎ𝑖𝑖𝑁𝑁
𝑑𝑑 𝜖𝜖 𝐷𝐷

𝐻𝐻𝑒𝑒𝑐𝑐𝑒𝑒,
𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛
𝑦𝑦𝑑𝑑 = 𝑦𝑦𝑑𝑑(1−𝑦𝑦𝑑𝑑)ℎ𝑖𝑖𝑁𝑁

td = target value of the input d;
yd = output of the network for input d;
WN = Set of weights connected with the output layer.

Our algorithm works by changing the error function of
MLPs to minimize correlation error as well. We extend the
error function of normal Backpropagation to include Ec as
well. Therefore, instead of just minimizing data set error,
Backpropagation would minimize both. We would also add
a scaling constant p → [0,1] to control the weight given to
correlation based error Ec. Thus,
𝐸𝐸 = 𝑝𝑝𝐸𝐸𝐷𝐷 + (1− 𝑝𝑝)𝐸𝐸𝑐𝑐

𝛥𝛥𝐸𝐸 = p 𝜕𝜕𝐸𝐸𝐷𝐷
𝜕𝜕𝑤𝑤

+ (1 − 𝑝𝑝) 𝜕𝜕𝐸𝐸𝐶𝐶
𝜕𝜕𝑤𝑤

 ∀𝑤𝑤 𝜖𝜖 𝑊𝑊𝑁𝑁

𝜕𝜕𝐸𝐸𝐶𝐶
𝜕𝜕𝑤𝑤𝑖𝑖𝑦𝑦

𝑛𝑛 = ��ck − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)��−
𝜕𝜕
𝜕𝜕𝑤𝑤

cov(𝑦𝑦 ,𝑋𝑋𝑘𝑘)�
k

 (7)

The derivative of the covariance can be derived to be:

𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛

cov(𝑦𝑦 ,𝑋𝑋𝑘𝑘) =
𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛

1
n
�𝑋𝑋𝑘𝑘𝑌𝑌

N

i

 −𝑋𝑋𝑘𝑘���
1
𝑛𝑛
�𝑌𝑌
𝑁𝑁

𝑖𝑖

= 𝑦𝑦𝑑𝑑(1− 𝑦𝑦𝑑𝑑) �
1
n
� xkhj

N

d

− X�.
1
𝑛𝑛
�hj

N
𝑁𝑁

𝑖𝑖

�

= 𝑦𝑦𝑑𝑑(1− 𝑦𝑦𝑑𝑑)� xk . hj
N�������� − X�. hj

N���� � (8)
𝜕𝜕𝐸𝐸𝐶𝐶
𝜕𝜕𝑤𝑤 = −��𝑐𝑐𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)�𝑦𝑦𝑑𝑑(1− 𝑦𝑦𝑑𝑑)� 𝑥𝑥𝑘𝑘 .ℎ𝑖𝑖𝑁𝑁�������� − 𝑋𝑋�.ℎ𝑖𝑖𝑁𝑁 �����

𝑘𝑘

 (9)

The training rule for normal Backpropagation is normally
derived using stochastic gradient descent so that the whole
dataset is not iterated to make one change [Mitchell, 1997].
The training for output layer calculates the error which is
then propagated backward into lower layers. The error for
output in simple Backpropagation is simply a changed –ED
which is not summed over all dataset,

𝛿𝛿𝑑𝑑∗ = (𝑡𝑡𝑑𝑑 − 𝑦𝑦𝑑𝑑)𝑦𝑦𝑑𝑑(1−𝑦𝑦𝑑𝑑)ℎ𝑖𝑖𝑁𝑁

Hence, for CANN we can also use stochastic gradient
descent. Thus the error term for CANN:

𝛿𝛿𝑑𝑑

= 𝑦𝑦𝑑𝑑(1−𝑦𝑦𝑑𝑑)�
𝑝𝑝(𝑡𝑡𝑑𝑑 − 𝑦𝑦𝑑𝑑)ℎ𝑖𝑖𝑁𝑁 +

(1− 𝑝𝑝)��𝑐𝑐𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)� �𝑥𝑥𝑘𝑘 .ℎ𝑖𝑖𝑁𝑁�������� − 𝑋𝑋𝑘𝑘����.ℎ𝑖𝑖𝑁𝑁 �����
𝑘𝑘

�

Therefore, this is the new error function used by
Backpropagation.

∆𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘 = �

𝛼𝛼𝛿𝛿𝑑𝑑 ; 𝑓𝑓𝑐𝑐𝑐𝑐 𝐿𝐿𝐿𝐿𝑦𝑦𝑒𝑒𝑐𝑐𝑁𝑁

𝛼𝛼 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 � 𝛿𝛿𝑝𝑝𝑘𝑘+1𝑤𝑤𝑖𝑖𝑝𝑝𝑘𝑘+1

𝑝𝑝 𝜖𝜖 𝐿𝐿𝑘𝑘+1

; 𝑓𝑓𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑐𝑐 𝑙𝑙𝐿𝐿𝑦𝑦𝑒𝑒𝑐𝑐𝑙𝑙 � (10)

3 Implementation of CANN
The training rule of CANN includes sample Covariance and
sample Mean terms that must be calculated over the entire
dataset each time a single instance is iterated. This is
computationally very costly. We cannot pre-calculate the
Mean terms because they depend on the output of the
network for each instance; which is in turn dependent on the
configuration of the network. Each time a weight is updated,
the sample Mean also changes.

So, instead of calculating the means every time, we use
Memoization and iterative improvement to calculate Mean.
This requires some space, but the order of the space
complexity remains unchanged.

The idea is to keep a table or array that stores the element
of the mean indexed by instance number. Sample Mean is
nothing but the weighted sum of all the element points. So,
�̅�𝐴 = 𝐴𝐴1

𝑛𝑛
+ 𝐴𝐴2

𝑛𝑛
… . 𝐴𝐴𝑛𝑛

𝑛𝑛

Thus, if the output value of one training instance is changed,
the changed Mean can be calculated just by subtracting the
previous value and adding the new value. This is the reason
for storing element values in a table. For each instance in
the training set, we calculate the new value of the network
and then replace the value in the table with the new value
and also change the Mean by subtract-add formula just
described.

For example, we require 𝑌𝑌� to calculate covariance
according to (3). The table Ty holds weighted output of the
network for each training instance.
𝑇𝑇𝑦𝑦𝑖𝑖 ∶=

𝑦𝑦(𝑖𝑖)
𝑛𝑛

 ∀𝑖𝑖 𝜖𝜖 𝐷𝐷
Initially, after initializing the weights of the network we
calculate the initial output for each data point, populate Ty
and calculate the initial Mean 𝑦𝑦� . During Backpropagation
training, we will calculate new Mean as:

𝑦𝑦� ∶= 𝑦𝑦�∗ − 𝑇𝑇𝑦𝑦𝑖𝑖 +
𝑦𝑦(𝑖𝑖)
𝑛𝑛

This moving average is not the real Mean, but it will
eventually reach convergence after several training epochs
through the dataset. This is similar to the stochastic gradient
descent approach used for updating weights.

We will calculate 𝑋𝑋𝑘𝑘𝑌𝑌����� , xk . hj
N�������� , hj

N���� & 𝑦𝑦� in this way. The
space required for each mean calculation is O(N) where N is
the number of instances in the training set. If there are K
features then overall space required will be O(NK) which is
also the space complexity for simple MLP.

4 Empirical evaluation
We tested CANN with datasets from the University of
California, Irvine (UCI) repository. The datasets chosen
have relatively higher number of features and are also
known to be especially difficult. The data sets used are
described below:

1. Soybeen-Large: Instances: 683, Attributes: 35, All
nominal, 19 classes.

2. Spambase: Instances: 4601 (1813 Spam = 39.4%),
Attributes: 58 (57 continuous, 1 nominal class label).

3. Promoter Gene Sequences: Instances: 936(236
positive), Attributes: 58, nominal, 2 classes and
Expert Domain theory.

4. Cardiac Arrhythmia: Instances: 452, Attributes:
279, mostly real including some binary, 16 classes.

5. Annealing: Instances: 798, Attributes: 38, 29
nominal and the rest numeric, 6 classes.

The algorithms compared include both classic and new but
high performing ones. We tested standard Feed-forward
Neural Network [Mitchell, 1997], C4.5 [Quinlan, 1993],
Support Vector Machines [Vapnik, 1998], K-Nearest
Neighbour, and Naïve Bayes [Mitchell, 1997a].

Methods Soybeen Spambase Promoter Arrhythmia. Annealing

IANN 87.45 89.57 87.83 55.73 90.32

MLP 86.80 89.76 85.33 62.44 88.23

CANN 89.05 91.35 91.42 69.16 91.39

C4.5 82.69 91.52 81.98 66.81 89.30

SVM 87.35 80.91 85.23 52.76 81.95

Near. N. 85.04 88.78 85.64 57.97 88.86

Nai. Bay 88.32 78.22 94.30 64.15 73.71

Best result CANN C4.5 Nai.Ba CANN CANN

Table 1: Experiment results in percent Accuracy (50% test-set)

In order to have a valid correlation based knowledge, we
decided to calculate the correlation of features using the full
dataset. This was done for all the datasets except promoters
which has an associated Expert knowledge. The Importance
values for Promoters dataset was derived from that
knowledge. These correlation values were given to CANN.
The algorithms were then trained using 50% of the data and
the rest was used as test set. Experiments are averaged over
20 iterations. The results are shown in Table 1.

Methods Soybeen Spambase Promoter Arrhythmia. Annealing

IANN 87.45 89.57 87.83 55.73 90.32

MLP 87.56 91.76 86.75 62.38 91.47

CANN 89.05 91.35 91.42 69.16 91.39

C4.5 80.93 90.78 85.04 64.60 87.75

SVM 89.35 81.91 86.75 50.88 84.85

Near. N. 83.51 90.65 85.64 48.23 90.97

Nai. Bay 88.85 78.65 94.53 59.73 77.95

Best result CANN MLP Na.Bay CANN CANN

Table 2: Experiment result: 85% feature selection (50% train set)

The results show clear difference between CANN and
normal Neural Network. CANN outperforms MLP
significantly in all datasets. The difference is more
pronounced in the difficult datasets such as Arrhythmia or
Promoters where the average performance over all the
algorithms is lower. CANN generally outperforms all other
algorithms. Except in Promoters and Spambase where a
particular algorithm outmatches all others.

Figure 1: The learning curve for 4 datasets

This reason is a problem can be specifically suitable for a
particular algorithm. But even then CANN performs next
best. The performance difference between and IANN and
MLP is not statistically significant. IANN outperforms MLP
in some datasets slightly. However, no general trend
emerges. So, CANN clearly makes a better use the feature
importance weight given.

The next experiment shown in Table 2 is when feature
selection was used for the inductive algorithms while
CANN and IANN used the full feature set. 15% features
were removed using Chi-squared evaluation ranking. 50%
of the datasets was used for training and the rest for tests.
The results in Table 2 show that using feature selection does
not always improve performance. Apart from few changes
the performance makeup almost remained unchanged. Some
of the algorithms had a better performance in a dataset while
the performance actually decreased in some. There is no
uniform trend. The results for MLP slightly increased in
some cases. It surpassed CANN only in the Spambase
dataset. But overall the advantage of CANN over normal
MLP and other algorithms remained. CANN performed the
best on average.

Another insight is that IANN was outperformed by MLP
when feature selection was used. So, feature selection and
MLP combination was better than IANN But not better than
our algorithm.

In the figure 1, the learning curves are shown for the
datasets. The comparison is between MLP and CANN. It is

evident from the curves that CANN initially performs better
and learns faster. As dataset size increases, MLP eventually
closes the performance gap. However, this trend was not
true in all cases, the performance gap depended on the
difference between the correlation value provided to CANN
and the correlation makeup of the dataset. If the correlations
of the dataset are close to true correlation then CANN will
show less performance improvement as there will be no
knowledge advantage; which is the case for Spambase
which performs better than CANN. On the other hand, The
feature weights for promoters were derived from an expert
domain theory. So, it always outperforms normal MLP.

5 Related works
The research on using different error function other squared
error has been comprehensive. Many different and seeming-
ly exotic error functions have been tried with success
[Haykin, 1998]. However, the use of domain knowledge
instead of training on data only has been limited. The
KBANN family of algorithms incorporated rule based
domain theory by initializing both the network structure and
the weights [Towell & Shavlik, 1994]. The use of additional
constraints along with the tradition error function has been
explored before. This is called constraint based learning.
Certain derivatives of the target function can be specified in
prior. This approach has been explored by Simard et al. in
TangentProp [Simard et al., 1992] which provided

0
15
30
45
60
75
90

0 200 400 600 800 1000

CANN MLPAc
cu

ra
cy

Instances

0
15
30
45
60
75
90

0 500 1000 1500 2000 2500

CANN MLPAc
cu

ra
cy

Instances

50

65

80

95

110

0 200 400 600 800 1000

CANN MLPAc
cu

ra
cy

Instances

30

45

60

75

0 100 200 300 400 500

CANN MLPAc
cu

ra
cy

Instances

Promoters Annealing

Spambase Arrhythmia

additional constraint to Backpropagation to fit the input
derivatives. Knowledge-based SVM used domain knowl-
edge provided as additional constraints into Support Vector
Machines [Fung et al., 2002]. Abu Mustafa showed how to
provide hints as additional constraint [AbuMostafa, 1995].

6 Conclusion
We have proposed a well performed approach of
incorporating feature importance into neural network
learning. The performance of such a learner shows feature
importance aided learners can achieve superior performance
over ordinary inductive learners. Removing irrelevant
features by feature selection is a good approach, however
Expert knowledge is available in some domains or
correlation of same features could be calculated from a
different problem dataset as well. This extra knowledge
could be transferred to CANN to attain higher performance.
This approach of incorporating feature importance into
learners is worthy of further development. Possible future
applications of this algorithm will be areas where related
machine learning problems are being solved or where expert
knowledge is available. The future research areas can be
modifications of existing popular empirical learners so that
they utilize feature importance. Correlation coefficient aided
algorithms maybe developed for algorithms such as Support
Vector Machines; Decision Tree based algorithms or
Bayesian classifiers.

Current machine learning algorithms rely too much on
training examples. Incorporating more and more domain
knowledge or using the knowledge from related problem
area is the way for improvement. Our proposed method
shows how improvements can be had from such methods.

References
[AbuMostafa, 1995] AbuMostafa, Y.S., 1995. Hints. Neural

Computation, (7).

[Bekkerman et al., 2003] Bekkerman, R., El-Yaniv, R.,
Tishby, N. & Winter., Y., 2003. Distributional word
clusters vs. words for text categorization. JMLR, 3,
p.1183–1208.

[Fung et al., 2002] Fung, G., Mangasarian, O. & Shavlik, J.,
2002. Knowledge-Based Support Vector Machine
Classifiers. In Proceedings of Sixteenth Conference on
Neural Information Processing Systems (NIPS).
Vancouver, Canada, 2002.

[Guyon & Elisseeff, 2003] Guyon, I. & Elisseeff, A., 2003.
An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 3, pp.1157-82.

[Haykin, 1998] Haykin, S., 1998. Neural Networks: A
Comprehensive Foundation. 2nd ed. Prentice Hall.

[Iqbal, 2011] Iqbal, R.A., 2011. Empirical learning aided by
weak knowledge in the form of feature importance. In
CMSP'11. Guilin, China, 2011. IEEE.

[Kearns & Vazirani, 1994] Kearns, M. & Vazirani, U.,
1994. An Introduction to Computational Learning Theory.
MIT Press.

[Leray & Gallinari, 1998] Leray, P. & Gallinari, P., 1998.
Feature Selection with Neural Networks. Behaviormetrika,
26.

[Marcus, 1989] Marcus, S.(.)., 1989. Special issue on
knowledge acquisition. Mach. Learn., 4.

[Mitchell, 1997a] Mitchell, T.M., 1997a. Machine Learning.
McGraw-Hill.

[Mitchell, 1997] Mitchell, T.M., 1997. Artificial neural
networks. In Mitchell, T.M. Machine learning. McGraw-
Hill Science/Engineering/Math. pp.81-126.

[Quinlan, 1993] Quinlan, J.R., 1993. C4.5: Programs for
Machine Learning. San Mateo, CA: Morgan Kaufmann.

[Rodgers & Nicewander, 1984] Rodgers, L. & Nicewander,
W.A., 1984. Thirteen ways to look at the correlation
coefficient. The American Statistician, 42(1), p.59–66.

[Ruck et al., 1990] Ruck, D.W., Rogers, S.K. & Kabrisky,
M., 1990. Feature Selection Using a Multilayer
Perceptron. Journal of Neural Network Computing, 2,
pp.40-48.

[Scott, 1991] Scott, A..C.J..&.G.E., 1991. A practical guide
to knowledge acquisition. Addison-Wesley.

[Simard et al., 1992] Simard, P.S., Victoni, B., LeCun, Y. &
Denker, J., 1992. Tangent prop-A formalism for
specifying selected invariances in an adaptive network. In
Advances in Neural Information Processing Systems. San
Mateo, CA, 1992. Morgan Kaufmann.

[Towell & Shavlik, 1994] Towell, G.G. & Shavlik, J.W.,
1994. Knowledge-based artificial neural networks. Artif.
Intel., 70, pp.50-62.

[Vapnik, 1998] Vapnik, V.N., 1998. Statistical Learning
Theory. New York: Wiley.

[ZHANG & WANG, 2010] ZHANG, L. & WANG, Z.,
2010. Ontology-based Clustering Algorithm with Feature
Weights. Journal of Computational Information Systems,
6(9).

[Zien et al., 2009] Zien, A., Kramer, N., Sonnenburg, S. &
Ratsch, G., 2009. The Feature Importance Ranking
Measure. In ECML 09., 2009.

	1 Introduction
	2 Description of CANN
	3 Implementation of CANN
	4 Empirical evaluation
	5 Related works
	6 Conclusion
	References

