
Abstract 
Different features have different relevance to a 
particular learning problem. Some features are less 
relevant; while some very important. Instead of 
selecting the most relevant features using feature 
selection, an algorithm can be given this 
knowledge of feature importance based on expert 
opinion or prior learning. Learning can be faster 
and more accurate if learners take feature 
importance into account. Correlation aided Neural 
Networks (CANN) is presented which is such an 
algorithm. CANN treats feature importance as the 
correlation coefficient between the target attribute 
and the features. CANN modifies normal feed-
forward Neural Network to fit both correlation 
values and training data. Empirical evaluation 
shows that CANN is faster and more accurate than 
applying the two step approach of feature selection 
and then using normal learning algorithms. 

1 Introduction 
Feature selection is a popular method to improve 
performance of inductive machine learning algorithms. 
Many learning problems have a large feature set with many 
redundant features. Thus, extracting useful features for 
learning improves performance considerably [Guyon & 
Elisseeff, 2003]. However, feature selection algorithms are 
only preprocessors that select and modify a dataset, 
discarding less relevant features. After this preprocessing 
stage, machine learning algorithms treat all the features with 
equal importance. However, less-relevant features may still 
contribute much in the learning problem, so totally 
discarding them may impede accuracy; This is the reason 
feature selection degrades performance in some cases. 
While some features can be more important to the learning 
problem. So, a ranking based on importance towards the 
learning problems can be generated. In fact, such ranking 
measures are used in many feature selection algorithms 
[Leray & Gallinari, 1998; Bekkerman et al., 2003; Ruck et 
al., 1990]. 

Moreover, the principal problem in machine learning is 
not just having accuracy. But it is to maintain high accuracy 

if given less amount of data. Training data is scarce in most 
fields. In the data mining problems, having data is not an 
issue as the goal is to learn from massive data warehouses. 
However, most learning problems in which we have not 
made good progress are the ones where data is limited. 
Hence, high accuracy with scarce data is a must for real 
world use of machine learning. 

But most machine learning algorithms are inductive and 
require large portion of data. The amount of data needed is 
the focus of statistical learning theory [Kearns & Vazirani, 
1994]. However, developing more and more refined 
inductive algorithms is not the solution to the scarcity of 
data problem. As per learning theory, there is a fundamental 
limit on how much knowledge can be learned from a set of 
data. So, the only solution is to provide external knowledge 
along with data. 

The focus of this paper is to learn faster if given external 
knowledge in the form of feature importance weight. Instead 
of treating all features equally, if the learners treat features 
based on their importance and use this knowledge of 
importance in learning, then they have been shown to 
perform better. [Iqbal, 2011; ZHANG & WANG, 2010]. 
This is a new field in machine learning research that has 
been gaining attention. IANN (Importance aided Neural 
Network) [Iqbal, 2011] extended Multilayer Perceptrons 
[Mitchell, 1997] to use Feature Importance values. Domain 
knowledge was provided as feature weights, a real value in 
[0,1] range to represent the importance of a feature. IANN 
performed better than many empirical learning algorithms. 
IANN also required significantly less training data to 
perform well. Which is much more important than improved 
accuracy as acquiring training data is expensive in most 
domains [Scott, 1991; Marcus, 1989] . 

Our research uses a different approach than the IANN 
system. We present CANN (Correlation aided neural 
network) a neural network system that can use feature 
importance values in the learning process to attain better 
performance.  It is more robust and theoretically sound than 
IANN. While IANN is based on heuristics with little 
theoretical justification, CANN is based on the same 
principles as Neural Network (NN) Backpropagation itself. 
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IANN algorithm used the feature importance values by 
changing the learning rate based on importance. The 
connections between the input features and the first hidden 
layer nodes had different learning rates scaled by the feature 
importance value. The weights were also initialized so that 
the more important features have higher probability of 
having a larger initial weight. The heuristic being, more 
important features have overall higher connection weight 
while redundant features will have less influence and thus 
less overall connection weight. This heuristic has been 
shown to be successful experimentally; even if it doesn’t 
have theoretical foundation.  

CANN uses a different design by changing the search 
objective instead of variation in the learning rate. CANN 
considers feature weights to be the correlation between 
input features and the output. The algorithm thus tries to fit 
the given correlation as well as fitting data. Thus, CANN is 
adding additional constraints into Backpropagation. 

In this paper, CANN is applied in several real world 
datasets of different domains. The performance is analyzed 
and compared with many popular learning algorithms. Brief 
outline of the paper: Section 2 provides the theoretical 
background behind CANN, section 3 describes the actual 
algorithm while section 4 shows the experimental results. 
Section 5 concludes the paper. 

We now describe the notation used in this paper. N is the 
number of instances while K is the number of features. Ik, is 
used to refer the feature importance of feature Xk. X 
represents the set of all features in the data set D of a 
learning model L. cov(x,y) is the covariance between x and 
y. The output from a neural network is y(X) given an 
instance x. Consequently, y also represents the actual output 
node whenever mentioned in a subscript. The components 
of neural networks are represented in a layered fashion. A 
superscript always represents the source layer while 
subscripts represent nodes between successive layers. 
Therefore, 𝑤𝑤𝑖𝑖𝑖𝑖

𝑘𝑘  is the weight from node i of layer k to node j 
of layer k+1. In the fashion, ℎ𝑖𝑖𝑛𝑛  is the output of a node j in 
layer n. 𝜃𝜃𝑖𝑖  is the bias of node j. 𝛿𝛿j represents the error of unit 
j; 𝛼𝛼 is the learning rate. Layerk or Lk is the set of units of 
layer k, where k is 1 for the first hidden layer; Inputs(k) is 
the set of all units that is input to k. 𝜇𝜇 represents mean. U is 
the set of all network units. 

2 Description of CANN 
The notion that some features are more important to a 
learning problem than others is central to machine learning. 
There has been many research that attempts to provide a 
measure of importance e.g FIRM [Zien et al., 2009]; 
Saliency [Ruck et al., 1990]. The goal of these researches 
primarily was to aid feature selection. However, instead of 
calculating importance, our algorithm is given the 
importance values. And we would like to quantify that 
importance into something in the learning model. Therefore, 

before we can use the feature importance values we must 
choose what feature importance means to a dataset. 

Correlation coefficient is a very popular measure of the 
relationship between two random variables [Rodgers & 
Nicewander, 1984]. Correlation coefficient measures how 
two variables linearly influence each other. In other words, 
if both variables are strongly correlated, then they are 
expected to change together. The correlation coefficient 
between a feature and the target variable will measure how 
much influence a feature has over the target variable. This is 
a very good measure of importance for a feature. 

We consider feature importance to be the correlation 
coefficient between the output variable and the input feature 
in consideration.  
Definition 1. Feature Importance  Ik for a feature Xk is the 
true correlation coefficient between output variable y and 
Xk. 
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True mean can be estimated based on the dataset as sample 
mean:  
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CANN algorithm is given both the training data and the 
correlation values of features. The feature importance values 
can be derived in different ways. It can be deduced by 
experts or it can be calculated from other different datasets. 
Normal Multilayer Perceptrons (MLP) only fits the training 
dataset. Our goal in CANN algorithm is that the learned 
neural network fits both the dataset and the correlation 
values given. Thus, we would like to minimize correlation 
error as well.  

Let L(I , D) be the learned model over training set D and 
Feature Importance set  I.  The learned model L will have an 
output for each instance in the dataset from which 
correlation coefficient can be generated. Feature Importance 
is the target correlation value we want the learned model to 
have over the training set. 

We define correlation error Ec to be the squared error 
between target correlation value Ik and the correlation 
coefficient between the output of the learned model y and 
input set X over training set D. 
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However, dataset for training is already given before 
learning begins. Thus 𝜎𝜎𝑦𝑦𝜎𝜎𝑋𝑋𝑘𝑘  is a constant for this particular 
training set and can be calculated beforehand from the data. 
As Ik is considered the target correlation value, so using (1) 
we can see that instead of fitting Ik we can fit. 
𝑐𝑐𝑘𝑘 =   𝜎𝜎𝑦𝑦𝜎𝜎𝑋𝑋𝑘𝑘 Ik  
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1
2�

[ck − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑋𝑋𝑘𝑘)]2

𝑘𝑘

                                                 (5) 

Multilayer Perceptrons or feed-forward neural networks 
have neurons or nodes that connected in a feed forward 
fashion in many layers. Connection is allowed only between 
successive layers. It normally has 1 input and output layer 
and N hidden layers. The logistic activation function 
𝜎𝜎(𝑥𝑥) = (1 + 𝑒𝑒−𝑥𝑥)−1 is the most popular. The nodes are then 
trained to minimize error in a backward manner. This 
algorithm is known as Backpropagation which tries to 
minimize least squared error over dataset using stochastic 
gradient descent to find the suitable weights for the 
connections between nodes [Mitchell, 1997]. 
The general form of a feed-forward neural network is: 

𝑦𝑦(𝒳𝒳) = 𝜎𝜎 �� 𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛  ℎ𝑖𝑖𝑛𝑛
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+  𝜃𝜃𝑦𝑦�                                               (6) 
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+  𝜃𝜃𝑖𝑖 � 

ℎ𝑖𝑖0 = 𝑋𝑋𝑖𝑖  

The training rule for general Backpropagation is derived by 
taking a partial derivative of the training error ED. 

𝛥𝛥𝐸𝐸𝐷𝐷 =
1
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𝜕𝜕𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛
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td    = target value of the input d; 
yd   = output of the network for input d; 
WN = Set of weights connected with the output layer. 

Our algorithm works by changing the error function of 
MLPs to minimize correlation error as well. We extend the 
error function of normal Backpropagation to include Ec as 
well. Therefore, instead of just minimizing data set error, 
Backpropagation would minimize both. We would also add 
a scaling constant p → [0,1] to control the weight given to 
correlation based error Ec. Thus,  
𝐸𝐸 = 𝑝𝑝𝐸𝐸𝐷𝐷 + (1− 𝑝𝑝)𝐸𝐸𝑐𝑐    

𝛥𝛥𝐸𝐸 = p 𝜕𝜕𝐸𝐸𝐷𝐷
𝜕𝜕𝑤𝑤

+ (1 − 𝑝𝑝) 𝜕𝜕𝐸𝐸𝐶𝐶
𝜕𝜕𝑤𝑤

     ∀𝑤𝑤 𝜖𝜖 𝑊𝑊𝑁𝑁  
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The derivative of the covariance can be derived to be: 
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The training rule for normal Backpropagation is normally 
derived using stochastic gradient descent so that the whole 
dataset is not iterated to make one change [Mitchell, 1997]. 
The training for output layer calculates the error which is 
then propagated backward into lower layers. The error for 
output in simple Backpropagation is simply a changed –ED 
which is not summed over all dataset, 

𝛿𝛿𝑑𝑑∗ =  (𝑡𝑡𝑑𝑑 − 𝑦𝑦𝑑𝑑)𝑦𝑦𝑑𝑑(1−𝑦𝑦𝑑𝑑)ℎ𝑖𝑖𝑁𝑁 

Hence, for CANN we can also use stochastic gradient 
descent. Thus the error term for CANN: 

𝛿𝛿𝑑𝑑

= 𝑦𝑦𝑑𝑑(1−𝑦𝑦𝑑𝑑)�
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Therefore, this is the new error function used by 
Backpropagation. 

∆𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘 =  �
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3 Implementation of CANN 
The training rule of CANN includes sample Covariance and 
sample Mean terms that must be calculated over the entire 
dataset each time a single instance is iterated. This is 
computationally very costly. We cannot pre-calculate the 
Mean terms because they depend on the output of the 
network for each instance; which is in turn dependent on the 
configuration of the network. Each time a weight is updated, 
the sample Mean also changes. 

So, instead of calculating the means every time, we use 
Memoization and iterative improvement to calculate Mean. 
This requires some space, but the order of the space 
complexity remains unchanged. 



The idea is to keep a table or array that stores the element 
of the mean indexed by instance number. Sample Mean is 
nothing but the weighted sum of all the element points. So,  
�̅�𝐴 = 𝐴𝐴1

𝑛𝑛
+ 𝐴𝐴2

𝑛𝑛
… . 𝐴𝐴𝑛𝑛

𝑛𝑛
  

Thus, if the output value of one training instance is changed, 
the changed Mean can be calculated just by subtracting the 
previous value and adding the new value. This is the reason 
for storing element values in a table. For each instance in 
the training set, we calculate the new value of the network 
and then replace the value in the table with the new value 
and also change the Mean by subtract-add formula just 
described. 

For example, we require 𝑌𝑌� to calculate covariance 
according to (3). The table Ty holds weighted output of the 
network for each training instance. 
𝑇𝑇𝑦𝑦𝑖𝑖 ∶=

𝑦𝑦(𝑖𝑖)
𝑛𝑛

         ∀𝑖𝑖 𝜖𝜖 𝐷𝐷       
Initially, after initializing the weights of the network we 
calculate the initial output for each data point, populate Ty 
and calculate the initial Mean 𝑦𝑦�  . During Backpropagation 
training, we will calculate new Mean as: 

𝑦𝑦� ∶=  𝑦𝑦�∗ − 𝑇𝑇𝑦𝑦𝑖𝑖 +
𝑦𝑦(𝑖𝑖)
𝑛𝑛  

This moving average is not the real Mean, but it will 
eventually reach convergence after several training epochs 
through the dataset. This is similar to the stochastic gradient 
descent approach used for updating weights. 

We will calculate 𝑋𝑋𝑘𝑘𝑌𝑌����� , xk . hj
N�������� , hj

N���� & 𝑦𝑦� in this way. The 
space required for each mean calculation is O(N) where N is 
the number of instances in the training set. If there are K 
features then overall space required will be O(NK) which is 
also the space complexity for simple MLP. 

4 Empirical evaluation 
We tested CANN with datasets from the University of 
California, Irvine (UCI) repository. The datasets chosen 
have relatively higher number of features and are also 
known to be especially difficult. The data sets used are 
described below: 

1. Soybeen-Large: Instances: 683, Attributes: 35, All 
nominal, 19 classes. 

2. Spambase: Instances: 4601 (1813 Spam = 39.4%), 
Attributes: 58 (57 continuous, 1 nominal class label). 

3. Promoter Gene Sequences: Instances: 936(236 
positive), Attributes: 58, nominal, 2 classes and 
Expert Domain theory. 

4. Cardiac Arrhythmia: Instances: 452, Attributes: 
279, mostly real including some binary, 16 classes. 

5. Annealing: Instances: 798, Attributes: 38, 29 
nominal and the rest numeric, 6 classes. 

The algorithms compared include both classic and new but 
high performing ones. We tested standard Feed-forward 
Neural Network [Mitchell, 1997], C4.5 [Quinlan, 1993], 
Support Vector Machines [Vapnik, 1998], K-Nearest 
Neighbour,  and Naïve Bayes [Mitchell, 1997a]. 

Methods Soybeen Spambase Promoter Arrhythmia. Annealing 

IANN 87.45 89.57 87.83 55.73 90.32 

MLP 86.80 89.76 85.33 62.44 88.23 

CANN 89.05 91.35 91.42 69.16 91.39 

C4.5 82.69 91.52 81.98 66.81 89.30 

SVM 87.35 80.91 85.23 52.76 81.95 

Near. N. 85.04 88.78 85.64 57.97 88.86 

Nai. Bay 88.32 78.22 94.30 64.15 73.71 

Best result CANN C4.5 Nai.Ba CANN CANN 

Table 1: Experiment results in percent Accuracy (50% test-set) 

In order to have a valid correlation based knowledge, we 
decided to calculate the correlation of features using the full 
dataset. This was done for all the datasets except promoters 
which has an associated Expert knowledge. The Importance 
values for Promoters dataset was derived from that 
knowledge. These correlation values were given to CANN. 
The algorithms were then trained using 50% of the data and 
the rest was used as test set. Experiments are averaged over 
20 iterations. The results are shown in Table 1. 

Methods Soybeen Spambase Promoter Arrhythmia. Annealing 

IANN 87.45 89.57 87.83 55.73 90.32 

MLP 87.56 91.76 86.75 62.38 91.47 

CANN 89.05 91.35 91.42 69.16 91.39 

C4.5 80.93 90.78 85.04 64.60 87.75 

SVM 89.35 81.91 86.75 50.88 84.85 

Near. N. 83.51 90.65 85.64 48.23 90.97 

Nai. Bay 88.85 78.65 94.53 59.73 77.95 

Best result CANN MLP Na.Bay CANN CANN 

Table 2: Experiment result: 85% feature selection (50% train set) 

The results show clear difference between CANN and 
normal Neural Network. CANN outperforms MLP 
significantly in all datasets. The difference is more 
pronounced in the difficult datasets such as Arrhythmia or 
Promoters where the average performance over all the 
algorithms is lower. CANN generally outperforms all other 
algorithms. Except in Promoters and Spambase where a 
particular algorithm outmatches all others.  



   

 
 
   

 
 
 

   

 
 

   

Figure 1: The learning curve for 4 datasets

This reason is a problem can be specifically suitable for a 
particular algorithm. But even then CANN performs next 
best. The performance difference between and IANN and 
MLP is not statistically significant. IANN outperforms MLP 
in some datasets slightly. However, no general trend 
emerges. So, CANN clearly makes a better use the feature 
importance weight given. 

The next experiment shown in Table 2 is when feature 
selection was used for the inductive algorithms while 
CANN and IANN used the full feature set. 15% features 
were removed using Chi-squared evaluation ranking. 50% 
of the datasets was used for training and the rest for tests. 
The results in Table 2 show that using feature selection does 
not always improve performance. Apart from few changes 
the performance makeup almost remained unchanged. Some 
of the algorithms had a better performance in a dataset while 
the performance actually decreased in some. There is no 
uniform trend. The results for MLP slightly increased in 
some cases. It surpassed CANN only in the Spambase 
dataset. But overall the advantage of CANN over normal 
MLP and other algorithms remained. CANN performed the 
best on average. 

Another insight is that IANN was outperformed by MLP 
when feature selection was used. So, feature selection and 
MLP combination was better than IANN But not better than 
our algorithm. 

In the figure 1, the learning curves are shown for the 
datasets. The comparison is between MLP and CANN. It is 

evident from the curves that CANN initially performs better 
and learns faster. As dataset size increases, MLP eventually 
closes the performance gap. However, this trend was not 
true in all cases, the performance gap depended on the 
difference between the correlation value provided to CANN 
and the correlation makeup of the dataset. If the correlations 
of the dataset are close to true correlation then CANN will 
show less performance improvement as there will be no 
knowledge advantage; which is the case for Spambase 
which performs better than CANN. On the other hand, The 
feature weights for promoters were derived from an expert 
domain theory. So, it always outperforms normal MLP.  

5 Related works 
The research on using different error function other squared 
error has been comprehensive. Many different and seeming-
ly exotic error functions have been tried with success 
[Haykin, 1998]. However, the use of domain knowledge 
instead of training on data only has been limited. The 
KBANN family of algorithms incorporated rule based 
domain theory by initializing both the network structure and 
the weights [Towell & Shavlik, 1994]. The use of additional 
constraints along with the tradition error function has been 
explored before. This is called constraint based learning. 
Certain derivatives of the target function can be specified in 
prior. This approach has been explored by Simard et al. in 
TangentProp [Simard et al., 1992] which provided 
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additional constraint to Backpropagation to fit the input 
derivatives. Knowledge-based SVM used domain knowl-
edge provided as additional constraints into Support Vector 
Machines [Fung et al., 2002]. Abu Mustafa showed how to 
provide hints as additional constraint [AbuMostafa, 1995]. 

6 Conclusion 
We have proposed a well performed approach of 
incorporating feature importance into neural network 
learning. The performance of such a learner shows feature 
importance aided learners can achieve superior performance 
over ordinary inductive learners. Removing irrelevant 
features by feature selection is a good approach, however 
Expert knowledge is available in some domains or 
correlation of same features could be calculated from a 
different problem dataset as well. This extra knowledge 
could be transferred to CANN to attain higher performance. 
This approach of incorporating feature importance into 
learners is worthy of further development. Possible future 
applications of this algorithm will be areas where related 
machine learning problems are being solved or where expert 
knowledge is available. The future research areas can be 
modifications of existing popular empirical learners so that 
they utilize feature importance. Correlation coefficient aided 
algorithms maybe developed for algorithms such as Support 
Vector Machines; Decision Tree based algorithms or 
Bayesian classifiers. 

Current machine learning algorithms rely too much on 
training examples. Incorporating more and more domain 
knowledge or using the knowledge from related problem 
area is the way for improvement. Our proposed method 
shows how improvements can be had from such methods. 
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