---
abstract: |-
Many real-world processes tend to be chaotic and are not amenable to satisfactory
analytical models. It has been shown here that for such chaotic processes represented
through short chaotic noisy observed data, a multi-input and multi-output recurrent
neural network can be built which is capable of capturing the process trends and
predicting the behaviour for any given starting condition. It is further shown that
this capability can be achieved by the recurrent neural network model when it is
trained to very low value of mean squared error. Such a model can then be used
for constructing the Bifurcation Diagram of the process leading to determination
of desirable operating conditions. Further, this multi-input and multi-output model
makes the process accessible for control using open-loop / closed-loop approaches
or bifurcation control etc.
altloc:
- http://www.sciencedirect.com/science?_ob=ArticleURL&_aset=V-WA-A-W-W-MsSAYWW-UUW-U-AACUWADWYV-AAVDDEYUYV-YZYDVBEED-W-U&_rdoc=2&_fmt=summary&_udi=B6V4N-4GKWHWK-1&_coverDate=01%2F31%2F2006&_cdi=5763&_orig=search&_st=13&_sort=d&view=c&_acct=C000050221&_versi
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Jallu
given: Krishnaiah
honourific: ''
lineage: ''
- family: Kumar
given: C.S.
honourific: ''
lineage: ''
- family: Faruqi
given: M.A.
honourific: ''
lineage: ''
date: 2006-01
date_type: published
datestamp: 2006-05-25
department: ~
dir: disk0/00/00/48/81
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name: []
eprint_status: archive
eprintid: 4881
fileinfo: /style/images/fileicons/application_pdf.png;/4881/1/jpc%2Dmaf2.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: |-
Bifurcation Diagram, Recurrent Neural Networks, Multivariate
Chaotic Time-series, Chaotic Process
lastmod: 2011-03-11 08:56:25
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: 1
pagerange: 67-79
pubdom: FALSE
publication: Journal Process Control
publisher: Elsevier
refereed: TRUE
referencetext: ~
relation_type: []
relation_uri: []
reportno: ~
rev_number: 12
series: ~
source: ~
status_changed: 2007-09-12 17:03:15
subjects:
- comp-sci-mach-dynam-sys
- comp-sci-mach-learn
- comp-sci-neural-nets
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: |-
Modelling and control of chaotic processes
through their Bifurcation Diagrams generated
with the help of Recurrent Neural Networks
models Part 2 - Industrial Study
type: journalp
userid: 6346
volume: 16