
Haskell Rules: Embedding Rule Systems in Haskell

Steve Kollmansberger Martin Erwig
Oregon State University

{kollmast,erwig}@eecs.oregonstate.edu

Abstract
We present a domain-specific embedded language that al-
lows the definition of rule systems in Haskell. As one par-
ticular example, we consider the modeling of type systems,
which is an important part of programming language design.
Type systems are most conveniently described using rule
systems. Our approach is well integrated into Haskell’s type
system and thus facilitates the convenient modeling of type
systems and language semantics in general. We also demon-
strate how our DSEL allows functional-logic programming
in Haskell.

Our system generalizes previous work by operating on
user-defined data types, taking advantage of static typing,
representing rules as functions, and allows a creative integra-
tion of logical variables into data structures which general-
izes two previous approaches. We describe a straightforward
method for translating rule systems into our DSEL.

Keywords Rule Systems, Haskell, Language Prototyping,
Domain-Specific Embedded Languages, Functional-Logic
Programming, Generic Unification

1. Introduction
Modeling type systems is an important part of programming
language design. Type systems are typically defined through
rule systems. More generally, any static or dynamic language
semantics can be represented using rule systems. Implement-
ing these rule systems into actual code can present a signifi-
cant challenge. Until recently, rule systems could be directly
transcribed only into logic languages, such as Prolog [6] or
Twelf [15]. To implement a rule system in a functional lan-
guage without writing lots of tedious unification code one
can switch to a functional-logic language, such as Mercury
[20] or Curry [9], but this has the drawback of losing li-
braries and code already written in Haskell. Moreover, tools
or development environments might not be reusable between
Haskell and other languages. Alternatively, one could ex-
tend functional programming with logic features. However,
this approach has several shortcomings. In particular, many
implementations of “Prolog in Haskell” are untyped and do
not allow a smooth integration between the logical and func-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

tional aspects. This paper presents a method for directly
modeling rule systems in Haskell in a type-safe, integrated,
and flexible fashion.

Performing rule-based computation requires two funda-
mental components: searching and unification. Thus, a sim-
ple backtracking monad is not sufficient. One approach to
this problem was attempted by Spivey and Seres [21]. Their
approach uses types such as Predicate and Answer to rep-
resent logical computations along with a set of foundational
logic combinators. However, this approach requires explicit
use of logical operators, whereas in rule system these tend
to be implicitly represented by various rules (or) and vari-
ous premises (and). In addition, atoms must be represented
using the provided type Term and rules using the provided
type Predicate. This is neither flexible nor functional. Al-
though our system uses a similar representation in the back-
end, users of Spivey and Seres’ system must deal explicitly
with the Term type, while users of our system need not ever
know it exists.

Spivey and Seres’ work is extended by Claessen and
Ljunglöf [5]. The latter provides a complete environment
where logical programs can be defined and solved. However,
defining custom functions to operate on logical types is not
easy, as no delay functionality is provided. To use additional
pre-defined list functions, such as reverse, these would have
to be redefined in a logical representation or added to the
library itself.

By contrast, we present a method which allows a near
mechanical transformation of rules into code. This code
is represented using a DSEL, that is, a domain-specific
embedded language which takes full advantage of Haskell
functions, syntax, and type checking, but which is not overly
burdened with housekeeping concerns. Our system allows
the user to choose their own data structures (not just lists)
and use their own or built-in functions which operate on
those structures (not just those we have provided).

Consider the rules defining a type system for lambda cal-
culus. These rules define the relation between an environ-
ment, a term, and a type in the form Γ ` e :: t. In our
approach, we encode the relation as a function. In this case,
we choose to take an environment and a term as input and
produce a type as output. In general, any relation must be
broken into input and output portions before being repre-
sented in our system. This can be a weakness compared to
general logic programming, as a new rule system must be
generated for each relation of input and output types. How-
ever, for our purposes, we find this limitation to be not a
problem. Each rule is then translated into a function, named
after the rule, which takes a value (or tuple of values) and
produces a monadic computation of the output type. For
lambda calculus, we take a tuple of environment and term

1 2006/5/30

(Env, Expr) and produce a type U Type. The U monad is
discussed in detail in Section 3.

In this example, the environment is simply a list of
identifiers and types. An expression can consist of a variable,
an application, or a lambda abstraction. Types are limited
to several base types, functions, and also logical variables
(LVar), which are used for unification.

data Expr = Var String
| App Expr Expr
| Abs String Expr

data Type = TVar LVar
| TInt
| TBool
| Fun Type Type

type Env = [(String, Type)]

To translate a rule, a function is created whose arguments
match the input part of the conclusion Consider, for exam-
ple, the rule for application in lambda calculus.

App

Γ ` e :: t′ → t Γ ` e′ :: t′

Γ ` e e′ :: t

We create the following function to represent this rule. In
order to avoid a runtime pattern match failure, each rule
which depends on matching an input pattern must have a
catch-all case which can simply fail in the U monad using
the none value. The U monad, described in detail later, is a
non-deterministic backtracking monad which stores logical
substitutions and a counter for logical variables. The none
value is a synonym for mzero, which terminates the current
branch of searching.

app (env, App e e’) = do
[t, t’] <- newVars 2
(env, e) .>. Fun t’ t
(env, e’) .>. t’
return t

app _ = none

We observe that both premises are written using the .>.
function which associates an input with a desired output.

(.>.) :: Judgment i o => i -> o -> U ()

The precise definition of .>. and Judgment will be given
later.

Logical variables that are used are introduced using the
newVars function. The newVars function returns a list of
fresh variables. In this case, we ask for two fresh variables.
Originally, we attempted to use lazy evaluation to return an
infinite list of fresh variables, but since these are generated
monadically, this was not successful. The final output part of
the conclusion is then indicated at the end of the rule. The
do notation is used to sequence monadic values, and the
return function encapsulates a result value into the monad.

In contrast to many embeddings of logic programming
in functional languages, our DSEL does not attempt to
represent general logic programs, but takes a syntax-directed
approach. That is, the application of a rule (or perhaps
several) are decided by the current working value. Thus,
in type inference, the application rule is tried only when an
application is being considered.

For completeness, here are the rules for variables and
abstraction, and the functions implementing them.

Var

Γ(v) = t

Γ ` v :: t

var (env, Var v) =
case (lookup v env) of

Just t -> return t
Nothing -> none

var _ = none

Abs

Γ, v :: t′ ` e :: t

Γ ` λv.e :: t′ → t

abs (env, Abs v e) = do
[t, t’] <- newVars 2
((v,t’):env, e) .>. t
return (Fun t’ t)

abs _ = none

As these examples show, our DSEL completely abstracts
away the work of unification and backtracking. We allow
user-defined data structures with logical variables to be
generated and solved. But is this sufficient? Imagine if we
want to add polymorphism to the above-shown lambda
calculus. First, we will extend the type representation Type
to include universal quantification.

data Type = ...
| Forall LVar Type

We also add a Let constructor to expressions.

data Expr = ...
| Let String Expr Expr

We need some way of handling type schemas. In this case,
we can define a function which operates on the environment
and a given type to return a type schema that quantifies free
type variables.

gen :: Env -> Type -> Type
gen env t = foldr Forall t (fvt \\ fve)

where fvt = nub $ findvars t
fve = nub $ concatMap

(findvars.snd) env

The function findvars finds all variables in a type.

findvars :: Type -> [LVar]
findvars (Fun x y) = findvars x++findvars y
findvars (TVar x) = [x]
findvars _ = []

We can then modify the variable rule to generate types
from universally quantified fresh variables. To be able to do
this, we need to take each Forall constructor and replace
the variable it indicates with a new, fresh variable. The
replacement is performed using the function sub, which
takes a value, and searchs the value for instances of the
second parameter, replacing them with the third parameter.

forall :: Type -> U Type
forall (Forall t x) = do

t’ <- newVar
let x’ = sub x (TVar t) t’
forall x’

forall x = return x

However, we cannot simply use forall as-is. The type
passed into forall may include logical variables that have
not been instantiated. Thus, we need a version of forall
which is aware of logical variables.

In order to perform generalization a type must be fully
known. It is not possible to generalize a type that still
has pending substitutions. The variables (placeholders) that
have pending substitution do not relate to the variables in

2 2006/5/30

the environment, and so the appropriate selection of vari-
ables to generalize is not possible while there are unresolved
logical variables. For example, if we wish to generalize the
type of the term λx.x, we expect to have an initial type of
the form a → a. However, this type does not appear until
after substitution. Initially, only some logical variable b is
known, with substitutions in the monad that can be unified
to produce the full type.

If we mistakenly assume that this logical variable repre-
sents the type, we would thus return the general type ∀b.b.
When the variable rule is called on such a term, with unifi-
cation not yet occurred, the variable b would be updated to
a fresh variable, say, c, and the constraint of a → a would
be lost.

In this way, a logical-aware version of forall will wait
until unification has produced a type before substituting
fresh variables. This delay can be done automatically using
lifting functions provided by the DSEL. This lifting is noted
by Chin, et al. to be “important in many applications” but
“non-trivial” [4].

The function ufM (short for unary-function-monad) lifts
a monadic function with one parameter to be delayed until
unification has completed as much as possible. The imple-
mentation of these lifting functions with respect to delayed
computations is discussed in Section 2.

forall’ = ufM forall

We can now use forall’ in the variable rule to allow
polymorphism.

var (env, Var v) =
case lookup v env of

Just t -> forall’ t
Nothing -> none

Likewise, simply using the gen function as-is would result
in premature generalization. We can lift this function to
wait until the type is complete before applying Forall
constructors.

gen’ env = uf (gen env)

The environment need not be a parameter to the lifted
function since it is not subject to unification. The function
uf (unary-function) lifts a function of one parameter. The
distinction between uf, ufM, and other lifting functions is
based on the input and output types of the function to be
lifted. Previously, we used ufM to lift the function forall
which has the type Type -> U Type. In general, ufM will lift
any function which has the type a -> U a. Likewise, gen
env has the type Type → Type. A function of type a -> a
is lifted using the uf function. We can now use the gen’
function in the rule to allow let polymorphism.

Let

Γ, v :: t′ ` e′ :: t′ Γ, v :: gen(Γ, t′) ` e :: t

Γ ` let v = e′ in e :: t

Using the gen’ function, we translate this rule in the same
way as the others.

letr (env, Let v e’ e) = do
[t, t’] <- newVars 2
((v,t’):env, e’) .>. t’
c <- gen’ env t’
((v, c):env, e) .>. t
return t

letr _ = none

To complete the definition of the type system all the rules
have to be collected in a list called rules.

rules :: [(Env, Expr) -> U Type]
rules = [var, app, abs, letr]

The DSEL then allows inference to be applied to some input
value to produce a possibly empty list of output values. An
empty result list would occur, for example, if a term was
type incorrect. When, for example, we ask for the type of
the term λx.x.

> infer ([], Abs "x" (Var "x"))
[Fun (TVar (VarRep 2)) (TVar (VarRep 2))]

The infer function is provided by the DSEL and applies the
given rules to an input value. In this case, the input value
is the empty environment and the identity function. One
output is produced, which tells us that the identity function
has the type a→ a. We could also try applying the identity
function to a variable which we define in the environment.

> infer ([("t", TBool)],
App (Abs "x" (Var "x")) (Var "t"))

[TBool]

Using our rule DSEL, the type inference algorithm for
lambda calculus, and indeed, many others, can be specified
in a simple way, directly derived from the inference rules
themselves with minimal overhead.

In the rest of this paper, we will first discuss the high-
level design and use of the rule DSEL in Section 2. Next, we
will describe some of the low-level details of the unification
monad in Section 3. In Section 4, we will also show how
experimental type system extensions can easily be modeled
and modified using the rule DSEL. A functional-logical
programming example is shown in Section 5. Related work
will then be discussed in Section 6. Finally, we will give
concluding words in Section 7.

2. The Rule DSEL
The Rule DSEL is built on three main components: a
unification algorithm, a substitution solver, and a non-
deterministic state monad. Several primitive operators are
also provided to help the translation from rule systems di-
rectly into DSEL code. We describe the DSEL and its imple-
mentation using a simple application of finding free variables
in a lambda expression. Although finding free variables can
easily be done simply by using functions, it serves here to
demonstrate the concepts underlying our approach. The se-
mantic rules for free variables are shown in Figure 1.

Var

v ` {v}

App

e1 ` V e2 ` V ′

e1 e2 ` V ∪ V ′

Abs

e ` V
λv.e ` V − {v}

Figure 1. Free variable rules.

We first need a representation for expressions.

3 2006/5/30

data Expr = Var String
| App Expr Expr
| Abs String Expr

The free variable predicate associates expressions with sets
of variable names. The function representing the predicate
will therefore produce a list of strings, each representing a
variable name. For union we will simply use the list concate-
nation operator combined with nub to remove duplicates.
Any data structure to be used as an output type, however,
must support logical variables.

There are two main ways of storing a logical variable
within a data type. The standard way is to add a constructor
for the logical variables. However, if using built-in data
types, such as lists, this can be awkward since a new version
of the data type must be constructed.

data LList a = LCons a (LList a)
| LNil
| LVar LVar

This can be very tedious, especially if there are a number
of different data types. An alternate approach, devised by
Chin et al. [4], is to place the logical variables outside the
original data structure.

data L a = LV LVar | V a

In the data structure L, LV indicates a logical variable,
while V indicates a value. This approach has the advantage
that built-in data types, such as lists, can be used without
defining a whole new structure. However, it does not allow
using logical variables inside a data structure, such as is
required with type inference. Thus, both approaches have
merit. Our system does not require one or the other, but
supports both by allowing any user defined data structure
to be used.

We choose to use the second representation (L a) for log-
ical variables rather than creating a new list data type, be-
cause we don’t need embedded logical variables (a list where
some elements are explicitly given and others are logical) for
this example. In such a case, the second representation is
simpler. Sometimes, embedded logical variables are needed,
such as in type inference. For example, consider the defini-
tion of types with variables. We can define a→ b using Fun
(LVar ...) (LVar ...) in the first representation because
the logical variable constructor fits with the type expected
by the Fun constructor. Such a specification, however, is not
possible with the second representation. Thus, while the sec-
ond representation may be convenient, it is sometimes insuf-
ficient to represent all desired terms.

The relationship of input and output types in rules is
formalized with the type class Judgment, which allows a set
of rules to be associated with a typed relationship. An n-ary
relationship is represented with n−k arguments and k result
types. The user must therefore decide in advance which
types in the relationship are part of the input and which are
part of the output. This requirement is a critical difference
between our system and general logic programming. In this
example we have one input type (Expr) and one output type
([String]). Examples with more argument and result types
will be shown later in the paper. The requirement Unifiable
is shorthand for the various class memberships that the
unification algorithm requires. The monad U (which stands
for unification) is a non-deterministic state monad which
contains current substitutions and delayed computations.
The rules list of functions indicates all of the rules, each

of which takes an input i and produces a monadic output.
The types i and o together represent the n-ary relationship.

class (Eq a, Data a, Read a) => Unifiable a

class Unifiable o =>
Judgment i o | i -> o where

rules :: [i -> U o]

In our example, there are three syntactic constructs to
handle, so there will be three rules. For variables, we simply
return the variable. However, since the result type is not
simply a list, but a list wrapped in a logical structure, we
have to account for this representation in constructing the
value. We allow users to define an isomorphic relationship
between a base data structure (which does not need to
contain logical variables) and the non-logical subset of the
extended version, which does.

class Isomorphic a o | a -> o where
to :: a -> o
from :: o -> a

Thus, we need only establish the isomorphic representation
and then write the rules.

instance Isomorphic [a] (L [a]) where
to = V
from (V x) = x

In this case, we can convert from the simple version using a
plain list to the logical-aware version using the function to.
This function will continue to operate correctly even if we
decide later to change the logical-aware representation. The
first rule, var, simply indicates that a variable is itself free.
The to function is used to transform the list into the chosen
logical-aware representation.

var (Var x) = return (to [x])

For application, we acquire the free variables of the function
and its parameter, and concatenate them together, remov-
ing duplicates. However, we need some way of performing
list concatenation ((++) :: [a] -> [a] -> [a]) on lists
ensconced within the logical structure. In other words, we
need a function that takes parameters of type L [a] in this
case, or LList a if we had chosen to add a constructor for
the logical variables within the data type.

The Isomorphic class is used for automatically lifting
functions on type a into those on type o, and embedding
them into the monad. Since we have defined an isomor-
phism between [a] and L [a], we can simply use the binary-
function lifting operator bf. Each lifting function requires
its parameters to be members of the Isomorphic type class.
This function delays the function in the monad until sub-
stitutions are as resolved as possible, and then uses the iso-
morphic relationship to translate the parameters to the non-
logical version and back again. In particular, the monad runs
through the rules, collecting substitutions and delayed func-
tions. All substitutions are then resolved as much as possible,
then each function is applied in sequence, followed by any
additional possible resolution of substitutions.

For example, imagine we are using the representation L
[Int] and wish to concatenate two lists. We could easily
have the following values:

l1 = LV (VarRep 1)
l2 = V [1,2,3]

4 2006/5/30

The first is merely a logical variable, the second an instan-
tiated list. Both are of type L [Int]. How can these two
be concatenated? In their current form, this is simply not
possible. If we were assured that there would be no logical
variables, we could write a function which concatenated the
lists.

lcat (V x) (V y) = V (x++y)

This is fine, except there is no such guarantee that logi-
cal variables will not be present. The way to attain it is
to apply unifications to reduce logical variables, and then
apply the concatenation. For example, perhaps there exists
a substitution VarRep 1 7→ [4,5]. In this case, we would
first use unification to reduce l1 to [4,5] and then apply
the function lcat. The lifting functions combines these op-
erations, creating a new function (like lcat) based on the
given function and performing unification to remove logical
variables from the parameters. Lifting is needed whenever
logical variables may be present in the input of a function.

Unification operates on a single structured representation
(explained in the next section). The function mkGS converts
any unifiable type into a structure of type GS (generic struc-
ture), which unification operates on. Lifting functions, in
general, first transform the input types into a type GS using
mkGS. Since these terms may include logical variables, the
function cannot be applied to them. Instead, the function
and its parameters are stored. This combination of a func-
tion and its parameters (which need to be unified before
they are applied) is called a package, and is represented by
the type GFS (generic function structure). As packages may
contain functions which take different numbers of parame-
ters, the parameters are represented as a list. This allows
one type (GFS) to hold unary functions, binary functions,
and so on.

newtype GFS = GFS ([GS] -> U GS, [GS])

In order to construct the function, all the parameters must
be taken as a list, converted from GS back to their original
type (using the from function), the function applied to them,
and then the result converted back into the GS type.

In the implementation of bf shown below, the function
f’ cannot be immediately evaluated since x’ and y’ still
may have logical variables and thus cannot be converted
using frGS. Instead, the bind function takes the package
(consisting of a function and its parameters) and stores it in
the monad where it will be evaluated after the parameters
have undergone unification. The DSEL provides several lift-
ing functions (each for a different function type), and addi-
tional lifting functions can be written following this pattern.
One such function we have seen before is bf (binary-function
lift). Its implementation is shown below as an illustration.
The complete implementation of all lifting functions is avail-
able in the source code [17].

bf :: (Isomorphic a o, Wrapable o, Unifiable o) =>
(a -> a -> a) -> o -> o -> U o

bf f x y = do
a’ <- newVar
bind (GFS (f’, [x’,y’])) a’
return a’
where x’ = mkGS x

y’ = mkGS y
f’ = (\[x,y]->return $

mkGS $ to $ f
(from $ frGS x)
(from $ frGS y)

Continuing our example, we can define .++., which can be
used in place of ++, and all the unification issues will be
resolved automatically. Likewise, a similar lifting function
for unary functions can be used to lift the nub function,
which removes duplicates from a list.

(.++.) = bf (++)
nub’ = uf nub

The only remaining obstacle to defining the application rule
is the ability to bind the recursive results of the two sub-
expressions to logical variables. First, all logical variables to
be used must be generated.

Within a rule, fresh logical variables are generated using
newVar, or its plural version. It generates a monadic, new
LVar (which is simply an integer wrapped in a special type
for the unification algorithm’s use).

class Wrapable o where
wrap :: LVar -> o

newVar :: Wrapable o => U o
newVar = newLVar >>= return . wrap

The class Wrapable defines how a logical variable is stored
within a data type. The Wrapable class can easily be instan-
tiated for both versions of logical lists shown previously.

instance Wrapable (LList a) where
wrap = LVar

instance Wrapable (L a) where
wrap = LV

The application rule can then be defined by tying each sub-
expression to a variable (representing a list) and concatenat-
ing them. Here again lifting is clearly necessary, as otherwise
v and v’ would simply be variables. After unification, they
become lists.

app (App e1 e2) = do
[v,v’] <- newVars 2
e1 .>. v
e2 .>. v’
(v .++. v’) >>= nub’

app _ = none

Besides using functions and encapsulated logical variables
in data structures, the main thrust of the DSEL is tying
input values to output values. This is done using the function
suppose, or .>. in infix. The suppose function first takes the
input value and recursively applies the rules to it to find all
possible outputs. Next, these outputs and the desired output
are both converted to the unification type and unified.

5 2006/5/30

If unification succeeds (meaning the desired output and
actual output are compatible), the generated substitutions
are added to the monad. Otherwise, none indicates that this
branch is not successful.

suppose :: Judgment i o => i -> o -> U ()
suppose input output = do

iv <- try input rules
let iv’ = mkGS iv
let output’ = mkGS output
case gunify iv’ output’ of

Just x -> merge x >> return ()
Nothing -> none

(.>.) = suppose

Finally, for lambda abstractions, we consider the free vari-
ables in the lambda body, minus the bound variable. We
also need to lift the list difference function \\ using bf.

(.\\.) = bf (\\)

abs (Abs v e) = do
v’ <- newVar
e .>. v’
v’ .\\. (to [x])

abs _ = none

We then complete the relationship between the input type
Expr and the output type L [String] by defining an in-
stance of the type class Judgment.

instance Judgment Expr (L [String]) where
rules = [var, app, abs]

Once the rules are complete, the DSEL provides a “run”
function infer which takes a given input and determines all
successful outputs based on the rules. The definition of this
and other functions can be found in the source code [17].

infer :: Judgment i o => i -> [o]

The infer function returns the empty list if no result can
be constructed. For example, attempting to determine the
type for a type-incorrect input would result in the empty
list. Multiple results can be returned if there are multiple
paths through the rule system which produce different valid
results.

With infer we can determine the free variables of various
expressions. The V constructor in the return values is due to
the container for values and logical variables. In each case,
one result is returned, showing the list of free variables (if
any) in the expression.

vx = Var "x"
vy = Var "y"

> infer vx
[V ["x"]]

> infer (Abs "x" vx)
[V []]

> infer (App vx (Abs "x" (App vx vy)))
[V ["x","y"]]

3. Supporting Monad and Unification
The basis of the search and unification is the non-
deterministic state transformer monad. This monad carries

a function from initial state to final state. The monad also
instantiates the MonadPlus class, which allows searching and
termination of branches when a solution is not possible. Note
that for simplicity, we are using a naive backtracking monad.
For implementation purposes, a more efficent monad, such
as the on given by Hinze [10], would be appropriate.

newtype NDSM s a =
NDSM {unNDSM :: (s -> [(s,a)])}

The monad instance contains three pieces of state: a counter
for producing new logical variables, a list of unification
substitutions, and a list of delayed computations and their
parameters. Recall that GS is the generic structure for any
type and GFS holds lifted functions.

type U b =
NDSM (LVar, [(GS,GS)], [(GS,GFS)]) b

Substitutions are generated using the suppose operator. For
example, if we infer the type of λx.x, we start with its
representation Abs "x" (Var "x"). We first apply the Abs

rule, which generates two new variables t and t′. Assuming
that x has type t′, we infer the type of x (represented
by Var "x") using the Var rule. The Var rule looks in
the environment and finds that x has the type t′. The
variable t′ is bound (through the premise of the Abs rule)
to t. The resulting type t′ → t is returned. This leaves a
final set of substitutions like [(a, Fun t’ t), (t, t’)]
The unification algorithm reduces these substitutions and
determines that the principal type (as given by a) is Fun t’
t’, or a→ a.

The logical variable counter is kept through incrementing
an integer every time a variable is handed out. We make
LVar an instance of Enum so that the successor function can
be used to generate new variables. The function newLVar
increments the current max variable counter and returns
the new variable.

newtype LVar = VarRep Int

instance Enum LVar where
fromEnum (VarRep x) = x
toEnum x = VarRep x

newLVar :: U LVar
newLVar = NDSM (\(i,x,z)->

[((succ i,x,z),succ i)])

The list of substitutions is generated by the unification algo-
rithm at each suppose and merged in by partial evaluation
to ensure that the substitutions are in the most reduced form
possible. Once all substitutions have been received (the in-
put value fully handled by the rules) and all substitutions
resolved as much as possible, the delayed functions are exe-
cuted.

Consider the example of list concatenation. In this case,
we wish to take two lists and generate a new list. How-
ever, the lists exist only in substitutions. For example, we
may have the substitutions {a 7→ [1,2,3], b 7→ [4,5,6]}
and the concatenation a .++. b. Since a and b are logical
variables (of type LVar), they cannot be concatenated. In-
stead, unification must be applied, and then the result can
be concatenated and bound to a new variable, such as [(c,
[1,2,3,4,5,6]).

Delay of function calls is essential for two purposes.
First, many functions (such as list concatenation) cannot

6 2006/5/30

operate on logical variables—all logical variables must be
instantiated so that the value can be converted to the
isomorphic representation, which does not include logical
variables. This can only happen when substitutions to fully
instantiate a term are available. For every logical variable
in a term, there must exist a substitution to replace it
(perhaps transitively) with a non-logical value. Second, some
operations (such as type generalization) would be too broad
if applied to a logical variable, and must instead be applied
to the most constrained possible instantiation. For example,
if a substitution ties b to a → a, and this type is to be
generalized, it is important that unification occurs and the
type ∀a.a→ a be generated and not ∀b.b.

The result of the function is then paired with the original
value and used to further evaluate substitutions. If at any
time contradictory substitutions are detected, that branch
of searching is terminated.

Once all delayed functions have been executed and each
branch has produced its result, all results are grouped to-
gether and are returned as a list by the previously mentioned
infer function.

The unification algorithm is quite standard, except that
it must operate on a wide variety of data types. Normally,
this could be handled with Haskell generics, as attempted in
[16]. However, this approach has a critical weakness: Since
we need to store a list of unification substitutions, all the
substitutions must be of the same type. If a data structure
contains items of a different type, the substitutions will not
be homogeneous. Consider the following data structures.

data A = A1 Int | A2 B
data B = B2 Int

In this case, values of type A may contain subvalues of type
B. A list of substitutions of type [(A,A)] would not be
able to store a substitution for any values on type B. Many
approaches, such as those discussed in the Introduction,
force the user to adopt an untyped representation to deal
with this problem. We want to allow such data types to
be used automatically, and so generic programming is not
suitable for our DSEL.

Instead, we automatically convert typed data structures
to and from an untyped representation. This representation
ensures that the structures will remain type correct since all
external usages are protected by Haskell typing rules. We
first note that, fundamentally, all data structures are either
some primitive value (integer, character, etc.) or a construc-
tor with zero or more parameters. We retain the name and
infix status of a constructor. The latter is important for con-
verting back to the type. In addition, we retain a marking for
logical variables, which are recognized in the unification al-
gorithm. The GS type need only support all primitive types,
along with a method for representing logical variables and
constructors, to be complete. The user does not need to add
to this type to represent their data.

data GS = GSVar Int
| GSCons CS [GS]
| GSInt Int
| GSChar Char
| ...

data CS = CS {csInfix :: Bool,
csName :: String}

This embedding of logical variables allows partially con-
structed instances that are not possible in some systems

which require logical variables to be separate from the data
types they represent, as discussed in [4].

To convert from a given data type to the general type GS,
we use Haskell generics to traverse the structure.

mkGS :: Data a => a -> GS

In order to convert back, however, we cannot use Haskell
generics since more than one type may be involved. There-
fore, we construct a string representation which is then read
back into the data type. This is where the infix status of the
constructor is involved. Lists are handled as a special case
since they use a non-standard representation. The definition
of frGS is given in the source code [17].

frGS :: Read a => GS -> a

We then apply the standard unification algorithm to values
of type GS to attain substitutions.

gunify :: GS -> GS -> Maybe [(GS,GS)]

The substitution solver takes a list of unification substitu-
tions and attempts to determine a canonical instance for
each logical variable, that is, it attempts to resolve all open
unifications. If this is possible, the substitutions are com-
patible and the solver returns the list of canonical instances.
Otherwise, the solver fails.

4. An Application: Type Change
Inference

In this section, we discuss an application of the rule DSEL in
language prototyping. We show how to extend the lambda
calculus type inference system to permit type error correc-
tions to be inferred automatically. We then show an alter-
native approach to this problem and how it is very simple
to transform the code to match the new approach.

Since the earliest automated type inference algorithms,
researchers have attempted to improve type error messages.
The primary problem has been that type errors reflect a
compiler’s understanding and may not necessarily point out
what change a programmer should make. In many cases,
the error messages include terminology specific to the type-
inference algorithm and are distant from the actual code
the programmer is attempting to debug. McAdam indicated
that type errors should be more like feedback from a spell
checker—offering concrete corrections without requiring un-
derstanding of the inner workings of the type system [14].

One approach to solving this problem is to model a type
system that accepts all programs and returns not only a
type but a set of changes which would make the program
correct in the traditional Hindley/Milner system. This can
be accomplished by returning a pair consisting of a type
and a type-change expression. A type-change expression
consists of an expression and two types. These three together
mean to change the given expression from one type to any
expression of the other type. Since these change expressions
will be part of the output, they will also need to support
logical variables.

data Expr = ...
| Chg Expr Type Type
| EVar LVar

Although we are adding only one (non-logical variable) con-
structor to Expr, an entirely new set of rules must be created
to output a type and an expression instead of just a type.

7 2006/5/30

We can model these rules on the original Hindley/Milner
inference rules, extending them to include δ, an expression
with changes. The formal syntax of change expressions is
shown in Figure 2.

δ ::= δ δ | λv.δ | let v = δ in δ | δ :: t t

Figure 2. Syntax of type-change expressions.

For each Hindley/Milner rule, we also consider how it
could “go wrong”. For example, the Var rule only works if
the variable is in the environment. Therefore, we introduce
a second rule, Undef, for the case when the variable is not
in the environment. The application rule can go wrong if the
function doesn’t have a function type, or if the parameter
doesn’t match the function type. Therefore, we add two
rules, Par and Arg, which suggest changing the function
and its argument, respectively. The rules define judgments of
the form Γ; δ ` e :: t which say that given an environment Γ
and a type-change expression δ we can derive a type correct
expression e that has type t. The complete rules are shown
in Figure 3.

The Undef rule also requires that we add a constructor
for the undefined type to Type.

data Type = ...
| Undef

In order to represent this system in our DSEL, we first need
to determine the input/output relation we wish to use. The
parameters in the rule system are environment, type-change
expression, expression, and type. Of these, we will provide
as input the environment and the expression, and receive as
output the change expression and its type.

We then need to convert functions (or other non-recursive
uses) into Haskell code and lift if necessary. Lifting is needed
whenever a parameter may include a logical variable. In
the above example, there are three functions: Γ(v), which
looks up a variable in the environment, v /∈ dom(Γ) which
determines that a variable is not present in the environment,
and gen, which we have previously discussed.

Determining whether or not a variable is present and
finding its value can be accomplished with the function
lookup. We can use both cases to represent Var and Undef

with a single rule function.

var (env, va@(Var v)) =
case lookup v env of

Just t -> do
t’ <- forall’ t
return (va,t’)

Nothing -> do
t <- newTVar
return (Chg (Var v) Undef t, t)

var _ = none

The Just case is essentially the same as the original type
inference rules, except that it returns both the expression
and its type. If the variable is not found in the environment,
a change expression is generated, along with an unbound
type. The unbound type will be constrained by its use,
and this will be propagated automatically into the change
expression.

The application rule introduces a twist: Although we
do not have any changes to the application, there may
be changes needed in either subexpression. Therefore, the

expressions cannot be returned as they are—instead, logical
variables must be used. There are two separate lists of
variables generated, one being variables for types (t and
t’) and the other being variables for expressions (d and d’).
Since these variables have different types (Type and Expr,
respectively), we must generate them separately.

app (env, (App e e’)) = do
[t’,t] <- newVars 2
[d’,d] <- newVars 2
(env, e) .>. (d, (Fun t’ t))
(env, e’) .>. (d’, t’)
return (App d d’, t)

app _ = none

The rule system also states two ways this could “go wrong”,
as indicated in the Par and Arg rules. In order to enforce
the inequality constraint, we can use the DSEL-provided
not equals operator, ./=., which for logical applications
means “cannot be unified”. For the Arg rule, we assert that
the argument may be of some arbitrary type that does not
match the function parameter. In that case, we change the
argument to match.

arg (env, (App e e’)) = do
[t,t’,t’’] <- newVars 3
[d,d’] <- newVars 2
(env, e) .>. (d, (Fun t’ t))
(env, e’) .>. (d’, t’’)
t’ ./=. t’’
return (App d (Chg d’ t’’ t’), t)

arg _ = none

The Par rule starts out the same—it assumes the same
premises, only returning a different conclusion. This time
the change brings the function in line with the argument.

par (env, (App e e’)) = do
[t,t’,t’’] <- newVars 3
[d,d’] <- newVars 2
(env, e) .>. (d, (Fun t’ t))
(env, e’) .>. (d’, t’’)
t’ ./=. t’’
return (App (Chg d

(Fun t’ t) (Fun t’’ t)) d’, t)
par _ = none

A similar transformation is permitted for the Let rule—we
can change the definition to an arbitrary new type using the
Def rule.

def (env, (Let v e’ e)) = do
[t,t’,t’’] <- newVars 3
[d,d’] <- newVars 2
((v,t’):env, e’) .>. (d’, t’’)
m <- gen’ t’
((v, m):env, e) .>. (d, t)
t’’ ./=. t’
return (Let v (Chg d’ t’’ t’) d,t)

def _ = none

The Let rule appears similarly, without the change in types.
Since let is a reserved word in Haskell, we name the function
for this rule letr.

8 2006/5/30

Var

Γ(v) = t

Γ; v ` v :: t

Undef

v /∈ dom(Γ)

Γ; v :: t ` v :: t

App

Γ; δ ` e :: t′ → t Γ; δ′ ` e′ :: t′

Γ; δ δ′ ` e e′ :: t

Arg

Γ; δ ` e :: t′ → t Γ; δ′ ` e′ :: t′′ t′ 6= t′′

Γ; δ (δ′ :: t′′ t′) ` e e′ :: t

Par

Γ; δ ` e :: t′ → t Γ; δ′ ` e′ :: t′′ t′ 6= t′′

Γ; (δ :: t′ → t t′′ → t) δ′ ` e e′ :: t

Abs

Γ, v :: t′; δ ` e :: t

Γ;λv.δ ` λv.e :: t′ → t

Let

Γ, v :: t′; δ′ ` e′ :: t′ Γ, v :: gen(Γ, t′); δ ` e :: t

Γ; let v = δ′ in δ ` let v = e′ in e :: t

Def

Γ, v :: t′; δ′ ` e′ :: t′′ Γ, v :: gen(Γ, t′); δ ` e :: t t′′ 6= t′

Γ; let v = δ′ :: t′′ t′ in δ ` let v = e′ in e :: t

Figure 3. Type-change-constrained typing rules.

letr (env, (Let v e’ e)) = do
[t,t’] <- newVars 3
[d,d’] <- newVars 2
((v,t’):env, e’) .>. (d’, t’)
m <- gen’ t’
((v, m):env, e) .>. (d, t)
return (Let v d’ d,t)

letr _ = none

Abstraction has no particular point of change, except per-
haps the body. Since there are no detailed constraints placed
on the body, we let recursive rules do the work to make
changes within the body of a lambda abstraction.

abs (env, (Abs v e)) = do
[t,t’] <- newVars 2
d <- newVar
((x,t’):env, e) .>. (d, t)
return (Abs v d, Fun t’ t)

abs _ = none

We then define a Judgment instance from environment and
expression to expression and type.

instance Judgment (Env,Expr) (Expr,Type) where
rules = [app, var, abs,

letr, arg, par, def]

We can then use this rule system to correct type errors
in expressions. To illustrate the working of the system, we
define a simple base environment with several constants.

baseenv = [("1", TInt), ("t", TBool),
("plus", Fun TInt (Fun TInt TInt)),
("not", Fun TBool TBool)]

The standard Hindley/Milner rule system would return only
one output for a type-correct expression, and no outputs
for a type-incorrect expression. The described type-change
system may return several outputs for a type-incorrect ex-
pression, each representing a different way to correct the
problem.

> infer (baseenv, (App (Var "not") (Var "1")))
[(not (1 :: Int ~> Bool),Bool),
((not :: Bool->Bool ~> Int->Bool) 1,Bool)]

For the expression not 1, the system recommends either
replacing the 1 with a Boolean value, or replacing not with
a function that accepts an integer.

The system also suggests multiple changes as needed to
make an expression type correct. Consider the expression

plus t t. In this case, either the plus needs to change, or
both the parameters.

> infer (baseenv,
(App (App (Var "plus") (Var "t")) (Var "t")))
[(plus (t :: Bool ~> Int)

(t :: Bool ~> Int),Int),
...]

We used this implementation to experiment on various type
errors. This system was found to work reasonably well. In
some cases, however, it showed poor performance. After
some discussion, we realized there is a simpler way to model
type changes—instead of having a set of rules for all the
possible “go wrong” scenarios, simply allow the variable
rule to introduce either a change or not. This rule system
has the advantage of being simpler (fewer rules), but the
disadvantage of potentially introducing changes when they
are not needed. Would this new representation improve or
hurt performance?

Fortunately, our DSEL allows models to be constructed
and modified quickly. We can easily alter the system shown
so far to make changes only at variables. First, we need to
add a new variable change rule that indicates a change of
type.

VChg

Γ(v) = t

Γ; v :: t t′ ` v :: t′

Since the DSEL automatically tries all rules, each variable
reference will match two rules: the traditional variable rule
Var and our new variable change rule VChg.

vchg (env, (Var x)) = case lookup x env of
Just y -> do

a <- newVar
y’ <- forall’ y
return (Chg (Var x) y’ a, a)

Nothing -> none
vchg _ = none

We can now easily model an alternate system allowing
changes only at the variable level by removing other change
rules (Par, Arg, and Def) and adding VChg.

instance Judgment (Env,Expr) (Expr,Type) where
rules = [app, var, abs, letr, vchg]

As expected, this new system returns the same results as the
original one. But what about performance? We found that

9 2006/5/30

this reduced rule system performed better than the original
type change inference system in some cases, but worse in
others. A fast algorithm to predict which system is faster in
any given case remains under development.

The point of this example is that our DSEL allowed us to
easily prototype a type system. When a question of repre-
sentation arose, we were easily able to consider the alterna-
tive approach and test the performance differences between
them. Thus, the rule DSEL supported rapid prototyping of
a type system based on logic rules.

The DSEL could also be used to represent typing rules
for more complex languages, such as Haskell. Jones [12]
gives a method for typing Haskell in Haskell. However, he
is forced to re-introduce well-known methods of unification
and substitution which are not central to the application.
Using the DSEL, the author could represent the typing
rules for Haskell directly without concern for the underlying
mechanisms.

5. Functional-Logic Programming
It is also possible to represent some more general logical
applications using a portion of the rule DSEL. Consider the
locally defined global identifier pattern described by [1]. In
this case, we want to manipulate graphs and always ensure
that each node is uniquely labeled.

data Node = Node Int

data Edge = Edge Node Node

data Graph = Graph [Node] [Edge]

Imagine a simple graph of three nodes.

g1 = Graph [n1, n2, n3]
[Edge n1 n2, Edge n3 n2, Edge n3 n3]
where [n1,n2,n3] = map Node [1..3]

Now imagine we want to connect graph g1 to another graph
which also has nodes, say, 1 and 2. In that case, there
would be an overlap of node labels, and the edges would
become ambiguous. In order to prevent this, the graphs must
be relabeled at composition time, requiring an expensive
composition function. Any function which manipulates two
graphs together would have to relabel the graphs to avoid a
potential name collision.

Imagine, in particular, we want to connect two graphs
together with a single arc between the first nodes in
each graph. We would prefer to just define the function
connectGraphs as follows:

connectGraphs (Graph ns1 es1) (Graph ns2 es2) =
Graph (ns1++ns2)

(Edge (head ns1) (head ns2):
es1++es2)

Now if we try connectGraphs g1 g1 we get a mess that
does not correctly represent the resulting graph, due to
the lack of relabeling. We can avoid this problem by using
logical variables. We replace integer constant node identifiers
by logical variables to allow them to be uniquely named
automatically.

data Node = Node LVar

Thus, instead of a node being represented by Node 1 or Node
2, it is now wrapped in a logical variable and generated

monadically, so the first node will be Node (VarRep 1) and
the second Node (VarRep 2), and so on. Since this is a
clumsy representation, we can define a Show instance for
Node.

instance Show Node where
show (Node (VarRep x)) = show x

Next we define a graph using the newVars function to label
the nodes.

g2 = do [n1,n2,n3] <- newVars 3
return (Graph [n1, n2, n3]

[Edge n1 n2, Edge n3 n2,
Edge n3 n3])

We can then use the Haskell-provided monadic lifting func-
tion liftM2 to automatically transform connectGraphs to
operate on monadic graph values.

cg = liftM2 connectGraphs

At this point we have a function which produces a value
of type U Graph. Somehow we need to extract the actual
graphs. In a case where the Judgment class is not being used,
we provide the function eval to extract results.

eval :: Unifiable o => U o -> [o]

Our node labels are thus guaranteed unique.

> eval (cg g2 g2)
[Graph [1,2,3,4,5,6] [Edge 1 4,Edge 1 2,Edge 3 2,

Edge 3 3,Edge 4 5,Edge 6 5,
Edge 6 6]]

6. Related Work
The combination of functional and logic programming is
not new. Early attempts to simulate logical variables with
functional languages used techniques such as higher-order
functions, where a data structure would be represented as a
function [3].

Later, specialized functional-logic programming lan-
guages emerged. Somogyi et al. introduced Mercury [20], a
functional-logic language which is under continuous develop-
ment and is designed for commercial use. Mercury focuses
strongly on performance, static error detection, and large
system development.

Curry is another language in the functional-logic
paradigm, introduced by Hanus [7]. Curry focuses on tightly
integrating the functional and logical aspects to form a sin-
gle, seamless methodology.

Lloyd introduced another functional-logic language called
Escher [13] whose functionality arises from the Gödel logic
language. The goal of Escher is to provide a research plat-
form for the combination of functional and logic develop-
ment idioms.

Although these languages all use familiar syntactic con-
structs, for a Haskell programmer being faced with the prob-
lem of implementing rule systems, they still require port-
ing applications to a new language. We would prefer to
be able to take advantage of certain logical features within
the host language of Haskell. Thus, a functional-logical lan-
guage, while interesting, is orthogonal to our goals.

Jansson and Jeuring devise an extension to Haskell called
poly-types which they use to demonstrate a generic unifi-
cation algorithm [11]. This extension allows unification on

10 2006/5/30

all user-defined types. The authors apply unification func-
tions to provide generics, such as determining the subterms
of a term of any type, and checking two terms for top-level
equality. However, the authors do not attempt to extend the
unification algorithm to logic programming.

Providing logical functionality within Haskell was at-
tempted by Spivey and Seres in [21]. Their embedding of
general logical computation showed that the fundamen-
tal constructions of logic could in fact be handled by
Haskell. However, their implementation leaves much to be
desired. Users are forced to use the types for Term and
Predicate to represent data structures to be used in log-
ical computations. These types can be extremely cumber-
some. The paper shows an example of representing the list
[a,b] as Func "cons" [Func "a" [], Func "cons" [Func
"b" [], Func "cons" [Func "[]" []]]]. Each predicate
must then be constructed from only a few basic predi-
cates, such as and, or, and exists. The authors successfully
showed that logical programming in Haskell, with the help
of combinators and a unification algorithm, was possible, but
not that it could be pretty.

The representation shown by Spivey and Seres has the
disadvantages of being both clumsy and untyped. Claessen
and Ljunglöf introduced a monadic version of their work
which separated atoms and lists, and enforced the typing
there-of [5]. This work is both cleaner and safer. However, it
still limits the user to the explicitly given functions. It would
be nice if logical variables could be introduced in arbitrary
Haskell structures and manipulated with arbitrary Haskell
functions, while still being type safe.

A hybrid approach was taken by Chin et al. in embedding
constraint handling rules into Haskell [4]. Their approach
shows how to embed logical variables in user-defined data
structures. However, each data structure defined by the user
requires the explicit definition of an instance of the type class
Unification. They mention that automatic code generation
could alleviate this requirement. Our system uses generics to
automate unification. The authors also introduce embedding
and projection, which is the same idea as our Isomorphic
class. However, the authors do not allow Haskell functions
to be used from within constraint rules, calling this “non-
trivial”. This work later evolved in a separate language
called Chameleon, which extends Haskell with constraint
handling rules [22].

Sheard and Pasalic introduce a unification algorithm
which operates on data types representing generic terms and
structures (GT and S, respectively) [18, 19]. However, their
representation may be considered only partial; both GT and S
are parameterized, thus they describe a structure containing
values of some given type. The authors also require the user
to provide functions to transform rich values into values of
the given generic types. Our approach also uses a generic
representation GS which retains both the structure and terms
all the way down to the atomic level. This approach allows
terms with mixed atomic types, such as (Int,Bool), to be
stored as easily as any other type. These transformations are
performed automatically using derived instances of Data and
Read.

As functional-logic programming continues to grow,
many classes of problems can be effectively solved with both
paradigms at hand. A number of functional-logic design pat-
terns are introduced by Antoy and Hanus in [2] and [1].

Hanus introduces a declarative web scripting system in
[8] using Curry. Most of the system is defined functionally,
with occasional bits using logical variables. Unfortunately,

Curry does not include an HTML library, so the author
was forced to re-invent much of the wheel. Haskell already
includes libraries for HTML and CGI. Thus, our system
could provide the same service as the author’s without re-
inventing basic combinators. Although other authors are
quick to “jump ship” and create new languages to support
functional-logic programming, doing so discards the wide
variety of libraries and support already extant for Haskell.
By embedding logical variables as needed in Haskell, our
system can bridge the gap and provide light-weight logical
support to what are otherwise mostly functional programs.

Our system does not attempt to compete with logical
heavyweights, like Mercury or Curry, in terms of efficiency
or expressive power. It does, however, offer a straightforward
environment for prototyping rule systems and performing
simple logical computations.

7. Conclusion
This paper introduces a domain-specific embedded language
for representing rule systems in Haskell. Modeling of the
classic lambda calculus type system and an extension are
both shown. Using the underlying search and unification
monad to perform other kinds of functional-logic program-
ming is also possible and demonstrated.

We present a system which allows unification on user-
defined data types, and most significantly, automatic lift-
ing of Haskell and user-defined functions to work on logical
structures, previously considered to be a non-trivial prob-
lem. Our system integrates these features using a simple
monadic representation that closely resembles formal seman-
tic rules, making translating rule systems into code a nearly
mechanical process.

Our system allows logical programming to be performed
within Haskell and without forcing the user to use only cer-
tain predefined data types or functions. This allows a con-
venient integration of logic programming into the functional
paradigm, without having to ever leave Haskell.

References
[1] Sergio Antoy and Michael Hanus. Functional Logic Design

Patterns. In Proc. of the 6th Int. Symp. on Functional and
Logic Prog., pages 67–87, 2002. LNCS 2441.

[2] Sergio Antoy and Michael Hanus. Concurrent Distinct
Choices. Journal of Functional Programming, 14(6):1–12,
2004.

[3] F. Warren Burton. A Note on Higher-Order Functions
Versus Logical Variables. Information Processing Letters,
31(2):91–95, 1989.

[4] Wei-Ngan Chin, Martin Sulzmann, and Meng Wang. A
Type-Safe Embedding of Constraint Handling Rules into
Haskell. Technical report, National University of Singapore,
2003.

[5] K. Claessen and P. Ljunglöf. Typed Logical Variables in
Haskell. In Haskell Workshop, 2000. Electronic Notes in
Theoretical Computer Science, Vol. 41, No. 1.

[6] W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[7] Michael Hanus. A Unified Computation Model for Func-
tional and Logic Programming. In Proc. of the 24th
SIGPLAN-SIGACT Symp. on Principles of Prog. Lang.,
pages 80–93, 1997.

[8] Michael Hanus. High-Level Server Side Web Scripting in
Curry. In Proc. of the 3rd Int. Symp. on Practical Aspects
of Declarative Lang., pages 76–92, 2001.

11 2006/5/30

[9] Hanus, M. and Kuchen, H. and Moreno-Navarro, J. J. Curry:
A Truly Functional Logic Language. In Proc. of ILPS’95
Workshop on Visions for the Future of Logic Programming,
pages 95–107, 1995.

[10] Ralf Hinze. Deriving Backtracking Monad Transformers.
In Proc. of Int. Conf. on Functional Programming, pages
18–20, 2000.

[11] Jansson, Patrik and Jeuring, Johan. Polytypic Unification.
Journal of Functional Programming, 8(5):527–536, 1998.

[12] Mark Jones. Typing Haskell in Haskell. In Proc. of the
Haskell Workshop, 1999.

[13] John W. Lloyd. Programming in an Integrated Functional
and Logic Language. Journal of Functional and Logic
Programming, 1999(3), 1999.

[14] Bruce McAdam. How to Repair Type Errors Automatically.
3rd Scottish Functional Programming Workshop, 2001.

[15] Pfenning, Frank and Schürmann, Carsten. System Descrip-
tion: Twelf — A Meta-Logical Framework for Deductive
Systems. In H. Ganzinger, editor, Proc. of the 16th Int.
Conf. on Automated Deduction, pages 202–206, Trento,
Italy, 1999. Springer-Verlag LNAI 1632.

[16] PuRE Project. Data.Unification Module.
http://www.di.uminho.pt/~joostvisser/software/
UMinhoHaskellSoftware-1.0/Data.Unification.html.

[17] Haskell Rules. Rule Systems Embedded into Haskell, 2006.
http://eecs.oregonstate.edu/~erwig/HaskellRules.

[18] Tim Sheard. Generic Unification Via Two-Level Types and
Parameterized Modules. In Proc. of the 6th ACM SIGPLAN
Int. Conf. on Functional Prog., pages 86–97, 2001.

[19] Tim Sheard and Emir Pasalic. Two-Level Types and Pa-
rameterized Modules. Journal of Functional Programming,
14(5):547–587, 2004.

[20] Zoltan Somogyi, Fergus Henderson, and Thomas Conway.
The Execution Algorithm of Mercury: an Efficient Purely
Declarative Logic Programming Language. Journal of Logic
Programming, 29(1–3):17–64, 1996.

[21] J. M. Spivey and S. Seres. Embedding Prolog in Haskell. In
E. Meijer, editor, Haskell Workshop, pages 25–38, 1999.

[22] Peter Stuckey and Martin Sulzmann. A Theory of
Overloading. ACM Trans. on Programming Lang. and
Systems, 25(6):1216–1269, 2005.

12 2006/5/30

