Academia.eduAcademia.edu

Dawni mieszkańcy Garbar w ujęciu biokulturowym

2016, Folia Historica Cracoviensia

https://doi.org/10.15633/FHC.1736

AI-generated Abstract

The research focuses on the biocultural analysis of the former suburb Garbary, highlighting its historical significance in relation to the population of Krakow. It investigates the skeletal remains unearthed from burial sites associated with St. Peter the Little's Church, examining the demographic characteristics and cultural practices of the inhabitants during the 17th-18th centuries. The findings reveal insights into the social status, burial customs, and health conditions of the residents, contributing to the broader understanding of urban development and historical epidemiology in Krakow.

Folia Historica Cracoviensia, 21: 2015, s. 209–249 DOI: http://dx.doi.org/10.15633/fhc.1736 Agata Przesmycka, Jagiellonian University, Krakow Krzysztof Szostek, Jagiellonian University, Krakow Elżbieta Niedźwiecka, Jagiellonian University, Krakow Sławomir Dryja, The Pontifical University of John Paul II in Krakow Aleksandra Lempart, Jagiellonian University, Krakow Elżbieta Haduch, Jagiellonian University, Krakow Past inhabitants of Garbary – a biocultural perspective Introduction As one of the most populous suburbs of Krakow, Garbary was related both economically and functionally with the city as early as the Middle Ages. The unique character of the place was due to its natural conditions. The waters of Rudawa were used by households, which were built above the river’s flood elevation. Inhabitants most commonly included tanners, groatsmakers and potters. Since tanners did not enjoy a particular social prestige, they worked outside the city walls1. A tanner’s colony in front of Brama Szewska (the Szewska Gate) was called Cerdonia (Garbary) already in the 16th century. In 1498, thanks to the endeavours of Jan Weis, who was both a professor at Wszechnica Jagiellońska and the parish priest of St Stephen’s Church, St Peter the Little’s Church was erected in Garbary (fig.1). Destroyed several times during an invasion by Maximilian Habsburg in 1587 and the Swedish deluge of 1655–57 and 1702, it was repeatedly rebuilt, only to be ultimately pulled down in 18012. The church was surrounded by a graveyard in which inhabitants of Garbary, parishioners of St Stephen’s Church, St Anne’s Church, as well as people from Bronowice were buried. The graveyard was also the burial site of the victims of epidemics which frequently struck the city of Krakow: in 1515–1543, 1555 and 1 J. Wyrozumski, Dzieje Krakowa – Kraków do schyłku wieków średnich, t. 1, Kraków 1992, p. 344. 2 J. Bieniarzówna & J. M. Małecki, Dzieje Krakowa – Kraków w latach 1796–1918, t. 3, Kraków 1979, pp. 15, 415. 210 Agata Przesmycka et al. 1707, when as many as 670 people died in Garbary. „All” inhabitants of Garbary murdered during Maximilian’s inroad were also inhumed there, and the village itself was burnt3. The area of the graveyard next to what used to be St Peter the Little’s Church partly includes the properly located at Łobzowska 8 (fig. 2), where in 2012 rescue archaeological excavations took place4. The tombs at the graveyard were first explored in 18725. Material Bone material unearthed during the studies of 1872 and 2012 was subjected to anatomical and anthropological analysis. The 1872 series contained 46 skulls from the cemetery of St Peter the Little’s Church located at the former suburb Garbary6. According to objects found next to the corpses, the material dates back to 17th–18th century7. In 2012, rescue archaeological work was carried out at Łobzowska St. 8 (current street address) in Krakow. The tombs were reported as the remains of the graveyard established at St Peter the Little’s Church in Garbary at the end of the 15th century and active until the beginning of the 19th century. 61 human skeletons as well as clusters of loose bones were unearthed; among them animal bones were also identified. All bones included in the analysis date back to the modern age. The material lay at the depth of over a dozen centimetres to over a meter, mostly in sandy soil of high water permeability. The deceased had been lain on their backs with their arms along the body or crossed at the waist. Skeletons were placed along the east-west axis, heads facing any of the two directions. The absence of any traces of coffins or unnatural relocations suggests that the dead had been buried in shrouds. No objects except for single 3 J. Bieniarzówna & J. M. Małecki, Dzieje Krakowa – Kraków w wiekach XVI–XVIII, t. 2, Kraków 1984, pp. 43, 163, 454–455. 4 S. Dryja et al., Sprawozdanie z badań archeologicznych przy przebudowie kamienicy przy ulicy Łobzowskiej 8 w Krakowie, Kraków 2012. 5 I. Kopernicki, Czaszki przedmieszczan Krakowskich z XVII–XVIII wieku, „Zbiór wiadomości do antropologii krajowej” 11 (1887) z. 2, pp. 1–25. 6 D. Jagocka, Charakterystyka antropologiczna XVII–XVIII-wiecznych czaszek z cmentarzyska Garbary w Krakowie, Kraków 1988. 7 I. Kopernicki, Czaszki przedmieszczan…, op. cit. Past inhabitants of Garbary… 211 ceramic fragments dating back to Middle Ages or the modern age were found8. The general preservation condition of the bone material is regarded as medium, with possible impact of secondary excavations, levelling of a part of the graveyard, as well as multiple cross-cuts, the way the material was unearthed, and the structure of soil layers (fig.3,4,5). Only one skeleton is preserved as complete (grave 13). Biological distance assessment. Cluster analysis In view of the fact that the bone material unearthed in 1872 and 2012 originates from the same area, i.e. the graveyard at St Peter the Little’s Church in Garbary, its level of diversity was analysed by means of biological distance assessment. Craniometric data obtained in research procedures in 1872 (N=46) and 2012 (N=17) were used. Ward’s method for selected measurements of the neurocranium (g-op; eu-eu; ft-ft; ba-b) (Fig. 1) and the facial skeleton (zy-zy; n-pr; mf-ek; sbk-spa; n-ns; apt-apt) (Fig. 2) was applied. Fig. 1. Morphological diversity of the neurocranium in individuals from Garbary 8 S. Dryja et al., Sprawozdanie z badań…, op. cit. 212 Agata Przesmycka et al. In both cases two clusters containing skulls discovered in 1872 and 2012 studies were designated. The ___location of each individual within the clusters is dependent on the diversity of cranial dimensions as well as sexual dimorphism. The diversification of cranial features and proportions was noticed by Izydor Kopernicki, who substantiated it by the origin not only of the residents of the suburb Garbary and the parishioners of St Stephen’s Church, but of Krakow inhabitants in general. Such observations were supported by an analysis of a census of Garbary parishioners, in which Kopernicki ascertained a considerable proportion of foreigners of German and Italian origin. This is also confirmed by the fact that services in St Peter the Little’s Church were celebrated in the German language9. A large proportion of the inhabitants of 16th century Krakow comprised immigrant population from other villages and towns of Lesser Poland as well as from abroad. The population was therefore a mosaic of people of different social status, economic status, of various professions and nations10. Fig. 2. Morphological diversity of the facial skeleton in individuals from Garbary Due to the above, bone material from the graveyard at S. Peter the Little’s Church in Garbary excavated in 1872 and 2012 may be considered a single series of skeletons representative of the Krakow population from the 15th to early 19th century. 9 10 J. Bieniarzówna & J. M. Małecki, Dzieje Krakowa…, Kraków 1984. J. Bieniarzówna & J. M. Małecki, Dzieje Krakowa…, Kraków 1984. Past inhabitants of Garbary… 213 Methods Individuals’ sex was determined by a composite method commonly applied in anthropology, on the basis of skull and pelvic bone morphology11. Individuals’ age at death was determined on the basis of deciduous and permanent teeth eruption sequence in children12, ossification level of various parts of skeleton in teenagers, and intensifying obliteration of cranial sutures at the endo- and exocranial side, degree of tooth attrition on occlusal surfaces according to Brothwell (1981)13, morphology of the surfaces of the pubic symphysis and the facies auricularis of the hip bone in the remains of adults14. Individuals were accordingly allocated to biological age classes15. Measurements were taken according to Martin’s method16. Skull shapes and proportions were analysed according to cranial indices. In the postcranial skeleton, maximum and physiological lengths of left and right long bones, their minimum circumferences, sagittal and transverse sections, and widths of upper and lower epiphyses were measured. Shoulder breadth was recreated on the basis of the length of the clavicle 17; bone massiveness indices, proportions and length of upper and lower limbs were calculated. A reconstruction of intra vitam stature was performed using regression formulas according to, among others, M. Trotter & G. Gleser, Hauser et al., Ross & Konigsberg and G. Vercellotti et al.18. The authors used only those formulas 11 G. Acsadi, J. Nemeskeri, History of human life span and mortality, Budapest 1970; J. Piontek, Biologia populacji pradziejowych, Poznań 1985, pp. 134–143; T. D. White, P. A. Folkens, The Human Bone Manual, Academic Press 2005. 12 J. E. Buikstra, D. H. Ubelaker, Standards for Data Collection from Human Skeletal Remains, Fayetteville 1944 (Arkansas Archeological Survey Research Series, 44). 13 D. R. Brothwell, Digging Up Bones, Natural History Museum Publications, London 1981. 14 T. W. Todd, Age changes in the pubic bones: I. The white male pubis, „American Journal of Physical Anthropology” 1920 vol. 3, pp. 467–470; C.O. Lovejoy, Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death, „American Journal of Physical Anthropology” 1 (1985), pp. 15–28; T. D. White, P. A. Folkens, The Human Bone…, op. cit. 15 A. Malinowski, W. Bożiłow, Podstawy antropometrii. Metody, techniki, normy, Warszawa– Łódź 1997, p. 303; T. D. White, P. A. Folkens, The Human Bone…, op. cit.; J. Piontek, Biologia populacji…, op. cit. 16 R. Martin, K. Saller, Lehrbuch der Anthropologie, Stuttgart 1957–1959. 17 J. Piontek, Biologia populacji…, op. cit. 18 G. Vercellotti et al., Stature Estimation in an Early Medieval (11th-12th c.) Polish Population: Testing the Accuracy of Regressions Equations in a Bioarcheological Sample, „American Journal of Physical Anthropology” 140 (2009), pp. 135–142. 214 Agata Przesmycka et al. the application of which was possible in view of the bone’s condition of preservation. Confidence intervals for stature were calculated according to the formula: 95% CI: ŷi ± (t0,05,n-2 * (ŝy)i) ŷi: estimated stature for individual (i); t0.05,n-2: critical value of distribution t for significance level 0.05 for (n-2) degrees of freedom; (ŝy)i: standard error calculated for individual (i) ŝy was calculated for the individual and the group according to formulas: s2yx: mean square deviation; xi: bone length measurement value for the individual; xn mean length bone value for the group; n: sample size; Σx2: adjusted sum of squares calculated according to formula (Σx2 = 2 * (N–1)) On the basis of long bone measurements, bone massiveness and pilaster indices were obtained, according to the following formulas19: Clavicula: circumference in the middle*100/maximum length Humerus: minimum circumference*100/maximum length Ulna: minimum shaft circumference*100/physiological length Radius: minimum shaft circumference*100/physiological length Femur: (sagittal section + transverse section)*100/physiological length Tibia: maximum width of the proximal epiphysis*100/maximum length 19 A. Malinowski, W. Bożiłow, Podstawy antropometrii…, op. cit., pp. 193–200; J. Piontek, Biologia populacji…, op. cit., pp. 104–112. Past inhabitants of Garbary… 215 Pilaster: (reflecting the extent to which the linea aspera of the femoral epiphysis is developed): sagittal section of the shaft*100/transverse section of the shaft On the basis of measurement data, Index of Sexual Dimorphism (ISD) according to Borgognini & Repetto’s formula (1986) for measurements and indices of the skull and post-cranial skeleton were calculated with the formula 20: ISD= m – f 100% m * m mean value of the feature for males f mean value of the feature for females Age structure of the skeletal series was analysed based on the biometric functions of the life expectancy table21. Its parameters were calculated allowing for child count underestimation adjustment applied by Henneberg (1977)22. This enabled the palaeodemographic analysis of the series. The following indices were calculated23: Rpot – potential reproduction index, being a measure of the likelihood of the group’s limited reproductive abilities due to individuals’ mortality at reproductive age lx – the fraction of individuals surviving up to the early ‘x’ years of age class qx – the probability of death at the age of x Lx – the number of years survived by all persons aged x Tx – total number of the remaining years of life for all individuals aged x ex – remaining life expectancy for persons aged x 20 T. S. Borgognini, M. E. Repetto, Methodological considerations on sexual dimorphism in past human populations, „Human Evolution” 1 (1986), pp. 51–66. 21 M. Henneberg, Notes on the reproduction possibility of human prehistorical populations, „Przegląd Antropologiczny” 41 (1975), pp. 75–89. 22 M. Henneberg, Proportion of dying children in paleodemographcal studies, „Przegląd Antropologiczny” 43 (1977), pp. 105–114. 23 J. Strzałko, M. Henneberg, J. Piontek, Populacje ludzkie jako systemy biologiczne, Warszawa 1980, p. 109. 216 Agata Przesmycka et al. Results Sex and age structure of Garbary inhabitants The analysis covered 111 skeletons, 51 of which were male, 40 female, with 13 skeletons of individuals below the age of 15. For 7 remaining skeletons of adult individuals the sex was not determined. The number of individuals in each age category grouped according to sex was presented in Table 1 and Figure 3. Table 1. Age and sex structure in Garbary skeletons Biological age Total female male indeterminate Infans I – – 5 5 4.50 Infans II – – 8 8 7.21 Juvenis 3 1 1 5 4.50 N % Adultus 7 5 – 12 10.82 Adultus/Maturus 4 2 – 6 5.41 13 30 1 44 39.64 3 2 – 5 4.50 Maturus Maturus/Senilis Senilis 6 4 – 10 9.00 Adult 4 7 5 16 14.41 Total 40 51 20 111 100.00 Fig. 3. Age and sex structure in Garbary skeletons (number of individuals) Past inhabitants of Garbary… 217 Cranial measurements and indices Basic cranial indices are shown in Table 2. Considering mean values of calculated indices, we may conclude that the Garbary series is characterised by short skulls according to the main index, lowarched as per the length-width index, with medium-sized eyes (frontal-width index)24. According to the height-length index, female skulls are medium high, and male skulls are high. Kočka index classifies skulls as low. The facial skeleton in both sexes could be described as broad (total facial index) and medium high in the view of the upper-facial index, with medium-sized orbits (orbital index) and a nose which is broad in females and medium broad in males (nasal index). Nevertheless, the variability range of each index reveals a very high diversity of the proportions and shapes of the skull in the series. This was previously reported by I. Kopernicki25. This diversity is illustrated by the arrangement of individual items within clusters (Figures 1 and 2). Neurocranial parameters provided the basis for designating two clusters sharing a small common section (Fig. 1). The first cluster groups male skulls, mostly from the 1872 studies. The second cluster contains skulls of both sexes, from Kopernicki’s studies as well as from the year 2012. The second cluster comprises individuals from both groups, which indicates that the presented neurocranial features share a common area. Extreme values are found for two individuals: a male (studies of 1972) with a long and narrow skull, and a woman (studies of 2012) with a short and narrow skull. A considerable percentage of male skulls from the studies of 1872 are elongated or even long-headed. Male skulls are wider and higher, whereas female skulls are noticeably narrower and shorter. Two clusters were also designated based on the dimensions of the facial skeleton (Fig. 2). One cluster is represented by three females (studies of 1872), whose faces were narrow (zy-zy) and short (n-pr). The other cluster comprises skulls of individuals of both sexes, with clearly distinguished male and female skull series. This is primarily the effect of sexual dimorphism. One female skull (studies of 1872) reveals strongly male features in the facial skeleton and was accordingly placed in the ‘male’ part of the cluster. 24 25 A. Malinowski, W. Bożiłow, Podstawy antropometrii…, op. cit., pp. 182–189. I. Kopernicki, Czaszki przedmieszczan…, op. cit. 218 Table 2. Garbary. Cranial indices female skulls male skulls M-F* Index 2 2 x s SD min max CV N x s SD min max CV 31 84.87 16.11 4.01 78 96 .00 4.73 31 83.32 22.42 4.74 74 93 5.68 –1.55 height-length (ba-b):(g-op) 27 73.70 12.60 3.55 69 82.00 4.82 28 75.75 15.16 3.89 68 83 5.14 2.05 height-width (ba-b):(eu-eu) 27 87.59 14.32 3.78 80 95.00 4.32 28 90.71 26.51 5.15 79 100 5.68 3.12 frontal-width (ft-ft):(eu-eu) 30 66.93 6.27 2.50 62 71.00 3.74 31 68.03 12.83 3.58 59 76 5.26 1.10 main (eu-eu):(g-op) total face (n-gn):(zy-zy) 4 84.5 8.33 2.88 81 88.00 3.42 4 83.25 10.92 3.30 81 88 3.97 –1.25 upper-facial (n-pr):(zy-zy) 14 51.93 15.46 3.93 45 60.00 7.57 9 51.44 11.78 3.43 48 59 6.67 0.49 orbital (sbk-spa):(mf-ek) 19 80.37 47.69 6.91 68 94.00 8.59 26 78.69 50.70 7.12 65 95 9.05 –1.68 nasal (apt-apt):(n-ns) 19 51.32 15.11 3.88 44 60.00 7.58 22 49.82 13.77 3.71 44 56 7.45 –1.50 Kočka (ba-b) *2:[(g-op)+(eu-eu)] 28 71.01 22.26 4.72 65 85.53 6.64 29 75.84 54.12 7.36 65 88 9.70 4.83 * M-F: difference between the value of the feature in males and females Agata Przesmycka et al. N Table 3. Maximum lengths (measurement M1 acc. to R. Martin) [mm] of the long bones on the right and left body side in male and female series (grave numbers as per archaeological documentation) left side 391 146 315 228 247 456 356 416 345 296 m 31 m 30, 34-36.2 m 34, excavation II m 40 I (ind. 1) m 441 40 I (ind. 2) m 427 41.3 m 2 f 7 f f 28 f 38 f 39.1 f f f 41.1 f 265 457 135 315 232 250 414 131 328 255 276 147 428 330 235 425 354 353 340 350 355 447 345 325 347 238 438 357 442 349 450 345 125 223 244 440 360 202 214 400 305 132 302 245 431 400 238 290 214 345 432 345 331 302 292 124 195 293 338 310 316 270 121 336 332 355 311 341 377 326 325 133 356 407 297 404 369 299 214 377 237 409 414 219 39.2 39 Cd. 240 372 372 423 m f 331 432 254 30 11 343 133 370 27.2 27a 28 476 Past inhabitants of Garbary… m 275 Fibula M1 26 248 Tibia M1 m m Femur M1 23 24 Ulna M1 m 474 Radius M1 14 Humerus M1 m Clavicula M1 13 Fibula M1 m Tibia M1 12 249 Femur M1 m Ulna M1 m Radius M1 3 6.1 Humerus M1 Sex Clavicula M1 Individual no. right side 220 Agata Przesmycka et al. Analysis of long bone measurements Long bone measurements allowed us to analyse symmetry only in the instances where right and left limb parts of the individual were preserved. Measurements are included in Table 3. The F test revealed no statistically significant differences (p>0.05) between the maximum long bone length on the right and left side of the body in females and males. However, a small individual asymmetry is observable in the maximum long bone length between females and males. The asymmetry was present in most analysed sections in individuals 13 and 7, whose long bones are completely preserved. In both cases the shoulder girth contains longer left clavicle, whereas long bones of the upper limb are longer on the right side. Measurements of preserved lower limb bones indicate left-side domination. When basic long bone measurements have been performed, for every individual whose bones were properly preserved upper limb length was separately calculated as a sum of the physiological length of the humerus (M2) and the radius (M2), as well as lower limb length as a sum of the physiological length of the femur (M2) and the maximum length of the tibia (M1). Next, limb proportions and massiveness indices were calculated. The results are presented in Tables 4–6. Table 4. Garbary. Length [mm] of upper and lower limbs in male and female series Upper limb Lower limb Individual no. Sex left right left right 7 f 521 523 790 – 11 f – – 694 – 28 f 511 – – 770 39 f – – 695 – 41.1 f – – 764 – 3 m – 581 – – 12 m – – 800 801 13 m 530 532 753 746 24 m – 571 – – 27.2 m – 549 – – 31 m – – 773 – 40 I m – – 776 782 41.3 m – – 786 786 Past inhabitants of Garbary… 221 Individuals whose analysed right- and left-side sections were preserved to the extent which enabled the comparison of limb length display a small, statistically insignificant (p>0.05) limb length asymmetry. A comparison of upper right and upper left limb bones was possible in the case of two individuals (asymmetry with right-side domination), whereas a comparison of lower limb lengths was possible for four males (asymmetry with right-side domination or lack of asymmetry). Only in the case of individual 13 the condition of the material enabled us to observe length asymmetries and expressed by the index of proportion for upper and lower limb sections, dependent mostly on greater length of the bones of the right forearm (radial and ulnar) and lower left limb bones (cf. Table 3). Table 5. Garbary. Limb proportion indices in male and female series left side Individual no. Sex 3 right side R-H T-F H-F R-T across limbs R-H T-F H-F R-T across limbs m – – – – – 72.51 – 74.03 – – 12 m – 80.18 – – – 72.51 80.00 74.38 67.42 – 13 m 72.38 84.56 77.21 66.09 70.38 73.65 84.20 77.78 68.04 71.31 24 m – – – 68.28 – 77.74 – – 67.64 – 27.2 m – – – – – 71.21 – 79.52 – – 31 m – 84.49 – – – – – – – – 40 I m – 80.05 – – – – 80.60 – – – 41.3 m – 79.04 – – – – 78.23 – – – 7 f 71.70 83.72 72.33 61.94 65.95 – – 74.88 – – 11 f – 78.41 – 66.23 – – – – – – 28 f – – – – – – 81.18 68.24 – – 39 cd. f – 74.62 73.62 – – – – 75.13 – – 41.1 f – 93.42 – – – – – – – – R-H: (Radius-Humerus) – radial-humeral index T-F: (Tibia-Femur) – tibial-femoral index H-F: (Humerus-Femur) – humeral-femoral index R-T: (Radius-Tibia) – radial-tibial index (H+R): (F+T) – inter-limb index Limb proportions were expressed by means of the following indices: radial-humeral and tibial-femoral (Table 5). According to the former, which refers to the upper left side 14 m 23 m 24 m 26 related to m 27.2 m 30 m 23.97 19.68 19.83 14.07 103.13 13.95 89.29 106.06 19.81 15.84 18.10 12.61 21.63 115.38 39.85 20.85 19.57 20.78 13.93 21.07 100.00 13.97 22.32 128.00 25.19 19.68 16.96 17.41 14.07 22.58 111.11 20.16 18.58 92.86 18.85 85.71 27.48 21.34 16.80 17.55 20.42 125.00 20.92 122.22 20.48 23.81 21.21 14.70 84.85 19.83 Agata Przesmycka et al. m 18.37 Pilaster 13 20.47 Tibia m Femur 12 Radius 20.00 Ulna m 94.29 Humerus 8 Clavicula 20.24 14.72 Pilaster m 19.50 Tibia 6.3 Femur m right side Radius 6.1 Ulna m Humerus Sex 3 Clavicula Individual no. 222 Table 6. Garbary. Bone massiveness indices in male and female series 12.65 34 excavation II m 39.3 m 41.3 m 13.90 40 I m 40 I m 2 f 7 f 11 f 27 a 28 f 28 f 38 small f 39.1 f 39.2 f 39 cd. f 41.1 f excavation II, loose bones f 20.62 112.00 20.57 15.77 20.46 26.45 19.29 19.87 103.70 90.63 14.06 20.58 93.75 12.76 89.66 12.70 19.48 89.66 15.63 116.67 19.48 26.32 18.77 21.61 15.45 18.60 13.49 18.82 18.13 12.85 17.79 19.05 18.33 100.00 25.76 18.99 15.00 18.69 100.00 20.00 13.03 96.43 12.33 100.00 12.47 11.30 96.30 20.86 18.54 26.61 115.38 18.33 19.45 13.82 20.88 96.43 13.67 19.78 92.86 19.06 26.83 17.21 18.18 13.89 88.89 14.07 107.41 14.11 90.00 223 m Past inhabitants of Garbary… 31 224 Agata Przesmycka et al. limb, the forearm is short, with the exception of individual 24, whose forearm is medium26. In terms of the tibial-femoral index, left-side bones proved proportionally slightly longer; the humeral-femoral index reached slightly higher values on the right side. The radial-tibial index is higher in individual 13 for left-side bones, whereas in individual 24 – for the right side. Bone massiveness indices were calculated according to formulas shown on page 7. The greatest range of variability is displayed by the pilaster index, which expresses the growth of the linea aspera in the femur, ranging from zero (e.g. individuals 6,1; 23; 27) through poor (individuals 6,3; 34; 40; 41), through medium (individuals 31; 40 I) to strong pilaster (individuals 13; 24; 26), with frequent variations in the degree of development in right and left body side for the same individual. Female bones were characterised either by the absence (individuals 7; 28; 39,2; 39 cd.; 41.1) or a weakly developed linea aspera (individuals 7; 11; 39 cd.), except for one individual (39.1), who displayed medium pilaster. The radial bone had the smallest diversity in terms of massiveness in both sexes. Female clavicles are massive, while male clavicles are medium to massive27. Shoulder breadth was established on the basis of the length of the clavicle28. In the analysed population male shoulders were broader by 37 mm on average than female shoulders. The differences were statistically significant (p=0.01) at the level determined by a 95% confidence interval. The results are included in Table 7. Table 7. Garbary. Shoulder breadth [mm] in male and female series 26 27 28 Individual no. sex shoulder breadth 12 m 360 13 m 375 24 m 355 26 m 390 2 f 330 7 f 345 28 f 325 39.1 f 330 excavation II, loose bones f 322 A. Malinowski, W. Bożiłow, Podstawy antropometrii…, op. cit., pp. 195–196. A. Malinowski, W. Bożiłow, Podstawy antropometrii…, op. cit., pp. 193–194. J. Piontek, Biologia populacji…, op. cit. Past inhabitants of Garbary… 225 Reconstruction of intra vitam stature Regression formulas proposed by various authors were used. Values calculated according to M. Trotter & G. Gleser’s regression formulas are shown in Table 829. Reconstructed stature values based on Vercellotti’s (2005) regression formulas are listed in Tables 9 and 10. Reconstructed stature values are presented in section 1 of Tables 9 and 10 for individuals in the case of whom all long bones in the condition allowing measurements to be taken and appropriate regression formulas to be used. Section 1a of tables shows the results of reconstructed intra vitam stature for individuals whose skeletons contained only single long bones of the lower or upper limb. Highest stature values for individuals were estimated on the basis of the maximum length of the humerus and physiological length of the femur, which is used in reconstructing stature by means of the anatomical method. The regression formula for the humerus and the tibia provided the highest mean stature estimations. Statures were also reconstructed with the use of regression formulas proposed by other authors; such formulas were based on the measurements of the maximum length of the femur. The values obtained are presented in Tables 11 and 12 as well as Figures 4 and 5. No statistically significant differences (p=0.06) between mean intra vitam stature values determined on the basis of femur length calculated according to various methods applied in osteological research were found. The highest estimated stature was provided by regression formulas by Bach (1965) and Hauser et al. (2005). Differences between mean stature in the male series estimated on the basis of the femur and calculated by various methods are statistically insignificant (Table 12). Highest reconstructed intra vitam statures were provided by regression formulas by Černy and Komenda (1982), Trotter and Gleser (1952, 1958), while the Pearson’s (1899) formula supplied the lowest values. 29 M. Trotter, G. C. Gleser, Estimation of Stature from Long Bones of American Whites and Negroes, „American Journal of Physical Anthropology” 10 (1952), pp. 463–514. 226 Table 8. Garbary. Stature [cm] of male and female series estimated according to Trotter and Gleser method Females Femur 2.38*F+61.41 2 – 144.43 – 7 161.67 158.93 163.31 11 152.9 142.9 – 28 160.8 154.58 157.43 38 – 142.11 – 39.2 147.22 – – 39 cd. 154.87 140.66 157.43 41.1 155.12 161.54 – Without no. 162.53 – – x 156.45 SD Tibia 2.52*T+78.62 SD Humerus 3.08*H+70.45 SD Agata Przesmycka et al. Individual no. 149.32 8.76 159.39 3.40 Tibia 2.52*T+78.62 SD Humerus 3.08*H+70.45 SD 5.55 Males Individual no. Femur 2.38*F+61.41 3 174.46 – 175.79 6.1 154.47 – – SD – 173.94 8 – – 167.93 12 170.06 168.33 172.4 13 160.18 165.06 167.47 14 – 172.11 – 23 164.23 – 161.68 24 – 017.00 171.47 26 162.08 162.28 – 27.2 162.56 – 171.32 30 – 167.83 – 31 163.27 167.32 – 34 excavation II 165.65 168.33 – 40 I 166.49 166.06 – 40 I 163.04 – – 41.3 168.15 165.81 – Without no. – 169.84 – Without no. 167.8 – – Without no. 168.51 – – x 165.07 4.83 167.82 3.09 170.25 4.44 227 – Past inhabitants of Garbary… 6.3 228 Table 9. Garbary. Stature [cm] in the male and female series estimated using Vercellotti’s method according to the length of the bones of the lower limb. Lower limb Males Femur + Tibia 1.50*(Fem2 + Tib) + 46.9 95% CI (ŝy)i 12 167.05 8.17 13 158.80 8.71 31 162.25 7.31 Individual no. 1 95% CI (ŝy)n Tibia 2.91*Tib + 63.1 95% CI (ŝy)i 6.32 166.70 2.32 157.45 6.87 162.33 2.27 161.23 5.96 164.95 1.98 Femur 2.70*Fem2 + 48.1 95% CI (ŝy)i 168.25 SD 95% CI (ŝy)n 40 I 164.20 7.25 165.01 5.80 164.66 1.97 41.3 164.80 7.35 167.17 6.09 163.50 2.03 x 163.42 3.10 4.93 163.82 4.46 3.84 164.43 SD 95% CI (ŝy)n Tibia 2.91*Tib + 63.1 95% CI (ŝy)i 14 171.35 6.56 24 172.81 6.87 26 related to cluster 21 159.71 7.46 30 165.82 6.24 34, excavation II 166.99 6.19 Individual no. Femur 2.70*Fem2 + 48.1 95% CI (ŝy)i 3 172.84 19.49 6.1 150.7 18.76 27.2 160.15 40 I 160.42 x/SD 161.03 SD 95% CI (ŝy)n 1.64 1.35 SD 95% CI (ŝy)n 5.16 4.37 16.20 16.19 9.08 13.50 167.34 Agata Przesmycka et al. 1a SD Females 1 95% CI (ŝy)i Tibia 2.79*Tib + 61.4 95% CI (ŝy)i 16.66 158.46 5.87 161.84 12.00 146.57 17.29 148.92 6.16 146.50 12.31 28 158.35 16.04 159.33 6.07 157.66 11.44 39 cd. 146.73 17.22 151.52 5.62 144.26 12.86 41.1 158.82 16.18 153.26 5.43 164.35 12.54 x/SD 154.13 Femur + Tibia 1.55*(Fem2 +Tib) + 39.0 95% CI (ŝy)i 7 160.21 11 SD 6.87 95% CI (ŝy)n 10.35 Individual no. 1a 154.30 Femur 2.89*Fem2 + 36.5 95% CI (ŝy)i SD 95% CI (ŝy)n 4.48 3.61 SD 95% CI (ŝy)n 154.92 Tibia 2.79*Tib + 61.4 95% CI (ŝy)i 2 147.89 40.70 38 (small box) 145.66 43.06 loose bones at NE from 40 159.61 48.08 x/SD 151.05 39.2 95% CI (ŝy)n 9.07 7.63 SD 95% CI (ŝy)n 7.49 32.34 142.56 229 95% CI (sy)i: 95% confidence interval for estimated individual stature SD: standard deviation 95% CI (sy)n: 95% confidence interval for estimated mean stature for the group SD Past inhabitants of Garbary… Femur 2.89*Fem2 + 36.5 Individual no. 230 Table 10. Garbary. Stature [cm] in the male and female series estimated using Vercellotti’s method according to the length of the bones of the upper limb Upper limb Males Individual no. 95% CI (ŝy)i SD 95% CI (ŝy)n Humerus 3.11*Hum + 67.7 95% CI (ŝy)i SD 95% CI (ŝy)n Radius 1.92*Rad + 123 95% CI (ŝy)i 3 171.99 6.55 174.06 3.93 170.62 3.43 12 169.12 5.82 170.64 3.37 169.08 3.31 13 165.50 6.98 165.67 4.05 167.54 3.66 24 170.93 6.12 169.71 3.36 171.96 3.89 27.2 168.22 5.91 170.33 3.36 168.12 3.48 x/SD 169.15 2.52 3.93 170.08 Individual no. Humerus 3.11*Hum + 67.7 95% CI (ŝy)i 6.3 172.20 34.14 8 166.60 29.42 23 159.76 34.77 x/SD 166.18 2.99 2.38 169.46 SD 95% CI (ŝy)n Radius 1.92*Rad + 123 6.23 23.24 1a 95% CI (ŝy)i SD 95% CI (ŝy)n 1.82 2.25 SD 95% CI (ŝy)n Agata Przesmycka et al. 1 Humerus + Radius 1.51*(Hum+ Rad) + 82.9 Females Individual no. 95% CI (ŝy)n 95% CI (ŝy)i SD 95% CI (ŝy)n Radius 3.45*Rad + 78.5 95% CI (ŝy)i SD 95% CI (ŝy)n 2 160.61 11.11 11 148.19 9.43 39.1 152.33 9.09 39.2 145.78 10.04 6.51 7.82 1 7 28 158.41 SD Humerus 3.11*Hum + 63.0 95% CI (ŝy)i SD 95% CI (ŝy)n 161.28 Humerus 3.11*Hum + 63.0 Radius 3.45*Rad + 78.5 155.44 95% CI (ŝy)i SD 95% CI (ŝy)n 153.19 39 cd. 155.99 x/SD 154.59 1.98 151.73 Past inhabitants of Garbary… Individual no. 1a Humerus 95% + Radius CI (Sy)i 1.72*(Hum + Rad) + 65.7 231 232 Agata Przesmycka et al. Table 11. Garbary. Intra vitam stature – female series [cm] Method N x S2 SD min max CV Pearson (1899) 6 152.69 16.11 4.01 146.17 156.87 2.63 Telkkä (1950) 6 155.45 13.80 3.71 149.42 159.32 2.39 Černy & Komenda (1982) 6 153.24 22.67 4.76 145.51 158.20 3.11 Hauser et al. (2005) 6 157.13 28.57 5.34 148.46 162.70 3.40 G. Vercellotti (2009) 6 153.93 35.57 5.96 144.25 160.15 3.87 Trotter & Gleser (1952, 1958) 6 155.49 25.98 5.10 147.22 160.80 3.28 Bach (1965) 6 160.59 7.34 2.71 156.19 163.41 1.69 Fig. 4. Garbary. Intra vitam stature – female series [cm] Table 12. Garbary. Intra vitam stature – male series [cm] Method N x S2 SD min max CV Pearson (1899) 18 162.82 16.60 4.07 154.81 170.79 2.50 Breitinger (1937) 18 165.63 12.71 3.56 158.63 172.61 2.15 Telkkä (1950) 18 164.90 20.71 4.55 155.96 173.81 2.76 Černy & Komenda (1982) 18 166.38 25.39 5.04 156.48 176.24 3.03 Hauser et al. (2005) 18 163.34 39.50 6.28 150.99 175.64 3.85 Ross & Konigsberg (2002) 18 165.88 26.21 5.12 155.82 175.90 3.09 Vercelotti (2009) 18 164.67 32.00 5.66 153.55 175.74 3.43 Trotter & Gleser (1952, 1958) 18 166.12 25.28 5.03 156.24 175.96 3.03 Past inhabitants of Garbary… 233 Fig. 5. Garbary. Intra vitam stature – male series [cm] Sexual dimorphism Values of metric features, cranial indices and postcranial skeleton indices were analysed; estimated intra vitam stature was also investigates. Values most representative of each designated group were selected for the assessment of dimorphic diversification. Sexual dimorphism indices for the long bones, the skull and cranial indices are included in Table 13. Somatic features are presented in Table 14. The greatest dimorphic diversification in the facial skeleton is observable in the morphology of the orbits, the neurocranium (ba-b) and Kočka’s index (Table 13). The postcranial skeleton displays stronger dimorphic diversification in the long bones of the right side (maximum length of the radius, the circumference of the clavicle’s epiphysis), massiveness index of the clavicle and the radial-tibial index. The length of the upper limb was more strongly diversified in terms of sexual dimorphism than the length of the lower limb. The greatest dimorphic differences in reconstructed stature were revealed in formulas by Černy and Komenda (Table 14). 234 Agata Przesmycka et al. Table 13. Sexual dimorphism indices for cranial indices and measurements Neurocranium F measurement M measurement WDP [%] g-op 165.91 174.02 4.66 ba-b 124.23 136.36 8.9 eu-eu 144.59 146.39 1.23 ft-ft 97.60 98.59 1.00 Facial skeleton F measurement M measurement WDP [%] n-pr 65.41 67.90 3.67 mf-ek 37.91 40.1 5.46 orbital height 33.56 31.74 -5.73 n-ns 48.13 49.88 3.51 width of apertura piriformis 24.27 24.65 1.54 Cranial indices F measurement M measurement WDP [%] Main 84.87 83.32 -1.86 Height-length 73.70 75.75 2.71 Height-width 87.59 90.71 3.44 Frontal-width 66.93 68.03 1.62 Total facial 84.5 83.25 -1.50 Upper-facial 51.93 51.44 -0.95 Orbital 80.37 78.69 -2.13 Nasal 51.32 49.82 -3.01 Kočka 71.01 75.84 6.37 Table 14. Sexual dimorphism indices for post-cranial skeleton indices and measurements Extracranial skeleton F measurement M measurement Maximum length of humerus R 302 327.33 WDP [%] 7.74 Maximum length of humerus L 302 317.4 4.85 Smallest circumference of humerus R 57 64.36 11.43 Smallest circumference of humerus L 59.83 63.92 6.40 Maximum length of radius R 195 242 19.42 10.02 Maximum length of radius L 219.25 243.67 Smallest circumference of radius R 37.5 44 14.77 Smallest circumference of radius L 38.9 45.63 14.74 Maximum length of ulna R 241 266.8 9.67 Maximum length of ulna L 232 247 6.07 Past inhabitants of Garbary… 235 Smallest circumference of ulna R 35.78 42.9 16.60 Smallest circumference of ulna L 35.75 42 14.88 Maximum length of femur R 410.5 437.78 6.23 Maximum length of femur L 418 439.4 4.87 Maximum length of tibia R 321.25 354.00 9.25 Maximum length of tibia L 336.6 355.44 5.30 2.08 Maximum length of fibula R 330 337.00 Maximum length of clavicle R 126 136.40 7.62 Maximum length of clavicle L 127 146.00 13.01 Clavicle R shaft circumference 32.75 41.50 21.08 Clavicle L shaft circumference 34 37.86 10.20 bone massiveness indices F measurement M measurement WDP [%] Clavicular 27.8 26.4 5.04 humerus 20.27 19.33 4.64 ulna 17.6 17 3.41 radius 19 18.71 1.53 femur 13.93 13.3 4.52 pilaster 101.31 96.83 4.42 tibia 21.33 20.4 4.36 limb proportion indices F measurement M measurement WDP [%] T-F 79.37 80.7 ‒1.68 H-F 76.58 72.84 4.88 R-T 68.97 65.05 5.68 across limbs 70.82 69.22 2.26 upper limb length 552.6 518.33 6.20 lower limb length 778.11 742.6 4.56 shoulder breadth 367.75 330.8 10.05 stature (cm) F measurement M measurement WDP [%] T & G (F,T,H) 166.73 158.3 5.06 F+T 163.42 154.13 5.68 F 163.82 154.3 5.81 5.78 Vercelotti T 164.43 154.92 Pearson 162.82 152.69 6.22 Telkkä 164.9 155.45 5.73 Černy & Komenda 166.38 153.24 7.90 Hauser et al. 163.34 157.13 3.80 Vercelotti 164.67 153.93 6.52 Trotter & Gleser 166.12 155.49 6.40 236 Agata Przesmycka et al. Functional morphology In order to evaluate build type, an analysis of markers of muscular-skeletal stress on bones was performed, i.e. at locations in which muscles, tendons and ligaments connect to the bone. Determining their stage of development (a 3-degree scale was assumed) allowed us to reconstruct the level of muscular activity30. Due to the pervasive incompleteness of postcranial skeletons, only stress markers on single bones could be observed, and a complex analysis of body build was possible in few cases31. For 4 skeletons of individuals aged below 15 the structure of bones complies with standards characteristic of their biological age. A comparison of the development level of muscle attachments revealed that female skeletons are more delicately built, a finding consistent with sexual dimorphism analysis. Two of them deserve special attention. In skeleton 7 (maturus) there are strongly developed (level 3) attachments of muscles moving the shoulder joint, observable on the clavicle and the upper epiphysis of the humerus (scapula missing) on the right side. Much less developed are attachment locations of muscles moving the ulnar joint (level 1–2), also with a slight right-side domination. Individual 28’s (adultus) upper and lower epiphyses of the humeral bones have very distinct attachment locations of muscles moving, respectively, the shoulder joint and the ulnar joint, albeit with a slight left-side domination. In all female skeletons the muscles of the girdle and the free section of the lower limb are poorly or weakly developed. More diversity in terms of reaction to muscle stress is observed in male skeletons. Two skeletons, no. 13 (adultus), 24 and 27 (maturus) stand out from the male group. Individual 27 has particularly strongly developed muscle attachment ___location on the right clavicle and the right scapula (level 3) with rather delicately built bones of the left side. Other upper limb muscles were also poorly or weakly developed, with a slight right-side domination. In individual 13, shoulder girth muscles and muscles moving the ulnar joint and other joints of the upper limb are very strongly developed, with a slight left-side domination. Such developed muscle attachments in an adultus (20–30/35 year-old) individual indicate 30 E. Weiss, L. Corona & B. Schulz, Sex Differences in Musculoskeletal Stress Markers: Problems with Activity Pattern Reconstructions, „International Journal of Osteoarchaeology” 22 (2010), pp. 70–80. 31 A. Lempart, Morfologia funkcjonalna szkieletów z cmentarzyska na Garbarach w Krakowie, Kraków 2014. Past inhabitants of Garbary… 237 intensive physical activity already in an early period of life32. The musculature of individual 24, considering his sex, was relatively weakly developed (level 1–2). Quite strongly (level 2–3) developed, particularly on the right, are lower limb muscle attachments in skeletons 13 and 24. Taking into account the fact that at least part of individuals buried at the graveyard at St Peter the Little’s Church in Garbary originated from the same region, one may suppose that the type of build described above could have been shaped due to high level of physical activity related to everyday work. Palaeodemography Based on data from Table 1, bone material unearthed at the graveyard at St Peter the Little’s Church in Garbary (Table 1) was subjected to palaeodemographic analysis. According to the procedure proposed by Henneberg33, following the disaggregation of individuals whose biological age at death was not determined, a table (Table 15) presenting distribution of the deceased across biological age categories was created. Then, in order to identify various aspects of mortality processes, a life expectancy table (Table 16) was designed, based on the total number of deaths in each age class. Table 15. Garbary. Number of individuals in age classes (N=111) Inf. I 32 N % 5.00 4.50 Inf. II 8.00 7.20 Juv. 5.00 4.50 Ad. 15.20 13.69 Ad./Mat. 9.20 8.29 Mat. 47.20 42.52 Mat./Sen. 8.20 7.39 Sen. 13.20 11.90 Total 111.00 100.00 D. Hawkey & C.F. Merbs, Activity-induced musculoskeletal stress markers (MSM) and subsistence strategy changes among ancient Hudson Bay Eskimos, „International Journal of Osteoarchaeology” 5 (1995), pp. 324–338. 33 M. Henneberg, Proportion of dying children…, op. cit., pp. 105–114. 238 Agata Przesmycka et al. The division of individuals into classes according to age at death is shown in Fig. 6 Fig. 6. Garbary. Age at death classes Table 16. Life expectancy table for stationary population based on original material from Garbary (N=111) age dx lx qx Lx Tx eox 0 – 7.9 4.50 100.00 0.01 781.98 3904.95 39.05 8.0 – 14.9 7.21 95.50 0.01 643.24 3122.97 32.70 15.0 – 19.9 4.50 88.29 0.01 430.18 2479.73 28.09 20.0 – 29.9 13.69 83.78 0.02 769.37 2049.55 24.46 30.0 – 39.9 8.29 70.09 0.01 659.46 1280.18 18.26 40.0 – 49.9 42.52 61.80 0.07 405.41 620.72 10.04 50.0 – 59.9 7.39 19.28 0.04 155.86 215.32 11.17 60.0 – x 11.89 11.89 0.10 59.46 59.46 5.00 Due to the unique character of material from this type of cemetery and a high probability that not all child skeletons could have been found, Henneberg’s (1977) child count underestimation adjustment was applied, in which the author assumed that every woman gave birth to 7 children (Uc=7) on average, according to the non-Malthusian fertility archetype. The results are shown in Table 17. Past inhabitants of Garbary… 239 Table 17. Life expectancy table for individuals from Garbary after child count adjustment (N=271.39) age Dx dx lx qx Lx Tx eox 0 – 7.9 66.69 24.57 100.00 0.03 701.71 2106.31 21.06 8.0 – 14.9 106.70 39.32 75.43 0.07 390.38 1404.60 18.62 15.0 – 19.9 5.00 1.84 36.11 0.01 175.95 1014.22 28.09 20.0 – 29.9 15.20 5.60 34.27 0.02 314.68 838.28 24.46 30.0 – 39.9 9.20 3.39 28.67 0.01 269.72 523.60 18.26 40.0 – 49.9 47.20 17.39 25.28 0.07 165.81 253.88 10.04 50.0 – 59.9 8.20 3.02 7.89 0.04 63.75 88.07 11.17 60.0 – x 13.20 4.86 4.86 0.10 24.32 24.32 5.00 A clear disproportion in the distribution of the age at death for Infans I and Infans II individuals in relation to the classic 3:1 ratio is noticeable. A comparison of the population from the Garbary site in Krakow with diachronic and synchronic populations Results obtained in a series of studies on modern-age skeletons from the Garbary graveyard (16th–19th c.) and in voivodeships: Wielkopolskie (Łekno village, modern-age population, graveyard chronology estimated between the 14th and 17th century and Giecz village: 11th–12th c.)34, Kujawsko-Pomorskie (a graveyard in the village of Słaboszewo, modern-age population, dating back to the period between the second half of the 14th century and the first half of the 17th century), Zachodniopomorskie (the town of Cedynia, a late medieval graveyard, 13th–14th century), Warmińsko-Mazurskie (the city of Elbląg, 13th c.)35. The list comprises stature values estimated on the basis of the formula for the maximum length of the femur (Table 18) used in this study and applied by authors of publications on the biological condition of comparative populations. 34 J. Piontek, B. Iwanek, S. Segeda, Antropologia o pochodzeniu Słowian, Poznań 2008, p. 31 (Monografie Instytutu Antropologii UAM, 12); G. Vercellotti et al., Stature Estimation…, p. 137. 35 J. Piontek, B. Iwanek, S. Segeda, Antropologia o pochodzeniu Słowian, op. cit., pp. 32, 50. 240 Agata Przesmycka et al. Table 18. A comparison of stature [cm] of medieval and modern populations female series Site male series N x N x 20 157.21 40 172.37 Cedynia 18 -19 c. 19 161.60 22 170.80 Elbląg 18th c. 16 158.70 25 169.90 th th Giecz 16 -17 c. th th th th Garbary 15 -18 c. 7 156.40 14 165.07 Słaboszewo 14th-17th c. 65 155.30 72 164.60 Individuals from Garbary were shorter in stature than comparative populations. Only males and females from Słaboszewo were slightly shorter. Females from Cedynia were characterised by the highest stature in proportion to other populations. The value of the investigated characteristic of Garbary individuals was juxtaposed with the stature of medieval and modern Krakow populations. The results are presented in Fig. 7. Fig. 7. Stature of inhabitants of medieval and modern Krakow36 The Garbary series was compared in terms of key palaeodemographic parameters with series of skeletons from the area of medieval and modern-age Krakow. 36 K. Szostek et al., Mieszkańcy Krakowa ostatniego millenium, Conference materials 2013. Past inhabitants of Garbary… 241 Table 19 contains a set of indicators of the biological condition of the juxtaposed series. Figures 8 and 9 show the distribution of indexes e200 and Rpot. Table 19. Palaeodemographic parameters of Krakow and Wieliczka historical populations37 d0-14 Site Dating N Rpot mat. orig. Uc=7 mat. orig. after upward adjustment e00 e00 e200 Zakrzówek 16th-18th 17.15 57.47 0.67 32.84 20.71 19.33 BVM’s Church 15th-18th 1.87 63.48 0.78 44.21 21.94 26.66 St Anne’s 14th 1.18 58.04 0.68 38.13 20.34 20.48 St Mark’s 13th-15th 93 1.89 59.85 0.71 37.09 19.53 18.67 Szczepański Sq. 15th-17th 39 1.63 65.01 0.82 44.69 21.22 26.20 BVM’s Church Crypt 16th-18th 0 67.94 0.89 49.02 21.40 31.11 St Bronislava’s 18th-19th 13.85 65.14 0.82 40.79 21.67 29.30 Holy Cross Church, Wieliczka 15th-18th 5 53.30 0.62 34.76 21.08 19.26 Garbary 16th-18th 11.71 63.89 0.79 39.05 21.06 24.46 All Saints’ Square 17th-18th 17.86 63.6 0.78 36.95 21.16 25.72 Main Square 10th-11th 221 - 59.13 0.70 - 18.64 20.31 St Wojciech’s 16th-18th 270 - 62.82 0.77 - 24.16 26.98 111 The value of e200, representing mean remaining life expectancy of 20 year-old individuals, is greatly diversified over the centuries. The Garbary individuals reached values approximating those of the series from the All Saint’s Square. Those series are also similar to each other in terms of the Rpot ratio. The highest values of the investigated indicators were found for a series from the BVM’s Church crypts, comprising individuals from the highest social strata. An analysis of each parameter in the expectancy table allows us to observe that the Garbary individuals did not represent the progressive population type. They were characterised by a high child mortality rate, and a medium potential reproduction 37 K. Kaczanowski, E. Wiśniewska, The History of Cracow Population in the Light of Demographical Analysis, [in:] Čs. Společnosti Anthropologickē, při Čs. akademii věd, Brno 1989, pp. 5–8; A. Przesmycka, Dymorfizm płciowy mieszkańców nowożytnego Krakowa na podstawie analizy anatomo-antropologicznej szkieletów pochodzących ze stanowiska Garbary w Krakowie, Kraków 2014. 242 Agata Przesmycka et al. ratio. However, in comparison to other Krakow populations, mean remaining life expectancy of twenty-year-olds approached one of the higher values. Fig. 8. A comparison of indicator e200 in medieval and modern-age Krakow series38 Fig. 9. A comparison of indicator Rpot in medieval and modern-age Krakow series39 38 39 K. Szostek et al., Mieszkańcy Krakowa…, op. cit. K. Szostek et al., Mieszkańcy Krakowa…, op. cit. Past inhabitants of Garbary… 243 Conclusions Despite a low item count and sometimes fragmentary condition of the analysed skeletal material, it was possible to characterise part of the population of the past inhabitants of Garbary. The study was based on the assessment of the individuals’ sex and age. In the case of completely preserved skeletons, a macroscopic assessment of sexual dimorphism – manifested in a different development of traits corresponding to male and females sex – was successfully carried out. The investigated series contained mostly males at the age maturus. An analysis of the material by means of the biological distance method allowed us to confirm its homogeneity, albeit on the basis of the range of variability of each cranial index one may notice a diversity in the proportions and the shape of the skull. An analysis of symmetry conducted on the basis of postcranial skeleton measurements revealed a slight (or the absence of) individual asymmetry in lengths of body sections and bone massiveness. Reconstructed stature allowed us to evaluate the impact of socio-cultural factors on the biological structure of the population. The use of regression formulas proposed by various authors enabled a multi-planar reconstruction of this characteristic. Reconstructed female stature ranged from 149.32 cm (Trotter & Gleser, regression formula for the tibia) to 161.28 cm (Vercellotti, regression formula for the humerus). In contrast, male stature ranged from 164.43 cm (Vercellotti, regression formula for the tibia) to 170.25 cm based on the maximum length of the humerus (Trotter & Gleser). Individuals from Garbary nevertheless revealed differences in stature from comparative populations. An analysis of the muscular and skeletal stress markers on bones allowed us to observe that individuals aged below 15 did not display patterns untypical of their biological age; female skeletons were delicately built, whereas male skeletons had a varying level of the development of muscle attachments. For two of the analysed ratios (e200, Rpot) the Garbary individuals reached values nearest to the series from the All Saint’s Square. A palaeodemographic analysis supplied a set of data on various aspects of mortality processes such as life expectancy, potential reproduction and probability of death. 244 ANNEX Table 1. Mean measurement values for skulls from Garbary [mm] (study of 2012) Females Measurement N 2 s x 6 162.83 114.57 n-b 6 102.33 60.27 n-L 6 154.17 147.77 n-i 6 149.67 116.67 b-L 6 101.67 b-i 6 L-i 6 L-o i-o 10.7 min max CV N x s SD 22.4 4.73 150 178 6.57 10 170.8 7.76 92 112 7.59 9 109.78 97.69 12.16 138 170 7.88 9 164.89 35.11 10.8 139 163 7.22 9 163.22 41.94 19.47 4.41 96 108 4.34 10 106.1 142.83 58.97 7.68 130.00 154 5.38 65.17 188.57 13.73 48 84 21.07 5 87.8 34.2 5.85 83 96 5 37.6 242.3 15.57 17 56 L-ba 3 104 100 10 94 114 n-ba 3 90.33 12.33 3.51 87 ba-o 3 32.33 6.33 2.52 ba-b 3 123.67 69.33 8.33 Kruskal-Wallis min max CV F p 7.97 2.01 0.16 165 179 9.88 99 130.00 9.00 7.45 2 0.16 5.93 159 176 3.59 10.72 2.95 0.09 6.48 151 172 3.97 13.55 5.03 0.02 153.43 12.39 77 118 11.67 4.43 2.00 0.16 10 148.8 120.84 10.99 130 170 7.39 5.97 1.32 0.25 10 60.8 45.96 6.78 50 75 11.15 -4.37 0.14 0.7 6.66 10 90.8 13.73 3.71 84 96 4.08 3 1.26 0.26 41.40 10 41.8 32.84 5.73 30 50 13.71 4.2 0.18 0.67 9.62 8 105.88 52.13 7.22 91 114 6.82 1.88 0.10 0.76 94 3.89 7 103.14 158.48 12.59 92 128 12.21 12.81 3.85 0.04 30 35 7.78 10 34.1 39.43 6.28 22 46 18.42 1.77 0.59 0.44 117 133 6.73 8 219.27 14.81 118 170 10.66 15.21 3.79 0.051 138.88 2.77 M-F po-b 6 131.5 219.1 14.8 118 157 11.26 10 129 39.33 6.27 118 139 4.86 -2.5 0.05 0.83 eu-eu 6 146.67 81.87 9.05 137 157 6.17 10 146.4 20.71 4.55 138 153 3.11 -0.27 0 1 ast-ast 4 114 78 8.83 106 126 7.75 10 114.5 32.06 5.66 108 123 4.94 0.5 0.13 0.72 ft-ft 6 99.5 31.5 5.61 94 108 5.64 11 96 26 5.10 86 104 5.31 -3.5 0.83 0.36 Agata Przesmycka et al. g-op SD Males 2 6 127 46.8 6.84 117 135 5.39 7 122.71 53.57 7.32 114 132 5.96 -4.29 1.01 0.32 au-au 4 118.75 5.58 2.36 117 122 1.99 8 127.5 29.43 5.42 120 135 4.25 8.75 6.12 0.01 ms-ms 4 97 11.33 3.37 93 101 3.47 7 102.29 35.9 5.99 96 111 5.86 5.29 1.78 0.18 sz.f.m 3 28.67 2.33 1.53 27 30 5.33 8 28 6 2.45 25 32 8.75 -0.67 0.39 0.53 head circ. 6 503.33 372.67 19.3 480 536 3.84 10 512.8 123.96 11.13 500 530 2.17 9.47 2.03 0.15 n-pr 2 65 8 2.83 63 67 4.35 7 65.71 17.9 4.23 59 70 6.44 0.71 0.09 0.76 n-ns 2 49 18 4.25 46 52 8.66 6 49.83 3.37 1.83 48 53 3.68 0.83 0.12 0.73 ol-sta 3 30.33 6.33 2.52 28 33 8.30 7 40 11.33 3.37 34 44 8.42 9.67 5.76 0.01 zm-zm 2 87.5 12.5 3.54 85 90 4.04 4 93 8.67 2.94 90 97.00 3.17 5.5 2.7 0.1 ek-ek 2 93.5 4.5 2.12 92 95 2.27 5 96.4 18.8 4.34 90 100 4.50 2.9 0.61 0.43 mf-mf 2 21.5 0.5 0.71 21 22 3.29 10 22.6 7.38 2.72 18 26 12.02 1.1 0.3 0.59 10 38.2 7.28 2.70 32 42 7.07 -4.2 Mf-ek - - - - - - - orb. height 2 35.5 12.5 3.54 33 38 9.96 10 31.3 3.57 1.89 29 36 6.03 sz.a.pr. 3 24 1 1 23 25 4.17 9 24.44 5.28 2.3 22 28 9.40 - - 3.9 0.04 0.44 0.04 0.85 2 41.5 12.5 3.54 39 44 8.52 3 37.67 25.33 5.03 33 43 13.36 -3.83 1.33 0.25 2 63 18 4.24 60 66 6.73 3 61 64 8 53 69 13.11 -2 0 1 go-go 5 90.2 25.7 5.07 86 99 5.62 7 100 80.33 8.96 81 106 8.96 9.8 3.55 0.05 bicond. 3 112.33 2.33 1.53 111 114 1.36 3 120 13 3.61 116 123 3.00 7.67 3.86 0.04 gn-id 6 23.17 10.17 3.19 20 29 13.76 9 28.89 11.61 3.41 23 35 11.80 5.72 5.9 0.01 gn-go 6 81.17 80.17 8.95 70 91 11.03 8 88.38 26.55 5.15 76 93 5.83 7.21 2.91 0.08 enm-enm(m) 5 43 1.5 1.22 41 44 2.85 4 42 11.33 3.37 37 44 8.02 0 1 ekm-ekm(m) 5 60.2 37.7 6.14 51 66 10.20 4 63.5 16.33 4.04 58 67 6.36 0.98 0.32 -1 3.3 245 enm-enm ekm-ekm Past inhabitants of Garbary… co-co Females 246 Table 2. Mean measurement values for selected skulls from Garbary (study of 1872) Males Measurement x s min max Sx V N x S min max Sx V g-op 25 169 4.6 158 176 0.92 2.72 20 177.8 5.9 165 186 1.3 3.31 ba-b 24 124.8 4.9 117 135 1.0 3.92 19 133.9 4.0 123 140 0.9 2.98 po-b 25 109.3 3.9 102 117 0.78 3.56 20 118.1 8.7 103 135 1.9 7.36 eu-eu 25 142.5 2.9 138 150 0.58 2.03 20 146 4.9 138 155 1.08 3.35 ft-ft 24 95.7 2.9 91 103 0.59 3.03 20 101 4.7 95 111 1.04 4.65 co-co 24 120.3 5.1 110 129 1.04 4.2 20 125.2 4.9 115 132 1.08 3.91 n-gn 4 108 3.3 103 111 0.8 3.0 5 116.2 3.4 111 120 1.5 2.9 n-pr 17 65.8 4.2 55 73 1.02 6.4 10 70.1 3.4 66 78 1.1 4.8 n-ns 18 47.3 2.8 40 50 0.66 5.91 6 49.9 2.5 46 54 0.62 1.72 zy-zy 14 125.2 4.8 115 134 1.29 3.83 15 135.5 6.7 123 147 1.7 4.94 zm-zm 16 91.8 4.0 84 98 1.0 1.1 17 95.6 4.24 87 102 1.03 4.4 mf-ek 17 39.8 1.7 34 42 0.41 4.2 16 42 1.8 39 45 0.45 4.28 orb. height 19 31.6 2.1 28 35 0.5 6.6 16 32.2 2.1 29 37 0.52 6.5 a.pir.width 18 24.5 2.3 22 28 0.54 9.38 16 25.5 3.2 22 27 0.8 12.5 Agata Przesmycka et al. N Past inhabitants of Garbary… 247 Abstract The present work analyses the bone material unearthed at the graveyard of St Peter the Little’s Church in Garbary. The study is based on research from the years 1978 and 2012. A total of 111 skeletons were analysed, all of them of medium condition, dating back to the modern period. The material’s diversity level was verified by biological distance assessment. Ward’s method was used for selected measurement features of the neurocranium and the facial skeleton. Sex and age were established simultaneously by means of methods commonly applied in anthropology. The assessment was based on the morphology of the skull and pelvic bones as well as the deciduous and permanent teeth eruption sequence. Cranial measurements and indices were subjected to analysis. Osteometric data provided the basis for an analysis of long bone symmetry, limb length and proportions and bone massiveness indices. A multi-planar reconstruction of individuals’ stature was performed by means of regression formulas developed by various authors. Sexual dimorphism index served indirectly as a measurement of the living conditions of individuals in the population, whereas an analysis of muscular and skeletal stress markers on bones allowed us to evaluate build types. Calculated life expectancy table parameters were used to recreate e.g. individuals’ lifespans and life expectancy structure (by age at death) characteristic of historical populations of Krakow. Keywords Garbary, stature, Index of Sexual Dimorphism, osteology Streszczenie Dawni mieszkańcy Garbar w ujęciu biokulturowym W pracy dokonano analizy materiału kostnego wyeksplorowanego z obszaru cmentarza przy kościele św. Piotra Małego na Garbarach. Badania prowadzone były w latach 1978 i 2012. Analizie poddano 111 szkieletów, o średnim stanie zachowania, datowanych na okres nowożytny. Sprawdzono stopień różnorodności materiału z wykorzystaniem oceny odległości biologicznej. Zastosowano metodę Warda dla wybranych cech po- 248 Agata Przesmycka et al. miarowych mózgoczaszki i twarzoczaszki. Płeć i wiek zostały ocenione kompleksowo z zastosowaniem metod powszechnie przyjętych w antropologii. Wykorzystano ku temu morfologię czaszki i kości miednicznych, jak również sekwencję wyrzynania się zębów mlecznych i stałych. Analizie poddano pomiary i wskaźniki czaszek. W oparciu o pomiary osteometryczne wykonano analizę symetryczności kości długich, długości i proporcji kończyn oraz wskaźników masywności kości. Wielopłaszczyznową rekonstrukcję wysokości ciała osobników przeprowadzono przy użyciu równań regresji różnych autorów. Wskaźnik dymorfizmu płciowego pośrednio posłużył jako miara warunków życia osobników w populacji, natomiast analiza wyznaczników stresu mięśniowo-szkieletowego na kościach pozwoliła na ocenę typu budowy ciała. Obliczone parametry tablicy wymieralności posłużyły odtworzeniu m.in. długości życia osobników i struktury wymieralności według wieku zmarłych zachodzącej w jednej z dawnych populacji krakowskich. Słowa kluczowe Garbary, wysokość ciała, wskaźnik dymorfizmu płciowego, osteologia Bibliography Acsadi G., Nemeskeri J., History of human life span and mortality, Akademiai Kiado, Budapest 1970. Bieniarzówna J. & Małecki J. M., Dzieje Krakowa – Kraków w latach 1796–1918, t. 3, Kraków 1979. Bieniarzówna J. & Małecki J. M., Dzieje Krakowa – Kraków w wiekach XVI–XVIII, t. 3, Kraków 1984. Borgognini T. S., Repetto M. E., Methodological considerations on sexual dimorphism in past human populations, „Human Evolution” 1 (1986), pp. 51–66. Brothwell D. R., Digging Up Bones, Natural History Museum Publications, London 1981. Buikstra J. E., Ubelaker D. H., Standards for Data Collection from Human Skeletal Remains, Fayetteville 1944 (Arkansas Archeological Survey Research Series, 44). Dryja S., Trela-Kieferling E., Sławiński S., Sprawozdanie z badań archeologicznych przy przebudowie kamienicy przy ulicy Łobzowskiej 8 w Krakowie, Kraków 2012. Hawkey D. & Merbs C. F., Activity-induced musculoskeletal stress markers (MSM) and subsistence strategy changes among ancient Hudson Bay Eskimos, „International Journal of Osteoarchaeology” 5 (1995), pp. 324–338. Henneberg M., Notes on the reproduction possibility of human prehistorical populations, „Przegląd Antropologiczny” 41 (1975), pp. 75–89. Past inhabitants of Garbary… 249 Henneberg M., Proportion of dying children in paleodemographcal studies, „Przegląd Antropologiczny” 43 (1977), pp. 105–114. Jagocka D., Charakterystyka antropologiczna XVII–XVIII-wiecznych czaszek z cmentarzyska Garbary w Krakowie, Kraków 1988. Kaczanowski K., Wiśniewska E., The History of Cracow Population in the Light of Demographical Analysis, [in:] Čs. Společnosti Anthropologickē, při Čs. akademii věd, Brno 1989, pp. 5–8. Kopernicki I., Czaszki przedmieszczan Krakowskich z XVII–XVIII wieku, „Zbiór wiadomości do antropologii krajowej” 11 (1887) z. 2, pp. 1–25. Lempart A., Morfologia funkcjonalna szkieletów z cmentarzyska na Garbarach w Krakowie, Kraków 2014. Lovejoy C.O., Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death, „American Journal of Physical Anthropology” 1 (1985), pp. 15–28. Malinowski A., Bożiłow W., Podstawy antropometrii. Metody, techniki, normy, Warszawa–Łódź 1997. Martin R., Saller K., Lehrbuch der Anthropologie, Stuttgart 1957–1959. Piontek J., Iwanek B., Segeda S., Antropologia o pochodzeniu Słowian, Poznań 2008 (Monografie Instytutu Antropologii UAM, 12). Piontek J., Biologia populacji pradziejowych, Poznań 1985. Przesmycka A., Dymorfizm płciowy mieszkańców nowożytnego Krakowa na podstawie analizy anatomo-antropologicznej szkieletów pochodzących ze stanowiska Garbary w Krakowie, Kraków 2014. Strzałko J., Henneberg M., Piontek J., Populacje ludzkie jako systemy biologiczne, Warszawa 1980. Szostek K. et al., Mieszkańcy Krakowa ostatniego millenium, Conference materials 2013. Todd T. W., Age changes in the pubic bones: I. The white male pubis, „American Journal of Physical Anthropology” 3 (1920), pp. 467–470. Trotter M., Gleser G. C., Estimation of Stature from Long Bones of American Whites and Negroes, „American Journal of Physical Anthropology” 10 (1952), pp. 463–514. Vercellotti G., Agnew A. M., Justus H. M., Sciulli P. W., Stature Estimation in an Early Medieval (11th-12th c.) Polish Population: Testing the Accuracy of Regressions Equations in a Bioarcheological Sample, „American Journal of Physical Anthropology” 140 (2009), pp. 135–142. Weiss E., Corona L. & Schulz B., Sex Differences in Musculoskeletal Stress Markers: Problems with Activity Pattern Reconstructions, „International Journal of Osteoarchaeology” 22 (2010), pp. 70–80. White T. D., Folkens P. A., The Human Bone Manual, Academic Press 2005. Wyrozumski J., Dzieje Krakowa – Kraków do schyłku wieków średnich, t. 1, Kraków 1992.

References (37)

  1. G. Acsadi, J. Nemeskeri, History of human life span and mortality, Budapest 1970; J. Piontek, Biologia populacji pradziejowych, Poznań 1985, pp. 134-143; T. D. White, P. A. Folkens, The Human Bone Manual, Academic Press 2005.
  2. J. E. Buikstra, D. H. Ubelaker, Standards for Data Collection from Human Skeletal Remains, Fayetteville 1944 (Arkansas Archeological Survey Research Series, 44).
  3. D. R. Brothwell, Digging Up Bones, Natural History Museum Publications, London 1981.
  4. T. W. Todd, Age changes in the pubic bones: I. The white male pubis, "American Journal of Physical Anthropology" 1920 vol. 3, pp. 467-470; C.O. Lovejoy, Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death, "American Journal of Physical Anthropology" 1 (1985), pp. 15-28;
  5. T. D. White, P. A. Folkens, The Human Bone…, op. cit.
  6. A. Malinowski, W. Bożiłow, Podstawy antropometrii. Metody, techniki, normy, Warszawa- Łódź 1997, p. 303; T. D. White, P. A. Folkens, The Human Bone…, op. cit.; J. Piontek, Biologia populacji…, op. cit.
  7. R. Martin, K. Saller, Lehrbuch der Anthropologie, Stuttgart 1957-1959.
  8. J. Piontek, Biologia populacji…, op. cit.
  9. G. Vercellotti et al., Stature Estimation in an Early Medieval (11th-12th c.) Polish Population: Testing the Accuracy of Regressions Equations in a Bioarcheological Sample, "American Journal of Physical Anthropology" 140 (2009), pp. 135-142.
  10. Acsadi G., Nemeskeri J., History of human life span and mortality, Akademiai Kiado, Budapest 1970.
  11. Bieniarzówna J. & Małecki J. M., Dzieje Krakowa -Kraków w latach 1796-1918, t. 3, Kra- ków 1979.
  12. Bieniarzówna J. & Małecki J. M., Dzieje Krakowa -Kraków w wiekach XVI-XVIII, t. 3, Kraków 1984.
  13. Borgognini T. S., Repetto M. E., Methodological considerations on sexual dimorphism in past human populations, "Human Evolution" 1 (1986), pp. 51-66.
  14. Brothwell D. R., Digging Up Bones, Natural History Museum Publications, London 1981.
  15. Buikstra J. E., Ubelaker D. H., Standards for Data Collection from Human Skeletal Remains, Fayetteville 1944 (Arkansas Archeological Survey Research Series, 44).
  16. Dryja S., Trela-Kieferling E., Sławiński S., Sprawozdanie z badań archeologicznych przy przebudowie kamienicy przy ulicy Łobzowskiej 8 w Krakowie, Kraków 2012.
  17. Hawkey D. & Merbs C. F., Activity-induced musculoskeletal stress markers (MSM) and sub- sistence strategy changes among ancient Hudson Bay Eskimos, "International Journal of Osteoarchaeology" 5 (1995), pp. 324-338.
  18. Henneberg M., Notes on the reproduction possibility of human prehistorical populations, "Przegląd Antropologiczny" 41 (1975), pp. 75-89.
  19. Henneberg M., Proportion of dying children in paleodemographcal studies, "Przegląd Antropologiczny" 43 (1977), pp. 105-114.
  20. Jagocka D., Charakterystyka antropologiczna XVII-XVIII-wiecznych czaszek z cmentarzyska Garbary w Krakowie, Kraków 1988.
  21. Kaczanowski K., Wiśniewska E., The History of Cracow Population in the Light of Demo- graphical Analysis, [in:] Čs. Společnosti Anthropologickē, při Čs. akademii věd, Brno 1989, pp. 5-8.
  22. Kopernicki I., Czaszki przedmieszczan Krakowskich z XVII-XVIII wieku, "Zbiór wiado- mości do antropologii krajowej" 11 (1887) z. 2, pp. 1-25.
  23. Lempart A., Morfologia funkcjonalna szkieletów z cmentarzyska na Garbarach w Krakowie, Kraków 2014.
  24. Lovejoy C.O., Chronological metamorphosis of the auricular surface of the ilium: a new me- thod for the determination of adult skeletal age at death, "American Journal of Physical Anthropology" 1 (1985), pp. 15-28.
  25. Malinowski A., Bożiłow W., Podstawy antropometrii. Metody, techniki, normy, Warsza- wa-Łódź 1997.
  26. Martin R., Saller K., Lehrbuch der Anthropologie, Stuttgart 1957-1959.
  27. Piontek J., Iwanek B., Segeda S., Antropologia o pochodzeniu Słowian, Poznań 2008 (Mo- nografie Instytutu Antropologii UAM, 12).
  28. Piontek J., Biologia populacji pradziejowych, Poznań 1985.
  29. Przesmycka A., Dymorfizm płciowy mieszkańców nowożytnego Krakowa na podstawie analizy anatomo-antropologicznej szkieletów pochodzących ze stanowiska Garbary w Krakowie, Kraków 2014.
  30. Strzałko J., Henneberg M., Piontek J., Populacje ludzkie jako systemy biologiczne, War- szawa 1980.
  31. Szostek K. et al., Mieszkańcy Krakowa ostatniego millenium, Conference materials 2013.
  32. Todd T. W., Age changes in the pubic bones: I. The white male pubis, "American Journal of Physical Anthropology" 3 (1920), pp. 467-470.
  33. Trotter M., Gleser G. C., Estimation of Stature from Long Bones of American Whites and Negroes, "American Journal of Physical Anthropology" 10 (1952), pp. 463-514.
  34. Vercellotti G., Agnew A. M., Justus H. M., Sciulli P. W., Stature Estimation in an Early Medieval (11 th -12 th c.) Polish Population: Testing the Accuracy of Regressions Equations in a Bioarcheo- logical Sample, "American Journal of Physical Anthropology" 140 (2009), pp. 135-142.
  35. Weiss E., Corona L. & Schulz B., Sex Differences in Musculoskeletal Stress Markers: Problems with Activity Pattern Reconstructions, "International Journal of Osteoarchaeology" 22 (2010), pp. 70-80.
  36. White T. D., Folkens P. A., The Human Bone Manual, Academic Press 2005.
  37. Wyrozumski J., Dzieje Krakowa -Kraków do schyłku wieków średnich, t. 1, Kraków 1992.