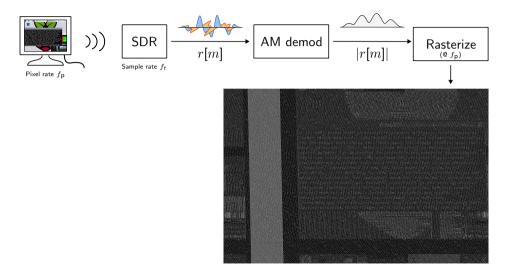
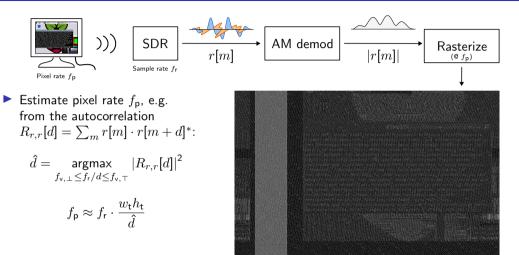
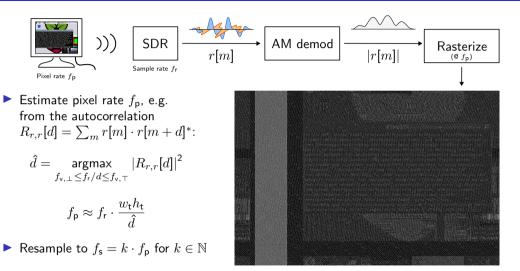
Benefits of coherent demodulation for eavesdropping on HDMI emissions

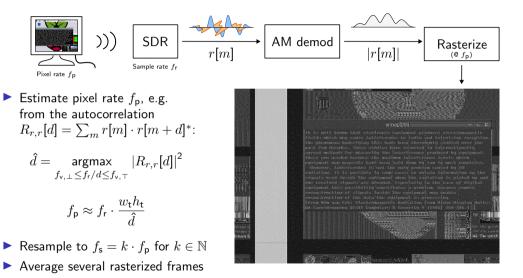
Dimitrije Erdeljan, Markus G. Kuhn

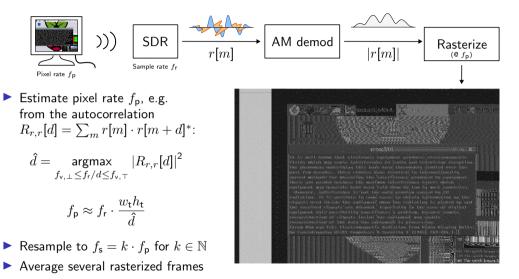
Department of Computer Science and Technology University of Cambridge







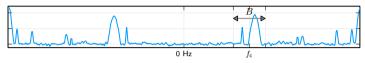




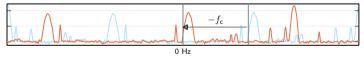
Align image

Software-defined radio receiver

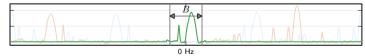
Antenna waveform (shown as Fourier spectrum) $s_0(t)$:



Downconvert: $s_d(t) = s_0(t) \cdot e^{-2\pi j f_c t}$



Lowpass filter: $s_{f}(t) = \int s_{d}(t-\tau)g(\tau)d\tau$



Finally, output sampled $r[m] = s_f(m/f_r)$.

Rasterizing complex-valued signals: amplitude demodulation

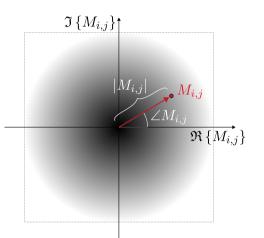
Most eavesdropping demonstrations amplitude demodulate samples $M_{i,j} \in \mathbb{C}$ and visualise them as grayscale pixels.

For example, mapping 1% and 99% quintiles to black and white:

$$\mathsf{Gray}\left(\frac{|M_{i,j}|-q_{1\%}}{q_{99\%}-q_{1\%}}\right)$$

This discards phase information $\angle M_{i,j}$.

The quick brown fox

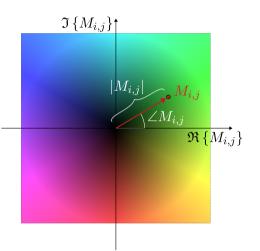


Rasterizing complex-valued signals: HSV visualisation

Using the HSV (hue, saturation, value) colour space allows us to also show the phase:

$$\mathsf{HSV}\left(\angle M_{i,j}, \ S, \ \frac{|M_{i,j}| - q_{1\%}}{q_{99\%} - q_{1\%}} \right)$$

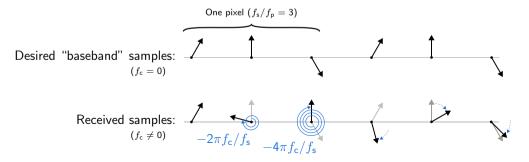
(We leave the saturation coordinate S as a user preference.)



First rasterization attempt

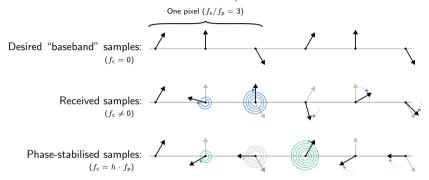
Directly rasterizing an SDR-received signal produces a "rainbow-banding" image:

This is due to SDR downconversion from the antenna waveform $s_0(t)$ to $e^{-2\pi j f_c t} \cdot s_0(t)$.



Obtaining consistent phase angles

Shift the centre frequency to a harmonic $h \cdot f_p$ of the pixel frequency:



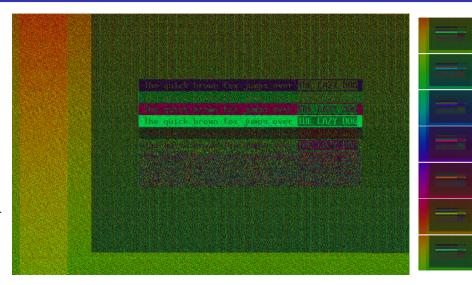
We combine frequency shifting $f_c \rightarrow h \cdot f_p$ with resampling to $f_s = k \cdot f_p$:

$$s[n] \approx s_{\rm f} \left(\frac{n+\lambda}{f_{\rm s}}\right) \cdot {\rm e}^{2\pi {\rm j}(f_{\rm c}-hf_{\rm p})n/f_{\rm s}}$$

Obtaining consistent phase angles

Some drift still remains over longer intervals.

Coherent averaging requires consistent phase across many frames, i.e. a more accurate f_p estimate.



Accurate f_{p} estimation

We improve the $f_{\rm p}$ estimate several times until convergence, by iterating over three steps:

1 Resampling and frequency-shifting $f_{c} \rightarrow h \cdot f_{p}$:

$$s[n] \approx s_{\rm f} \left(\frac{n+\lambda}{f_{\rm s}} \right) \cdot {\rm e}^{2\pi {\rm j} (f_{\rm c}-hf_{\rm p})n/f_{\rm s}}$$

Ocomputing the autocorrelation:

$$R_{s,s}[d] = \sum_{n} s[n] \cdot s[n+d]^*$$

3 Updating the f_p estimate, with a fine-tuning term which measures phase drift between frames:

$$f_{\mathsf{p}} := f_{\mathsf{p}} \cdot \left(\frac{k w_{\mathsf{t}} h_{\mathsf{t}}}{\hat{d}} + \frac{k \angle R_{s,s}[\hat{d}]}{2\pi h \hat{d}} \right)$$

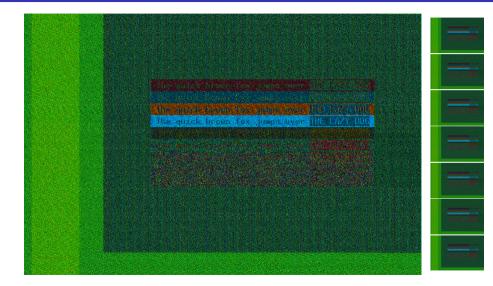
(This is a corrected version of Eqn. 11 in the proceedings)

Iterations	f_{P}	
0	25.200000000	MHz
1	25.200096064	MHz
2	25.200096764	MHz
3	25.200096794	MHz
4	25.200096793	MHz
5	25.200096788	MHz
6	25.200096788	MHz

 $\hat{d} = \operatorname*{argmax}_{f_{\mathsf{v},\perp} \leq f_{\mathsf{r}}/d \leq f_{\mathsf{v},\top}} \left| R_{s,s}[d] \right|^2$

In later iterations, we can also search for the correlation peak at larger multiples of the frame period.

Obtaining consistent phase angles (with accurate f_p)

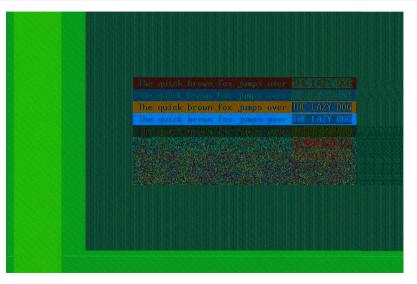


With the more accurate f_p , the phase now stays consistent across frames.

Consistent phase angles enable coherent averaging

We can now periodically average unrotated $M_{i,j} \in \mathbb{C}$ to reduce noise.

This image was rasterized from 30 averaged frames (≈ 0.5 s long).



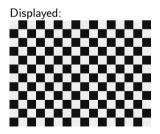
Does the phase provide new information?

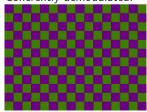
To demonstrate how phase information can help with distinguishing colours, we used a test image with two grayscale colours: #101010 and #eeeeee.

These are TMDS-encoded in HDMI as complementary bit sequences:

- ▶ #101010 \rightarrow 0111110000
- ▶ #eeeeee \rightarrow 1000001111

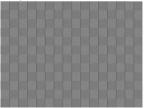
The resulting emissions therefore differ only in their sign.





Coherently demodulated:

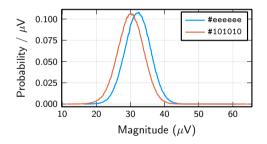
Amplitude demodulated:



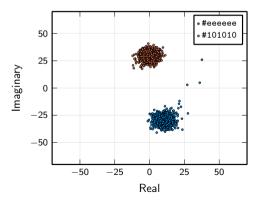
Does the phase provide new information?

The distributions of amplitudes $|M_{i,j}|$ for these two colours overlap significantly, while those for the full $M_{i,j} \in \mathbb{C}$ do not:

Amplitude distribution $(|M_{i,j}|)$:



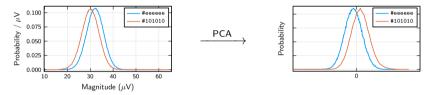
Complex distribution $(M_{i,j})$:



Comparing distributions using dimensionality reduction

We can better distinguish colours by combining information from all k = 3 samples for a pixel with dimensionality reduction, e.g. using Principal Component Analysis (PCA).

Amplitude demodulation (3-dimensional PCA on $|M_{i,3j}|, |M_{i,3j+1}|, |M_{i,3j+2}|$):



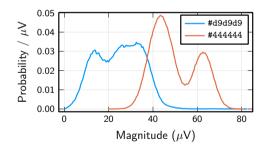
Coherent demodulation (6-dimensional PCA on $\Re \{M_{i,3j}\}, \Im \{M_{i,3j}\}, \ldots, \Im \{M_{i,3j+2}\}$):

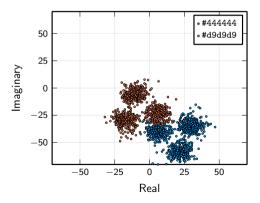
A more complex encoding

For another randomly chosen pair of colours, their more varied TMDS encodings result in different distributions for each sample position in a pixel:

Amplitude distribution $(|M_{i,j}|)$:

Complex distribution $(M_{i,j})$:





PCA-based rasterization

Rasterizing the projection on the largest-eigenvalue PCA vector can produce grayscale images with better contrast than amplitude demodulation.

1 Black and white:

The quick brown fox jumps over THE LAZY DOG

The guick brown for jumps over THE LARY DOG The guick brown for jumps over THE LARY DOG

2 Maximum bit transition contrast:

The	quick	brown	${\sf fox}$	jumps	over	THE LAZY DOG
I have	qui alle	Log sources	11 with	jannesst	dates are	MM LAPY DOG
The	quick	brown	fox	gumps	over	and Azertati

3 Complementary TMDS encoding:

The quick brown fox jumps over THE LAZY DOG

The quick brown fox jumps over THE LAZY DOG

4 Maximum contrast if AM demodulated:

The	quick	brown	fox	jumps	over	THE	LAZY	DOG
The	quick	brown	fox	jumps	over	THE	LAZY	DOG
The	quick	brown	fox	jumps	over	THE	LAZY	DOG

Minimum contrast if AM demodulated:
<u>The quick brown fox jumps over THE LAZY DOG</u>
<u>Ended</u>
<u>Contract of the second s</u>

6 Low nibble random: The quick brown fox jumps over THE LAZY DOG The quick brown fox jumps over THE LAZY DOG

(Top to bottom: displayed, amplitude demodulated, PCA)

- Phase information can be included in the rasterized image as hue in the HSV colour space
- Shifting the centre frequency precisely to a harmonic of the pixel clock stabilises phase and allows periodic averaging in the complex domain

- We can precisely estimate the target's pixel-clock frequency using both position and phase of the peak of the complex-valued autocorrelation sequence
- Preserving phase information helps better discriminate between colours
- With multiple samples per pixel, dimensionality reduction can further improve contrast