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Abstract

In durable goods markets, sellers face a dynamic trade-off: more units sold today come at

the expense of selling more units tomorrow. Buyers face a similar dynamic trade-off: should

they purchase a new product today or retain their existing product and purchase a poten-

tially better product tomorrow? These issues lay at the heart of durable goods markets -

especially those involving high-tech products - yet relatively little research addresses them

from an empirical perspective. To that end, this dissertation provides a dynamic structural

analysis of demand and competition within the context of the PC microprocessor industry.

This industry is particularly interesting because it is a duopoly that has experienced intense

technological and price competition.

First, I estimate a model of dynamic demand that allows for both product adoption and

replacement decisions when consumers are uncertain about future product price and qual-

ity. In the absence of panel data, I show how to infer replacement from a combination of

aggregate data. The results show that heterogeneity in replacement behavior provides an

opportunity for firms to tailor their product introduction and pricing strategies by targeting

specific consumer replacement segments.

Second, I extend this analysis to construct an equilibrium model of dynamic oligopoly

with durable goods and endogenous innovation. Firms make dynamic pricing and invest-

ment decisions while taking into account competitors’ strategies and the aggregate dynamic
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behavior of consumers. I examine the role of product durability on firms’ optimal policy

functions and the nature of competition in the industry. I find that industry profits are 24

and 41 percent lower in the duopoly and monopoly settings, respectively, when the firms

ignore the durable nature of the product while setting prices. This demonstrates the strong

link between optimal firm behavior and accounting for durability and dynamic demand.

Welfare outcomes also differ significantly: compared to a socially benevolent monopolist,

consumer welfare is 22 percent lower in a duopoly and 54 percent lower in a monopoly.

While investment is higher in the duopoly than in the monopoly, a counterfactual analysis

suggests that most of the welfare loss associated with monopoly comes from higher margins

and not slower innovation.
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Chapter 1

Introduction

In durable goods markets, sellers face a dynamic trade-off: more units sold today come at the

expense of selling more units tomorrow. Buyers face a similar dynamic trade-off: purchase a

new product today or retain their existing product and purchase a potentially better product

tomorrow? These issues lay at the heart of durable goods markets, especially those involving

high-tech products. Yet, while there is a well-developed literature on the microeconomic

theory of durable goods, relatively little work has empirically analyzed these markets from

a structural perspective. This imbalance is not due to a lack of intrinsic empirical interest;

numerous questions exist that are specific to such markets concerning the inter-related roles

of product replacement cycles, R&D investment decisions, dynamic pricing strategies, and

industry evolution. Instead, the lack of empirical analysis is primarily due to the difficulty

of finding suitably rich data sets and overcoming modeling and computational obstacles.

High-tech durable goods markets represent an especially interesting class of industries

for several reasons. First, these industries play an increasingly central role in the economy

and their influence extends beyond their formal boundaries. This makes it important for

researchers to be able to accurately model such markets to be able to answer policy questions

and conduct counterfactual analyses, such as evaluating potential mergers or measuring the
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welfare impact of new technologies. Second, from a modeling perspective, these markets

frequently undergo both rapid improvements in quality and falling prices. This implies that

a consumer’s decision to replacement a high-tech product, such as a digital camera or an

MP3 player, is most often due to obsolescence. As a result, the replacement decision is

dynamic because the consumer that forgoes a purchase today might buy a potentially better

product tomorrow for less money. This is in contrast to“low-tech” durables, such as washing

machines, which are usually replaced due to wear and tear and do not require consumers to

posses forward-looking expectations.

These unique features of high-tech durable goods make it problematic to apply standard

demand estimation techniques and equilibrium modeling approaches. First, the standard

static discrete choice model does not account for the forward-looking behavior of consumers,

and using such a model generally leads to biased parameter estimates and potentially flawed

counterfactual analysis. Second, consumers’ replacement decisions depend on the value they

place on the product they already own (if any). This suggests that it is important to model

the distribution of consumers over their currently owned products, and that is important

to model how this distribution of product ownership changes over time in response to price

changes and new product introductions.

This dissertation seeks to address these issues by providing a dynamic structural analysis

of demand and competition in a high-tech durable goods market. I develop techniques for

dealing with the data and modeling problems, and investigate the substantive issues within

the context of the PC processor industry. This industry is particularly interesting because

it is a duopoly, with Intel and Advanced Micro Devices (AMD) controlling about 95 percent

of the market, and sales have been driven by intense technological innovation and price

competition. While I focus on the processor industry, the analysis should be relevant for

any industry where innovation and obsolescence drive product replacement. To conduct the

empirical analysis, I have constructed a unique and comprehensive data set including prices,
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characteristics, sales, and consumer ownership of PC processors from 1993 to 2004.

I briefly summarize the other two chapters below.

Chapter 2. In this chapter, I focus on the critical role of product replacement in high-

tech markets. Despite the seeming importance of the replacement decision, most of the

empirical work to date has only focused on the initial product adoption decision (Melnikov,

2001, Song and Chintagunta, 2003). While such a restriction may be reasonable in industries

where replacement sales are negligible, many high-tech markets have matured to the point

where replacement purchases are a significant portion of overall sales volume. In these cases,

firms know that consumers follow replacement cycles, but little is known about how and why

these replacement cycles change over time. And recognizing that consumers do follow such

cycles, how might firms alter their own strategies to take advantage of this?

To address these issues, I develop and estimate a consumer model of dynamic demand

for PC processors. The model allows for both product adoption and replacement decisions

when consumers are uncertain about future product price and quality. In the absence of

panel data, I show how to infer replacement behavior from a combination of aggregate data

sources and examine the role of technological innovation and pricing on product replacement

over time.

After applying the model to the PC processor industry, the results reveal substantial

variation in replacement behavior over time. First, I demonstrate that this heterogeneity in

consumer replacement behavior provides an opportunity for managers to tailor their product

introduction and pricing strategies to target the particular segment of consumers that is

most likely to replace in the near future. Managers can alter their product introduction

and pricing strategies to correspond to the preferences of each particular consumer segment.

Second, the model suggests that an“averaging effec” may provide an alternative explanation

for the observed increase in replacement cycle length in the PC market: more consumers

with inherently longer replacement cycles have entered the market over time, producing a
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natural increase in the aggregate replacement cycle length. Third, I find that a myopic

model of replacement underestimates price elasticities by approximately 30 to 40 percent

and overestimates the frequency of replacement by 50 percent. Lastly, using counterfactual

simulations, I also examine the impact of alternative rates of innovation on replacement cycle

length and consumer welfare. I find that the marginal effect of innovation on the replacement

cycle length has decreased over time, implying a decline in the ability of quality innovations

to generate replacement sales.

Chapter 3. Dynamic demand is a key characteristic of durable goods markets. An

event in the current period, such as a price cut, may cause some consumers to shift future

consumption into the present, leading to lower sales in the following period. Depending on

the magnitude of such events, their impact on future sales may persist for many periods, and

thus affect the optimal firm policies as well. Despite the importance of dynamic demand in

durable goods markets, the equilibrium implications on firms’ and consumers’ strategies in

an imperfectly competitive market remain unclear.

To this end, the third chapter of this thesis constructs a model of dynamic oligopoly

with durable goods and endogenous innovation. Firms make both dynamic pricing and

investment decisions while taking into account competitors’ strategies and the aggregate

dynamic behavior of consumers. A consumer must decide whether to keep their existing

product (if any) or to buy a new product, given her expectations about future product

characteristics. The distribution of currently owned products affects current demand and

evolves endogenously as consumers make replacement purchases. The equilibrium model

allows us to understand the role of forward-looking consumer behavior on firms’ optimal

policy functions and the nature of competition in the industry and to conduct policy and

counterfactual simulations in equilibrium.

Our work extends the framework developed by Ericson and Pakes (1995) and Pakes and

McGuire (1994) to incorporate durable goods. Our work is also related to recent empirical
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models of dynamic demand that take the firms’ behavior as exogenous, whereas this chapter

endogenizes firms’ actions through a dynamic multi-agent game setting. Finally, our work

is connected to the large theoretical literature on durable goods, such as the literatures on

optimal durability, starting with Swan (1970, 1971), and Sieper and Swan (1973), and the

literature on the monopolist’s time inconsistency problem, beginning with Coase (1972) and

followed by Stokey (1981) and Bulow (1982).

Our model primarily differs along two key dimensions. First, we consider a dynamic

oligopoly where competition in pricing and innovation play critical roles. Second, we allow

for endogenous innovation and account for the endogenous evolution of the distribution of

currently owned (used) products. Product quality increases over time as the firms invest

in innovation. While the product a consumer owns never deteriorates in an absolute sense,

consumers make replacement purchases as the quality of the product they own becomes

worse relative to the frontier product in the market.

We show that accounting for product durability and the distribution of consumer own-

ership have significant implications for firms’ profits and consumer surplus. In a duopoly,

we find that industry profits are 24 percent lower when the firms ignore the durable nature

of the product when setting prices. In the monopoly case, the firm’s profits are 41 percent

lower. This demonstrates the strong link between optimal firm behavior, with and without

competition, and accounting for product durability and dynamic demand. Margins are 48

percent lower in the duopoly and 68 percent lower in the monopoly, confirming the intuition

that prices are higher under dynamic demand.

Welfare outcomes also differ significantly: compared to a socially benevolent monopolist,

consumer welfare is 22 percent lower in a duopoly and 54 percent lower in a monopoly. While

investment is higher in the duopoly than in the monopoly, a counterfactual analysis suggests

that most of the welfare loss associated with monopoly comes from higher margins and not

a slower rate of innovation.
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Chapter 2

A Dynamic Model of Consumer

Replacement Cycles

2.1 Introduction

Product replacement plays a critical role in many high-tech durable goods markets, from

cell phones to camcorders to computers. Since these markets frequently undergo both rapid

improvements in quality and falling prices, the consumer’s replacement decision is most of-

ten due to product obsolescence, as opposed to wear and tear. As a result, the replacement

decision is dynamic because the consumer that forgoes a purchase today might buy a po-

tentially better product tomorrow for less money. However, from an empirical perspective,

this issue has received insufficient attention in both marketing and economics.1 Managers

know that consumers follow replacement cycles, but little is known about how and why these

replacement cycles change over time. And recognizing that consumers do follow such cycles,

1This relates to the literature on planned obsolescence, which has mostly addressed these issues from a
theoretical perspective. See, for example, Levinthal and Purohit (1989) and Waldman (1993).
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how should managers alter their own strategies to take advantage of this?

To address these issues, I develop and estimate a consumer model of dynamic demand for

PC processors. The model allows for both product adoption and replacement decisions when

consumers are uncertain about future product price and quality. The PC processor industry

is particularly interesting because it is composed of two major players, Intel and Advanced

Micro Devices (AMD). Intense technology and price competition between them has helped

increase market penetration of PC’s from 28% in 1993 to 74% in 2004. As penetration has

grown, the industry has increasingly relied on product replacement as a vehicle for sales

growth.

Using a unique data set that combines different aggregate data sources, I examine the

role of technological innovation and pricing on product replacement over time. I show that

heterogeneity in both consumer preferences and replacement behavior has important impli-

cations for understanding consumer demand. This heterogeneity provides an opportunity for

managers to tailor their product introduction and pricing strategies to target the particular

segment of consumers that is most likely to replace in the near future.

Using a structural model of dynamic demand for differentiated durable goods, I allow the

consumer’s replacement decision to depend on the quality of the product they currently own.

Each period, consumers in the model choose whether to keep their existing product (if any)

or to replace it with one of the new products available. Consumers form expectations over

future product qualities and prices. The uncertainty in these expectations creates an inherent

trade-off. If consumers expect little change in product qualities or prices, they are more

likely to make a purchase in the current period. But if they expect a near-term decrease in

quality-adjusted prices, they are more likely to postpone replacement. Heterogeneity enters

the model in two ways. First, consumers belong to latent preference segments. Second, the

value of a consumer’s outside option (no purchase) is determined endogenously; the product

a consumer already owns determines the value of not making a purchase in the future. Thus,
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both a consumer’s replacement decision and the exogenous evolution of the product market

affect the composition of their future choice sets. Note that the product adoption decision

is implicitly nested within this specification.

Models of demand for durable goods have already been examined in a variety of contexts,

but relatively few studies have considered the replacement of durable goods in a structural

empirical model.2

In marketing, much of the existing work on product adoption follows in the tradition

of the Bass diffusion model (Bass, 1969). Some relevant extensions consider the diffusion

of successive generations of a technology product (Norton and Bass, 1987) and the optimal

introduction timing of new product generations (Wilson and Norton, 1989). This research

methodology has successfully described the empirical diffusion pattern of new consumer

durables ranging from air conditioners to color TVs to clothes dryers. A few papers incor-

porate product replacement into forecasting models of durable goods sales (Bayus, 1988;

Bayus, Hong, and Labe, 1989; Steffens, 2003).3

Building off the literature on single-agent dynamic models, researchers in both marketing

and economics have also constructed structural models of durable goods adoption.4 A com-

mon feature of most of this work is that the consumer’s decision problem is formulated as an

optimal stopping problem.5 In this formulation, the consumer decides on the optimal time

2The discussion here is limited to infrequently purchased durable goods. The replacement decision for
frequently purchased products, such as paper towels or cereal, is fundamentally different, because it is usually
motivated by stockout effects and the characteristics of the products are constant. See, for example, Gonul
and Srinivasan (1996), Sun et al (2003), Mehta et al (2004), and Sun (2005).

3Ratchford, Balasubramanian, and Kamakura (2000) provide an excellent review of the literature on
diffusion models with replacement and multiple purchases. The author thanks a reviewer for bringing this
paper to his attention.

4See Rust (1994) and Dubé et al (2005) for reviews of the literature on dynamic models in economics and
marketing, respectively.

5Horsky (1990) and Chatterjee and Eliashberg (1990) take a different approach by constructing an aggre-
gate diffusion curve based on the individual level adoption decisions derived from a consumer’s maximization
problem.
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period to enter the market, makes a single purchase from among the available products, and

then exits the market permanently. An appealing consequence of this assumption is that

the policy function describing the optimal entry period takes the form of a cutoff rule, which

can facilitate the estimation process.

A number of researchers use the optimal stopping framework to study the adoption of

new consumer technology durables. Melnikov (2001) uses it in a novel model of demand

for differentiated durable goods that he applies to the adoption of computer printers. Car-

ranza (2004) and Gowrisankaran and Rysman (2005) extend Melnikov’s model to include

consumer heterogeneity and examine the introduction of digital cameras and DVD play-

ers, respectively. Song and Chintagunta (2003) develop a similar empirical model of digital

camera adoption that incorporates unobserved consumer segments. Erdem et al (2005) use

an optimal stopping problem to model a the process of consumer learning and information

search about the choice of a PC technology. Using panel data, they track the various infor-

mation sources used by consumers to help inform their decisions about whether to buy an

IBM-PC compatible computer or an Apple computer.6

All of these papers successfully apply the optimal stopping formulation to the durable

goods adoption problem. However, incorporating replacement into the optimal stopping

framework is difficult because it is not designed to model multiple, interdependent decisions.

Rust (1987) and Prince (2005) are the only other papers to consider the replacement of

durable goods, but both differ significantly from the present work. Rust (1987) studies the

replacement of a durable good due to wear and tear, as opposed to technological innovation.

The decision maker solves a regenerative optimal stopping problem, where the choice set is

fixed and the decision environment is stationary.7 Prince (2005) creates a structural model

6Nair (2007) studies the optimal pricing problem for a monopolist selling video game consoles to forward-
looking consumers, who are modeled as solving an optimal stopping problem.

7The model is regenerative because the replacement decision resets the current state to the initial state.
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of PC demand to quantify the effects of subsidies to first-time buyers, but his data does

not permit him to study replacement cycles. Also, consumers in his model do not face any

product market uncertainty: they have perfect foresight about future product quality and

price.

To the best of my knowledge, there is no published work involving durable technology

markets that incorporates the replacement decision into the consumer’s dynamic problem.

The modeling approach developed here contributes to the literature on estimating dynamic

demand models of durable goods in three significant ways. First, I show how to incorporate

the consumer’s replacement decision into a dynamic estimation problem that allows for a

sequence of purchases. This represents an important contribution over previous work that

solely considers the adoption decision. Second, I demonstrate how to combine aggregate

data on sales and ownership to infer replacement behavior. The estimation results show

that the additional information provided by the ownership data are necessary for capturing

the dynamics of replacement. This is the first attempt to study replacement behavior using

aggregate data, motivated in part because of the lack of adequate panel-level data on durable

goods replacement.8 Third, I show that modeling heterogeneity in product ownership has

important implications for managers’ product introduction and pricing strategies. The model

must not only distinguish between consumers that are non-owners versus owners, but it also

tracks the distribution of product ownership by quality among the owners.

To estimate the model, I construct a comprehensive data set of prices, characteristics,

sales, and ownership of PC processors manufactured by Intel and AMD from January 1993

to June 2004. These two firms controlled roughly 95% of the market during the sample

period. The data set includes unit shipments from an industry research firm and proprietary

survey data on ownership by processor type from a consumer research company. The survey

8The ideal panel data set would allow me to observe a sequence of PC purchase decisions conditional on
the existing PC. To the best of my knowledge, such a data set does not exist.
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data is only available at the aggregate level, but this allows me to estimate the distribution

of ownership by processor quality at any given point in time. Changes in the ownership

distribution from one period to the next and the current period’s sales make it possible to

infer replacement behavior at the aggregate level. In addition, I collect detailed information

on the history of processor prices and characteristics from old press releases, news reports,

and industry periodicals. Finally, since processors across firms are not always comparable

based solely on processor frequency (e.g. 1.8 gigahertz), I supplement the data with speed

benchmark information that takes multiple processor attributes into account in determining

processor quality and allows for the accurate comparison of processors both within and

across firms. Using these data, I estimate and solve the model using generalized method

of moments (GMM) as part of a nested fixed-point algorithm to match a set of simulated

moment conditions to their empirical counterparts.

The results reveal the important role that the replacement decision plays in shaping

demand within this technologically dynamic industry. First, estimates from the structural

model imply there is significant variation in the distribution of replacement cycles across

consumers both within a period and over time. Not surprisingly, consumers with a lower

marginal value for PC processor quality have longer average replacement cycle lengths. How-

ever, the length of the replacement cycle for this segment experienced the largest shift over

time. Overall, the replacement cycle for all consumer segments increased over time. Second,

changes in the relative competitive structure of the industry show that while AMD has made

some competitive gains, it is still unable to compete head on with Intel. I find that AMD’s

premium set of products appear to compete most closely with Intel’s value line of processors.

Third, the marginal effect of innovation on the length of the replacement cycle has decreased

over time, implying that PC hardware manufacturers may not always be able to rely on

quality improvements to generate replacement sales in the future.

A comparison of the benchmark dynamic model to a version with myopic consumers yields
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substantially different results. The myopic model underestimates the length of consumer

replacement cycles by roughly one year, implying that consumers replace their products

more frequently than the dynamic model implies. The myopic model also underestimates

price elasticities by up to 45%. The intuition behind this result is that forward-looking

consumers take into account the long-run benefits and costs of purchasing a product today.

From a managerial perspective, I find that a firm’s product introduction and pricing

strategies can be adjusted to take into account the particular consumer segment that is most

likely to replace at a point in time. For example, if more price sensitive consumers are likely to

replace their products in the near future, a firm could release a more value-oriented product

to coincide with this event. The firm could increase the prices of their non-premium products

and decrease the prices of their premium products. In addition, consumer replacement cycles

could be integrated into a firm’s customer relationship management (CRM) system (Lewis,

2005). Understanding and managing a consumer’s replacement cycle is certainly a key factor

in determining the consumer’s life-time value.

These findings also have some implications at the industry level, and are likely to apply

to other high-tech markets. For the PC industry, if current technology trends continue,

the replacement cycle is likely to continue to increase over time. Price competition may

increase as consumers’ demand for PC processor speed becomes increasingly satiated.9 Some

PC and software makers have already responded to these changes by implementing more

detailed diversification strategies, but it is still too early to know whether these strategies

will ultimately find success in the marketplace.10 In general, firms in high-tech markets

may want to track the distribution of product ownership and understand how consumer

replacement cycles change over time in their particular industry. This could help the firms

9Gartner Global PC Forecast Q1 Update, March 2006, and IDC Worldwide Quarterly PC Tracker, March
2006.

10FIND/SVP, PC Trend Report, 2004.

12



improve the long-term planning of their product introduction and design strategies.

The paper proceeds as follows. Section 2.2 discusses the data set and provides an overview

of the PC processor industry, as related to Intel and AMD. Section 2.3 presents the model and

Section 2.4 describes the estimation approach and presents the parameter estimates. Section

2.6 examines replacement behavior. Section 2.7 discusses the managerial implications of the

paper’s findings and concludes.

2.2 The PC Processor Industry and The Data Set

This section begins with a brief history of the PC processor industry, focusing on the rela-

tionship between Intel and AMD. A description of the data set and some discussion follows.

2.2.1 The PC Processor Industry: Intel and AMD

The relationship between Intel and AMD dates back to the early 1980’s.11 Intel developed

the first microprocessor in 1974. IBM helped them become the market leader after IBM

chose Intel’s processor design to be the standard for PCs. However, not wanting to depend

on a single supply source, IBM demanded that Intel contract with another company and

license it to manufacture Intel’s x86 chips. AMD agreed to abandon its own competing

architecture and began producing x86 chips as a second source. Relations between the two

firms later turned sour, and AMD sued Intel in 1987 over the alleged use of anticompetitive

tactics that breached the good faith of the original licensing agreement.

AMD continued to produce Intel’s chip designs under the disputed contract until the

lawsuit was completely settled in January 1996. This marked an important turning point in

the industry because the resolution of the dispute allowed each company’s strategy to evolve

11See Langlois (1992, 2002) for excellent histories of the semiconductor and PC industries and Bresnahan
and Greenstein (1999) for a historical examination of computer industry market structure.
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in its own way. Intel concentrated on the Pentium chip, which AMD had no legal right to

produce. In response, AMD purchased NexGen in an attempt to upgrade its microprocessor

design capabilities and to establish itself as a credible alternative to Intel. From 1995 to

1999, AMD reduced the lag time between Intel’s release of a new design and AMD’s release

of a competing chip from over 18 months to almost nothing. In mid-1999, AMD introduced

the Athlon processor, its first x86-based chip that did not depend on any previously licensed

technology from Intel. According to McKinsey, this evidence of stronger competition from

AMD prompted Intel to increase the frequency of new chip releases.12 Older products became

obsolete more rapidly as both firms increased the pace of innovation. These actions reduced

the average market lifespan of a PC processor from about three years to one and half years

(Stevens, 1994).

Despite AMD’s efforts, Intel has always been the recognized market leader: its market

share has fluctuated between 70% and 92% since the early 1990’s. AMD’s market share has

been less stable, hovering around 15% for most of the early 1990’s, then dropping to as low

as 6% in 1997, and later rising to nearly 23% in 2001.

2.2.2 Data Description

The data set focuses on the desktop PC market, and consists of PC processor unit shipments,

consumer PC ownership, manufacturer prices, and quality measurements, by processor, over

the period January 1993 to June 2004.13 The market of interest is consumers and businesses

in the U.S, which I assume follow similar purchasing patterns. According to the Computer

Industry Almanac, a trade publication, businesses historically tend to own roughly two thirds

12McKinsey Global Institute (2001).
13Historically, server and mobile processors have occupied a small share of the overall PC market, though

laptop sales have significantly increased in the last few years.
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of all PC’s. Thus, the market size is set to three times the number of households.

Shipments. Quarterly unit shipment data were obtained from In-Stat/MDR, an industry

research firm that specializes in the microprocessor industry. In-Stat/MDR uses a combina-

tion of contacts in various distribution channels and a detailed knowledge of manufacturing

costs to back out estimates of shipment data by processor type. Data directly from the man-

ufacturers are not available. I obtained data from the Computer Industry Almanac on the

U.S. portion of global chip sales, the portion of sales for replacement machines, and the mar-

ket size. This information is used to convert the global shipment figures from In-Stat/MDR

to U.S. quantities.

PC manufacturers have strong incentives to minimize their inventories, so the delay

between the shipment of a PC processor and the subsequent purchase of a PC containing

that processor by an end-user should be negligible. Note that the data presumably include

a component of unit sales that go to consumers who purchase multiple computers.14

Ownership. Aggregate information on consumer PC ownership and penetration rates

comes from the Homefront study created by Odyssey, a consumer research firm that spe-

cializes in technology products. The firm conducts semi-annual telephone surveys using a

nationally representative sample ranging from 1,500 to 2,500 households. The households do

not belong to a pre-chosen panel and a new sample is drawn for each wave of the study. The

survey data is neither available at the household level nor in panel form. To increase the

accuracy of the relevant sample, approximately 500 additional households that own a PC are

oversampled. The survey gathers basic information on PC ownership, including details such

as the CPU manufacturer, architecture, and processor speed. This allows me to estimate

the percent of consumers in the population who own a CPU from a particular speed range,

14While the issue of multi-PC households is interesting, the present data set does not provide the ability
to study such a problem.
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such as Pentium III processors operating between 500 megahertz and 800 megahertz.

Figure 2.1 displays a select sample of the ownership data, aggregated to the processor

generation level. The figure covers the period from 2000 to 2004 and shows the share of

households that own an Intel 486, Pentium, Pentium II, Pentium III, or Pentium 4 processor.

The Pentium III was released in late 1999 and the Pentium 4 in late 2001. The other

processors were no longer being sold. The graph reveals several interesting points. First,

note that despite the fact that Intel has not sold 486 processors since 1995, a significant

portion of households still owned 486-based PC’s in 2000. Second, more households own a

PC with a Pentium chip compared to a Pentium II, even though the Pentium II is the more

advanced technology and neither chip is available for sale. Third, the rate of decline in the

ownership shares for the Pentium and Pentium II appears to have leveled off in recent years,

suggesting perhaps that the remaining owners are less likely to replace their product’s in the

near future.

Prices. The complete price history for the processors was obtained from a large number

of sources. The manufacturer prices are quoted in chip quantities of one thousand units.

These quotes represent the “official” prices; the actual prices Intel and AMD charge to PC

manufacturers are likely to differ. Nevertheless, Intel and AMD adjust their official prices

frequently (between five and ten times per year), which implies that the posted prices can

still serve as adequate indicators. The primary data sources for prices were news websites,

In-Stat/MDR, historical Intel and AMD press releases, technology newsgroups, and other

sources. Data from these sites was also supplemented with information from historical issues

of PC-related magazines and periodicals. Whenever possible, prices are checked against

multiple sources. In the case of a contradiction, the more reliable source (such as a company’s

press release) is used.

Quality. Processor frequency does not adequately capture the computational power of
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a CPU because of differences in chip architecture and characteristics.15 To account for

such differences, I use a CPU speed benchmark to generate composite quality ratings for

each chip.16 The CPU Scorecard (www.cpuscorecard.com) provides a comprehensive list of

benchmarks that adequately covers the sample period. The list of processor speed ratings

from the CPU Scorecard does not contain all the processors in the data set: 74 of 217

processors did not have benchmarks (38 from AMD and 36 from Intel). To fill in the

missing values, I impute the missing benchmark based on the available ratings. Regressing

the existing speed ratings against processor frequency and brand dummies produces an R2

of 97.4%. Adding other processor characteristics, such as bus frequency, cache size, and

dummies for the processor architecture, increases the R2 to 99.8%.

2.2.3 Discussion

Since Intel and AMD sell many processors, I aggregate the choice set and create composite

frontier and non-frontier processors based on the current period product offerings of each

firm. This allows each firm to sell multiple products, while keeping the model tractable. For

a given period and firm, I divide the set of available processors into groups above and below

the median quality processor. The frontier product is formed by taking the average price and

quality of the upper processor group and the non-frontier product is assigned the average

price and quality of the lower group.17 As the prices of the underlying products change, the

prices of the composites change. Changes in the set of actual products available leads to

changes in the quality of the composite products. Composite market shares are calculated

15For example, the AMD Athlon XP 3000+ processor has a frequency of 2.16 gigahertz, but it performs
comparably to an Intel Pentium 4 at 3.0 gigahertz.

16A benchmark measures a processor’s speed based on its actual computational performance on a common
set of tasks, facilitating speed comparisons between different processors.

17One alternative would be to use the top K processors in each sub-group, using the average price and
quality of these to form the composite products. The model produced qualitatively similar results with
K = 3.
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in a similar fashion.

Figures 2.2 and 2.3 plot the quality and price of each product over time. The quality

plots show how Intel started as the dominant technology provider, but when AMD released

its Athlon processor in mid-1999, the two firms entered into close technological competition.

A similar story exists in the price graphs. Intel started as the high-cost and high-quality

provider, while AMD served as the lower-cost and lower-quality provider. But after mid-

1999, the price differences for each of the firms’ products narrows significantly.

Finally, the frequency of the data varies: prices are available continuously, shipments

quarterly, and ownership information semi-annually. Since the shipment and ownership data

are less volatile than prices, I convert all the series to monthly observations, for a total of

T = 138 time periods. Prices are set to the mean price observed in a month, shipments

are distributed evenly over the quarter, and ownership shares are interpolated using cubic

splines.18

2.3 The Model

In this section the basic structure of the model and the solution and estimation methods are

discussed. The first subsection describes the product market and a consumer’s period utility

function. The second subsection describes the stochastic processes that consumers use to

form expectations over future product qualities and prices. The third subsection presents the

dynamic version of the consumer’s decision problem. Finally, the fourth subsection shows

how to calculate demand and provides the laws of motion for the distribution of product

ownership.

18Tests using other conversion methods produce qualitatively similar results.
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2.3.1 Basic Setup

Products are represented using a single, composite quality attribute qjk ∈ Q = {1, 2, . . . , q̄}

for product j of firm k, with pjk ∈ R+ the associated price. The market contains two firms,

both of which sell two products. For each firm k = 1, 2, I refer to the higher quality product

as the frontier product and the lower quality product as the non-frontier product. The vector

qt ∈ Q4 denotes the set of products available in a period and the vector pt ∈ R4
+ is their

associated set of prices. Thus, the state of the product market can be summarized by the

pair of vectors st = {qt,pt}. Product qualities and prices evolve according to exogenous

stochastic processes. Either or both firms may have the highest quality product in a given

period. The frontier product for one firm may be lower in quality than the non-frontier

product of the other firm. The time subscript will be dropped when possible.19

The basic problem for a consumer is whether to purchase a product today or to wait.

For consumers who do not own a product, this represents a technology adoption decision:

enter the market now or stay out. For consumers who own a product, this represents a

replacement decision: purchase a more advanced product today or keep the existing product.

Uncertainty enters into the decision because consumer are unsure about future product

qualities and prices, while they know the utility they get from existing products. I incorporate

heterogeneity by allowing consumers to be segmented according to their preferences for

quality and price.

A consumer owns an existing product from firm k at time t from the set:

Q̃t =
{
q̃k : q̃k ∈

{
∪t

τ=1qτ

}
∪ {0}

}
where q̃ = 0 represents a consumer who owns no product. The set Q̃t is the set of products

19This specification is a generalization of Song (2003a).
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that have been sold up until time t, such that Q̃t ⊆ Q̃t+1. Several restrictions are required

for tractability. First, a consumer is constrained to own at most one product. Second, old

products are either kept or discarded, that is, a second-hand market does not exist. Second-

hand markets play an important role in some industries, such as the used automobile market,

but the used PC market still represents a small share of overall demand.20 Third, products

retain their original quality indefinitely – there are no depreciation or upkeep costs.

The period utility function for a consumer in segment i, for i = 1, . . . , I, who purchases

some product qjk ∈ q is:

ui(qjk, s) = γiqjk − αipjk + ξk + εijk

where γi is consumer i’s taste for quality, αi is the marginal utility of income, ξk is a brand

fixed-effect, and εijk represents unobservable factors that influence the consumer’s utility. In

this case, the consumer pays for the cost of purchasing the new product. No restrictions are

placed on which product the consumer can purchase: a consumer with a frontier product

may choose to replace it with a non-frontier product.

On the other hand, a consumer may retain her existing product. Then the period utility

for a consumer who owns q̃k and does not make a purchase is:

ui(q̃k, s) =

 γiq̃k + ξk + εik if q̃k > 0

εi0 if q̃k = 0

If the consumer owns a product (q̃k > 0), they receive the utility associated with it without

having to pay any additional cost. I normalize the utility to zero in the case that a consumer

does not own a product (q̃k = 0). This specification demonstrates the fact that a consumer’s

20See Esteban and Shum (2004) for a model of the automobile industry with second-hand markets.
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existing product represents her state-specific outside option. The utility of the outside option

is a function of both a consumer’s exogenously determined segment i and the endogenously

determined past choice q̃k.

2.3.2 Price and Quality Expectations

I assume that consumers possess rational expectations about the stochastic processes govern-

ing the evolution of prices and qualities. Let the stochastic process generating market state

transitions follow a regular Markov transition kernel Π(s′|s). The processes are modeled

independently, such that Π(s′|s) = Πq(q
′|q)Πp(p′|p). The impact of this assumption should

be minimal because, in effect, prices are quality-adjusted. This is due to the fact that prices

are measured with respect to the composite product qualities, which also change over time.

Price Expectations. The highly competitive nature of the CPU industry creates a sig-

nificant amount of interdependence between processor prices. To capture these complicated

relationships, prices follow a first-order vector autoregressive (VAR) process:

log(pt) = A0 + A1 log(pt−1) + zt, zt ∼ N(0, Σ)

where A0 and zt are (4× 1) vectors, and A1 and Σ are (4× 4) matrices. The cross-terms in

each regression equation account for price competition between Intel and AMD and the off-

diagonal elements of Σ capture the covariance between different product prices. Allowing for

correlation in the random shocks further captures the co-movement of prices of the competing

firm. While it is somewhat difficult to imagine a supply-side model that would generate such

a price process, such a process is a reasonable assumption about consumers’ expectations

and memories. This approach is similar to Adda and Cooper (2000), who use a VAR to

model the stochastic evolution of prices, and to Erdem, Imai, and Keane (2003), who model

the price process for multiple products as contemporaneous functions of the price of a base
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product.21

Quality Expectations. Since product quality in the model is assumed to lie on a discrete

grid, I discretize the continuous measure of quality obtained from the speed benchmark.

Changes in product quality are modeled as discrete increases, or ‘jumps’, on a quality ladder.

Let

∆(qjkt) = qjkt − qjk,t−1

be the integer change in a product’s quality from one period to the next, where ∆(qjkt) ≥ 0

for all j, k, t. One possible approach is to use a simple Poisson count process to model the

quality jumps. However, we observe under-dispersion in the number of zeros – periods in

which the product quality does not change – and this can lead to inconsistent parameter

estimates (Cameron and Trivedi, 1999). To account for this, I use a modified version of

a zero-inflated Poisson (ZIP) process, and separately model the probability of no quality

change and some positive change. The probability that a product’s quality remains constant

from one period to the next is allowed to depend on the current product quality:

Pr(∆(qjkt) = 0|qjk,t−1) = Φ(κ0 + κ1qjk,t−1)

where Φ is the standard normal distribution. The probability of a positive quality change is

Pr(∆(qjkt) = z|qjk,t−1) =
1−∆0(qjkt)

1− e−λjk

e−λjkλz
jk

z!
for z > 0

where ∆0(qjkt) ≡ Pr(∆(qjkt) = 0|qjk,t−1) and the first fraction is required as a normalization.

Let I0 = I∆(qjkt)=0 be the indicator function representing no innovation. Assuming the

innovation processes are independent across products, the transition kernel for all product

21See also Hall and Rust (1999), Song and Chintagunta (2003), and Sun (2005) for alternative mechanisms
to model price expectations.
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qualities is

Πq(qt+1|qt) = Pr(∆(qt)|qt)

=
∏

qjkt∈qt

∆0(qjk,t+1|qjkt)
I0 Pr(∆(qjk,t+1) = qjk,t+1 − qjkt|qjkt)

1−I0

2.3.3 Dynamic Consumer Problem

I model the consumer’s decision to purchase a new CPU as a dynamic optimization problem

under price and quality uncertainty. A consumer’s task is to decide whether to keep her

existing product (if any) or to purchase one of the new products. Consumers are uncertain

about future product qualities and prices, but possess rational expectations about the future

state of the product market. The consumer is endowed with an initial product q̃0 ∈ Q̃0 at

t = 0. The consumer then chooses a sequence of product purchases that maximize the sum

of discounted expected future utility over the infinite horizon:

max
{qt∈qt∪q̃kt}∞t=0

E

{
∞∑

t=0

βt
[
ui(q̃kt, st) · I{qt=q̃kt} + ui(qt, st) · (1− I{qt=q̃kt})

] ∣∣∣q̃kt, st

}

where E ≡ Es,ε and the discount factor β is fixed. The recursive form of the consumer’s

optimization problem is written as:

Vi(q̃k, s, ε) = max

{
ui(q̃k, s) + βE[Vi(q̃k, s

′, ε′i,0)|s], max
qj`∈q
{ui(qj`, s) + βE[Vi(qj`, s

′, ε′ij`)|s]}
}

Alternatively, write a consumer’s period utility function as

Ui(q, q̃k, s) = ui(q̃k, s) · I{q=q̃k} + ui(q, s) · (1− I{q=q̃k})
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Then rewrite the dynamic problem for the consumer as

Vi(q̃k, s, ε) = max
q∈q∪q̃k

{Ui(q, q̃k, s) + βE[Vi(q, s
′, ε′)|s]} (2.1)

where

E[Vi(q, s
′, ε′)|s] =

∫
ε′

∫
p′

∑
q′

Vi(q, s + ∆(q′), ε′)ν(ε′)Πq(s + ∆(q′)|q)Πp(p′|p)

2.3.4 Demand

The aggregate demand for a product is determined by the solution of the consumer’s decision

problem for each type (i, q̃k) and the distribution of product ownership over consumer types.

The distribution of product ownership in the next period is determined by consumer demand

in this period. Denote the (|Q̃t| × I) matrix Ft as the discrete ownership distribution, where

Ft(i, q̃k) is the proportion of consumers who are of type i and own q̃k at time t. As time

passes and product qualities increase, Q̃t ⊆ Q̃t+1, which implies that Ft also grows in the

Q̃t dimension. Similarly, define Ft(q̃k) =
∑

i Ft(i, q̃k) as the discrete marginal distribution of

ownership across existing products and Ft(i|q̃k) = Ft(i, q̃k)/Ft(q̃k) as the discrete conditional

distribution of consumer types given product ownership.22

Following Rust (1987), I assume that {εijk} are drawn from a multivariate extreme-value

distribution. This produces the standard multinomial logit formula for product demand from

consumers of type (i, q̃`), for ` = 1, 2, who purchase some qjk ∈ qt:

djkt(q̃`, i) =
exp{V̄i(qjk, q̃`, st)}∑

q′∈qt∪q̃`

exp{V̄i(q′, q̃`, st)}
(2.2)

22The specification of a finite number of types is the aggregate analogue to Kamakura and Russell’s (1989)
consumer level latent-class models.
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where V̄i(qjk, q̃`, st) is the product-specific value function obtained after integrating out the

unobserved consumer heterogeneity:

V̄i(qjk, q̃`, st) = ui(qjk, q̃`, st) + β

∫
st+1

log

 ∑
q′∈qt+1∪qjk

exp
{
V̄i(q

′, qjk, st+1)
} Π(st+1|s) (2.3)

Let d̃kt(q̃k, i) denote the set of consumers of type (i, q̃k) who choose not to make a purchase

and retain their existing product.

The market size Mt is observed and evolves deterministically. Demand for a product is

determined by integrating over consumer preferences and summing over all other existing

products, which yields:

xjkt = Mt

∑
q̃`∈Q̃t
q̃` 6=qjk

Ft(q̃`)
∑
i∈I

djkt(q̃`, i)Ft(i|q̃`) (2.4)

Note that this represents the total new demand for a product, but not the proportion of

consumers who will own the product in the following period. Consumers who already own

this product and choose not to purchase anything must be accounted for in the next period

distribution of product ownership. The number of consumers who do not purchase a new

product and retain their existing product is

x̃t = Mt

∑
q̃k∈Q̃t

Ft(q̃k)
∑
i∈I

d̃kt(q̃k, i)Ft(i|q̃k)

Market shares for current products are

µjkt =
xjkt

x̃t +
∑

qj′k′∈qt
xj′k′t

(2.5)

The proportion of consumers who own a product in the following period is the sum of

25



those who purchased the product in the previous period, plus those who already owned the

product and did not make a new purchase. For all qk ∈ qt ∩ qt+1, this is given by

Ft+1(q̃k) = M−1
t xjkt + Ft(q̃k)

∑
i∈I

d̃kt(q̃k, i)Ft(i|q̃k) (2.6)

The law of motion for the marginal distribution over existing products that are no longer

sold by either firm, such that q̃k /∈ qt+1, is

Ft+1(q̃k) = Ft(q̃k)
∑
i∈I

d̃k,t(q̃k, i)Ft(i|q̃k) (2.7)

The law of motion for the conditional distribution of consumer tastes over existing

products that are in the product market in the next period is defined as follows. For all

qk ∈ qt ∩ qt+1, let

Ft+1(i|q̃k) =
d̃kt(q̃k, i)Ft(q̃k)Ft(i|q̃`) + Ft(q̃`)

∑
q̃`∈Q̃t

djkt(q̃`, i)Ft(i|q̃`)

Ft+1(q̃`)
(2.8)

This expression captures consumers of type i who retained qj who entered the market and

those substituting ownership of this product for a more advanced product. The conditional

distribution must also be updated differently for products that are not currently being mar-

keted. For any q̃ /∈ qt

Ft+1(i|q̃k) =
d̃k,t(q̃k, i)Ft(i|q̃k)∑

i′∈I d̃k,t(q̃k, i′)Ft(i′|q̃k)
(2.9)

2.4 Estimation

I estimate the model using GMM as part of a nested fixed-point. This procedure sets param-

eters that make the moments of the simulated model as close as possible to their empirical

counterparts. First, the price and quality processes are estimated using maximum likeli-
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hood. These estimates are treated as known and substituted into the consumer’s dynamic

optimization problem. Second, given a parameter vector θ ∈ Rd, a nested-fixed point proce-

dure minimizes a GMM objective function in the outer loop and computes the value function

in the inner loop. This procedure is similar to others in the literature (Pakes, 1986, Rust,

1987, and Erdem and Keane, 1996) except that it is not feasible to estimate the model in a

maximum likelihood setting, so instead I use a method of moments estimator.23

2.4.1 Overview of Estimation

The data contain information on the marginal distribution of product ownership Ft(q̃k), but

not on the conditional distribution of consumer segments given product ownership Ft(i|q̃k).

The next period values for the conditional distribution can be calculated using the laws of

motion defined in the previous section, but I require estimates of the conditional distribution

at t = 0 to serve as initial conditions. To address this issue, for each product, I need

to estimate the initial proportion of consumers who belong to a particular segment. To

reduce the number of parameters, I assume that the initial distribution of consumers across

segments is identical for both firms for a given product. That is, I assume that F0(i|q̃Intel
f ) =

F0(i|q̃AMD
f ) ≡ F0(i|f) and F0(i|q̃Intel

nf ) = F0(i|q̃AMD
nf ) ≡ F0(i|nf), where q̃k

f and q̃k
nf are the

frontier and non-frontier products for firm k. I also need to estimate the proportion of each

segment who do not own any product, F0(i|q̃ = 0).

2.4.2 Identification

With the discount factor fixed, the dynamic parameters are identified through the com-

bination of demand and ownership data and standard arguments found in Rust (1996).

Replacement behavior is inferred by the relationship between changes in the distribution of

23Luan (2005) and Lee and Wolpin (2006), among others, have taken similar approaches.
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ownership and period sales. Given the distribution of ownership and sales in a given period,

these two quantities uniquely determine the distribution of ownership in the following period.

Thus, the time series of ownership and demand helps me uncover consumer replacement be-

havior. Consumer heterogeneity is identified through differences in replacement cycle length

and purchasing behavior. For example, a consumer who owns an old product and upgrades

to a non-frontier product probably follows different preferences than a consumer who owns

a slightly outdated product and purchases a frontier product. Variation in price and quality

identifies the consumer’s sensitivity to money and product quality. Combined variation in

demand and ownership, as well the overall market penetration rate, helps identifies consumer

heterogeneity through the rate at which a new product is purchased by different consumer

segments.

2.4.3 Implementation

Combining the dynamic parameters of interest with the required initial conditions, the pa-

rameter vector θ ∈ Rd contains the set of quality coefficients γ, price coefficients α, firm

fixed-effects ξ, and the initial conditions.

Estimation proceeds as follows. First, for a given parameter vector, I solve the consumer’s

fixed-point problem for all possible consumer types (i, q̃k). Second, starting at t = 1, I use

equations (2.2) and (2.5) to compute aggregate consumer demand, followed by equations

(2.6) through (2.9) to calculate the implied distribution of ownership at t = 2. This is

repeated until t = T over the entire sequence of observed states. Third, I form moments

based on the simulated and empirical values and minimize the GMM objective function.

The vector of moments consists of the period market shares µjkt(θ) and the period own-

ership shares Ft(q̃k; θ). I also include to additional moments that are useful in estimating

the model, namely the penetration rate µpen,t(θ) and the share of sales due to replacement

purchases µrep,t(θ). These are compactly written as µt(θ) = [µjkt(θ), µpen,t(θ), µrep,t(θ)]
′ and
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Ft(θ) = [Ft(q̃k; θ)]
′ ,∀q̃k ∈ Q̃t. To estimate parameters of the model, I assume the following

moment condition holds:

E[mt(θ0)] = 0

where mt(·) ∈ Rp with p ≥ d is a vector of moment functions that specifies the differences

between the observed quantities and those predicted by the model. The moment conditions

are:

mt(θ) =

 µt(θ)− µ̂t

Ft(θ)− F̂t


A generalized method of moments estimator, θ̂, minimizes the weighted quadratic form:

QT (θ) = min
θ∈Rd

1

2

[
1

T

T∑
t=1

mt(θ)

]′
Ω

[
T−1

T∑
t=1

mt(θ)

]
(2.10)

where Ω is an p × p positive semidefinite weighting matrix. Under the assumption that

Ω
p→ Ω0, define the p × d matrix M0 = E[∇θmt(θ0)]. Let Λ0 = E[mt(θ0)mt(θ0)

′] and

substitute a consistent estimator for Λ−1
0 into the weighting matrix. Under the standard

assumption that mt(θ) is independent across t, we have that

√
T (θ̂ − θ0)

d→ N(0, (M′
0Λ

−1
0 M0)

−1/T ) (2.11)

The first obstacle in using this standard GMM method is that errors in the moment con-

ditions are likely to be autocorrelated. The GMM estimator remains consistent under de-

pendent data, but the covariance matrix needs to be corrected to take this dependence into

consideration. In particular, I replace the asymptotic covariance matrix of the moment

functions in equation (2.11) using the estimator in Newey and West (1987), written as

Λ̃0 = Γ̂0 +

q(T )∑
v=1

[
1− v

q + 1

]
(Γ̂v + Γ̂′

v)
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where Γ̂v = T−1
∑T

t=v+1 mt(θ̂)mt−v(θ̂)
′ and q(T ) grows at a sufficiently slow rate.

The full two-step GMM procedure is used to produce efficient standard error estimates.

Note that the primary source of error in the estimation processes arises from sampling error,

as opposed to simulation error.24 I use the non-derivative based Nelder-Meade algorithm to

get within a neighborhood of the optimal parameters and then switch to a quasi-Newton

method.25

Computing the fixed-point requires integrating over the continuous four-dimensional price

vector. I use the randomization technique developed by Rust (1997a) to solve for an ap-

proximate value function.26 After integrating out the idiosyncratic components of the utility

function, the continuous form of the value function is replaced with a discretized equiva-

lent. Let P ⊂ R4
+ be the compact space of price vectors. Take Np i.i.d. uniform random

draws from P to produce the set of random grid points {p̃1, . . . , p̃Np}.27 To guarantee the

discretized probabilities are sufficiently smooth and sum to one, the original continuous tran-

sition function is replaced with the discrete probability densities ΠNp(p̃
′|p̃) constructed using

the normalization:

ΠNp(p̃
′
a|p̃) =

Π(p̃′
a|p̃)∑Np

i=1 Π(p̃′
i|p̃)

Denote V̂i,Np(qjk, q̃`,q,p) as the discretized version of the product-specific value function for

24Errors due to the randomized approximation of the integral enter nonlinearly into the moment conditions.
See Benitez-Silva et al (2000) for an evaluation of different approximation techniques.

25I also perform a check of the numerical condition for local identification. Let m̂s
t (θ) be a subvector of

mt(θ) such that dim(m̂s
t ) = dim(θ). Then a local identification condition requires that det

(
∂m̂s

t

∂θ

)
6= 0.

Roughly interpreted, if the determinant of the Jacobian is non-zero then the moments mt are informative
about the structural parameters θ.

26Standard Monte Carlo integration techniques are not appropriate because the value function has to be
evaluated at arbitrary random points, which may lie off the predefined state space grid.

27See the literature on minimum discrepancy grids cited in Rust (1997b) for alternatives to uniform grid
distributions.
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qjk ∈ q∪ q̃`. Since the approximation is computed over the price vector, the product market

state variable, s, has been split up into its two components, {q,p}. The discretized version

of the product-specific value function can be computed based on the expectation over the

product-specific value function:

V̂i,Np(qjk, q̃`,q,p) = Ui(qjk, q̃`, s) + β
∑
q′

Np∑
p̃a

v̂i,Np(qjk, q̃`,q
′, p̃′

a)Πq(q
′|q)ΠNp(p̃

′
a|p̃) (2.12)

where

v̂i,Np(qjk, q̃`,q
′, p̃′

a) = log

 ∑
q′∈q′∪qjk

exp
{
V̄i(q

′, qjk,q
′, p̃′

a)
}

The contraction mapping defined in (2.12) converges stochastically to the true value function

under certain regularity conditions, which are satisfied in this case. The randomized Bellman

approach is appealing because it does not require interpolation and the random grid points

are drawn once and then remain fixed at successive iterations.28

2.5 Parameter Estimates

This section presents the parameter estimates from the first-stage estimation of the price and

quality expectations processes, an evaluation of model fit and comparison, the estimates from

the dynamic structural model, and a comparison of the price elasticities from a permanent

price change under the benchmark and myopic models.

28In practice, I use a random multigrid algorithm to solve for the value function. More details can be
found in the Appendix.
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2.5.1 Price and Quality Expectations.

The parameter estimates for the price and quality processes are reported in Tables 2.1

and 2.2. Overall, both performed well. For the price VAR, all the own-price coefficients

are significant at the 99% level. Also, several of the cross-price coefficients are significant,

suggesting that competitor’s prices do have some affect on a firm’s own price decisions. Price

competition appears to be asymmetric: Intel’s prices have a larger effect on AMD’s prices

than the converse. All the roots lie inside the unit circle, indicating that the VAR is stable.29

Similarly, the parameters of the quality process were estimated with a high degree of pre-

cision. The significance of the κ1 parameters indicates that there is some non-stationarity in

the probability of a product’s quality changing, though given the magnitude of the parame-

ter, this effect is not very large. The values of κ1 for AMD’s products are larger because AMD

produced more quality innovations later in the sample period, even though these innovations

tended to be smaller than the average innovation from Intel.

2.5.2 Model Fit and Comparison.

I estimated both myopic and dynamic specifications of the model while varying the numbers

of segments. The models are evaluated using several measures. Table 2.3 reports the mean

squared errors (MSE) for each set of moments, the objective function value and J-statistic,

and the Distance Metric (DM) statistic.

The MSE’s for the moments show that the two-segment dynamic model fits best. The

myopic model performs the worst, particularly on fitting the replacement share and owner-

ship share moments. This is not surprising because one would not expect a static demand

model to adequately capture replacement behavior, which is inherently dynamic. The p-

29Higher-order lags do not add significant predictive power and including the set of product qualities as
exogenous regressors only increases the R2 by roughly 0.2%.
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values for the J-statistics show that none of the models are rejected by the data, although

the p-value for the myopic model comes close. To compare the models to one another, I

use the DM statistic, DM = 2T [QT (θ̂1) − QT (θ̂2)] ∼ χ2, which is the GMM counterpart

of the likelihood ratio test. I compare the homogeneous and myopic models against the

benchmark model.30 This produces test statistics of 24.04 and 7.98 for the myopic and ho-

mogeneous cases, respectively, both of which are significant at the 99% level, indicating that

the forward-looking model with heterogeneity should be preferred to the alternatives and is

most consistent with the data. The two-segment dynamic model produces similar results

under alternative values of the discount factor (0.95 and 0.99).

Figure 2.4 shows the market penetration rate as predicted by the model versus the actual

penetration. The predicted rates were calculated at each time period given the observed level.

The model does a good job of fitting the penetration rate, though the predictive accuracy

does suffer a little during a few periods. One concern in the model is that the value of the

absolute outside option – not owning a PC processor at all or owning a Mac-based chip –

might be changing over time. Fortunately, given the accuracy of the model in predicting the

share of non-owners in the population, this issue does not appear to be significant.

Figures 2.4 shows the market penetration rate generated by the model versus the empir-

ical quantities. The predicted penetration rate is calculated in each time period given the

observed quantities. The plot shows that the model does a good job of fitting the penetration

rate, though the predictive accuracy does deteriorate during a few periods. One concern in

the model is that the value of the absolute outside option – not owning a PC processor at all

or owning a Mac-based chip – might be changing over time. Fortunately, given the accuracy

of the model in predicting the share of non-owners in the population, this issue does not

appear to be significant.

30See Newey and West (1987).
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2.5.3 Structural Parameters.

Parameter estimates for the different specifications are presented in Table 2.4, all of which

are statistically significant.

The parameter estimates in Table 2.4 show that a similar segment structure exists be-

tween the myopic and dynamic models: each has one segment that is more price sensitive

and less quality sensitive and another segment that is less price sensitive and more quality

sensitive. Henceforth, I refer to the first segment as the low valuation segment and the second

segment as the high valuation segment. One difference between the myopic and dynamic

estimates is that myopic values are smaller in absolute value. In all the specifications, the

difference in the firm fixed-effects indicates that consumers place a significant premium on

Intel processors. This is expected because a high value is required for the model to rationalize

the difference in market shares and prices for the two firms.

I calculate the size of each consumer segment by combining the estimates of the initial

conditions with the initial distribution of ownership. The initial conditions imply that at

the beginning of 1993, 94% of non-owners were low segment consumers. High segment

consumers, although only 14% of the population, owned disproportionate shares of both

frontier and non-frontier processors. Overall, the benchmark dynamic model estimates that

the low segment consumers make up approximately 85% of the population.

One distinguishing feature of the model is that, while consumer segments are static, the

mix of segments among owners varies over time. Figure 2.5 displays the proportion of each

consumer segment from the dynamic model for the set of owners. The plot reveals a familiar

story: high segment consumers made up the majority of owners early in the market’s history,

declined as a portion of all owners over time. At the beginning of the sample period, the high

segment consumers represented slightly more than half of all owners, despite the fact that

they only represent 14.6% of the population. As the market penetration increased, the share

of owners who belonged to the high segment declined. Figure 2.6 breaks down the segments
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for the frontier and non-frontier products, and shows that more low segment consumers own

the non-frontier than the frontier.

2.5.4 Price Elasticities

The elasticity estimates are based on permanent changes in the price of a product to capture

the long-term effects of the change on the consumer’s expectations.31 The elasticities are

generated as follows. First, I use the observed quantities to solve the consumer problem and

estimate a baseline for demand. I then create the new price time series by adjusting the

values from one period to the end of the sample. This is repeated for each time period. The

price process is re-estimated using the new time series (though the changes in parameter

estimates were negligible). All other prices remain fixed. Finally, I solve for the optimal

consumer behavior given these alternate time series and compare the new demand estimates

to the baseline. The reported estimates are the average of the elasticities calculated in each

period using the observed quantities.

Table 2.5 provides summaries of the price elasticities in the benchmark dynamic model

with two segments and the myopic model with two segments based on price increases of 10

percent. Table 2.6 decomposes these elasticity values according to each potential consumer

choice. The last two columns of Table 2.6 contain the cross elasticities for each product with

respect to a consumer’s no-purchase option.

First, there is an asymmetry in the market structure: Intel’s products have a larger impact

on AMD’s products than the converse. One somewhat counterintuitive result is that the

more established brand, Intel, has higher own-price elasticities for the non-frontier products

compared to the lesser-known brand, AMD. Second, non-owners are more sensitive to price

changes than owners, because non-owners must have a larger marginal return for product

31Erdem, Imai, and Keane (2003) and Hendel and Nevo (2005) estimate elasticities in a similar fashion.
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adoption than an owner does for product replacement. For example, a 10% increase in the

price of Intel’s frontier product raises demand by 2.3% from owners versus 3.1% from non-

owners. Third, I find that the myopic version of the model underestimates price elasticities

by 30 percent to 40 percent. Myopic consumers do not consider the future utility associated

with owning a product (leading to downwardly biased price and quality coefficients), and

thus under-react to a permanent price change.

I also used clout and vulnerability, two common measures in the marketing literature, to

analyze the evolution of market structure over time for each composite product (Kamakura

and Russell, 1989). The clout at time t for product j of brand k is defined as the total

impact of this product on the demand for all other products, and the vulnerability is the

total impact of all other products on the demand for this product. I included both products

from each brand because the products are close substitutes and each firm is concerned about

product line cannibalization.32

Figure 2.7 plots the time path of the clout and vulnerability for each product over time.

The plot shows that Intel’s frontier product has generally led the market, while AMD’s

non-frontier product has lagged the market. AMD’s frontier product and Intel’s non-frontier

product have become increasingly close competitors, suggesting that AMD’s premium chips

are competing more closely with Intel’s Celeron chips, its value-line of processors. Overall,

these asymmetries suggest that while AMD has made some competitive gains in the industry

over time, it is still unable to compete head on with Intel.

32The clout and vulnerability for a product is defined as

cloutjkt =
∑

q′∈qt,q′ 6=qjk

η(qjk, q′) vulnerabilityjkt =
∑

q′∈qt,q′ 6=qjk

η(q′, qjk)

where η(qjk, q′) is the cross-price elasticity of qjk with respect to q′.
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2.6 Innovation and Replacement Cycles

This section uses the parameter estimates to analyze consumer behavior in the model. First,

I characterize the replacement behavior of consumers implied by the benchmark model and

conduct policy simulations of replacement behavior under alternative rates of technological

innovation. Second, I show how consumer heterogeneity in both preferences and replacement

behavior could provide some insights into how firms might tailor their strategies according

to consumer replacement cycles.

2.6.1 Product Replacement

I begin by documenting the features of replacement cycles implied by the model, and then

conduct a policy simulation to examine the effects of alternative rates of innovation on

replacement behavior.

Characterizing Replacement Cycles. Table 2.7 reports the average replacement cycle

length by consumer segment over the entire sample, in the benchmark and myopic cases. The

results from the benchmark case indicate that, on average, consumers replace their existing

processors approximately every 3.29 years. This figure is consistent with estimates from the

market researcher firms IDC and Gartner. As expected, consumers in the high segment have

a shorter replacement cycle than those in the low segment. The myopic consumer model

underestimates replacement cycle length, suggesting that consumers replace their products

more frequently than implied by the dynamic model. Table 2.7 also compares the length

of the replacement cycle in the first half of the sample to the second half, showing that the

average increased 2.7 years before 1999 to 3.6 years after 1999.33

33These figures are generated by tracking product replacement within a given time period until every con-
sumer who owned a product in the beginning had replaced their product. Thus, a consumer who purchased
a product in 1998 and replaced it in 2002 was counted under the pre-1999 period.
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To demonstrate the degree of variation across consumers, Figure 2.8 displays the dis-

tribution of replacement cycle lengths in the first and second half of the sample, for each

consumer segment. The mean and variance of each replacement distribution has increased

over time, with both distributions shifting to the right. There is less variation in the re-

placement behavior of the high segment consumers because they represent a smaller part of

the consumer population. The distribution for the low segment consumers is particularly

skewed to the right, illustrating the fact that some consumers rarely replace their products.

Figure 2.9 shows that the mean replacement cycle length for each consumer segment has

steadily increased over the sample period. The rate of change appears to slow during slower

periods of technological innovation and adoption.

Alternative Innovation Rates. Empirically, the average product quality tends to dou-

ble about every two years. For this policy simulation, I alter the parameters of the product

quality process so that product qualities are expected to double every 1.5 years and one year,

representing increases in the rate of innovation by 25% and 50%, respectively. All prices are

fixed.34

Table 2.8 provides a comparison of the benchmark replacement cycle estimates to those

generated by the policy simulations. A 25% increase in the rate of technological innovation

lowered the mean replacement time by 10.7%, or about 4 months, and a 50% increase lowered

the mean by 25.5%, or about 10 months. In both cases, the effect of the faster innovation

rates was greater for the high segment consumers than the low segment consumers. For

the high segment consumers, the alternative innovation rates reduced the mean replacement

cycle length by 14.5% and 34.0%, compared to reductions of 10.2% and 24.5% for the low

segment consumers. These results suggest that technology innovations can have a significant

34One issue with this policy simulation is that we would expect the firms to alter their pricing strategies
given the new rates of innovation and consumer demand. An equilibrium model of competition in this
industry would be required to account for the endogeneity of prices in policy simulations.
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impact on the replacement cycle, especially for consumers who place a premium on processor

quality.

Table 2.9 examines how the length of the replacement cycle responds over time to changes

in the innovation rate. I fix the innovation parameters at their default values until a particular

period. After this period, I increase the rate of innovation for all subsequent periods and

examine the resulting change in the length of the replacement cycle. One column in Table

2.9 shows the percentage change in replacement cycle length between the benchmark and

alternative models. The declining percentages in the column show that the marginal effect

of innovation on the length of the replacement cycle has decreased over time. This implies

that in the future hardware manufacturers may have to rely less on quality improvements

to generate replacement sales. The effect is more pronounced in the case of a 50% increase

in the rate of innovation compared to a 25% increase.

2.6.2 Replacement Cycle Segmentation

There is significant variation in replacement behavior across consumer segments and over

time. This variation arises due to differences in the marginal distribution of ownership across

the two segments and differences in consumers’ replacement cycles lengths.

Figure 2.10 plots the distribution of ownership by product age, as implied by the model,

for the years 2000 and 2004. The product age is defined as the number of years since the

consumer purchased the product. For example, in 2000, Figure 2.10 shows that roughly 30

percent of owners had purchased within the last year, roughly 30 percent in the last one to

two years, roughly 16 percent in the last two to three years, and so on. The key observation

is that the mode of the distribution of ownership shifted during these years. In 2000, a large

number of consumers had bought in the past two years, but in 2004, more consumers owned

a product that was about three years old. Given that the mean replacement cycle length in

this period was close to 3.5 years, we would have expected a significant number of consumers
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to replace their products starting in the beginning of 2005.

However, Figure 2.10 ignores the variation across consumer segments in product own-

ership and replacement behavior. To take advantage of the differences in the consumer

segments, Figure 2.11 decomposes the distribution of ownership into the segments implied

by the model.

A brief comparison of the upper and lower graphs demonstrates the asymmetry in each

segments’ distribution of product ownership and replacement. In 2000, a large number of

high segment consumers (lower graph) had recently replaced their products, but in 2004, a

larger number had replaced their products in the past two years. Given the estimates of the

high segment’s replacement cycle length, it would have been unlikely for many high segment

consumers to replace their products in early 2005, because so many of them had purchased

new products so recently.

This should be contrasted with the results for the low segment (upper graph). In 2000, a

large portion of low segment consumers had recently purchased in 2000, but in 2004, many

of the low segment consumers had products that were between three and four years old. This

implies that there was a disproportionately large number of low segment consumers who, at

the end of 2004, were increasingly likely to replace their products.

2.7 Conclusions and Future Research

As a technology market matures, replacement sales must eventually surpass adoption sales.

A model of product replacement is required to help understand the dynamics of demand

when multiple segments of consumers are simultaneously making adoption and replacement

decisions. This paper presents a structural model of dynamic demand for PC processors that

explicitly accounts for the replacement decision. The model helps provide an understanding

of the impact of price and quality changes on consumer replacement behavior. Taking into
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account the forward-looking behavior of consumers is necessary in high-tech markets with

rapid innovation, and modeling consumer heterogeneity in both preferences and product

ownership has important implications for managers’ strategies.

At the firm level, the results show that a manager can take advantage of variation in

consumer replacement cycles across segments to adjust their product introduction and pricing

strategies. First, the distribution plots in Figure 2.11 suggest that more value-oriented

product could have been released in 2005 to target the replacement cycle of the low-segment

consumers. Second, the menu of prices in the firms’ product lines could have been adjusted:

non-frontier product prices might have increased, and frontier product prices could have

decreased. These actions could potentially increase profit on the non-frontier set of products,

while encouraging some low-segment consumers to upgrade to the frontier products.

Firms must also recognize that their pricing strategies have an impact on consumers’

aggregate replacement cycles. For example, a period of significant price competition will

encourage more price sensitive consumers to replace their products in the near-term. This

segment of consumers probably has a longer replacement cycle than less price sensitive

segments. Given this, it may be useful for firms’ to collect additional data to track consumer

replacement behavior to gain a better understanding of the preferences of users who are

replacing at different points in time. This information could be integrated into a CRM

system (Lewis, 2005). Understanding and managing consumer replacement cycles is a largely

unexplored facet of CRM, but certainly, a consumer’s replacement cycle length plays a large

role in determining their lifetime consumer value.

At the industry level, the results from Section 2.6.1 support observations that the re-

placement cycle length is increasing.35 If processor speed continues to lose importance as a

purchasing characteristic, processor manufacturers should search for other ways to differen-

35See CNET News.com, “Software: The End of Forced Upgrades?”, October 23, 2001 and FIND/SVP,
PC Trend Report, 2004.

41



tiate their products. To be clear, this does not imply that processor manufacturers should

reduce their investments in R&D. Processor speed will always matter, to some degree, but

manufacturers must attempt to differentiate their products along dimensions other than

speed. There is already some evidence that Intel has begun to follow such a strategy with

its Intel CentrinoTM and Intel ViivTM brands. Each product contains a processor as part

of a larger system, with the first targeted at providing wireless capabilities in laptops, and

the second within so-called “media-center” PC’s. The implications for retailers are similar,

whose interests are firmly linked to those of the manufacturers.

The results also provide a possible explanation for the apparent increase in consumers’

replacement cycles from three years in the 1990’s to four years after 2000.36 A number of

factors have been offered to explain this observation, such as evolving software requirements

on the part of consumers. The results in this paper suggest one non-exclusive, yet intuitive,

explanation that has been overlooked: the average replacement cycle length has increased

because, as market penetration has risen, more consumers with inherently longer replacement

cycles have entered the market.37

The analysis is not without its limitations, and these suggest possible avenues for future

research. First, the model does not consider the role of software. A model that links a

consumer’s decision to purchase a computer with their software demand might be able to

shed some light on the historical relationship between the hardware and software industries.

Second, the number of households with multiple PC’s has increased over the years, as has

consumer ownership of laptop computers. If suitable data were available, a model could

examine the effects of existing PC’s on replacement behavior, and the potential substitution

effects between desktop PC usage and laptop usage. Third, while the survey data shows

36Gartner Inc., Global PC Forecast Q2 Update, 2004 and FIND/SVP, PC Trend Report, 2004.
37To be clear, the paper is unable to rule out alternative explanations of this phenomenon. Multiple factors

are likely the source of the change. However, most analysis of the industry appears to have ignored this
averaging effect as a possible explanation.
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that consumers view the processor as the dominant characteristic of a PC, they also care

about the size of the hard drive, the amount of memory, and other features. Modeling the

consumer’s choice of the entire PC could reveal additional insights for the firm in terms of

product line design and cannibalization. Fourth, alternative specifications could be used to

model consumer expectations about price and quality, such as allowing innovations across

products to be correlated.

Finally, the current model assumes that price and quality are exogenous. To address

this issue requires an equilibrium model with both dynamic consumers and dynamic firms

making decisions simultaneously. This would allow us to understand precisely how forward-

looking behavior on the consumers’ side affects the firms’ policy functions. I develop such

an equilibrium model in the next chapter.
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Figure 2.1: PC processor ownership by Intel processor architecture from 2000 to 2004.
Note that the Pentium 4 processor was introduced in April 2001.
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Figure 2.2: Composite frontier qualities and prices for Intel and AMD. Prices are in
constant January 2000 dollars.
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Figure 2.3: Composite non-frontier qualities and prices for Intel and AMD. Prices are in
constant January 2000 dollars.
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Figure 2.4: Actual versus predicted market penetration rate.
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Figure 2.5: Distribution of consumer segments among owners.
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Figure 2.6: Distribution of consumer segments among owners for the frontier and
non-frontier products.
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Figure 2.7: Clout and vulnerability for each product over time, with the time period
starting at the black dot for each product.
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Figure 2.8: Smoothed plots of the distribution of CPU replacement length for low and
high segment consumers, before and after 1999.
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Figure 2.9: Mean replacement cycle length by consumer segment from 1993 to 2004.
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Figure 2.10: The distribution of product ownership over all consumers for the years 2000
and 2004.
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Figure 2.11: The distribution of product ownership by each consumer segment for the
years 2000 and 2004.
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Table 2.1: Vector Autoregression Process for Prices

Intel Intel AMD AMD
Frontier(t) Non-frontier(t) Frontier(t) Non-frontier(t)

Intel Frontier(t− 1) 0.8151 0.3249 −0.1342 0.0187
(0.0752) (0.0689) (0.0387) (0.0472)

Intel Non-frontier(t− 1) 0.1072 0.4179 −0.1397 −0.1836
(0.0425) (0.0916) (0.0302) (0.1117)

AMD Frontier(t− 1) −0.0150 −0.0485 0.8853 0.0414
(0.0316) (0.0226) (0.0486) (0.0353)

AMD Non-frontier(t− 1) −0.1016 −0.0470 −0.0161 0.6836
(0.0654) (0.0599) (0.1007) (0.0731)

Constant 1.0984 1.1952 0.8620 1.9313
(0.4065) (0.3724) (0.6258) (0.4544)

R2 0.8367 0.7361 0.7953 0.6359
-LL 61.3607 73.3306 2.2381 46.0780

Standard errors in parentheses.
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Table 2.2: Product Quality Process Estimates

Intel Intel AMD AMD
Frontier Non-frontier Frontier Non-frontier

κ0 0.4912 0.4877 0.4501 0.4537
(0.0289) (0.0272) (0.0190) (0.0203)

κ1 0.0218 0.0250 0.0334 0.0329
(0.0053) (0.0069) (0.0041) (0.0048)

λ 1.5656 1.4406 1.5248 1.3717
(0.0572) (0.5320) (0.4798) (0.0412)

-LL 15.3830 16.2184 15.5011 16.8874

Standard errors in parentheses.

Table 2.3: Model Fit

Model Myopic One Segment Two Segment

Moments Mean Squared Error
Penetration Rate 1.298 0.622 0.446
Replacement Share 5.894 2.838 1.577
Market Shares 10.027 8.655 7.120
Ownership Shares 18.703 9.630 6.359

Objective Value 0.174 0.115 0.086

J Statistic 23.943 15.911 11.923
p-value 0.120 0.530 0.805

DM Statistic 24.040 7.976 -
p-value 0.000 0.019 -

The last line reports the DM statistics in a comparison of the first two
models against the two-segment dynamic model.
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Table 2.4: Structural Parameter Estimates

Myopic One Segment Two Segment
Estimate Std Err Estimate Std Err Estimate Std Err

Utility Parameters
Quality (γl) 1.313 0.388 2.236 0.522 2.039 0.329
Quality (γh) 2.165 0.483 2.848 0.385
Price (αl) −1.542 0.427 −1.873 0.390 −2.299 0.316
Price (αh) −0.954 0.304 −1.708 0.142
Intel (ξI) 63.252 14.725 48.113 8.750 38.027 6.413
AMD (ξA) 14.585 3.551 11.910 1.005 7.857 1.098
Discount factor (β) 0 0.98 0.98

Initial Conditions
F0(i|0) 0.837 0.177 0.942 0.205
F0(i|f) 0.520 0.152 0.671 0.121
F0(i|nf) 0.825 0.191 0.781 0.166

Low segment size 0.780 0.084 0.854 0.071
High segment Size 0.220 0.026 0.146 0.039

Parameter estimates for different model specifications.

Table 2.5: Summary of Price Elasticities

Dynamic model Myopic model
Mean Std Dev Mean Std Dev

Intel
Own Elasticities −5.68 1.03 −3.74 0.83
Cross Elasticities 2.73 0.39 1.65 0.30

AMD
Own Elasticities −5.25 1.34 −3.41 0.92
Cross Elasticities 2.18 0.17 1.56 0.18

Average value of elasticities for a permanent 10% change in prices.
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Table 2.6: Average Price Elasticities

Intel Intel AMD AMD No Purchase
Frontier Non-frontier Frontier Non-frontier Owners Non-Owners

Intel Frontier −5.015 3.592 3.405 1.985 2.317 3.121
[1.285] [0.365] [0.592] [0.317] [0.439] [0.558]

Intel Non-frontier 2.935 −6.345 2.621 1.814 1.970 2.429
[0.330] [0.748] [0.485] [0.195] [0.301] [0.388]

AMD Frontier 3.332 2.797 −5.711 1.602 2.628 3.515
[0.407] [0.126] [0.419] [0.179] [0.321] [0.413]

AMD Non-frontier 1.723 2.021 1.608 −4.788 1.623 2.006
[0.098] [0.168] [0.051] [0.247] [0.258] [0.287]

Standard deviations appear in square brackets. All estimates are statistically significant; standard
errors are not reported. Each entry is the average percentage change in demand for the column
product given a permanent 10% change in the price of the row product. The last two columns on the
right are the change in demand for the outside option (no purchase) given a 10% change in the price of
the row product, conditional on whether the consumer owns a product or does not. These elasticities
are the average value of the elasticity calculated in each sample period.

Table 2.7: Comparison of Replacement Cycle Length by Period

Benchmark model Myopic model
Mean Std Dev Mean Std Dev

Full Sample
Low segment 3.395 1.622 2.478 1.361
High segment 2.560 1.036 2.105 0.918
All 3.287 1.575 2.429 1.318

Pre-1999
Low segment 2.878 1.506 1.962 1.386
High segment 2.001 0.925 1.728 0.893
All 2.694 1.384 1.905 1.342

Post-1999
Low segment 3.896 1.574 2.941 1.477
High segment 2.862 0.919 2.570 0.907
All 3.624 1.436 2.893 1.438

Mean replacement cycle lengths, in years, for the dynamic
two-segment model and the myopic model.
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Table 2.8: Effects of Different Innovation Rates on Replacement Cycle Length

Benchmark model +25% Innovation +50% Innovation
Mean Std Dev Mean Std Dev Mean Std Dev

Low segment 3.395 1.622 3.046 1.492 2.562 1.427
High segment 2.560 1.036 2.193 0.980 1.689 0.935
All 3.287 1.546 2.935 1.425 2.449 1.370

Mean replacement cycle lengths, in years, over the entire sample for the bench-
mark model and counterfactual cases.

Table 2.9: Alternative Innovation Rates and Replacement Cycle Length, by Time

Year Benchmark +25% Innovation +50% Innovation
Mean Mean % Change Mean % Change

1995 2.14 1.89 −11.83 1.32 −38.24
1997 2.47 2.21 −10.77 1.63 −34.23
1999 2.86 2.62 −9.01 1.99 −30.74
2001 3.30 3.05 −7.66 2.38 −27.72
2003 3.68 3.41 −7.43 2.83 −23.00

Mean replacement cycle lengths, in years, in the benchmark and
counterfactual cases.
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Chapter 3

Dynamic Duopoly

In durable goods markets, sellers face a dynamic trade-off: more units sold today come

at the expense of reduced demand tomorrow. Despite the importance of dynamic demand

in durable goods markets, the equilibrium implications on firms’ and consumers’ strategies

in an imperfectly competitive market remain unclear. To this end, we construct a model

of dynamic oligopoly with durable goods and endogenous innovation. Firms make both

dynamic pricing and investment decisions while taking into account the aggregate dynamic

behavior of consumers. In such markets, the consumer’s purchase decision is inherently

dynamic because many technology durables undergo both rapid improvements in quality

and falling prices. A consumer must decide whether to keep their existing product (if any)

or to buy a new product, given her expectations about future product characteristics. This

implies that the distribution of currently owned products affects current demand, and we

model the endogenous evolution of this distribution. We show that accounting for product

durability and the distribution of consumer ownership has significant implications for firms’

profits and policy functions and consumer surplus.

Our work extends the framework developed by Ericson and Pakes (1995) and Pakes

and McGuire (1994) to incorporate durable goods. To solve for equilibrium, we introduce
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a normalization that transforms the state space from one that is unbounded to one that is

finite. Rather than measuring quality on an absolute scale, we measure all qualities relative to

the current period’s maximum quality. A number of papers present similar transformations

of an infinite state space into a stationary finite state space. In the Pakes-McGuire dynamic

oligopoly with differentiated products, firms’ product qualities are measured relative to the

“no purchase” alternative. The outside alternative improves in quality according to an

exogenous process, and provides incentives for the “inside” firms to invest. However, these

transformations carry implicit assumptions about the nature of the outside alternative.

A peculiar implication of their assumption is that the long-run (steady-state) rate of

innovation is determined solely by the outside good’s exogenous rate of quality improvement.

A related point is that investment decreases to zero as a firm’s quality improves, regardless

of whether there are competitors with products of similar quality. These implications seem

unlikely to apply to many markets and are a by-product of the assumptions Pakes and

McGuire use to generate a finite state space.

Two advantages of the approach taken in this paper are that our assumptions have

less influence on the behavior of the frontier firms, and these are the firms responsible

for generating most of the sales, profits, and surplus. Moreover, a firm’s innovation is

driven by responses to other firms’ innovations (and pricing policies), as opposed to some

exogenous competing technology. Hence, the steady-state rate of innovation is endogenously

determined.

We calibrate the model to the PC microprocessor industry. This industry is well-suited

for the analysis because it is a duopoly, with Intel and Advanced Micro Devices (AMD)

controlling about 95 percent of the market, and sales have been driven by intense techno-

logical innovation and price competition. While our quantitative results are specific to this

industry, we believe the insights derived from them will be relevant for any durable goods

market where innovation and obsolescence drive product replacement.
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We find that industry profits are 24 percent lower when the duopolists ignore the durable

nature of the product when setting prices. In the monopoly case, the firm’s profits are

41 percent lower when the firm ignores the dynamic aspect of demand. Margins are 48

percent lower in the duopoly and 68 percent lower in the monopoly, confirming the intuition

that prices are higher under dynamic demand. This demonstrates the strong link between

optimal firm behavior, with and without competition, and accounting for product durability

and dynamic demand.

Welfare outcomes also differ significantly: compared to a socially benevolent monopolist,

consumer welfare is 22 percent lower in a duopoly and 54 percent lower in a monopoly.

There is excessive innovation in the duopoly compared to the social monopolist case. While

investment is higher in the duopoly than in the monopoly, a counterfactual analysis suggests

that most of the welfare loss associated with monopoly comes from higher margins and not

the slower pace of innovation.

The difference in profits and prices highlights the importance of explicitly modeling dura-

bility for policy analysis and counterfactual simulations, such as for the evaluation of mergers

and antitrust. We consider a similar exercise by varying the degree of monopoly power for

one firm. This policy simulation is motivated by the recent antitrust lawsuit filed by AMD

alleging that Intel has engaged in anti-competitive practices that effectively shutout AMD

from part of the market.1 While any degree of monopoly power for one firm decreases con-

sumer welfare, we find that the decrease in welfare did not become significant until one firm

had greater than a 40 percent market monopoly. In a pure monopoly, consumer welfare was

about 41 percent lower than in the pure duopoly, but with a 40 percent restriction, consumer

welfare only decreased by 2.8 percent. In general, the increase in market power for one firm

had a minimal impact on investment; the decrease in consumer welfare was primarily due to

1See Singer, M. and D. Kawamoto, “AMD Files Antitrust Suite Against Intel,” CNet News.com, June
28, 2005.

62



increased margins and not a slower pace of innovation. This result is due to the fact that in a

durable goods market, the monopolist still must compete with themselves in future periods,

and so must continue to investment to spur product replacement.

The Ericson-Pakes framework has previously been applied to durable goods markets,

though the forward-looking nature of consumers has generally been ignored. Benkard (2004)

accounts for dynamic demand for airplanes by allowing the market size to change stochas-

tically based on current period sales to mimic forward-looking behavior. Markovich (2004)

and Markovich and Moenius (2005) have consumers that look two periods into the future in

an oligopoly model, and Nair (2006) has consumers who solve an optimal stopping problem

in a monopoly model. The most closely related paper is Esteban and Shum (2005), who

consider the effects of durability and secondary markets on equilibrium firm behavior in the

automobile industry.2 They assume that consumers’ current decisions are independent of

past and future choices and derive a deterministic linear-quadratic model, relying on the

certainty equivalence property. They assume a stationary environment by ignoring the entry

and exit of car models from the market.3

Finally, our work is connected to the large theoretical literature on durable goods.4 Two

strands of this literature are most relevant. The first area, starting with the works of Kleiman

and Ophir (1966), Swan (1970, 1971), and Sieper and Swan (1973), asks whether a durable

goods monopolist would provide the same level of durability as competitive firms and whether

such a firm would choose the socially optimal level of durability. The second area, beginning

2There is also a small existing literature on durable goods oligopoly, such as Sobel (1984) and Gul (1987).
3Our work is also related to recent empirical models of dynamic demand that take the firms’ behavior

as exogenous. Most of these papers consider high-tech durables, but restrict their attention to the initial
product adoption decision. Melnikov (2001) develops a model of demand for differentiated durable goods
that he applies to the adoption of computer printers. Carranza (2005) extends his model and examines
the introduction of digital cameras. Song and Chintagunta (2003) develop a similar empirical model of
digital camera adoption that incorporates unobserved consumer segments. More recently, Gordon (2006)
and Gowrisankaran and Rysman (2006) have developed models that allow consumers to replace their products
over time.

4For an excellent review, see Waldman (2003).
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with Coase (1972) and followed by Stokey (1981) and Bulow (1982), among others, considers

the time inconsistency problem faced by a durable goods monopolist.5

Early work in both areas focused on obtaining analytical results that often required

various assumptions. The most prominent of these assumptions was that old and new goods

were perfect substitutes, that the infinite durability of the goods eliminated the need for

replacement, and that the markets were either monopolies or perfectly competitive. Later

work typically investigated the robustness of the original conclusions to the relaxation of

certain assumptions.

In the optimal durability literature, the so-called “Swan Independence Result” states

that a monopolist provides the socially optimal level of durability. This result hinged on the

assumption that the lifetime distribution of the durable is exogenous. Rust (1986) relaxed

this assumption by allowing for endogenous scrappage rates based on the equilibration of

supply and demand in the secondary market. Another common assumption was that some

number of old units could substitute perfectly for a new unit. Waldman (1996) and Hendel

and Lizzeri (1999) assumed that new and used units were imperfect substitutes that differed

in terms of quality. They showed that Swan’s independence results failed to hold under this

weaker assumption. In the time inconsistency literature, Bond and Samuelson (1984) show

that depreciation and replacement sales reduce the monopolist’s tendency to cut prices.

Despite these recent efforts, the theoretical literature still has been hindered by the need

to make strong assumptions. By turning to numerical methods, we are able to relax some

of these assumptions and provide us with a model we can calibrate to data to generate

quantitative results.

Our model primarily differs along two key dimensions. First, we consider a dynamic

5A related area studies the problem of a monopolist pricing a new product, such as the next generation
of a durable good. See, for example, Levinthal and Purohit (1989), Fudenberg and Tirole (1998), and Lee
and Lee (1998).

64



oligopoly where competition in pricing and innovation play critical roles. Second, we allow

for endogenous innovation and account for the endogenous evolution of the distribution of

currently owned (used) products. While the product a consumer owns never deteriorates

in an absolute sense, consumers make replacement purchases as the quality of the product

they own becomes worse relative to the frontier product in the market. This leads to an en-

dogenous scrappage rate and hence an endogenous lifetime distribution for the durable good,

but whereas Rust (1986) relies on secondary markets to endogenize scrappage, consumers

naturally upgrade as quality increases over time.

The rest of the paper is organized as follows. Section 3.1 defines the model and equi-

librium. Section 3.2 discusses the method we use to compute the equilibrium. Section 3.3

characterizes the firms’ equilibrium policy functions and presents results from simulating

the calibrated model. Section 3.4 offers some concluding remarks and future directions for

research.

3.1 Model

In this section we present a dynamic model of differentiated products oligopoly for a durable

good. Time, indexed by t, is discrete with an infinite horizon. Each firm j ∈ {1, . . . , J}

sells a single product with time-varying quality denoted qjt ∈ {0, δ, 2δ, . . .}.6 In each pe-

riod, firms simultaneously choose their prices pjt and investment xjt.
7 Price is a dynamic

control since lowering price in period t increases current sales, but reduces future demand.

Investment is a dynamic control since future quality is stochastically increasing in invest-

ment. Consumers decide each period whether to buy a new product or to continue using

6We could normalize qjt to be positive integers, but the calibrated model is easier to interpret if the
quality grid (and the implied innovation process) matches the data.

7The model does not allow entry or exit, primarily because of the lack of significant entry in the CPU
industry.
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their currently owned product (if any).8 Hence, the distribution of currently owned products

affects current demand. We denote this endogenous distribution ∆t.

Firms and consumers are forward-looking and take into account the optimal dynamic

behavior of the other agents (firms and consumers) when choosing their respective actions.

We assume the vector of firms’ qualities qt = (q1t, . . . , qJt) and the ownership distribution ∆t

is observed by all agents. These two state variables comprise the state space of payoff relevant

variables for firms. The consumer’s state space consists of the quality of her currently owned

product q̃t, the firms’ current offerings qt, and the ownership distribution ∆t. This latter

state variable is relevant to the consumer since it affects firms’ current and future prices and

investment levels (i.e., innovation rates).

3.1.1 Consumers

Utility for a consumer from firm j’s new product with quality qjt is given by

ujt = γqjt − αpjt + ξj + εjt (3.1)

where γ is the taste for quality, α is the constant marginal utility of money, ξj is a brand

preference for firm j, and εjt captures idiosyncratic variation in utility which is i.i.d. across

consumers, products, and periods.

Utility for the outside alternative (i.e., no purchase option) is

u0t = γ max(q̃t, max(qt)− q̄) + ε0t (3.2)

where q̃t is zero if a consumer does not yet own the product and q̄ is the maximum difference

8Some durable good markets, such as automobiles, have established used good markets. Only a small
fraction of purchases of durable goods with rapid innovation, such as CPUs and consumer electronics, transact
in used markets. As such, our model does not allow for resale of used goods.
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between the quality of the best new product and the no purchase option.

A key feature of this demand model is that the value of a consumer’s outside option is

endogenous, since it depends on past choices. This feature generates the dynamic trade-off

for firms’ pricing decisions: selling more in the current period reduces demand in future

periods since recent buyers are unlikely to buy again in the near future. Dynamic demand

also has an impact on firms’ investment decisions because the potential marginal gain from

a successful innovation depends on the future distribution of consumer product ownership.

The potential gain from an innovation will be larger if many consumers own older products,

and the gain will be smaller if many consumers had recently upgraded to a product near the

frontier.

One can think of our model as having two outside alternatives – one for consumers who

have purchased at least once in the past, and one for “non-owners” who have never purchased

the good. In the context of CPUs, the outside good for non-owners may consist of using

computers at schools and libraries or using very old computers given to them by family

or friends who have upgraded. Such an outside alternative surely improves as the quality

frontier improves. The lower bound in the quality term of u0t due to q̄ captures this notion

that the outside alternative, even for non-owners, improves as quality improves.

Given the lower bound max(qt) − q̄, the ownership distribution can treat all consumers

with q̃ ≤ max(qt)−q̄ as owning the lower bound itself. Hence, ∆t = (∆max(qt)−q̄,t, . . . , ∆max(qt),t),

where ∆kt is the fraction of consumers in the population whose outside option (i.e., current

product) has quality qkt.
9

Each consumer maximizes her expected discounted utility, which can be formulated using

9Here, we use the subscript k instead of j because these subscripts do not necessarily refer to products
currently offered by any of the J firms. Furthermore, the dimension of ∆t is max(qt) − q̄ which has no
relation to J .
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Bellman’s equation as the following recursive decision problem:

V (qt, ∆t, q̃t, εt) = max
yt∈(0,1,...,J)

uyt,t + βE [V (qt+1, ∆t+1, q̃t+1, εt+1)|yt, qt, ∆t, εt] (3.3)

where yt denotes the optimal choice in period t. The expected continuation value depends

on the consumer’s expectations about future products’ qualities and on the law of motion for

∆t. With an appropriate distributional assumption on {εjt}, we can derive an expression for

the demand for each product based on the consumers’ value function. The implied demand

system governs the law of motion for ∆t and is used below in the model of firm behavior.

Note that once a consumer purchases a product at some quality level, the brand of the

product no longer matters. That is, the consumer receives a one-time utility payoff of ξj

from purchasing a product from firm j. This payoff does not occur in future periods since

the outside option depends only on q̃t. Relaxing this assumption would require ∆t to be

brand specific, which would substantially increase the state space.

Each consumer is small relative to the size of the market so that their individual actions

do not affect the evolution of the aggregate ∆t. We also assume consumers are ex-ante

identical. Relaxing this assumption to allow γ and α to vary across consumers would require

expanding the state space to include separate ownership distributions for each consumer type.

While such an extension may be worth pursuing in future research, the current specification

is sufficient for capturing the most relevant feature of durable goods demand – current sales

affect future demand.

3.1.2 Firms

Each period firms make dynamic pricing and investment decisions. Each firm has access

to an R&D process that governs their ability to introduce higher quality products into the

market. Firms choose a level xj ∈ R+ to invest in the R&D process. The outcome of this
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process, denoted qj,t+1 − qj,t = τj,t, is probabilistic, and stochastically increasing in the level

of investment. We restrict τj,t ∈ {0, δ} and denote its probability distribution f(·|x).10

The period profit function, excluding investment costs, for firm j is

πj(pt, qt, ∆t) = Msjt(pt, qt, ∆t)(pjt −mcj)

where M is the (fixed) market size, sjt(·) is the market share for firm j, pt is the vector of J

prices, and mcj is firm j’s constant marginal cost of production. The Bellman equation for

firm j’s maximization problem is

Wj(qjt, q−j,t, ∆t) = max
pjt,xjt

cxjt + β
∑

τjt, q−j,t+1

Wj(qjt + τjt, q−j,t+1, ∆t+1(·))hf (q−j,t+1|qt, ∆t)f(τjt|xjt)

(3.4)

where c is the unit cost of investment, hf (·|·) is firm j’s beliefs about its competitors future

product quality levels, and ∆t+1(·) is the transition kernel for ∆t which depends on prices

and investment as discussed below.

Following Rust(1987) we assume the consumers’ {εijk} are multivariate extreme-value so

that we can obtain the standard multinomial logit formula for product demand for qjt ∈ qt

by consumers who currently own q̃. In particular, we can integrate over the future εijk to

obtain the product-specific value function

V̂j(qt, ∆t, q̃t) = ujt − εijt + β

∫
qt+1

log

 ∑
j′∈{0,...,J}

exp
{

V̂j′(qt+1, ∆t+1(·), q̃t+1)
} hc(qt+1|qt, ∆t)

(3.5)

where hc(·|·) is the consumer’s beliefs about future product qualities. The conditional choice

10We actually think of quality as being in logs, so that improvements are proportional increases in quality.
Using a log scale makes more sense than a linear scale when calibrating the model to the CPU industry.
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probabilities for a consumer owning product q̃ are therefore

sjt|q̃ =
exp{V̂j(qt, ∆t, q̃t}∑

k∈{0,...,J}
exp{V̂k(qt, ∆t, q̃t)}

. (3.6)

Using ∆t to integrate over the distribution of q̃t yields the market share of product j

sjt =
∑

q̃∈{max(qt)−q̄,...,max(qt)}

sjt|q̃ ∆q̃,t . (3.7)

These market shares translate directly into the law of motion for the distribution of

ownership.11 Recall that ∆t only tracks ownership of products within q̄ quality units of the

highest quality offering. Assuming this highest quality is unchanged between t and t + 1,

the share of consumers owning a product of quality k at the start of period t + 1 is

∆k,t+1(·) = s0t|k∆kt +
∑

j=1,...,J

sjtI(qjt = k) (3.8)

where the summation accounts for the possibility that multiple firms may have quality k.

For quality levels not offered in period t, this summation is simply zero. If a firm advances

the quality frontier with a successful R&D outcome pushing its qj,t+1 beyond max(qt) then

∆t+1 shifts: the second element of ∆t+1 is added to its first element, the third element

becomes the new second element (and so on), and the new last element is initialized to zero.

The transition kernel ∆t+1(·) is therefore a deterministic function of prices, except for the

potential shift due to the stochastic innovation of frontier products.

11For conciseness our notation suppresses the dependence of market shares on prices.
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3.1.3 Optimal Prices and Investments

Each firm chooses price and investment simultaneously, fixing other firms’ price and invest-

ment choices. Fortunately, we can reduce the computational burden of this two-dimensional

optimization using a sequential approach. The outer search is a line optimization over prices

which contains a closed-form solution for investment given price.

Consider the first-order condition for investment
∂Wj

∂xjt
= 0 evaluated at some arbitrary

price pjt:

−c + β
∑

τjt, q−j,t+1

Wj(qjt + τjt, q−j,t+1, ∆t+1(·))hf (q−j,t+1|qt, ∆t)f(τjt|xjt)
∂f(τjt|xjt)

∂xjt

= 0 .

Given outcomes (τjt, q−j,t+1) the transition for ∆t+1 is a deterministic function of the control

pjt. Thus, with a suitable choice for f we can analytically compute the optimal investment

as a function of price, x∗jt(pjt).
12 Let

EW+(pjt) =
∑

q−j,t+1
Wj(qjt + τjt, q−j,t+1, ∆t+1(·)) hf (q−j,t+1|qt, ∆t) f(τjt = δ|xjt)

EW−(pjt) =
∑

q−j,t+1
Wj(qjt + τjt, q−j,t+1, ∆t+1(·)) hf (q−j,t+1|qt, ∆t) f(τjt = 0|xjt)

be the expected continuation values conditional on, positive and negative innovation out-

comes, respectively. The dependence of these expectations on pjt is through the effect of

price on the ownership transition to ∆t+1. For an arbitrary price pjt, the optimal investment

is

x∗jt(pjt) =
1

aj

(
c

βaj(EW+(pjt)− EW−(pjt))

)−1/2

− 1 . (3.9)

To determine the optimal price, consider the derivative of the firm’s value function with

12For the details of deriving optimal investments, see Pakes, Gowrisankaran, and McGuire (1993).
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respect to price, ∂W
∂pjt

= 0, which implies

∂πj(pt, qt, ∆t)

∂pjt

+ β
∑

τjt, q−j,t+1

∂Wj(qjt + τjt, q−j,t+1, ∆t+1(·))
∂∆t+1

∂∆t+1

∂pjt

hf (q−j,t+1|qt, ∆t)f(τjt|x∗jt(pjt)) = 0

A higher price today implies that more people will be available in the next period to purchase

the product. The second term captures this benefit to raising price, and leads to forward-

looking firms pricing higher than myopic firms who ignore this dynamic aspect of demand.

We use Brent’s method to solve for the optimal price. For each candidate price we

use x∗(pjt), the optimal investment level given this price, to evaluate the probability of

a successful innovation. While we have yet to prove that the optimal price is uniquely

determined, inspection of the first-order-condition as a function of pjt at many states indicates

that this appears to be the case. The pair (p∗jt, x
∗
jt(p

∗
jt)) is the optimal set of controls at this

state.

3.1.4 Equilibrium

We consider pure-strategy Markov-Perfect Nash Equilibrium (MPNE) of this dynamic oligopoly

game. Our definition of a MPNE extends that found in Ericson and Pakes (1995) to account

for the forward-looking expectations of consumers. In brief, the equilibrium fixed point has

the additional requirement that consumers possess consistent expectations on the probabil-

ity of future firm states. The firms must choose their optimal policies based on consistent

expectations on the distribution of future consumer states.

The equilibrium specifies that (1) firms’ and consumers’ equilibrium strategies must only

depend on the current state variables (which comprise all payoff relevant variables), (2)

consumers possess rational expectations about the evolution of the firms’ product qualities,

(3) each firm possesses rational expectations about its competitor’s price and investment

policy functions, and (4) the perceived distribution for the industry’s evolution corresponds
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to the actual Markov transition kernel defined by the previous points.

Formally, a MPNE in this model is the set
{

V ∗, h∗c ,
{
W ∗

j , x∗j , p
∗
j , h

∗
fj

}J

j=1

}
, which con-

tains the equilibrium value functions for the consumers and their beliefs h∗c about future

product qualities, and the firms’ value functions, policy functions, and beliefs h∗fj over their

J − 1 rivals’ future qualities. The expectations are rational in that h∗c(qt+1|qt, ∆t, q̃) =∏J
j=1 f(qj,t+1|x∗jt) and h∗fj(q−j,t+1|qt, ∆t) =

∏J
j′ 6=j f(qj′,t+1|x∗j′t).13

The functional form of the investment transition function satisfies the UIC admissibility

criterion in Doraszelski and Satterthwaite (2005). To guarantee existence of equilibrium

requires us to show that there is a pure-strategy equilibrium in both investment choices

and prices. Ericson and Pakes (1995) and the various extensions found in Doraszelski and

Satterthwaite (2005) do not consider dynamic demand. As such, they are able to construct

a unique equilibrium in the product market in terms of prices or quantities (depending on

the specific model of product market competition). We are working on a proof to show that

pure strategies in prices also exist.

3.2 Computation

This section discusses the details behind the computation of the Markov-perfect equilibrium

defined above. First, we present a normalization that converts the non-stationary state

space into a finite stationary environment. Second, we introduce an approximation to the

distribution over ownership that significantly reduces the size of the state space. Third, we

present an overview of the steps required to compute the equilibrium. Lastly, we discuss the

model calibration and evaluation.

13Symmetry corresponds to W ∗
j = W ∗, x∗j = x∗, p∗j = p∗, and h∗

fj = h∗
f for all j.Symmetry obviously

requires that firm specific parameters, such as brand intercepts ξj , are the same across firms.
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3.2.1 Normalization

The state space in the model presented in section 3.1 is unbounded since product qualities

increase without bound. To solve for equilibrium, we transform the state space to one that

is finite. Rather than measuring qualities on an absolute scale, we measure all qualities

relative to the current period’s maximum quality (i.e., max(qt)). This transformation has

no effect on the firm’s value function since discrete choice demand models yield identical

choice probabilities if a constant is added to each alternative. The only subtlety of this

transformation is in the consumer’s continuation value in equation (3.3). In the event that the

frontier is increased (always by δ units), the consumer’s continuation value for that particular

outcome is γδ/(1− β) + V (qt+1 − δ, ∆shift
t+1 , q̃t+1 − δ, εt+1) instead of V (qt+1, ∆t+1, q̃t+1, εt+1),

where ∆shift
t+1 shifts the ownership distribution as described after equation (3.8).14 Other

firms’ qualities are also shifted down by δ to account for the advance of the frontier. We

invoke a knowledge spillover argument to bound the difference between each firm’s own

quality and the frontier quality. We denote the maximal difference in firms’ qualities δ̄.15

We choose δ̄ to be sufficiently large that it has minimal effect on equilibrium strategies.

In our extension of the Ericson-Pakes framework to durable goods we endogenize the

utility offered by the “no purchase” option. As discussed in Section 3.1, in a sense we have

two outside alternatives—one for current owners considering an upgrade and one for non-

owners considering an initial purchase. Our truncation of the ownership distribution ∆t to

only track ownership of products within q̄ quality steps of the industry frontier product is

consistent with the lower bound of the outside good’s utility in equation (3.2). Essentially,

14The adjustment of the continuation value can be derived using the fact that V (qt,∆t, q̃t, εt) = γδ/(1−
β) + V (qt − δ,∆shift

t , q̃t − δ, εt). This equation holds since a consumer at state (qt,∆t, q̃t, εt) will behave
exactly the same as a consumer at state (qt − δ,∆shift

t , q̃t − δ, εt) since all relative values are the same. The
only difference in expected discounted utility is the present discounted value of the extra γδ utils enjoyed in
the higher q̃ state in every period of every possible future path.

15The role of spillovers could be implemented in a smooth fashion by specifying the probability of successful
innovation f(τtj |xjt) to be increasing in the degree to which firm j is behind the frontier.
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we group non-owners with owners of the lowest quality tracked by ∆t. Since utility of these

non-owners increases when the frontier expands, we do allow the “never purchased” utility to

change over time. However, the change in this utility is driven by the endogenous innovation

processes of the “inside” firms.

A number of papers present similar transformations of an infinite state-space into a

stationary finite state-space (e.g. Ericson and Pakes (1995) and extensions by numerous

researchers, Goettler, Parlour, and Rajan (2005, 2006), and Gordon (2006)). In the case of

dynamic oligopoly models, such transformations carry implicit assumptions about the nature

of the outside alternative. For example, in the Ericson-Pakes framework with differentiated

products (e.g. Pakes and McGuire (1994)), firms’ product qualities are measured relative to

the “no purchase” alternative. The quality of this outside alternative improves according

to an exogenous process, which provides a continual need for the “inside” firms to invest to

remain competitive with the outside alternative. Hence, the long run (steady-state) rate of

innovation is determined solely by the outside good’s exogenous rate of quality improvements.

In particular, if the outside good never improves, then the steady-state equilibrium has no

investment and no innovations.

This exogenous long run growth in quality is a by-product of the assumptions Pakes and

McGuire use to generate a finite state space (i.e., lower and upper bounds for firms’ relative

qualities). The lower bound is generated by a salvage value that triggers exit if relative quality

gets sufficiently low. The upper bound is generated by bounding the firm’s profit function,

which implies its value function eventually becomes concave in its own quality. In particular,

they assume a consumer’s mean utility from product j is an increasing, concave, and bounded

function of the product’s quality minus the outside good’s quality. Standard discrete choice

models often specify diminishing marginal utility for absolute levels of quality, but not for

quality measured relative to an outside alternative. An implication of this specification is

that investment decreases to zero as a firm’s quality improves even if its competitors’ qualities
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are near its own since the derivative of market share with respect to own quality goes to

zero regardless of competitors’ qualities. This implication that two competitors do not care

about being the leader, as long as they are both well above the attractiveness of some outside

alternative seems unlikely to apply to many markets. Another odd implication is that the

relative market shares for two products with different qualities depends on the level of the

outside good’s quality. For example, a consumer indifferent between two products that differ

by one quality level will strictly prefer the higher of the two products if the outside alternative

improves.

Our alternative normalization – measuring all qualities relative to the frontier instead

of relative to the outside good’s quality – avoids the somewhat undesired implications of

the Ericson-Pakes normalization. We obtain a finite state space without eliminating the

incentive for two firms near the frontier to innovate. Our upper bound of quality is obtained

mechanically by normalizing relative to the highest quality firm. Our lower bound of quality

is obtained by directly assuming a firm’s quality is never more than δ̄ below the frontier.

Hence, the the finiteness of the state space is implied by assumptions at the low end of

the quality grid, rather than at the high end. An advantage of this approach is that our

assumptions have less influence on the behavior of the leading firms – that is, those firms

responsible for generating most of the sales, profits, and surplus. Moreover, the innovation

of firms is driven by responses to each other’s innovations (and pricing policies), not by an

exogenous competing technology. Hence, the long run (steady-state) rate of innovation is

endogenously determined, not exogenously specified as in Ericson-Pakes.

Another advantage of our normalization is that it is truly a “normalization” in that it is

an exact transformation of a dynamic game that is initially expressed in absolute terms. Our

focus on durable goods forces us to develop a model that is, from the consumer’s perspective,

consistent with respect to shifts in relative qualities when the baseline good’s quality changes.

A consumer purchases a product with quality qjt knowing that this product has expected
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utility γqjt next period as well (since depreciation is zero). If derived utility were a non-linear

function of a relative quality measure then the future utility would not be as expected when

the normalization’s baseline changes. Such consistency issues are best addressed by initially

writing the model in absolute levels. Another requirement for the normalization to be exact

is that the quality term must enter the utility function linearly – otherwise the normalization

will shift the utilities of each discrete choice by different amounts, thereby affecting choices.

Of course, the quality grid may be on a log scale, in which case the “quality” term in utility

is actually log quality and innovations are proportional improvements. Indeed, this is the

interpretation we find suitable for the CPU industry since Moore’s Law refers to CPU speed

doubling every 18 months (or so).

Finally, we note that while we developed this alternative normalization in the context of

durable goods, its merits apply equally to the nondurable case. In future research, we will

assess the effect of using our specification for the nondurable case explored in Pakes and

McGuire (1994).

3.2.2 Approximation of ∆t

The challenge in solving the model outlined above is that ∆t is a high-dimensional simplex.

To compute the equilibrium, we must discretize ∆t over some grid. Suppose that dim(∆t) =

10 and a grid with 20 points in each dimension is used. A naive discretization that ignores

the fact that
∑

q̃ ∆q̃,t = 1 produces 10.2 trillion states. An efficient encoding method that

takes advantage of this constraint leads to 7 million states. While a substantial reduction,

the cost of computing the equilibrium is still prohibitive.

Our goal is to reduce the dimensionality of the distribution of current ownership. We do

this through an approximation based on the cumulative density function (CDF) of product

ownership across vintages. This approach is motivated by the observation that any CDF

is monotonically increasing, which makes it easier to smoothly approximate compared to a
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probability density function.

Suppose the CDF of the ownership distribution can be described by the parametric

function F (ρt), where ρt ∈ Rm. That is, given a value of ρt, we can compute the implied

density ∆kt(ρt) = Fk(ρt) − Fk−1(ρt), and given the density, we can compute the CDF as

Fk(ρt) =
∑

k′ ∆k′tI(q̃k′ ≤ q̃k). Note that this changes the representation of our state space.

The model described in Section 3.1 included the complete distribution ∆ as a state variable,

whereas now the state space for a firm is (qjt, q−jt, ∆(ρt)) and, similarly, for a consumer is

(qt, ∆(ρt), q̃t).

While computing a firm’s value function, we perform the following steps. First, given ρt,

compute the distribution ∆(ρt). Note that this distribution is exact since we are solving the

firm or consumer’s maximization problem directly on a point located on the discretized state

space. Second, consumers make their purchase decisions based on the firms’ policy functions

at the current iteration. Then we use the law of motion for the distribution of ownership in

equation (3.8) to generate the next period distribution of ownership ∆t+1. The next period

distribution is a deterministic function of the current period’s state variables and represents

the exact distribution of consumer ownership in the next period. We use least-squares fitting

of the ownership density through the CDF to map this distribution back into our state space

representation, obtain ρt+1:

ρt+1 = argmin
ρ∈Rm

∑
k

(∆k,t+1 − (Fk(ρ)− Fk−1(ρ)))2

In general, the value of ρt+1 obtained from this approximation will lay off the state space

grid, so we interpolate the value function through ρ to calculate the continuation values.
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3.2.3 Steps to Solving the Industry Equilibrium

We compute the equilibrium using a Gauss-Jacobi scheme to update the value and policy

functions.16 Starting at iteration k = 0, initialize the consumer value functions V̂ 0
j and the

firms’ value functions W 0
j and policy functions (x∗0j , p∗0j ).

Then for iteration k = 1, 2, . . ., follow these steps:

1. For each q̃ ∈ ∆, evaluate the consumer’s value function V̂ k given the firms’ policy

functions from the previous iteration
{
x∗k−1

j , p∗k−1
j

}J

j=1
.

2. For each j ∈ J , evaluate firm j’s value function W k
j given the other firms’ policy

functions from the previous iteration
{
x∗k−1

j′ , p∗k−1
j′

}J

j′ 6=j
.

3. Update the consumer value functions V̂ k+1 ← V̂ k, the firms value functions W k+1
j ←

W k
j ,∀j, and their policy functions

{
x∗k+1

j , p∗k+1
j

}
←

{
x∗kj , p∗kj

}
.

4. Check for convergence in the sup norm of the all agents’ value functions. If convergence

is not achieved, return to step (1).

3.2.4 Model Calibration and Evaluation

We calibrate the model to the PC processor industry using data over the period from 1993

to 2004. We base the consumer’s parameters on estimates obtained in Gordon (2006), who

estimates a model of dynamic demand in the PC processor market using a similar demand

model, and provides a detailed description of the data. This leaves us with two parameters

of interest for each firm: the innovative efficiency aj and the marginal cost of production

mcj.

16We also tried a Gauss-Seidel scheme. While this generally converged to the same value and policy
functions, we found that this approach sometimes produced large oscillations in the values and hindered
convergence.
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We obtain data for each company, but to simplify the analysis, we focus on an industry

with symmetric firms. As others have done, we use quarterly R&D expenditures from each

firm’s annual reports and estimate aj directly in a first-stage regression. We set the innovative

efficiency for both firms in the model to the revenue-weighted average value of both firms.

We obtain blended unit production costs from In-Stat/MDR, a market research firm that

specializes in the microprocessor industry. There is variation over time in each firm’s marginal

cost, but the time series average for both firms did not differ significantly. Thus, we set the

industry-wide marginal cost to the sales weighed averages of each firm’s marginal cost.

To provide a sense of the model’s fit, Table 3.4 compares some moments obtained from

the data with those generated by simulating the model. We compute the sales weighed

price margins, where margin is defined as (pjt − mc)/mc, the ratio between the leading

firm’s market share and the lagging firm’s market share, the industry-wide innovation rate,

and the average percent quality difference between the leader and laggard. We find that

the parameterized model produces reasonable behavior that is roughly consistent with the

industry. Note that the results in Table 3.4 are generated without performing any type of

optimization or estimation (apart from the first-stage regression for aj).

Compared to the data, the simulated margins are lower and the market share ratios

are lower. This is consistent with the intuition that if one firm had an even larger market

share than the other, its margin would also be higher. Given the market share ratios, our

parameterized model is able to generate significant differences in the firms’ behavior over

time, but the model is not yet able to generate the extremes observed in the data.17

One important point to note is that the firms in our model are symmetric, and thus

we do not account for any perceived differences in brand value or pre-existing institutional

17In Section 3.3.2, we conduct a counterfactual analysis that varies the degree of market power for one firm.
Under this configuration, we are able to generate much closer market share ratios and price cost margins
when one firm acts as a monopolist in one portion of the market.
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arrangements.18

3.3 Numerical Illustrations

In this section we first present findings that correspond to a “base case” which uses param-

eters chosen so that the model’s implied equilibrium behavior matches features of the CPU

industry over the years 1993 to 2004. We then consider various counterfactual experiments

to further illustrate the properties of the model and its implications for policy analysis.

3.3.1 Base Case

Table 3.4 lists the parameter values for our base case. We use these parameters in five dif-

ferent scenarios, which correspond to the column headers in Table 3.4: 1) durable duopolist,

2) myopic pricing duopolist, 3) durable monopolist, 4) myopic pricing monopolist, and 5)

social monopolist.19 For each scenario we solve for optimal policies and simulate 1000 in-

dustries each for 100 periods, starting from a state in which all consumers are non-owners

(i.e., q̃ = 0) and each firm has qjt = q̄. We then analyze the simulated data to characterize

the equilibrium behavior of firms and consumers and to identify observations of particular

interest.

We start by characterizing the firms’ optimal price and investment policy functions. The

complexity of the state space, due to the distribution of ownership, prohibits a state-by-

state inspection of the policy functions. Instead, we report in Table 3.4 regressions from the

simulated data that fit the policy functions to select moments of the state variables.20

18It is straightforward to allow for asymmetries in the marginal costs of production or innovative efficiency.
However, this would probably increase the likelihood of multiple equilibria.

19We leave for future research the computation of the social planner’s optimal behavior when he controls
two firms.

20We use the innovation rates because they are direct functions of the firms’ investment decisions and are
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Standard errors are not reported because they are so small. With separate regressions

for the leader and laggard, the Table also illustrates how responses to state variables depend

on whether a given firm is the leader. In the regressions we include a dummy indicating

whether the lead firm had an innovation that extended his lead in the previous period, the

percentage of consumers who own a product, the mean product quality of consumers who

own a product, the percentage quality difference between the leader and laggard, and the

square of this quality difference.21

The signs of all the coefficients are consistent with intuition. For the leader, the positive

coefficient on whether they extended the frontier implies that they benefit from such an

increase, while the negative coefficient for the laggard suggests that their margin suffers.

The negative coefficient on mean owned quality shows that both firms have lower margins

when, on average, consumers own newer products.

Figures 3.1 and 3.2 plot the relationship between the margins and innovation rates and

quality differences based on the coefficients in the regressions. The leader’s margin is an

increasing function of the quality difference and the laggard’s margin is a decreasing function

of the quality difference, and both of these results are consistent with our expectations.

Figure 3.2 reveals that the leader has an incentive to invest heavily when their quality lead

is relatively small, but that this incentive disappears as the quality lead grows, to the point

where the leader invests significantly less when their lead is quite large. Conversely, the

laggard’s innovation rate declines for small differences in quality, implying that the marginal

gains to an innovation are insufficient when the leader’s advantage is small. However, when

the difference in quality is sufficiently large, the laggard begins to increase their investment.

This suggests that the laggard does not want to fall too far behind in the quality competition,

easier to interpret than investment levels.
21We obtain similar regression results using dummies for each quality difference level, suggesting that our

functional form assumption is reasonable.
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though the laggard is also less willing to compete directly with the leader when the two firms

are closer in quality.

Turning to consumers, Figure 3.3 presents the portion of purchasers that comes from each

vintage of current ownership, for both the duopoly and monopoly cases. Most purchasers

upgrade from products that are between 4 and 8 grid points (i.e., δ-sized steps) from the

frontier. Since δ = .3 this corresponds roughly to having a frontier that is 120 to 240 percent

faster than their current product.

Firms’ profits are calculated as the discounted sum of per period profits. To calculate

consumer welfare, we must take into account the quality normalization discussed in Section

3.2.1.

Period level consumer surplus is calculated as

CSq̃,t =
log

(∑
j′∈{0,...,J} exp {I(q̃jt = q̃t)u0t + I(q̃jt 6= q̃t)ujt}

)
α

. (3.10)

Total consumer surplus over a simulation run is the discounted sum of the per period surplus,

integrated over the distribution of consumer product ownership:

CS =
T∑

t=0

βt

maxqt∑
q̃=maxqt −q̄

CSq̃,t ·∆q̃,t. (3.11)

The simulations produced the following observations.

Observation 1 Margins (i.e., prices) and profits are significantly higher when firms cor-

rectly account for the dynamic nature of demand. The differences are larger for monopoly

than duopoly.

In Table 3.4 we see that monopoly profits are 68 percent higher and margins are 210

percent higher when the monopolist accounts for the dynamic nature of demand, compared
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to “myopic pricing” which ignores the decline in future demand due to current sales. Duopoly

(industry) profits are 32 percent higher and margins are 94 percent higher when the firms

account for the dynamic nature of demand, compared to “myopic pricing.”

Clearly, one should account for the dynamic nature of demand when analyzing pricing

behavior in durable goods markets. Often researchers observe prices and use first order

conditions from a static profit maximization to infer marginal costs (e.g. Berry, Levinsohn,

and Pakes (1995)). Observation 1 suggests that marginal cost estimates computed in this

manner for durable goods will be too high. That is, prices are high because the firm does

not want to reduce future demand, not because its marginal costs are high.

Observation 2 The monopolist invests too little, relative to the socially optimal level, and

duopolists invest too much.

The investment levels reported in Table 3.4 for the duopoly, monopoly, and social planner

(with 1 firm to control) are, respectively, 5.979, 3.693, and 5.682. Hence, the monopolist

invests 54 percent less than the social planner, which results in a substantially lower rate of

innovation. While we have not computed the socially optimal investment when the planner

controls two firms, we can still conclude that (for this parameterization) the duopolists over

invest since each firm invests more than the planner with one firm. If the planner had two

firms, total investment would likely increase, but the increase would clearly be less than

double since the marginal benefit (to the planner) of one firm’s innovation is reduced when

the other firm may also successfully innovate.

Given that duopolists over invest, the possibility exists that a monopoly may yield higher

social surplus (summing consumer surplus and industry profits). However, we find this to

not be the case: social surplus with a duopoly achieves 81 percent of the planner’s surplus,

whereas the monopoly social surplus is only 52 percent of the planner’s surplus.
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Observation 3 Consumers capture the lion’s share of surplus generated in durable good

markets with innovation.

From Table 3.4 we compute that consumers enjoy 96 percent of the duopoly’s social

surplus and 89 percent of the monopoly’s social surplus. In essence, consumers benefit

substantially from the innovation required to induce upgrades.

As mentioned, the initial state for all simulations has all consumers being non-owners

(i.e., with q̃ = 0), which is clearly not in the steady-state distribution (i.e., ergodic set) of

states. Hence, we split the simulations into two sub-periods. The “pre-penetration” sub-

period consists of periods 1 to 30, at which point about 98 percent of the consumers have

bought at least once. The remaining periods comprise the “post-penetration” sub-period.

In Table 3.4 we present the same measures that appear in Table 3.4 broken down by

sub-period, in addition to a few other measures. This breakdown illustrates the effect of

firms having to compete with their previously sold units.

Observation 4 The monopolist innovates much more after full penetration occurs, whereas

duopolists innovate slightly less after full penetration occurs.

In Table 3.4 we report the monopolists innovation rate of .511 in the pre-penetration

period compared to .897 after penetration. The duopolists have innovation rates of .926

and .921 in the two periods, respectively. These differences reflect competitive forces. The

monopolist does not have a need to innovate until after most consumers have purchased the

good. To induce consumers to upgrade the monopolist must innovate. In the duopoly case,

competition for consumers, and hence the advantage of high quality, is present even when

penetration is low. The duopolists therefore invest heavily in both sub-periods.

Thus far, the observations focus on comparing means. We also observe substantial vari-

ation in outcomes from period to period.
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Observation 5 Margins vary substantially from period to period, as firms adjust prices to

market conditions.

In Table 3.4 we present the distribution of margins across periods. The min and max duopoly

margins are .626 and 2.598 and the monopolist’s margins vary from 1.36 to 10.0.

3.3.2 Counterfactual Analysis

Recently Advanced Micro Devices (AMD) has filed a lawsuit contending that Intel has en-

gaged in anti-competitive practices that deny AMD access to a share of the CPU market.

We can use our model to study the effect of such practices on innovation and pricing, and

ultimately consumer surplus and firms’ profits. We perform a series of counterfactual simu-

lations in which we vary the portion of the market to which one firm has exclusive access.

The firm which has exclusive access to a portion of the market is restricted to offer the same

price in both sub-markets.

In Figure 3.4 we plot the margins, innovation rates, and consumer surplus when the

“access denied” portion of the market varies from zero to one (in .1 increments). Interestingly,

the margins do not begin to increase appreciably until the restricted portion of the market

reaches 30 percent. Consumer surplus does not decline appreciably until the restriction hits

0.7. This suggests that as the market moves from a duopoly to a monopoly, most of the

welfare loss is due to higher margins and not the slower rate of innovation.

3.4 Conclusions and Future Research

This paper presents a dynamic model of durable goods oligopoly with endogenous innova-

tion. We show that accounting for the durable nature of products in an equilibrium setting

has important implications on firm level profits and consumer surplus. To incorporate the
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endogenous distribution of product ownership, we introduce an approximation to this dis-

tribution. Calibrating the model produces results that are reasonably consistent with data

from the industry.

There are numerous possibilities for future research. One potential route concerns when

it is optimal for a firm to lease versus sell its durable product. A firm could take a durable

good and sell it as a non-durable good, and this may be an alternative interpretation of

the lease/sell scenario. There are several nature questions that arise, such as under what

conditions should a firm sell versus lease, is it more advantage for the leader or laggard to

lease, which outcome is best from a social welfare standpoint, etc.

To make the model computationally tractable, we have used an approximation to the

true distribution of consumers over product ownership. We would like to perform additional

robustness checks on the quality of our approximation, such as using higher-order approxi-

mations or alternative functional forms. Ideally, we could solve the equilibrium of the model

using a sufficiently coarse grid over the ownership distribution without the use of the ap-

proximation. If this grid could be made fine enough to minimize discretization error, this

would provide us with the best picture of how accurately our approximation captures the

effects of the ownership distribution on the firms’ policy functions. If the policy functions

from the discretized model and the approximated model were similar, we could conclude

that the approximation is adequate.

Finally, our goal is to more carefully calibrate or estimate the model. This depends

crucially on finding an appropriate set of moments to match and on addressing the issue

of multiple equilibria. The computational burden of a full-blown estimation routine may

currently be infeasible, given that it takes between four and seven hours to solve for a single

equilibrium. We are currently examining ways to address these issues.
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Table 3.1: Base Case Parameters

Parameter Value

γ 1.1
α 0.05
ξ 0 (all firms)
β 0.95
q̄ 3.9
mc 43
δ 0.3
f(τ = δ|x) ax/(1+ax)
a 2
c 1
M 100

Base parameterization of variables and
functional forms.

Table 3.2: Empirical vs. Simulated Moments

Industry Model

Margins 3.260 1.235
Leader/Laggard Market Share 6.244 2.632
Innovation Rate 0.873 0.914
Avg. Quality Difference 32.42% 45.20%

Compares the empirical versus simulated moments,
which include the price margins, the ratio of the leader
and laggard market shares, the mean innovation rate, and
the mean difference in quality between the laggard and
leader.
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Table 3.3: Policy Regressions

Price Margin Innovation Rate
Leader Laggard Leader Laggard

Constant -0.148 1.589 0.959 0.935
Leader Extended Frontier ? 0.073 -0.023 -0.002 0.008
Mean Owned Product Quality -0.216 -0.172 -0.011 -0.017
Quality Difference 0.961 -0.593 0.053 -0.045
Quality Difference Squared -0.209 0.109 -0.046 0.025

R2 0.652 0.639 0.967 0.934

Regression results using simulated steady-state data of the firms’ choice variables
against various transformations of the state variables. The explanatory variables
are a dummy for whether the leading firm extended their quality lead, the share
of consumers that own a product, the mean quality of the product owned by
these consumers, the quality difference between the leader and laggard, and the
square of the quality difference.

Table 3.4: Industry Measures under Five Scenarios

Durable Myopic Pricing Durable Myopic Pricing Social
Duopolist Duopolist Monopolist Monopolist Monopolist

Profits (industry) 11473 8699 19449 11562 0
Consumer Surplus 264703 259605 157125 191399 340145
Margins 1.235 0.637 3.023 0.974 0
Innovation Rate 0.922 0.885 0.782 0.831 0.903
Investment 5.979 3.931 3.693 4.197 5.682

Comparison of the simulated outcomes under five different scenarios: durable duopoly, myopic pricing
duopoly, durable monopoly, myopic pricing monopoly, and social monopoly. In the myopic cases, the
firm(s) choose price taking into account the current distribution of product ownership, but without
regard for how this distribution will change tomorrow based on demand today.
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Table 3.6: Margin Distribution

Durable Myopic Pricing Durable Myopic Pricing
Duopolist Duopolist Monopolist Monopolist

Min 0.626 0.558 1.360 0.414
5% 0.815 0.598 1.996 0.693
10% 0.842 0.625 2.138 0.702
25% 1.170 0.665 2.404 0.720
50% 1.451 0.689 2.802 0.721
75% 1.641 0.710 3.312 0.722
90% 1.836 0.852 4.691 1.550
95% 1.922 1.044 5.212 3.244
Max 2.598 3.184 10.010 4.422

Mean 1.235 0.637 3.023 0.974
Stdev 0.359 0.127 1.142 0.208

Distribution of sales-weighted average price margins under the different
market scenarios, where the margin is calculated as (pjt −mcj)/mcj .

Table 3.7: Comparison of the Leader and Laggard

Durable Myopic Pricing
Duopolist Duopolist

Leader Market Share 0.104 0.158
Laggard Market Share 0.051 0.021
Leader Profits 8523.020 7341.690
Laggard Profits 2950.140 1357.290
Leader Price 114.991 75.537
Laggard Price 76.881 65.202
Leader Investment 7.527 4.308
Laggard Investment 4.432 3.554
Leader Innovation Rate 0.938 0.896
Laggard Innovation Rate 0.899 0.877
Period of Full Penetration 23 23

Summary statistics according to whether the firm is the leader
or laggard in the market.
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Figure 3.1: Price Margin Regressions
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Figure 3.2: Innovation Rate Regressions
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Figure 3.3: Demand by Vintage

Figure 3.4: Market Restriction
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Appendix A

Computational Details

A.1 Chapter 2: The Value Function Approximation

Two necessary conditions are that the state space is compact and that the transition density

is sufficiently smooth. To ensure compactness, it is only necessary to bound prices from

below at zero and above at some arbitrarily large price where the density is sufficiently close

to zero, and then to renormalize the density so that it integrates to one. Smoothness requires

that the transition density does not contain too many spikes, which is guaranteed through

the use of a multivariate normal. If the density contains any discontinuities, the approximate

integral underestimates the true integral, requiring a higher number of random grid points

to obtain the same degree of accuracy. With these conditions satisfied, the random Bellman

operator possesses a bound that is a linear function of d. Thus, the randomization technique

breaks the curse of dimensionality associated with approximating the integral as part of the

contraction mapping.

More precisely, I use the random multigrid algorithm outlined in Rust (1997). This

algorithm consists of a set of outer iterations k = 1, 2, . . . , where a number N (k) of uniform
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random sample points {p̃1, . . . , p̃N(k)} is drawn at each iteration independently of the samples

drawn at previous iterations k − 1, k − 2, . . .. The basic idea is to start with relatively few

sample points N (0) at k = 0 and to successively increase the number of sample points

according to the rule

N (k) = 22kN (0)

Within each outer iteration k, a number T (k) of successive approximation steps are taken

using the random Bellman operator Γ̂N(k) . Let V̂ (k) denote the value function produced after

T (k) steps at outer iteration k. The starting point for the value function at outer iteration

k + 1 is the value function V̂ (k) produced at iteration k. This is most easily done using

nonparameteric regression. This leads to the recursion

V̂
(k+1)
i = Γ̂N(k)(V̂

(k)
i )

where the starting point for the value function at iteration 0 is maximum of the period

utility function. This is made possible by the fact that Γ̂
N

(k)
p

is self-approximating – it may

be evaluated at arbitrary points in the state space without the need for interpolation.

In practice, I set N (0) = 100 and find that the multigrid algorithm converges after three

or four iterations. This yields significant computational savings because using the earlier

values as starting values over the finer grid increases the rate of convergence.
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