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Dissertation Abstract

Chapter 1: Reclaim-proof Allocation of Indivisible Objects

This paper studies axioms de�ning a �desirable allocation�in indivisible object allocation prob-

lems. The existing axioms in the literature are conditions of ex-ante robustness (individual-

rationality and group-rationality) and ex-post robustness (Pareto-e¢ ciency) to blocking coali-

tions. We introduce an all-encompassing stringent axiom. An allocation is reclaim-proof if it

is interim robust to blocking coalitions. Interim robustness to blocking coalitions has practical

appeal in allocation problems in which the assignments are to be made in multiple rounds. Our

main results unify and extend several disparate results in the literature. We show that an al-

location is reclaim-proof if and only if it is induced by a YRMH-IGYT mechanism (introduced

by Abdulkadiro¼glu and Sönmez, Journal of Economic Theory�1999 ) and if and only if it is a

Walrasian allocation.

Chapter 2: Fair and E¢ cient Discrete Resource Allocation: A Market Approach

In a variety of cases, a set of indivisible objects must be allocated to a set of agents where

each agent is entitled to receive exactly one object. Examples include the allocation of tasks

to workers, spots at public schools to pupils, and kidneys to patients with renal failure. We

consider the mixed ownership case of this problem (some objects are initially owned by some

agents while the other objects are unowned) and introduce a market-based mechanism that is

procedurally reminiscent of the Walrasian Mechanism from equal-division. Our mechanism is

strategy-proof and procedurally fair, and it leads to Pareto-e¢ cient allocations. We obtain that

it is equivalent to a well-known priority-order based mechanism. The equivalence result in the

classical paper by Abdulkadiro¼glu and Sönmez (Econometrica�1998 ) follows as a corollary.
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Chapter 3: House Swapping

An increasingly more popular practice that allows vacationers to save from accommodation

costs is house swapping. A vacationer is endowed with preferences over (house, guest) pairs

where �house� stands for the house she is to receive for vacation, and �guest� stands for the

person who is to receive her house. We show under additively-separable preferences that in a

house-swapping market a pairwise-stable allocation is not guaranteed to exist, and possibly no

Pareto-e¢ cient allocation may be attainable via only executing two-way swaps. If preferences

are �guest-diseparable,�then there exists a core allocation. More restrictively, if preferences are

�guest-dichotomous,�there exists a unique core allocation and the mechanism that selects it is

strategy-proof.
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Chapter 1

Reclaim-proof Allocation of Indivisible

Objects

1.1 Introduction

We study the classical problem of allocating n indivisible objects to n agents. Each agent is

entitled to receive exactly one object, her preferences over objects are strict, and monetary

transfers are not allowed. An allocation is a one-to-one matching of objects to agents. There are

many real-life applications of this problem, such as the allocation of o¢ ces to faculty members,

spots at public schools to pupils, dormitory rooms to college students, and organs for transplant

to patients. We follow the convention in the literature and refer to our objects as �houses.�

There are three variants of this problem in the literature, varying in the initial ownership

structure. In a housing market each house is initially owned by a distinct agent (Shapley

and Scarf [34]); in a house allocation problem every house is initially unowned (Hylland and

Zeckhauser [17]); and in the general case, a house allocation problem with existing tenants,

initially there may be both owned and unowned houses (Abdulkadiro¼glu and Sönmez [2]).

A mechanism (or an allocation rule) is a systematic rule that selects an allocation at any

admissible preference pro�le that may potentially be reported by agents. Two questions are im-
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portant in judging the desirability of a mechanism: Does it select a �desirable allocation�under

any admissible preference pro�le of agents? And for the previous question to bear signi�cance,

does it induce agents to report their preferences truthfully? The content of this paper relates to

the �rst question. We study axioms de�ning a desirable allocation.

The proposed axioms in the literature are various conditions of robustness to �blocking

coalitions.�In the general sense, an allocation � is blocked by a coalition of agents if there exists

a way in which the coalition members trade their owned houses such that under the induced

coalitional allocation each coalition member is weakly and at least one coalition member is

strictly better o¤ in comparison to under �. The proposed axioms in the literature are as

follows:

� In the context of a housing market, the prominent axiom is �group-rationality,�which is

an allocation�s ex-ante robustness to blocking coalitions. Formally, an allocation � is group

rational (or, in the core) if no coalition of agents blocks it by trading their initially owned

houses. Roth and Postlewaite [29] showed that in a housing market there exists a unique

group-rational allocation, which is also the unique Walrasian allocation (i.e., competitive

allocation), and it is induced by the top trading cycle mechanism (in short, TTC), credited

to Gale in [34].1

� In the context of a house allocation problem, the prominent axiom is �Pareto-e¢ ciency,�

which is an allocation�s ex-post robustness to blocking coalitions. Formally, an allocation

� is Pareto e¢ cient if no coalition of agents blocks it by trading the houses that they are

assigned at � (i.e., by trading the houses that they own after the assignments have been

made as speci�ed by �). Svensson [37] showed that in a house allocation problem the set

of Pareto-e¢ cient allocations coincides with the set of allocations induced by the class of

serial dictatorship mechanisms.2

1TTC is described in Subsection [1.2.2]. Roth [28] proved that TTC is strategy-proof, and Ma [20] showed
that it is the only mechanism that is Pareto-e¢ cient, individually-rational, and strategy-proof.

2Serial dictatorships, described in Subsection [1.2.2], are also known as priority rules or queue allocation
rules. Svensson [37] showed that serial dictatorships are strategy-proof. Svensson [38] and Ergin [15] provided
two characterizations for this class of mechanisms. See also Satterthwaite and Sonnenschein [33].
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� In the context of a house allocation problem with existing tenants, as properties of a desir-

able allocation Abdulkadiro¼glu and Sönmez [2] considered two axioms� Pareto-e¢ ciency

and �individual-rationality.�Individual-rationality is an allocation�s ex-ante robustness to

blocking individuals and is implied by group-rationality. Formally, an allocation � is indi-

vidually rational if no agent blocks it by keeping her initially owned house (i.e., no agent

strictly prefers her initially owned house to the house that she is assigned at �). They in-

troduced the class of You request my house - I get your turn (YRMH-IGYT) mechanisms,

which induce Pareto-e¢ cient and individually-rational allocations. The class of YRMH-

IGYT mechanisms generalizes TTC and serial dictatorships: This class reduces to TTC

in a housing market and to the class of serial dictatorships in a house allocation problem.3

This paper introduces a new axiom that subsumes and strengthens Pareto-e¢ ciency and

group-rationality. The following simple example will be useful in our discussion.

Example 1.1 Consider the following problem: Houses h1, h2, and h3 are to be allocated to

agents a1, a2, and a3. Agents�strict preference orders are as given in the table below. Initially

a3 owns h3 (shown in boldface in the table) and h1 and h2 are unowned. The allocation � is the

one at which a1, a2, a3 are assigned h3, h1, h2, respectively (displayed in boxes in the table).

a1 a2 a3

h3 h3 h1

h2 h1 h2

h1 h2 h3

�

In Example 1.1 the allocation � does not admit blocking coalitions ex-ante and ex-post (i.e.,

it is group rational4 and Pareto e¢ cient). Nevertheless, if � is not implemented in one shot and

rather if its assignments are made over a time horizon, an �interim blocking coalition�may arise:

Suppose a2 is assigned �rst as speci�ed in � (i.e., she receives h1). Then the �interim ownership

3Abdulkadiro¼glu and Sönmez 2 showed that the YRMH-IGYT mechanisms are strategy-proof. See Sönmez
and Ünver [36] for a characterization of this class of mechanisms.

4Note that in Example 1.1 group-rationality reduces to individual-rationality because initially only a3 owns a
house.
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structure�arises where h2 is unowned and a2 and a3 respectively own h1 and h3, one another�s

most favorite houses. Then the coalition of a2 and a3 blocks � as each receives her most favorite

house when they trade, which makes both strictly better o¤ in comparison to under �.

When an allocation � is to be implemented, there is an initial ownership structure, call !,

and a �nal ownership structure ��1 characterized by �, but if the assignments prescribed by �

are made in multiple rounds rather than simultaneously, �interim ownership structures�arise

as well from ! to ��1. A house may be unowned in an interim ownership structure, but if it

is owned, it must be owned by its initial owner or �nal owner. Motivated by the possibility

that interim ownership structures may arise in allocation problems with a dynamic nature, we

introduce a very stringent axiom. An allocation � is reclaim-proof if no coalition of agents blocks

it by trading the houses that they initially own (ex-ante robustness to blocking coalitions) or the

houses that they own under � (ex-post robustness to blocking coalitions) or a combination of the

previous two (interim robustness to blocking coalitions). In Example 1.1 � is not reclaim-proof

because a2 and a3 block it by trading h1 (the house a2 owns under �) and h3 (the house a3

initially owns). Clearly, an allocation is robust to blocking coalitions at every admissible interim

ownership structure if and only if it is reclaim-proof.

In real-life applications an allocation�s group-rationality and Pareto-e¢ ciency is a satisfactory

combination for its successful implementation if its prescribed assignments are to be made si-

multaneously. In some real-life applications, however, assignments are non-simultaneously made

for various reasons. For instance, in the allocation of o¢ ce space to faculty members, vacant

(unowned) o¢ ces may be made available at di¤erent dates by the outgoing faculty members, so

not all incoming faculty members may move into their o¢ ces at the same time. Similarly, in the

allocation of dormitory rooms to college students, students may arrive at school and hence move

into their rooms at di¤erent dates. In kidney exchange practices with Good Samaritan Donors,

logistical constraints do not allow undertaking too many simultaneous transplantation opera-

tions (see Roth, Sönmez and Ünver [30]). In such real-life applications an allocation�s interim

robustness to blocking coalitions is a desirable property for its successful implementation.
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The main results of our paper identify new merits of the class of YRMH-IGYT mechanisms.

First, we show that in a house allocation problem with existing tenants the set of allocations

induced by the class of YRMH-IGYT mechanisms is precisely the set of reclaim-proof alloca-

tions (Theorem 1.1). Second, we show that an allocation is reclaim-proof if and only if it is

a Walrasian allocation (Theorem 1.2). This second result, we believe, provides further justi-

�cation for reclaim-proofness as an axiom. The results by Roth and Postlewaite [29] (that in

a housing market TTC induces the unique group-rational allocation, which is also the unique

Walrasian allocation), Svensson [37] (that in a house allocation problem the set of allocations

induced by serial dictatorships is the set of Pareto-e¢ cient allocations) and Abdulkadiro¼glu and

Sönmez [2] (that in the general setting the YRMH-IGYT mechanisms induce Pareto-e¢ cient

and individually-rational allocations) are corollaries of our more general results. Thus our re-

sults unify and extend these disparate results in the literature on indivisible object allocation

problems. A possible direction for future research is to explore how reclaim-proofness can play

a role in characterizing the class of YRMH-IGYT mechanisms.

The organization of the rest of the paper is as follows: Section 1.2 presents the model and

the related results in the literature; Section 1.3 introduces reclaim-proofness and presents our

results.

1.2 The Model

1.2.1 Preliminaries

A house allocation problem with existing tenants is a fourtuple < a0 [ A;H; P; ! > where:

� a0 is the social planner and A = fa1; a2; : : : ; ang is a �nite set of agents;

� H = fh1; h2; : : : ; hng is a �nite set of houses;

� P : (Pa)a2A is the pro�le of agents�strict preferences over H;
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� ! is an ownership structure, that is, a mapping from H to a0 [ A such that j!�1(a)j � 1

for every a 2 A (i.e., only the social planner may own more than one house).

In what follows we consider a representative problem � :< a0 [ A;H; P; ! >. � is a house

allocation problem if !�1(a0) = H (every house is owned by the social planner) and a housing

market if !�1(a0) = ; (each house is owned by a distinct agent).

For ease of reference we refer to an agent who initially owns a house as the existing tenant

of that house. We denote the set of existing tenants by AE � A. Also, we sometimes refer to

houses owned by the social planner as unowned houses, meaning that they are not owned by

agents.

We assume that every agent prefers being assigned a house to not being assigned a house.

For a 2 A and h; h0 2 H we write hPa h0 if a prefers h to h0. We use Ra to represent the �at

least as good as�relation for a 2 A (i.e., hRa h0 means hPa h0 or h = h0).

An allocation � : A ! H is a one-to-one mapping from the set of of agents to the set of

houses. Note that the inverse mapping ��1 is an ownership structure. We denote the domain of

admissible allocations byM.

An allocation � 2M is

� individually rational if �(a)Ra !�1(a) for every a 2 AE;

� group rational if there exist no subset of agents C � AE and a one-to-one mapping bl :

C ! !�1(C) such that bl(a)Ra �(a) for every a 2 C and bl(a)Pa �(a) for an agent a 2 C;

� Pareto e¢ cient if there is no allocation �0 2 M such that �0(a)Ra �(a) for every a 2 A

and �0(a)Pa �(a) for an agent a 2 A.

The above axioms are various conditions of robustness to �blocking coalitions.�In the general

sense, an allocation � is �blocked� by a coalition of agents C � A if there exists a way in

which agents in C trade their owned houses such that the coalitional allocation induced Pareto
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dominates the coalitional allocation of these agents under �. In the implementation of an

allocation �, if � is group rational it is not blocked ex-ante (i.e., when the ownership structure

is !); if � is Pareto e¢ cient it is not blocked ex-post (i.e., when the ownership structure is

��1). Individual-rationality is the condition of ex-ante robustness to blocking individuals and is

implied by group-rationality.

An allocation � 2 M is a Walrasian allocation if there exist a non-negative price function

pr : H ! R+ and a non-negative transfer function tr : A! R+ such that

1. pr(�(a)) � tr(a) for every a 2 A n AE;

2. pr(�(a)) � tr(a) + pr(!�1(a)) for every a 2 AE;

3.
X
a2A

tr(a) �
X

h2!�1(a0)

pr(h);

4. if hPa �(a) for any a 2 A n AE and h 2 H then tr(a) < pr(h);

5. if hPa �(a) for any a 2 AE and h 2 H then tr(a) + pr(!�1(a)) < pr(h).

The �rst three conditions above state that at a Walrasian allocation everyone a¤ords her

expenditure: For an agent who initially does not own a house, her expenditure is the value of

the house she is assigned at � and her income is the transfer payment she receives from the social

planner. For an agent who initially owns a house, her expenditure is the value of the house she

is assigned at � and her income is the sum of the transfer payment that she receives from the

social planner and the value of the house that she initially owns. For the social planner, her

expenditure is the sum of transfer payments that she makes and her income is the total value

of the houses that she initially owns. If we add up the inequalities in (1), (2) and (3) across

all agents and the social planner, the left-hand side and the right-hand side are the same, so

the inequalities in (1), (2) and (3) are binding. The last two conditions above state that at a

Walrasian allocation agents buy their most preferred a¤ordable houses.

8



1.2.2 Related Results in the Literature

In the context of a housing market the reputable allocation rule is the following top trading cycle

(TTC) mechanism, credited to Gale in [34]:

Imagine a diagram consisting of agents and houses. Let each agent �point� to her most

preferred house in the diagram. Let each house �point� to its owner. There exists at least

one �cycle.�5 Assign agents in cycles to the houses they point. Then remove these agents

and houses from the diagram and in the reduced diagram, proceed similarly.

TTC is a strategy-proof6 as shown in [28] and it is inherently linked to ex-ante robustness

to blocking coalitions:

Theorem: (Roth and Postlewaite [29]): TTC induces the unique group-rational allocation

in a housing market, which is also the unique Walrasian allocation.

A �priority-order�f : A ! f1; 2; :::; ng is a bijection that orders agents. We denote the set

of admissible priority-orders by F . In the context of a house allocation problem the reputable

class of mechanisms is serial dictatorships. Each priority-order f 2 F de�nes a distinct serial

dictatorship mechanism, which proceeds as described below:

Assign the agent who is ordered �rst in f to her most preferred house; assign the agent

who is ordered next in f to her most preferred house among remaining ones; and so on.

Serial dictatorships are strategy-proof as shown in [37] and they are inherently linked to

ex-post robustness to blocking coalitions:

Theorem: (Svensson [37]): The set of allocations induced by the class of serial dictatorships

in a house allocation problem is precisely the set of Pareto-e¢ cient allocations.

In the general setting, a house allocation problem with existing tenants, Abdulkadiro¼glu

and Sönmez [2] proposed the class of You request my house - I get your turn (YRMH-IGYT)

5A cycle is characterized by an ordered list i1; i2; � � � ; ik of agents where is points to is+1�s house for s =
1; � � � ; k � 1 and ik points to i1�s house.

6 i.e., truthful preference revelation is a dominant strategy.
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mechanisms. Each priority-order f 2 F de�nes a distinct YRMH-IGYT mechanism, which

proceeds as described below:

Assign the agent ordered �rst in f to her most preferred house; assign the agent ordered

second in f to her most preferred house among remaining ones; and so on, until an agent

requests a house owned by an existing tenant. If at that point the existing tenant whose

house is requested has already been assigned a house, do not disturb the procedure. Other-

wise, update the remainder of the priority-order by inserting that existing tenant to the top

and proceed. If at any point a loop forms, it is formed exclusively by a subset of existing

tenants who consecutively request the houses owned by one another. In such cases remove

all agents in the loop by assigning them the houses they request and proceed.

A YRMH-IGYT mechanism is strategy-proof; it reduces to TTC in a housing market and

to the serial dictatorship de�ned by the same priority-order in a house allocation problem [2].

Its induced allocation has been shown to be ex-ante robust to blocking individuals and ex-post

robust to blocking coalitions:

Theorem: (Abdulkadiro¼glu and Sönmez [2]): The allocation induced by a YRMH-IGYT

mechanism is Pareto e¢ cient and individually rational.

1.2.3 More on YRMH-IGYT mechanisms

We illustrate in a simple example below how a YRMH-IGYT mechanism proceeds.

Example 1.2 Consider the following problem: Houses h1, h2, h3, h4 are to be allocated to

agents a1, a2, a3, a4. Agents�strict preference orders are as given in the table below. Initially

a1, a3, a4 respectively own h1, h3, h4 (shown in boldface in the table) and h2 is unowned.

a1 a2 a3 a4

h2 h4 h4 h2

h4 h2 h2 h3

h3 h3 h3 h4

h1 h1 h1 h1

10



Consider the YRMH-IGYT mechanism de�ned by the priority-order f such that f(ai) = i for

i = 1; 2; 3; 4. We illustrate in a series of �gures below how it proceeds. In �gures unidirectional

arrows point from owned houses to their owners and from agents to their most preferred houses

among remaining ones; bidirectional arrows indicate the assignments made by the mechanism.

Step 1: h1 h2 h3 h4 Assignments
a1

a1 a2 a3 a4

h2

Step 2: h1 h3 h4 Assignments
a1

a2 a3 a4

h2

Step 3: h4 h1 h3 Assignments
a1

a4 a2 a3

h2

Step 4: h3 h4 h1 Assignments
a3 a4 a1

a3 a4 a2

h4 h3 h2

Step 5: h1 Assignments
a2 a3 a4 a1

a2

h1 h4 h3 h2

remainder
of f :

remainder
of f :

remainder
of f :

remainder
of f :

remainder
of f :

loop

�

As in Example 1.2, when the YRMH-IGYT mechanism de�ned by a priority-order f is

executed, the order in which agents are assigned houses is not necessarily the same as f . By this

observation, we de�ne the assignment order fao : A[H ! f1; 2; :::; ng implied by a priority-order

f 2 F , which is constructed as described below:

Order �rst in fao the agent and the house that are assigned �rst by the YRMH-IGYT

mechanism de�ned by f ; order second in fao the agent and the house that are assigned

next; and so on. Whenever a loop is encountered, specify in fao the orders of agents in

the loop and the houses they are assigned the same and proceed.

The assignment order implied by a priority-order becomes a very useful tool in showing our

results in Section 1.3. As an illustration, the table below presents the priority-order f in Example
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1.2 and the assignment order fao that it implies.

f fao

1 a1 a1; h2

2 a2 a3; h4; a4; h3

3 a3 a2; h1

4 a4

1.3 Reclaim-proof Allocations and Results

As argued in Section 1.1, in some real-life applications, in the implementation of an allocation

its prescribed assignments may not be made simultaneously for various reasons, and therefore,

between the initial and �nal (ex-ante and ex-post) ownership structures, various other �interim�

ownership structures may arise. This is formalized by De�nition 1.1.

De�nition 1.1 In our representative problem �, given an allocation � 2M to be implemented,

an ownership structure !0 : H ! a0 [ A is an interim ownership structure if !0(h) 2

a0 [ !(h) [ ��1(h) for every h 2 H.

In words, in an interim ownership structure !0 a house h is either unowned (!0(h) = a0) or

it is owned by its initial or �nal owner (!(h) or ��1(h)). We do not argue that every admissible

interim ownership structure has to arise if assignments are not made simultaneously, but any

interim ownership structure may arise. The initial and �nal ownership structures ! and ��1 are

admissible interim ownership structures. However, robustness to blocking coalitions in ! (group-

rationality) and ��1 (Pareto-e¢ ciency) does not entail robustness to blocking coalitions in every

admissible interim ownership structure, which is entailed by the axiom that we introduce next.

De�nition 1.2 In our representative problem �, an allocation � 2M is reclaim-proof if there

exists no fourtuple


C;HC ; rc; rbl

�
(a �reclaim blocking fourtuple�) where:

1. C � A is a subset of agents (a �reclaim blocking coalition�);

12



2. HC � H is a subset of houses such that
��HC

�� = jCj;
3. rc : C ! HC is a one-to-one mapping (a �reclaim function�) such that rc(a) 2 !�1(a) [

�(a) for every a 2 C;

4. rbl : C ! HC is a one-to-one mapping (a �reclaim blocking allocation�) such that rbl(a)Ra �(a)

for every a 2 C and rbl(a)Pa �(a) for an agent a 2 C.

In words, an agent joins a reclaim blocking coalition by trading either the house that she

initially owns (if there is any) or the house that she is assigned at �. Since these are the two

houses that she may own in an interim ownership structure, an allocation is robust to blocking

coalitions in every conceivable interim ownership structure if and only if it is reclaim-proof.

Since in ��s implementation ! and ��1 are admissible interim ownership structures, reclaim-

proofness implies group-rationality and Pareto-e¢ ciency. The converse is not true, however. As

an illustration, in Example 1.1 � is group rational and Pareto e¢ cient but not reclaim-proof.

The two reclaim-proof allocations in Example 1.1 are

0B@a1 a2 a3

h2 h3 h1

1CA and

0B@a1 a2 a3

h3 h2 h1

1CA .
Theorem 1.1 exposes the inherent link between the class of YRMH-IGYT mechanisms and

the set of reclaim-proof allocations.

Theorem 1.1 In our representative problem �, an allocation � 2 M is reclaim-proof if and

only if it is induced by a YRMH-IGYT mechanism.

Proof. We prove the theorem in two parts:

(I) Suppose � is not reclaim-proof but it is induced by the YRMH-IGYT mechanism de�ned

by a priority-order f . Let


C;HC ; rc; rbl

�
be a reclaim blocking fourtuple. Consider the assign-

ment order fao implied by f . For an agent a 2 C if rc(a) = �(a) then clearly fao(a) = f(rc(a)).

For an agent a 2 C if rc(a) = !�1(a), then, by construction of the YRMH-IGYT mechanism,
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fao(a) = f(rc(a)) if a joins a loop in its execution7 and fao(a) < f(rc(a)) if she does not. Then

X
a2C

fao(a) �
X
a2C

f(rc(a)) =
X
h2HC

fao(h).

For an agent a 2 C if rbl(a) = �(a) then clearly fao(a) = fao(rbl(a)). For an agent a 2 C if

rbl(a) 6= �(a) (and there exists such an agent) then rbl(a)Pa �(a), which implies by construction

of the YRMH-IGYT mechanism that fao(a) > fao(rbl(a)). Then

X
a2C

fao(a) >
X
a2C

fao(rbl(a)) =
X
h2HC

fao(h),

which contradicts the previous inequality.

(II) Suppose � is reclaim-proof. We construct a priority-order f 2 F such that the YRMH-

IGYT mechanism de�ned by f induces �. Consider a diagram consisting of every agent and

every house:

(*) Find an agent a such that �(a) is a�s most preferred house and it is initially unowned.

Order a �rst in f and remove a and �(a) from the diagram. Among remaining agents, �nd an

agent a such that �(a) is a�s most preferred house among remaining ones and initially it is either

unowned or owned by a removed agent. Order a second in f and remove a and �(a) from the

diagram. Proceed similarly whenever it is possible to do so, and whenever it is not, proceed as

in (**).

(**) Let the sets of remaining agents and houses be A0 � A and H 0 � H, and let HO � H 0

be the set of remaining houses that are initially owned by agents in A0. Let every remaining

agent a 2 A0 point to her most preferred house in H 0; every house h 2 HO point to its initial

owner !�1(h); and every house h 2 H nHO point to ��1(h). There exists a cycle. Suppose in

this cycle there exists an agent who is not assigned at � her most preferred house in H 0. But

then this cycle de�nes a reclaim blocking fourtuple


C;HC ; rc; rbl

�
: C is the set of agents in the

cycle; for a 2 C, rc(a) 2 HC is the house that points to a in the cycle; and rbl(a) is the house

7Note that if a receives !�1(a) it means she forms a loop by herself and the equality fao(a) = f(rc(a)) still
holds.
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to which a points. Since � is reclaim-proof this cannot be true and so every agent in the cycle

is assigned at � the house to which she points. But then every house in this cycle should be in

HO because if there were a house h 2 H nHO in the cycle then the agent who points to h would

be an agent as required in (*): She would be assigned at � her most preferred house among

remaining ones which is initially either unowned or owned by a removed agent. So the agents in

the cycle are existing tenants who are assigned the initially owned houses of one another, which

are their most preferred houses among remaining ones. Remove the agents and houses in the

cycle from the diagram by ordering these agents next in f (in any order).

Evidently the YRMH-IGYT mechanism de�ned by f induces �. Note that when this mech-

anism is executed, the agents ordered in f as described in (**) form the loops.

Theorem 1.2 exposes the inherent link between reclaim-proof allocations and Walrasian al-

locations.

Theorem 1.2 In our representative problem �, an allocation � 2 M is reclaim-proof if and

only if it is a Walrasian allocation.

Proof. We prove the theorem in two parts:

(I) Let � 2M be a reclaim-proof allocation. Then, by Theorem 1.1, there exists a priority-

order f such that the YRMH-IGYT mechanism de�ned by f induces �. Consider the assignment

order fao implied by f . Let us de�ne a non-negative price function pr : H ! R+ where

pr(h) = n � fao(h) for every h 2 H, and a non-negative transfer function tr : A ! R+ where

tr(a) = pr(�(a)) for every a 2 A nAE and tr(a) = pr(�(a))� pr(!�1(a)) for every a 2 AE. The

allocation � is a Walrasian allocation for pr and tr.

(II) Let � 2M be a Walrasian allocation for a non-negative price function pr : H ! R+ and

a non-negative transfer function tr : A! R+. Consider a priority-order f such that f(a) < f(a0)

for any a; a0 2 A if pr(�(a)) > pr(�(a0)). The YRMH-IGYT mechanism de�ned by f induces �.
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Chapter 2

Fair and E¢ cient Discrete Resource

Allocation: A Market Approach

2.1 Introduction

We consider the problem of allocating n indivisible objects to n agents where each agent is

entitled to receive exactly one object and agents�preferences over objects are strict. Monetary

transfers are not allowed.1 There are numerous real-life applications of this problem, such as

the allocation of tasks to workers, spots at public schools to pupils, kidneys to patients with

renal failure, dormitory rooms to college students, and legislators to committees [1, 2, 3, 5, 17,

30]. The purpose of this paper is to design a mechanism (a systematic allocation rule) which

has a market-based approach, is fair in a certain sense, and leads to e¢ cient (Pareto-optimal)

allocations (matchings of agents and houses). A core issue in designing a mechanism is that

preferences are elicited from agents who may respond strategically rather than truthfully.

As is the convention in this literature, we employ the paradigm of allocating �houses� to

agents. There are three cases of this problem in the literature, varying in the initial ownership

structure. In the pure exchange case, called a housing market, each agent initially owns a house

1We do not take a normative standpoint against the use of money. In many real-life applications, however,
the use of money is not permissible.
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(see Shapley and Scarf [34]). In the pure distributional case, called a house allocation problem,

houses are initially unowned (see Hylland and Zeckhauser [17]). In the mixed ownership case,

called a house allocation problem with existing tenants, the previous two cases are generalized:

There are k �newcomers�who initially do not own any houses; k �vacant houses,�which are

initially unowned; and n � k �existing tenants� who own the n � k �occupied houses� (see

Abdulkadiro¼glu and Sönmez [2]).

This paper considers the mixed ownership case. Besides being more general, it arouses

interest for a number of interesting real-life applications of it. A prominent example is kidney

exchange with Good Samaritan Donors [30, 32]. In the most serious forms of renal disease,

the preferred treatment is kidney transplantation. As of March 2009, there were about 79,000

patients waiting for a kidney transplant in the United States. While some patients (�existing

tenants�) have friends or relatives willing to donate them their kidneys (�occupied houses�),

there are also patients (�newcomers�) who do not have donors. There are also kidneys obtained

from Good Samaritan Donors and cadavers (�vacant houses�) which are donated to patients

collectively. In many cases a patient cannot be transplanted the kidney of her donor due to

medical incompatibilities. A common practice is then kidney exchange in which patients are

transplanted the kidneys of one another�s donors. A kidney exchange may also involve patients

without donors and kidneys obtained from Good Samaritan Donors and cadavers. Another

real-life application of the mixed ownership case is on-campus housing practices at colleges [2,

9]. Each returning student (�existing tenant�) occupies a room from the previous year. There

are also incoming freshmen (�newcomers�), who initially do not occupy any rooms, and vacant

rooms, vacated by the graduating class.

The mechanism that we introduce is inspired from the �Walrasian Mechanism from equal-

division,� which is arguably the most widely advocated mechanism to allocate a bundle of

in�nitely divisible goods to a set of agents fairly and e¢ ciently. This mechanism proceeds in

a simple manner. First, the bundle is equally divided among agents (�equal-division�), which

results in an exchange market. (If there are also individual endowments, agents�equal-division
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shares of the bundle are added to their individual endowments.) In the induced exchange market

the Walrasian Mechanism is operated resulting in aWalrasian allocation, which is Pareto e¢ cient

under standard assumptions on preferences.2 This mechanism has been shown to be compatible

with many equity criteria that has been proposed in the literature (see Thomson [39]).

Clearly, �indivisible�objects cannot be equally �divided.�A �probabilistic equal-division�

idea can be employed, however, using random distribution. In an indivisible object allocation

problem, the �rst mechanism that involves random distribution has been introduced by Ab-

dulkadiro¼glu and Sönmez [1]. In the context of a house allocation problem, they proposed the

core from random endowments mechanism (in short, CFRE), which proceeds as follows:

Distribute n houses to n agents uniformly at random (each agent receives exactly one

house). In the induced exchange market, reallocate houses to agents by executing the top

trading cycles mechanism3 (in short, TTC), as described below:

Step 1: Let each agent �point� to her most preferred house and let each house �point�

to its owner. Since the number of agents and houses is �nite, there exists at least one

�cycle.�A cycle is characterized by a list a1; a2; � � � ; aj of agents where agent a1 points to

the house owned by a2, which points to a2; a2 points to the house owned by a3, which

points to a3;� � � ; aj�1 points to the house owned by aj, which points to aj; and aj points

to the house owned by a1, which points to a1. Assign the agents in cycles the houses they

point to and then remove these agents and houses from the market.

Step t > 1: Let each remaining agent point to her most preferred house among remaining

ones and let each remaining house point to its owner. There exists at least one cycle.

Assign the agents in cycles the houses they point to and then remove these agents and

houses from the market.

Roth [28] showed that TTC is strategy-proof (truthful preference revelation is a dominant

strategy), from which it immediately follows that CFRE is also strategy-proof.
2A Walrasian allocation is an allocation that can be attained in a Walrasian equilibrium. The Walrasian

mechanism is the rule that maps an exchange economy to a Walrasian allocation.
3This mechanism is credited to David Gale in Shapley and Scarf [34].
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We should highlight the parallels between CFRE and the Walrasian Mechanism from equal-

division. In the Walrasian Mechanism from equal-division, the exchange market is induced by

(physical) equal-division of the bundle. In CFRE, the exchange market is induced by proba-

bilistic equal-division of the (unowned) houses; each house is given to each agent with exactly

the same probability, 1=n. In the Walrasian Mechanism from equal-division, in the induced ex-

change market the Walrasian Mechanism is executed resulting in a Walrasian allocation, which

is Pareto e¢ cient. In CFRE, in the induced exchange market TTC is executed, which is the

exact counterpart of the Walrasian Mechanism in this context, as it produces the unique Wal-

rasian allocation, which is also Pareto e¢ cient (see Roth and Postlewaite [29]). In the Walrasian

Mechanism from equal-division, under certain assumptions that guarantee core convergence (see

Aumann [4]) and the uniqueness of a Walrasian allocation (see Mas-Colell [21]), in the induced

exchange market the allocation produced by the Walrasian Mechanism is the unique core allo-

cation. In CFRE, in the induced exchange market the allocation produced by TTC is also the

unique core allocation (see Roth and Postlewaite [29]).

We want to apply a similar approach in the mixed ownership case. The random distribution

in this context is a more delicate issue, however. To highlight the key challenges, consider the

following two mechanisms, the �rst of which is due to Sönmez and Ünver [35]:

(1) Distribute k vacant houses to k newcomers uniformly at random (each newcomer receives

exactly one vacant house). Then reallocate houses to agents by executing TTC.

(2) Distribute k vacant houses to n agents uniformly at random (out of n agents, only k of

them receive a vacant house). Then reallocate houses to agents by executing TTC.

In (1), random distribution results in a housing market (each agent owns exactly one house),

and TTC produces its unique core allocation. There is no probabilistic equal-division, however,

as a vacant house is given to a newcomer with 1=k probability but to an existing tenant with

zero probability. To emphasize the fairness shortcoming of this mechanism, consider an existing

tenant whose occupied house is the least desired house of every agent. Then in (1) she is assigned
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her least desired house. In a sense, she is punished for owning a house, which is not what we

desire. Arguably, this feature of the mechanism may also cause an incentive shortcoming. The

agent who owns the least desired house may respond strategically by �rst giving up her house

and then participating in the mechanism as a newcomer.

In (2), there is probabilistic equal-division, as each vacant house is given to each agent

with exactly 1=n probability. There is an e¢ ciency shortcoming of this mechanism, however.

After vacant houses have been distributed, if an existing tenant e receives a vacant house and

a newcomer a does not, then, in the induced exchange market, e owns two houses (a vacant

house besides her occupied house) while a owns none. When TTC is executed, a cannot join a

cycle and remains unassigned, and when e is removed after joining a cycle, one of her two houses

remains, which becomes �wasted.�

We introduce a mechanism that resolves the fairness and e¢ ciency tension in (1) and (2) in

an intuitive way. The core from random distribution mechanism (in short, CFRD) proceeds as

follows:

Besides the k vacant houses, introduce n � k �inheritance rights�associated with n � k

existing tenants. Distribute k vacant houses and n� k inheritance rights to n agents uni-

formly at random (each agent receives exactly one vacant house or one inheritance right).

If an agent receives an inheritance right, she becomes the �inheritor� of the associated

existing tenant; if she receives a vacant house, she owns that vacant house. Therefore,

in the induced exchange market, a newcomer owns a house or an inheritance right, and

an existing tenant owns two houses (a vacant house besides her occupied house) or an

inheritance right and a house. We call this an inheritors augmented housing market. In

this market reallocate houses to agents by executing the following inheritors augmented

top trading cycles mechanism (in short, IATTC):

Step 1: Let each agent point to her most preferred house and let each house point to its

owner. Since the number of agents and houses is �nite, there exists at least one cycle.
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Assign the agents in cycles the houses they point to and then remove these agents and

houses from the market. If an existing tenant in a cycle owns two houses, one of her two

houses remains. Then let her remaining house be owned by her inheritor. If her inheritor

is an existing tenant who has already been assigned a house, let her remaining house be

owned by the inheritor of her inheritor, and so on.

Step t > 1: Let each remaining agent point to her most preferred house among remaining

ones and let each remaining house point to its owner. There exists at least one cycle.

Assign the agents in cycles the houses they point to and then remove these agents and

houses from the market. If an existing tenant in a cycle owns two houses, one of her two

houses remains. Then let her remaining house be owned by her inheritor. If her inheritor

is an existing tenant who has already been assigned a house, let her remaining house be

owned by the inheritor of her inheritor, and so on.

The innovation in CFRD is the role played by inheritance rights in the execution of IATTC.

When an existing tenant who owns two houses is removed after joining a cycle, her remaining

house is not wasted; it is given to her inheritor (or to the inheritor of her inheritor and so on).

Note that this has no negative welfare implications for her. She can trade any of her two houses

to join a cycle and be assigned the best house that she can. Only after she leaves the market

her remaining house is given to another agent.

It can be shown that IATTC is strategy-proof.4 Then it immediately follows that CFRD

is also strategy-proof. Note that there is a probabilistic equal-division in CFRD; each vacant

house is given to each agent with exactly 1=n probability. Further, IATTC is the counterpart of

the Walrasian Mechanism in this context, as it produces a Walrasian allocation.5 In Proposition

2.1 we show that, as TTC produces the unique core allocation in a housing market, IATTC

produces the unique core allocation in an inheritors augmented housing market. (The core

allocation notion in this context is more subtle, however. The de�nition should incorporate

4We do not include a proof for this, as it follows as a corollary of Theorem 2.1.
5This is due to Theorem 2.1 and the fact that a YRMH-IGYT mechanism produces a Walrasian allocation

(Ekici [14]).
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the rights of inheritors; see De�nition 2.2.) Indeed, in an inheritors augmented housing market

if every agent owns exactly one house, IATTC proceeds just like TTC, and in this sense, an

inheritors augmented housing market and IATTC can be seen as generalizations of a housing

market and TTC.

Our main theoretical contribution is a surprising equivalence result, similar to the one in

Abdulkadiro¼glu and Sönmez [1]. In a house allocation problem, they showed that CFRE is

equivalent to random-priority (also known as �random serial dictatorship�). That is, given any

preference pro�le, any given allocation is produced by the two mechanisms with exactly the

same probability. Random-priority proceeds as follows:

Choose a priority-order (an ordering of agents) uniformly at random. Then execute the

associated priority-rule as follows: Assign the �rst agent her most preferred house, the

second agent her most preferred house among remaining ones, and so on.

In Theorem 2.1 we show that CFRD is equivalent to randomized You request my house - I

get your turn mechanism (in short, RYRMH-IGYT), a mechanism due to Abdulkadiro¼glu and

Sönmez [2] and which proceeds as follows:

Choose a priority-order uniformly at random. Then execute the associated You request

my house - I get your turn mechanism (in short, YRMH-IGYT) as follows: Assign the

�rst agent her most preferred house, the second agent her most preferred house among

remaining ones, and so on, until an agent requests the occupied house of an existing tenant.

If at that point that existing tenant has already been assigned a house, do not disturb the

procedure. Otherwise, update the remainder of the order by inserting that existing tenant

to the top and proceed. If at any point a loop forms, it is formed exclusively by a subset

of existing tenants who request the occupied houses of one another. In such cases remove

the existing tenants in the loop by assigning them the houses they request and proceed.

In a house allocation problem, RYRMH-IGYT reduces to random-priority and CFRD reduces

to CFRE. Therefore, the equivalence result in Abdulkadiro¼glu and Sönmez [1] is a corollary of

our more general equivalence result.
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Our equivalence result contributes to our understanding of the links between the allocation

problems of in�nitely divisible goods and indivisible objects. In indivisible object allocation

problems priority-order based mechanisms� RYRMH-IGYT and random-priority, are popular,

perhaps owing to their simplicity. Procedurally, however, they cannot be given interpretations

from a market point of view. On the other hand, CFRE and CFRD have clear procedural market

interpretations. First, they induce exchange markets via probabilistic equal-division, and then

they produce Walrasian allocations. They proceed analogously to the Walrasian Mechanism

from equal-division. The equivalence results in our paper and in [1] expose that, although this is

not explicit in their formulations, RYRMH-IGYT and random-priority share the same analogy

to the Walrasian Mechanism from equal-division.

The rest of the paper is organized as follows. The next subsection brie�y mentions the related

literature. Section 2.2 introduces the model, describes RYRMH-IGYT and CFRD, and presents

our equivalence result. The proof is bijective and fairly involved, which we cover exclusively in

Section 2.3 (where we present an alternative speci�cation of IATTC and explore its properties).

Section 2.4 concludes the paper. We present the proof of Proposition 2.1 in the Appendix.

Related Literature

In addition to [1], there are several other papers with equivalence results in the literature:

Sönmez and Ünver [35] showed that the TTC based mechanism in (1) in Section 2.1 is

equivalent to the following priority-order based mechanism: Choose a priority-order by ordering

k newcomers at the top uniformly at random and placing n� k existing tenants at the bottom

(in any order); then execute the YRMH-IGYT mechanism de�ned by that priority-order.

In two recent papers random-priority has been shown to be equivalent to certain mechanisms

that execute TTC based upon �inheritance tables.�An inheritance table is a collection of or-

derings of agents. Each ordering relates to a house. While TTC is executed, an agent points

to her most preferred house in the market (as usual) and a house points to the agent in the

market who is ordered highest in its ordering. Pathak and Sethuraman [25] showed that, if TTC
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is executed based upon a randomly generated inheritance table where every agent is included in

every ordering, the resulting mechanism is equivalent to random-priority. They also extended

this equivalence to the houses-with-quotas case (e.g., a public school with a quota of q can be

assigned to q students). Also, they show that, in the houses-with-quotas case, if TTC is executed

based upon a randomly generated inheritance table where the ordering for a house with quota q

includes only q agents and each agent is included in the ordering of only one house, the resulting

mechanism is again equivalent to random-priority. Carroll [7] later showed a general equivalence

result that implies and extends the preceding ones.

There is a conceptual di¤erence between CFRD and the above-mentioned TTC based mech-

anisms. The execution of TTC in these mechanisms is based upon a randomly generated in-

heritance table, which is unlike IATTC, whose execution is based upon randomly generated

�inheritor relationships between agents.�This innovation in CFRD promises a new line of re-

search. Future research papers may study how to execute IATTC in the houses-with-quotas

case, or, when an existing tenant may initially own multiple houses, which may potentially lead

to the design of other IATTC based mechanisms that are equivalent to RYRMH-IGYT. The

tools that we introduce in Section 2.3 may become useful in these e¤orts.

2.2 House Allocation with Existing Tenants

2.2.1 Preliminaries

A house allocation problem with existing tenants is a �ve-tuple < AN ; HV ; AE; HO; P > where

�AN : fa1; a2; :::; akg is a �nite set of �newcomers�;

�HV : fh1; h2; : : : ; hkg is a �nite set of �vacant houses�;

�AE : fek+1; ek+2; :::; eng is a �nite set of �existing tenants�;

�HO : fok+1; ok+2; :::; ong is a �nite set of �occupied houses�such that existing tenant es owns

(or, equivalently, occupies) os for s = k + 1; � � � ; n;
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�P : (Pa)a2AN[AE is the pro�le of agents�strict preference relations over the set of houses.

A house allocation problem with existing tenants is a housing market if every agent is an

existing tenant (i.e., k = 0), and it is a house allocation problem if every agent is a newcomer

(i.e., k = n).

We �x AN , HV , AE, HO throughout the paper, and we denote AN [ AE and HV [ HO

respectively by A and H.

We assume that every agent prefers being assigned any house to not being assigned a house.

For a 2 A and h, h0 2 H we write hPa h0 if a prefers h to h0. We denote the domain of admissible

preference relations by P (so, P 2 Pn). We use Ra to represent the �at least as good as�relation

for a 2 A derived from Pa (i.e., hRa h0 means hPa h0 or h = h0).

An allocation � : A! H is a bijection from the set of agents to the set of houses. We denote

the set of admissible allocations byM.

Given P 2 Pn, an allocation � 2M is:

� Pareto e¢ cient if there exists no �0 2 M such that �0(a)Ra �(a) for every a 2 A and

�0(a)Pa �(a) for an agent a 2 A.

� individually rational if �(es)Res os for s = k + 1; � � � ; n.

� group rational if there exists no triplet


C;HC ; bl

�
where C � AE; HC � H is the set of

houses owned by agents in C; and bl : C ! HC is a bijection such that bl(a)Ra �(a) for

every a 2 C and bl(a)Pa �(a) for an agent a 2 C. If there exists such a triplet then C is

called a �blocking coalition�and we say that � is �blocked�by C.

In the context of a housing market a group-rational allocation is also called a core allocation.

An allocation � 2M is aWalrasian allocation (with transfers) if there exists a non-negative

price function pr : H ! R+ and a non-negative transfer function tr : A! R+ such that
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1. the budget function w : A ! R+ is given by w(a) = tr(a) for a 2 AN and w(es) =

tr(es) + pr(os) for s = k + 1; � � � ; n;

2. pr(�(a)) � w(a) for every a 2 A;

3.
X
a2A

tr(a) �
X
h2HV

pr(h);

4. if hPa �(a) for any a 2 A and h 2 H, then w(a) < pr(h).

In words, at a Walrasian allocation, vacant houses are sold in the market and the raised

revenue is distributed to agents as transfers, existing tenants raise additional revenue by selling

their occupied houses, and then agents buy in the market their most preferred a¤ordable houses.

Ekici [14] showed that the inequalities in (2) and (3) are binding.

A random assignment � :M! R is a probability distribution over allocations. We denote

the domain of admissible random assignments by �. Note that for every � 2 �,

�(�) � 0 for every � 2M, and
X
�2M

�(�) = 1.

Amechanism (or, an allocation rule) is a systematic way to choose an allocation at any given

preference pro�le. Formally, a �deterministic�mechanism 'D : Pn !M is a function that maps

the domain of admissible preference pro�les to the codomain of allocations (so at P 2 Pn its

allocation choice is certain), and a �lottery�mechanism 'L : Pn ! � is a function that maps

the domain of admissible preference pro�les to the codomain of random assignments (so, at

P 2 Pn it chooses an allocation randomly based upon 'L(P )). We have given these de�nitions

in the context of a house allocation problem with existing tenants, but we will also talk about

mechanisms in more restricted domains, such as in a housing market or in a house allocation

problem. Therefore, in what follows, a �mechanism�should be understood as a systematic way

to choose an allocation in the context of a well-speci�ed class of problems.

A lottery mechanism is ex-post (Pareto) e¢ cient if it maps every preference pro�le to a

random assignment at which positive probability weights are given to only Pareto-e¢ cient al-
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locations. For a lottery mechanism, the properties of ex-post individual-rationality and ex-post

group-rationality are de�ned accordingly.

In what follows we consider a representative problem � :< AN ; HV ; AE; HO; P >, which

stands for the class of house allocation problems with existing tenants.

2.2.2 Randomized You request my house - I get your turn

This subsection presents a lottery mechanism in the context of a house allocation problem with

existing tenants. It is derived from the class of �You request my house - I get your turn�

(YRMH-IGYT) mechanisms, introduced by Abdulkadiro¼glu and Sönmez [2].

A priority-order is a bijection from the set of agents A to the set of numbers f1; 2; :::; ng.

We denote a generic priority-order by f , and the domain of admissible priority-orders by F .

For instance, if f(a) = 4 for a 2 A and f 2 F , it means that agent a is ordered fourth in the

priority-order f .

Each priority-order f 2 F de�nes a separate YRMH-IGYT mechanism, which allocates

houses to agents at a given preference pro�le as described below.

The YRMH-IGYT mechanism de�ned by f 2 F : Assign the agent ordered �rst in f to

her most preferred house; assign the agent ordered second in f to her most preferred house

among remaining ones; and so on, until an agent requests the occupied house of an existing

tenant. If at that point the existing tenant whose occupied house is requested has already

been assigned a house, do not disturb the procedure. Otherwise, update the remainder of

the priority-order by inserting that existing tenant to the top and proceed. If at any point a

loop forms, it is formed exclusively by a subset of existing tenants who request the occupied

houses of one another. In such cases remove all agents in the loop by assigning them the

houses they request and proceed.

There are appealing properties of the class of YRMH-IGYT mechanisms. They are strategy-

proof [2] (truthful preference revelation is a dominant strategy); for any given preference pro�le,
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they lead to Pareto-e¢ cient and individually-rational allocations [2], and the set of allocation

induced by them coincides with the set of Walrasian allocations [14]. The following example

demonstrates the workings of a YRMH-IGYT mechanism.

Example 2.1 Consider a house allocation problem with existing tenants in which the preference

pro�le of agents is as in the following table:

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h3 h1 h3 h6 h4 o11 o8 o9 h2 h1 o10 h5
...

... o10
...

... o8 h1
...

... o11
...

...

o12
... o10

...
... h7

...

Let in the priority-order f agents be ordered as a1; a2; e8; e11; a4; a5; e10; e9; a3; a6; e12; a7 (so

f(a1) = 1; � � � ; f(a7) = 12). We illustrate in a series of �gures below how the YRMH-IGYT

mechanism de�ned by f proceeds. In �gures, unidirectional arrows point from occupied houses

to their existing tenants and from agents to their most preferred houses among remaining ones;

bidirectional arrows indicate the assignments made by the mechanism.

Step 1: h1 h2 h3 h4 h5 h6 h7 Assignments
o8 o11 o10 o9 o12 h3

a1 a2 e8 e11 a4 a5 e10 e9 a3 a6 e12 a7 a1remainder of f :

Step 2: h1 h2 h4 h5 h6 h7 Assignments
o8 o11 o10 o9 o12 h3 h1

a2 e8 e11 a4 a5 e10 e9 a3 a6 e12 a7 a1 a2remainder of f :

Step 3: h2 h4 h5 h6 h7 Assignments
o8 o11 o10 o9 o12 h3 h1

e8 e11 a4 a5 e10 e9 a3 a6 e12 a7 a1 a2remainder of f :
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Step 4: h2 h4 h5 h6 h7 Assignments
o9 o8 o11 o10 o12 h3 h1 h2

e9 e8 e11 a4 a5 e10 a3 a6 e12 a7 a1 a2 e9remainder of f :

Step 5: h4 h5 h6 h7 o9 Assignments
o8 o11 o10 o12 h3 h1 h2 o9

e8 e11 a4 a5 e10 a3 a6 e12 a7 a1 a2 e9 e8remainder of f :

Step 6: h4 h5 h6 h7 o8 Assignments
o11 o10 o12 h3 h1 h2 o9

e11 a4 a5 e10 a3 a6 e12 a7 a1 a2 e9 e8remainder of f :

Step 7: h4 h5 h6 h7 o8 Assignments
o10 o11 o12 h3 h1 h2 o9 o11 o10

loop
e10 e11 a4 a5 a3 a6 e12 a7 a1 a2 e9 e8 e10 e11remainder of f :

Step 8: h4 h5 h6 h7 o8 Assignments
o12 h3 h1 h2 o9 o11 o10 h6

a4 a5 a3 a6 e12 a7 a1 a2 e9 e8 e10 e11 a4remainder of f :

Step 9: h4 h5 h7 o8 Assignments
o12 h3 h1 h2 o9 o11 o10 h6 h4

a5 a3 a6 e12 a7 a1 a2 e9 e8 e10 e11 a4 a5remainder of f :

Step 10: h5 h7 o8 Assignments
o12 h3 h1 h2 o9 o11 o10 h6 h4

a3 a6 e12 a7 a1 a2 e9 e8 e10 e11 a4 a5remainder of f :

Step 11: h5 h7 o8 Assignments
o12 h3 h1 h2 o9 o11 o10 h6 h4 h5

e12 a3 a6 a7 a1 a2 e9 e8 e10 e11 a4 a5 e12remainder of f :
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Step 12: h7 o8 o12 Assignments
h3 h1 h2 o9 o11 o10 h6 h4 h5 o12

a3 a6 a7 a1 a2 e9 e8 e10 e11 a4 a5 e12 a3remainder of f :

Step 13: h7 o8 Assignments
h3 h1 h2 o9 o11 o10 h6 h4 h5 o12 o8

a6 a7 a1 a2 e9 e8 e10 e11 a4 a5 e12 a3 a6remainder of f :

Step 14: h7 Assignments
h3 h1 h2 o9 o11 o10 h6 h4 h5 o12 o8 h7

a7 a1 a2 e9 e8 e10 e11 a4 a5 e12 a3 a6 a7remainder of f :

�

In our representative problem �, let �Y�I;f denote the allocation chosen by the YRMH-IGYT

mechanism de�ned by f 2 F , and let F� � F be the subset of priority-orders for which the

resulting YRMH-IGYT mechanisms choose � 2M (i.e., F� = ff 2 Fj�Y�I;f = �g).

Despite its other appealing properties, a YRMH-IGYT mechanism su¤ers on grounds of

fairness. If in a priority-order f 2 F we have f(a) < f(a0) for two agents a; a0 2 A, then the

YRMH-IGYT mechanism de�ned by f clearly favors a over a0. A natural way to introduce

fairness is randomization. That is, one may �rst choose a priority-order uniformly at random

and then execute the YRMH-IGYT mechanism de�ned by the chosen priority-order. This is

what we call the randomized You request my house - I get your turn mechanism (in short,

RYRMH-IGYT).

RYRMH-IGYT: Choose a priority-order of agents f 2 F uniformly at random, and then

allocate houses to agents by executing the YRMH-IGYT mechanism de�ned by f .

Having been derived from the class of YRMH-IGYTmechanisms, RYRMH-IGYT is strategy-

proof, ex-post e¢ cient, and ex-post group rational.

In our representative problem�, let �rY�I denote the random assignment induced by RYRMH-
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IGYT. Then

�rY�I(�) =
jF�j
n!
:

2.2.3 Core from Random Distribution

This subsection introduces an alternative lottery mechanism in the context of a house allocation

problem with existing tenants. For this purpose we �rst recall Gale�s reputable top trading cycles

mechanism (in short, TTC), an allocation rule de�ned in the context of a housing market that

proceeds as follows

TTC: Step 1: Let each agent �point�to her most preferred house, and each house �point�to its

owner. Since the number of agents and houses is �nite, there exists at least one �cycle.�

A cycle is characterized by a list a1; a2; � � � ; aj of agents where agent a1 points to the house

owned by a2, which points to a2; a2 points to the house owned by a3, which points to a3;� � � ;

aj�1 points to the house owned by aj, which points to aj; and aj points to the house owned

by a1, which points to a1. Assign the agents in cycles the houses they point to and then

remove these agents and houses from the market.

Step t > 1: Let each remaining agent point to her most preferred house among remaining

ones and let each remaining house point to its owner. There exists at least one cycle.

Assign the agents in cycles the houses they point to and then remove these agents and

houses from the market.

TTC is strategy-proof [28] and in a housing market it chooses the unique core allocation,

which is also the unique Walrasian allocation [29].

We also need to introduce what we call an �inheritors augmented housing market,�which is

generated from our representative problem �.

De�nition 2.1 From � : < AN ; HV ; AE; HO; P > an inheritors augmented housing mar-

ket �v : < AN ; HV ; AE; HO; P; v > is generated by specifying a bijection v : AN [AE ! HV [ I

such that:
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� I : fik+1; � � � ; ing is the set of �inheritance rights,�where is is the inheritance right associated

with existing tenant es;

� agent a 2 AN [ AE owns v(a) (which is a vacant house or an inheritance right).

In words, an inheritors augmented housing market is generated from a house allocation

problem with existing tenants by distributing to agents vacant houses and inheritance rights

associated with existing tenants. Note that in an inheritors augmented housing market it is

possible that an existing tenant owns two houses (a vacant house besides her occupied house)

and a newcomer owns none (she then owns only an inheritance right).

For a 2 A if v(a) = is, then we call a the �inheritor�of es and es the �bequeather�of a.

If we talk of �bequeathers�of a, the agents we mean by it are a�s bequeather, a�s bequeather�s

bequeather, and so on. We denote by V the domain of admissible bijections from AN [ AE to

HV [ I. Note that jVj = n!, and by separately augmenting n! bijections to our representative

problem � we can generate n! distinct inheritors augmented housing markets. If we talk about

an �allocation�in an inheritors augmented housing market, we mean by it, as usual, a bijection

from A to H.

The essential component of our alternative lottery mechanism is the �inheritors augmented

top trading cycles�mechanism (in short, IATTC), which is an allocation rule in the context of

an inheritors augmented housing market. IATTC, described below, resembles TTC.

IATTC: Step 1: Let each agent point to her most preferred house and each house point to its

owner. Since the number of agents and houses is �nite, there exists at least one cycle.

Assign the agents in cycles the houses they point to, and then remove these agents and

houses from the market. If an existing tenant in a cycle owns two houses, one of her two

houses remains. Then let her remaining house be owned by her inheritor. If her inheritor

is an existing tenant who has already been assigned a house, let her remaining house be

owned by the inheritor of her inheritor, and so on.
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Step t > 1: Let each remaining agent point to her most preferred house among remaining

ones and each remaining house point to its owner. There exists at least one cycle. Assign

the agents in cycles the houses they point to, and then remove these agents and houses

from the market. If an existing tenant in a cycle owns two houses, one of her two houses

remains. Then let her remaining house be owned by her inheritor. If her inheritor is an

existing tenant who has already been assigned a house, let her remaining house be owned

by the inheritor of her inheritor, and so on.

The verify that IATTC is well-de�ned, the key observation is that, when IATTC is executed

in �v (v 2 V), a newcomer who does not own a house in �v will always inherit a house from one

of her bequeathers: Suppose a1 is a newcomer who does not own a house in �v, and let a2 be the

existing tenant who is her bequeather. If in �v a2 owns two houses, say, h and h0, then a2 does

not have a bequeather, and the only bequeather of a1 is a2. In the execution of IATTC, a2 joins

a cycle by trading h or h0, and when she leaves, a1 inherits the house that remains from her, and

she later joins a cycle by trading this house. If in �v a2 owns a house, say h, and an inheritance

right, let the bequeather of a2 be a3. If in �v a3 owns two houses, say, h0 and h00, then a3 does

not have a bequeather, the only bequeather of a2 is a3, and the only bequeathers of a1 are a2

and a3. In the execution of IATTC, a3 joins a cycle by trading one of her two houses, say, h00.

When a3 leaves, there are two possibilities. The �rst possibility is that a2 is still in the market

and inherits h0, and she later joins a cycle by trading h or h0. The house that remains from a2

is then inherited by a1, who later joins a cycle by trading this house. The second possibility is

that a2 has left earlier by joining a cycle in which she traded h, in which case, as the inheritor

of inheritor of a3, a1 inherits h0, and she later joins a cycle by trading h0. By similarly iterating

this argument, we conclude that every newcomer who does not own a house in �v eventually

inherits a house and later joins a cycle by trading this house.

The following example demonstrates the workings of IATTC.

Example 2.2 Consider an inheritors augmented housing market generated from the house allo-

cation problem with existing tenants in Example 2.1 by distributing to agents vacant houses and
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inheritance rights as in the following table:

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h1 h2 i10 h4 h5 i11 i12 h3 i9 i8 h6 h7

Thus, the distribution of houses and inheritance rights to agents in this inheritors augmented

housing market is as in the following table:

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h1 h2 i10 h4 h5 i11 i12 h3; o8 i9; o9 i8; o10 h6; o11 h7; o12

We will illustrate how IATTC proceeds in a series of �gures. For visual ease we indicate

cycles in the �gures in dashed rectangles.

When each house points to its owner and each agent points to her most preferred house, the

resulting �gure is as follows:

a3 o8 a7

a1 h3 e8 o9 e9 h2 a2 h1

o12 e12 h5 a5 h4 a4 h6 e11 o10 e10

h7 o11 a6

As prescribed by the cycle in the �gure, a1; e8; e9; a2 are assigned h3; o9; h2; h1, respectively.

The house o8 of e8 remains, which is received by her inheritor e10.

When each remaining house points to its owner and each remaining agent points to her most
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preferred house among remaining ones, the resulting �gure is as follows:

a3 o8 a7 a6

h6 e11 o10 e10 o11

a4 h4 a5 h5 e12 o12

h7

As prescribed by the cycle in the �gure, e10 and e11 are assigned o11 and o10, respectively.

The houses h6 of e11 and o8 of e10 remain, which are received by their inheritors a6 and a3,

respectively.

When each remaining house points to its owner and each remaining agent points to her most

preferred house among remaining ones, the resulting �gure is as follows:

a7

a4 h6 a6 o8

h4 a5 h5 e12 o12 a3

h7

As prescribed by the cycle in the �gure, e12; a5; a4; a6; a3 are assigned h5; h4; h6; o8; o12, respec-

tively. The house h7 of e12 remains, which is received by her inheritor a7.

The last cycle is formed by a7 and h7; thus, a7 is assigned h7:

a7 h7

The allocation chosen by IATTC is the same as the one we obtained in Example 2.1. �
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In our representative problem �, let �iattc;v denote the allocation chosen by IATTC in �v, and

let V� � V be the set of bijections from AN[AE toHV [I such that, in the inheritors augmented

housing markets generated by augmenting them to �, the allocation chosen by IATTC is � (i.e.,

V� = fv 2 Vj�iattc;v = �g).

We should point out that, in essence, an inheritors augmented housing market generalizes

a housing market, and IATTC generalizes TTC. If � is a housing market (i.e., k = 0) and �v

is an inheritors augmented housing market generated from �, in �v every agent owns exactly

one house; the execution of IATTC in �v is exactly the same as the execution of TTC in �

(because no house ever remains from an agent who is removed by joining a cycle); and hence,

the distribution of inheritance rights to agents, v, is of no signi�cance. In this generalization

IATTC retains the theoretical properties of TTC. IATTC is strategy-proof,6 and it chooses

the unique core allocation of an inheritors augmented housing market. The de�nition of a

�core allocation� in the context of an inheritors augmented housing market is more subtle,

however. The de�nition needs to take into account the rights of inheritors to the houses of their

bequeathers. We introduce this subtle core allocation notion in De�nition 2.2, and explore it in

Proposition 2.1.

De�nition 2.2 An allocation � : A! H is a core allocation in �v : < AN ; HV ; AE; HO; P; v >

(v 2 V) if there exists no four-tuple < C;HC ; bl; Claim > where C � A, HC � H, and

bl : C ! HC and Claim : C ! HC are bijections such that:

(i) bl(a)Ra �(a) for every a 2 C and bl(a)Pa �(a) for an agent a 2 C;

(ii) for any a 2 C, a owns Claim(a); or a is the inheritor of an agent a0 2 C who owns

Claim(a); or a is the inheritor of an agent a0 2 C who is the inheritor of another agent

a00 2 C who owns Claim(a); or so on.

If there exists such <C;HC ; bl; Claim > we say that � is �blocked� by the four-tuple <

C;HC ; bl; Claim > and we call C a �blocking coalition.�

6This can be proved by arguments parallel to the ones in Roth [28], where he shows that TTC is strategy-proof.
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The subtle part in the above de�nition is the Claim function. It states that in a blocking

coalition every agent needs to claim (bring into the coalition) a distinct house, which should

be a house that she or one of her bequeathers owns. In case an agent, say a, claims a house

owned by one of her bequeathers, say a00, inheritors of a00 that are more closely related to her

than a should also be in the blocking coalition. That is, if a00 is the bequeather of a0 and a0 is

the bequeather of a, then a0 should also be in the blocking coalition. This requirement ensures

that the allocation is not blocked to bene�t the distant inheritor a at the expense of the more

immediate inheritor a0. If every agent owns precisely one house, De�nition 2.2 reduces to the

familiar core allocation notion in a housing market.

Proposition 2.1 For v 2 V the allocation �iattc;v is the unique core allocation in the inheritors

augmented housing market �v.

Proof. See Appendix.

We are now ready to introduce our alternative lottery mechanism in the context of a house

allocation problem with existing tenants.

Core from Random Distribution: Distribute n �items�� k vacant houses and n� k inher-

itance rights associated with n � k existing tenants, to n agents uniformly at random

(each agent receives exactly one vacant house or one inheritance right). In the generated

inheritors augmented housing market, reallocate houses to agents by executing IATTC.

We shortly call this mechanism CFRD. From the theoretical properties of its main com-

ponent, IATTC, it is not di¢ cult to show that CFRD is strategy-proof, ex-post e¢ cient, and

ex-post group rational.

In our representative problem �, let �cfrd denote the random assignment induced by CFRD.

Then

�cfrd(�) =
jV�j
n!
:

Theorem 2.1 presents the main result of our paper. Its proof is bijective and fairly involved,

which we cover exclusively in Section 2.3.
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Theorem 2.1 RYRMH-IGYT and CFRD are equivalent. That is, for any � 2M,

�rY�I(�) = �cfrd(�):

2.3 The Proof of Theorem 2.1

This section provides an alternative speci�cation of IATTC. As we proceed, we introduce some

tools, make certain observations about this alternative speci�cation, and present four lemmas,

which help us prove Theorem 2.1. The proof involves the construction of a bijection as in

Abdulkadiro¼glu and Sönmez [1], but our construction is fairly more involved due to the presence

of existing tenants.

Recall that, in CFRD, �rst n items (k vacant houses and n � k inheritance rights) are

distributed to n agents uniformly at random, and then, in the generated inheritors augmented

housing market, houses are reallocated to agents by executing IATTC. In the execution of IATTC

an existing tenant is assigned a house by joining a cycle, in which the house that she trades comes

from one of two resources. It is either her occupied house, or a house that she receives due to the

item that she received in the random distribution (i.e., a vacant house that she received in the

random distribution, or a house that is accrued to her because of an inheritance right that she

received in the random distribution). The distinguishing feature of our alternative speci�cation

of IATTC is that, it �monitors� the potential bene�ts to an existing tenant from these two

resources by representing her in the exchange market with two copies of her, one of them owning

her occupied house, and the other owning the item that she received in the random distribution.

This separation allows us to construct a priority-order of agents from the distribution of items to

agents. Our construction turns out to be a bijective mapping and leads to the proof of Theorem

2.1.

From a given inheritors augmented housing market �v : < AN ; HV ; AE; HO; P; v >, we

construct its �ab-representation��v;ab : < AN ; HV ; AaE; A
b
E; HO; P; v > in the following manner:
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�We preserve the set of newcomers AN : a 2 AN owns v(a).

�We replace the set of existing tenants AE by two disjoint sets, AaE and A
b
E: Each existing

tenant es 2 AE in �v is now �represented�in �v;ab by two distinct agents, as 2 AaE who

owns v(es), and bs 2 AbE who owns os. The preferences of as and bs are the same as the

preferences of es. Although technically as and bs are two separate agents, they are both

to serve the interests of es, and hence we call them the �sisters�of one another.

In the ab-representation, we refer to the agents in AN [ AaE as �a-type�agents, and to the

agents in AbE as �b-type�agents. As an illustration, we present below how inheritance rights

and houses are distributed to agents in the inheritors augmented housing market in Example

2.2 and in its ab-representation:

inheritors augmented housing market in Example 2.2

AN AE

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h1 h2 i10 h4 h5 i11 i12 o8; h3 o9; i9 o10; i8 o11; h6 o12; h7

+

ab-representation

a-type agents b-type agents

AN AaE AbE

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 b8 b9 b10 b11 b12

h1 h2 i10 h4 h5 i11 i12 h3 i9 i8 h6 h7 o8 o9 o10 o11 o12

We are now ready to introduce the �ab-representation speci�cation�of IATTC, or, shortly,

IATTCab.

IATTCab: Given an inheritors augmented housing market �v, construct its ab-representation

�v;ab. In �v;ab, reallocate houses and inheritance rights to a-type and b-type agents by the

following iterative procedure:
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Step 0,1: (b-step) Let every remaining house and inheritance right point to its owner.

Among remaining agents, let only b-type agents point. A b-type agent bs 2 AbE points to

her most preferred house among remaining ones if as 2 AaE has not been assigned a house

yet, and she points to is if as has already been assigned a house. If there exists one or

more cycles, remove the agents in cycles by assigning them the houses and inheritance

rights they point to.

Step 0,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Step 1,0: (a-step) Let every remaining house and inheritance right point to its owner. Now,

let every remaining agent (both a-type and b-type) point. A newcomer a 2 AN points to her

most preferred house among remaining ones. Of two sister agents as 2 AaE and bs 2 AbE,

if neither has been assigned a house yet, let them both point to their most preferred house

among remaining ones; if one of them has been assigned a house before, let the remaining

one point to is. There exists at least one cycle. Remove the agents in cycles by assigning

them the houses and inheritance rights they point to.

Step 1,1: (b-step) Same as Step 0,1.

Step 1,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Step t,0: (a-step) Same as Step 1,0.

Step t,1: (b-step) Same as Step 0,1.

Step t,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Stop when the procedure assigns every a-type and b-type agent a house or an inheritance

right. Then, in �v, let the houses assigned to agents be as follows: For a newcomer a 2 AN ,

the house assigned to her is the house the above procedure assigns a 2 AN in �v;ab; and for

an existing tenant es 2 AE, the house assigned to her is the house the above procedure assigns

as 2 AaE or bs 2 AbE (the procedure assigns a house to only one of them, the other one is assigned

is).
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Notice that IATTCab proceeds just like TTC, by identifying cycles and then carrying out the

trades in cycles, but it gives precedence to the trades in cycles that involve only b-type agents.

First at b-steps trades are carried out in cycles that involve only b-type agents, and then when

no such cycle remains, IATTCab moves to an a-step at which it carries out the trades in cycles

that involve both a-type and b-type agents.

Two observations are useful to better understand the design of IATTCab.

y Observation 1: Suppose for an existing tenant es 2 AE in �v ( v 2 V) it happens that

v(es) 2 HV (so, es owns two houses, v(es) and os). Notice how IATTC and IATTC ab proceed

analogously:

When IATTC is executed in �v, at initial steps v(es) and os point to es and es points to

her most preferred house among remaining ones; when IATTC ab is executed in �v;ab, at initial

steps v(es) and os respectively point to as and bs (the agents that represent es), and as and bs

point to es�s most preferred house among remaining ones.

In IATTC�s execution in �v, when es joins a cycle in which she exchanges v(es) or os, in

parallel to that, in IATTC ab�s execution in �v;ab, as or bs joins the analogous cycle in which

she exchanges v(es) or os.

In IATTC�s execution in �v, the house that remains from es is given to her inheritor; in

IATTC ab�s execution in �v;ab, the analogous thing happens: The remaining house ( v(es) or

os) points to the remaining sister agent (as or bs); the remaining sister agent points to is; is

points to the a-type or b-type agent that represents the inheritor of es; and hence, in essence,

the remaining house is transferred to the inheritor of es.

For v 2 V let �ab;v denote the allocation chosen by IATTCab in �v. Given Observation 1 the

following lemma is evident.

Lemma 2.1 IATTC and IATTCab are equivalent. That is, for any v 2 V,

�iattc;v = �ab;v.
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yObservation 2: In IATTC ab , at a b-step only b-type agents point (to houses or inheritance

rights), and thus:

(i) a cycle at a b-step consists of only b-type agents and occupied houses;

(ii) a-type agents, vacant houses, and inheritance rights are part of the cycles at a-steps, but

a cycle at an a-step may also include b-type agents and occupied houses.

The separation of the steps in IATTCab as a-steps and b-steps is fundamental to our proof

of Theorem 2.1. In the following example we demonstrate the workings of IATTCab.

Example 2.3 Consider the ab-representation of the inheritors augmented housing market in

Example 2.2. The table below presents the distribution of houses and inheritance rights to a-type

and b-type agents:

a-type agents b-type agents

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 b8 b9 b10 b11 b12

h1 h2 i10 h4 h5 i11 i12 h3 i9 i8 h6 h7 o8 o9 o10 o11 o12

We illustrate in a series of �gures below how IATTC ab proceeds. While looking into the

�gures, recall that remaining houses and inheritance rights point (to their owners) at both a-

steps and b-steps; remaining b-type agents also point (to houses and inheritance rights) at both

a-steps and b-steps; but remaining a-type agents point (to houses and inheritance rights) only at

a-steps. For visual ease we indicate cycles in the �gures in dashed rectangles.

Step 0,1

i10 a3 i12 a7 o8 b8 a9 i9 a10 i8

a1 h3 a8 o9 b9 h2 a2 h1

o12 b12 h5 a5 h4 a4 h6 b11 o10 b10

h7 a12 a11 o11 a6 i11
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There are no cycles at Step 0,1. IATTC ab proceeds to Step 1,0.

Step 1,0

i10 a3 i12 a7 o8 b8 a9 i9 a10 i8

a1 h3 a8 o9 b9 h2 a2 h1

o12 b12 h5 a5 h4 a4 h6 b11 o10 b10

h7 a12 a11 o11 a6 i11

There is one cycle at Step 1,0. As prescribed by the cycle, a1; a8; b9; a2 are assigned h3; o9; h2; h1,

respectively. IATTC ab proceeds to Step 1,1.

Step 1,1

a7 i12 a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5 b11 o10

h7 a12 o11 b10

There is one cycle at Step 1,1. As prescribed by the cycle, b10 and b11 are assigned o11 and

o10, respectively. IATTC ab proceeds to Step 1,2.

At Step 1,2 there are two remaining b-type agents, b8 and b12, who respectively point to i8

and h5. The resulting �gure would be the same as the preceding �gure except that the cycle in
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the �gure is removed. There are no cycles and thus IATTC ab proceeds to Step 2,0.

Step 2,0

a7 i12 Cycle a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

h7 a12

There are two cycles at Step 2,0. As prescribed by the cycles, a3; b12; a5; a4; a11; a6; b8; a10; a9

are assigned o12; h5; h4; h6; i11; o8; i8; i10; i9, respectively. IATTC ab proceeds to Step 2,1.

Since there is no remaining b-type agent, there are no cycles at Step 2,1, and the mechanism

proceeds to Step 3,0.
Step 3,0

a7 i12

h7 a12

There is one cycle at Step 3,0. As prescribed by the cycle, a7 and a12 are assigned h6 and

i12, respectively, and the procedure terminates.

The houses the procedure assigns to a-type and b-type agents, and the implied assignments to

agents made by IATTC ab in the inheritors augmented housing market, are as follows:
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Assignments of a-type agents Assignments of b-type agents

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 b8 b9 b10 b11 b12

h3 h1 o12 h6 h4 o8 h7 o9 i9 i10 i11 i12 i8 h2 o11 o10 h5

+

Assignments of newcomers and existing tenants

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h3 h1 o12 h6 h4 o8 h7 o9 h2 o11 o10 h5

�

In what follows we introduce some tools about IATTCab, and based upon these tools we

make certain observations.

z TOOL 1, sets de�ned by the order of cycle groups: In the execution of IATTCab

in �v;ab (v 2 V), houses and inheritance rights are assigned to a-type and b-type agents in a

well-de�ned order of cycle groups. Based upon this order of cycle groups, we de�ne below certain

sets of agents, houses, and inheritance rights:

�Avt;r: the set of a-type and b-type agents that are assigned a house or an inheritance right in

a cycle at Step t,r.

�Av0 = A
v
0;1 [ Av0;2 [ � � � and Avt = Avt;0 [ Avt;1 [ � � � for t � 1.

�Hv
t;r: the set of houses assigned to agents in A

v
t;r.

�Hv
0 = H

v
0;1 [Hv

0;2 [ � � � and Hv
t = H

v
t;0 [Hv

t;1 [ � � � for t � 1.

� Ivt;0: the set of inheritance rights assigned to agents in A
v
t;0 for t � 1. (Recall from Observation

2 (i) that in the cycles at b-steps there are no inheritance rights.)

z TOOL 2, a-blocks at an a-step: In the execution of IATTCab in �v;ab (v 2 V), we de�ne

an �a-block�at an a-step Step t,0 (t � 1) as an ordered list blvt (a) : (a; o�1 ; b�1 ; � � � ; o�q ; b�q ; y)

(or blvt (a) : (a; y)) where
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� a 2 Avt;0 \ (AN [ AaE); y 2 (Hv
t;0 \HV ) [ Ivt;0;

� k + 1 � �p � n for p = 1; � � � ; q;

� at Step t,0 a points to o�1 , b�1 points to o�2, � � � , and b�q points to y (if blvt (a) : (a; y) then

simply a points to y).

We call a the �source�and y the �sink�of the a-block blvt (a). With some abuse of notation,

we denote the set fa; o�1 ; b�1 ; � � � ; o�q ; b�q ; yg (or fa; yg) also by blvt (a).

More simply, an a-block is a segment of a cycle that arises at an a-step in the execution of

IATTCab. It starts with the only a-type agent of that a-block, and ends with a vacant house

or an inheritance right owned by another a-type agent. At an a-step sinks of a-blocks (vacant

houses and inheritance rights) point to the sources of a-blocks (a-type agents), and hence the

cycles form. As an illustration, in the �gure below we indicate in enclosed boxes the a-blocks at

Step 2,0 in Example 2.3.

Step 2,0: ablocks
a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

bl2
v(a6) bl2

v(a11)

bl2
v(a9)

bl2
v(a10) bl2

v(a3)

bl2
v(a4)

bl2
v(a5)

The following observation summarizes our preceding discussion on a-blocks.

y Observation 3: In the execution of IATTC ab in �v;ab ( v 2 V ), the cycles that arise at an

a-step Step t,0 ( t � 1) consist of a-blocks. The sinks of a-blocks point to the sources of a-blocks,

and hence the cycles form. So,

(i)
S

a2Avt;0\(AN[AaE)
blvt (a) = A

v
t;0 [Hv

t;0 [ Ivt;0;

(ii) and for a; a0 2 Avt;0 \ (AN [ AaE) and a 6= a0, blvt (a) \ blvt (a0) = ;:

46



The following is another simple observation pertaining to a-blocks, which later proves useful.

y Observation 4: Suppose we are given the list of sets
�
Avj;0 \ (AN [ AaE)

�t
j=1

but we do not

know v 2 V . (That is, we are given the sets of a-type agents that are assigned houses at Step

1,0, Step 2,0, � � � , Step t,0 when IATTC ab is executed in �v;ab.) Then, we can determine

(i) to which house or inheritance right a remaining agent points to up to Step t+1,0;

(ii) the assignments made by IATTC ab up to Step t+1,0;

and we can identify

(iii) the a-block blvj (a) for any a 2 Avj;0 \ (AN [ AaE) and j 2 f1; � � � ; tg.

Explanation: The execution of IATTC ab in �v;ab at Step 0,1, Step 0,2, and so on, is

independent of v. Then, to which house or inheritance right a remaining agent points to, and

the assignments made, can be determined up to Step 1,0. For the subsequent steps, we can

iteratively apply the following arguments for j=1,� � � ,t:

Given the assignments made prior to Step j,0, we know to which house or inheritance right a

remaining agent points to at Step j,0. So, for any a 2 Avj;0 \ (AN [AaE), we can identify blvj (a).

But then we can also determine the assignments made at Step j,0: Each agent in an a-block is

assigned the house she points to in that a-block.

Given the assignments made at Step j,0 and prior to it, the execution of IATTC ab in �v;ab

at Step j,1, Step j,2, and so on, is independent of v. Then, to which house or inheritance right

a remaining agent points to, and the assignments made, can be determined for Step j,1, Step j,2,

and so on.

z TOOL 3, chains at an a�step: Consider the execution of IATTCab in �v;ab (v 2 V ). The

elements of Avt+1;0[Hv
t+1;0[Ivt+1;0 (t � 1), which form the cycle(s) at Step t+1,0, form at Step t,0

what we call �chains.�Formally, a chain at Step t,0 is an ordered list chvt (x1) : (x1; y1; � � � ; xq; yq)

(t � 1, q � 1) where

� xp 2 Avt+1;0 and yp 2 Hv
t+1;0 [ Ivt+1;0 for p = 1; � � � ; q;

47



� at Step t,0 x1 points to a house or an inheritance right in Hv
t [ Ivt;0; y1 points to x1 (i.e., x1

owns y1); x2 points to y1;� � � ; yq points to xq (i.e., xq owns yq);

� there exists no xq+1 2 Avt+1;0 who points to yq at Step t,0.

We call x1 the �head�of chvt (x1) and yq the �tail�of ch
v
t (x1). With some abuse of notation,

we denote the set fx1; y1; � � � ; xq; yqg also by chvt (x1).

More simply, a chain at Step t,0 is a connected (by pointers) elements of Avt+1;0[Hv
t+1;0[Ivt+1;0.

At Step t+1,0, the heads of chains at Step t,0 point to the tails of chains at Step t,0, hence the

cycles form. As an illustration, in the �gures below we indicate in enclosed boxes the chains at

Step 1,0 in Example 2.3, and how they form the cycles at Step 2,0.

Step 1,0: Chains

i10 a3 i12 a7 o8 b8 a9 i9 a10 i8

a1 h3 a8 o9 b9 h2 a2 h1

o12 b12 h5 a5 h4 a4 h6 b11 o10 b10

h7 a12 a11 o11 a6 i11

ch1
v(b8) ch1

v(a10)ch1
v(a3)

ch1
v(a6)

ch1
v(a11)

ch1
v(a9)

Step 2,0: How the chains at Step 1,0 form cycles
a7 i12 a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

h7 a12

ch1
v(a11)ch1

v(b8)

ch1
v(a10) ch1

v(a3)

ch1
v(a6)

ch1
v(a9)

Notice that at Step t,0 (t � 1) the head of a chain, which by de�nition points to a house or an

inheritance right, indeed always points to a house: By construction of IATTCab, an inheritance

right is is pointed by only one agent� as or bs, whoever is assigned later. But if the head of a

chain at Step t,0 points to an inheritance right, it means she is not assigned that inheritance
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right, which would be a contradiction. (As an illustration, notice that in the second preceding

�gure all heads of chains point to houses.)

The following observation summarizes our preceding discussion on chains.

y Observation 5: In the execution of IATTC ab in �v;ab ( v 2 V ), let X be the set of heads

of chains at Step t,0 ( t � 1). Then,

(i) a head of a chain x 2 X points to a house in Hv
t;0 at Step t,0, and to a house or an

inheritance right in Hv
t+1;0 [ Ivt+1;0 at Step t+1,0;

(ii) an agent a 2 Avt+1;0 =X points to the same house or inheritance right in Hv
t+1;0 [ Ivt+1;0

at Step t,0 and Step t+1,0.

For the chains at Step t,0, at Step t+1,0 their heads point to their tails, and hence the cycles

at Step t+1,0 form. Then,

(iii)
S
x2X

chvt (x) = A
v
t+1;0 [Hv

t+1;0 [ Ivt+1;0;

(iv) and for x; x0 2 X and x 6= x0, chvt (x) \ chvt (a0) = ;:

From the head to the tail of a chain, we call the a-type agent ordered �rst the �a-head�of

the chain, and the a-type agent ordered last the �a-tail�of the chain. For instance, looking into

the second preceding �gure above, the a-head and a-tail of chv1(a11) are respectively a11 and a5.

Looking into that �gure, also note that in a chain (i) the head and a-head can be the same (e.g.,

chv1(a11)); (ii) there may be only one a-type agent and so its a-head and a-tail can be the same

(e.g., chv1(a3)); (iii) there may be no a-type agents, in which case we call it an �empty chain�

(e.g., chv1(b8)).

z TOOL 4, the chain-order ovch of a-type agents

For v 2 V, the �chain-order�ovch : AN [ AaE ! f1; 2; � � � ; ng of a-type agents is a bijection

that orders a-type agents according to the following three rules:
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Chain-order Rule 1: In the chain-order ovch, order a-type agents in A
v
1;0\ (AN [AaE) before

a-type agents in Av2;0 \ (AN [AaE); order a-type agents in Av2;0 \ (AN [AaE) before a-type agents

in Av3;0 \ (AN [ AaE); and so on.

Chain-order Rule 2: In the chain-order ovch, order a-type agents in A
v
1;0 \ (AN [ AaE) in

order of the indices of vacant houses and inheritance rights that they are assigned at v.

Chain-order Rule 3: In the chain-order ovch, order the a-type agents in A
v
t+1;0\ (AN [AaE))

( t � 1) in the following manner: Consider the chains at Step t,0. Order the a-type agents in a

non-empty chain from its a-head to its a-tail, consecutively. Order non-empty chains in order

of the indices of vacant houses and inheritance rights that their a-tails are assigned at v.

As an illustration, consider the execution of IATTCab in the ab-representation of the inheri-

tors augmented housing market in Example 2.3:

By Chain-order Rule 1, in ovch the a-type agents assigned at Step 1,0 (i.e., a1; a2; a8) are

ordered before the a-type agents assigned at Step 2,0 (i.e., a11; a4; a5; a10; a9; a3; a6), who are

ordered before the a-type agents assigned at Step 3,0 (i.e., a12; a7).

By Chain-order Rule 2, in ovch the three a-type agents assigned at Step 1,0 are ordered as

a1; a2; a8. (Note that a1; a2; a8 own respectively h1; h2; h3, whose indices are respectively 1; 2; 3.)

By Chain-order Rule 3 and looking into the second preceding �gure above, the order of non-

empty chains at Step 1,0 is chv1(a11); ch
v
1(a10); ch

v
1(a9); ch

v
1(a3); ch

v
1(a6) (a-tails of these chains own

respectively h5; i8; i9; i10; i11; indices are respectively 5; 8; 9; 10; 11), and hence the chain-order of

a-type agents in Av2;0 is a11; a4; a5; a10; a9; a3; a6.

The �gure below shows the chains at Step 2,0 in Example 2.3, formed by the elements of
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Av3;0 [Hv
3;0 [ Iv3;0.

Step 2,0: Chains
a7 i12 a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

h7 a12

ch2
v(a7)

ch2
v(a12)

By Chain-order Rule 3 and looking into the preceding �gure, the order of non-empty chains

at Step 2,0 is chv2(a12); ch
v
2(a7) (a-tails of these chains respectively own h7; i12; indices are respec-

tively 7 and 12), and hence the chain-order of a-type agents in Av3;0 is a12; a7.

Therefore, the chain-order of a-type agents that we obtain in Example 2.3 is:

ovch : a1; a2; a8| {z } a11; a4; a5; a10; a9; a3; a6| {z } a12; a7| {z }
Av1;0 \ (AN [ AaE) Av2;0 \ (AN [ AaE) Av3;0 \ (AN [ AaE)

z TOOL 5, the chain priority-order f vch of newcomers and existing tenants: For

v 2 V, from the chain-order ovch of a-type agents, we derive the �chain priority-order�f vch 2 F of

newcomers and existing tenants in a straightforward way. Simply set f vch(a) = o
v
ch(a) for a 2 AN ,

and f vch(es) = o
v
ch(as) for es 2 AE.

For instance, the chain order given above, and the chain priority-order derived from it, are

as follows:

ovch : a1; a2; a8; a11; a4; a5; a10; a9; a3; a6; a12; a7

f vch : a1; a2; e8; e11; a4; a5; e10; e9; a3; a6; e12; a7

Observe that f vch is precisely the same priority-order as the one considered in Example 2.1.

Also, recall that the allocations chosen in Example 2.3 by IATTCab, and in Example 2.1 by the
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YRMH-IGYT mechanism de�ned by f vch, are the same. Lemma 2.2 states that this holds in

general.

Lemma 2.2 For any v 2 V,

�ab;v = �Y�I;f
v
ch :

Proof. It is plain to see that the lemma holds once the following observation is made. Consid-

ering the execution of the YRMH-IGYT mechanism de�ned by f vch in �, and the execution of

IATTCab in �v;ab, a loop in the former one corresponds to a cycle at a b-step in the latter one,

and an out-of-loop assignment made in the former one corresponds to an a-block at an a-step in

the latter one. We elaborate below.

In the execution of the YRMH-IGYT mechanism de�ned by f vch in �, let it be the turn of

agent a 2 A to request a house. Also, in the execution of IATTCab in �v;ab, let Step t,0 be when

the a-type agent that represents a is assigned a house or an inheritance right. When a requests

a house, one of the following �ve cases occurs:

(1) Agent a requests a house that triggers the formation of one or more loops (if a is an

existing tenant, she may also be part of one of these loops). In the execution of IATTCab in

�v;ab, these loops correspond to certain cycles that arise at b-steps prior to Step t,0: The agents

in the cycles are the b-type agents that represent the existing tenants in the loop, and they are

assigned the same houses at �ab;v and �Y�I;f
v
ch.

(2) Agent a requests a vacant house h 2 HV . In the execution of IATTCab in �v;ab, this case

corresponds to the a-block blvt (a) : (a; h) at Step t,0. Agent a is assigned h at both �
ab;v and

�Y�I;f
v
ch.

(3) Agent a requests the occupied house os of es 2 AE, who has already been assigned a house

before. In the execution of IATTCab, this case corresponds to the a-block blvt (a) : (a; os; bs; is)

at Step t,0. Agent a is assigned os at both �ab;v and �Y�I;f
v
ch.

(4) Agent a requests the occupied house o�1 of e�1 2 AE; e�1 moves to the top of the remainder

of the priority-order and requests the occupied house o�2 of e�2 2 AE; � � � ; e�q moves to the top

of the remainder of the priority-order and requests a vacant house h 2 HV . In the execution of
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IATTCab in �v;ab, this case corresponds to the a-block blvt (a) : (a; o�1 ; b�1 ; � � � ; o�q ; b�q ; h) at Step

t,0. Agents a; e�1 ; � � � ; e�q are assigned the houses o�1 ; � � � ; o�q ; h, respectively, at both �ab;v and

�Y�I;f
v
ch.

(5) The same thing happens as in (4) except that e�q requests the occupied house os of

es 2 AE, who has already been assigned a house before. In the execution of IATTCab in �v;ab,

this case corresponds to the a-block blvt (a) : (a; o�1 ; b�1 ; � � � ; o�q ; b�q ; os; bs; is) at Step t,0. Agents

a; e�1 ; � � � ; e�q are assigned the occupied houses o�1 ; � � � ; o�q ; os, respectively, at both �ab;v and

�Y�I;f
v
ch.

The following lemma states that if the executions of IATTCab in two inheritors augmented

housing markets induce the same chain priority-order, then a-type agents join cycles at the same

a-steps for the two inheritors augmented housing markets.

Lemma 2.3 For v1; v2 2 V if f v1ch = f
v2
ch , then A

v1
t;0 \ (AN [ AaE) = Av2t;0 \ (AN [ AaE) for every

t � 1.

Proof. If f v1ch = f v2ch , then �
ab;v1 = �ab;v2 (by Lemma 2.1 and Lemma 2.2). Also, ov1ch = ov2ch

(by de�nition). Let � : f1; 2; � � � ; ng ! f1; 2; � � � ; ng be the bijection such that ov1ch(a�(s)) =

ov2ch(a�(s)) = s for s = 1; 2; � � � ; n. The proof is by induction.

Base Case:

Suppose Av11;0 \ (AN [ AaE) 6= Av21;0 \ (AN [ AaE). W.l.o.g. let

Av11;0 \ (AN [ AaE) = fa�(1); a�(2); � � � ; a�(�)g,

Av21;0 \ (AN [ AaE) = fa�(1); a�(2); � � � ; a�(�); a�(�+1); � � � ; a�(�)g (i.e., � > � � 1).

We present our arguments in four steps:

(1) Show that blv11 (a�(s)) = bl
v2
1 (a�(s)) for s = 1; 2; � � � ; �:

The execution of IATTCab prior to Step 1,0 is independent of v1 and v2 (i.e., the same

assignments are made prior to Step 1,0). Then, for �v1 and �v2 the same a-type agents, b-type
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agents, houses, and inheritance rights remain at Step 1,0, and remaining a-type and b-type agents

point to the same houses and inheritance rights. So, blv11 (a�(s)) = bl
v2
1 (a�(s)) for s = 1; 2; � � � ; �.

Let blv21 (a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y) where k + 1 � �p � n for p = 1; � � � ; q and

y 2 HV [ I. (The arguments are essentially the same if blv21 (a�(�+1)) : (a�(�+1); y)).

(2) Show that y =2 Hv1
1 [ Iv11;0:

Since y 2 blv21 (a�(�+1)), we get y =2 blv21 (a�(s)) for s = 1; � � � ; � (by Observation 3 (ii)), and

hence y =2 blv11 (a�(s)) for s = 1; � � � ; �. Then, y =2 Hv1
1;0 [ Iv11;0 (see Observation 3 (i)). Since

y 2 HV [ I, we get y =2 Hv1
1;r also for r � 1 (by Observation 2 (i)). Then, y =2 Hv1

1 [ Iv11;0.

(3) Show that blv12 (a�(�+1)) = bl
v2
1 (a�(�+1)):

From blv21 (a�(�+1)) we know that for �
v2 at Step 1,0 a�(�+1) points to o�1 ; o�1 points to b�1;

� � � ; and b�q points to y. Since the execution of IATTCab prior to Step 1,0 is independent of

v1 and v2, also for �v1 at Step 1,0 a�(�+1) points to o�1 ; o�1 points to b�1; � � � ; and b�q points

to y. Since y =2 Hv1
1 [ Iv11;0, for �v1 this sequence remains una¤ected until Step 2,0. Then,

blv12 (a�(�+1)) = bl
v2
1 (a�(�+1)).

(4) Find a contradiction:

Since in Av12;0\(AN [AaE) the a-type agent who comes �rst in ov1ch is a�(�+1), at Step 1,0 a�(�+1)

should be the a-head of a non-empty chain. In this chain either a�(�+1) is the head, or a b-type

agent in blv12 (a�(�+1)) is the head, say b�j for some j 2 f1; 2; � � � ; qg.

If a�(�+1) is the head of the chain, then at �ab;v1 she is not assigned her most preferred house

in H n Hv1
0 . But for �

v2 since a�(�+1) is assigned at Step 1,0, at �ab;v2 she is assigned her most

preferred house in H n Hv2
0 (= H n Hv1

0 ), which contradicts that �
ab;v1 = �ab;v2.

If b�j is the head of the chain, then from

blv21 (a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y);

in the execution of IATTCab in �v2, b�j points at Step 1,0 to o�j+1 (or y). From the fact that

in the execution of IATTCab in �v1 at Step 1,0 b�j is the head of a chain, by Observation 5 (i)

she points at Step 1,0 to a house not in blv12 (a�(�+1)) (= bl
v2
1 (a�(�+1)), which contradicts that for

�v1 and �v2 at Step 1,0 remaining agents point to same houses an inheritance rights.
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Inductive Step: (The arguments are exactly parallel to the base case. For the sake of com-

pleteness, we reproduce them below, where changes have been made as necessary).

Suppose Av1j;0 \ (AN [ AaE) = Av2j;0 \ (AN [ AaE) for j = 1; � � � ; t but Av1t+1;0 \ (AN [ AaE) 6=

Av2t+1;0 \ (AN [ AaE). W.l.o.g. let

Av1t+1;0 \ (AN [ AaE) = fa�(l); a�(l+1); � � � ; a�(�)g,

Av2t+1;0 \ (AN [ AaE) = fa�(l); a�(l+1); � � � ; a�(�); a�(�+1); � � � ; a�(�)g (i.e., � > � � l).

We present our arguments in four steps:

(1) Show that blv1t+1(a�(s)) = bl
v2
t+1(a�(s)) for s = l; l + 1; � � � ; �:

By Observation 4, for �v1 and �v2 the same assignments are made by IATTCab prior to Step

t+1,0; the same a-type agents, b-type agents, houses, and inheritance rights remain at Step

t+1,0; remaining a-type and b-type agents point to the same houses and inheritance rights; and

blv1t+1(a�(s)) = bl
v2
t+1(a�(s)) for s = l; l + 1; � � � ; �.

Let blv2t+1(a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y) where k + 1 � �p � n for p = 1; � � � ; q

and y 2 HV [ I. (The arguments are essentially the same if blv2t+1(a�(�+1)) : (a�(�+1); y)).

(2) Show that y =2 Hv1
t+1 [ Iv1t+1;0:

Since y 2 blv2t+1(a�(�+1)), we get y =2 blv2t+1(a�(s)) for s = l; � � � ; � (by Observation 3 (ii)), and

hence y =2 blv1t+1(a�(s)) for s = l; � � � ; �. Then, y =2 Hv1
t+1;0 [ Iv1t+1;0 (see Observation 3 (i)). Since

y 2 HV [ I, we get y =2 Hv1
t+1;r also for r � 1 (by Observation 2 (i)). Then, y =2 Hv1

t+1 [ Iv1t+1;0.

(3) Show that blv1t+2(a�(�+1)) = bl
v2
t+1(a�(�+1)):

From blv2t+1(a�(�+1)) we know that for �
v2 at Step t+1,0 a�(�+1) points to o�1; o�1 points to

b�1; � � � ; and b�q points to y. Given that Av1j;0 \ (AN [ AaE) = Av2j;0 \ (AN [ AaE) for j = 1; � � � ; t

the execution of IATTCab prior to Step t+1,0 is the same for �v1 and �v2 (see Observation 4).

Then, also for �v1 at Step t+1,0 a�(�+1) points to o�1; o�1 points to b�1; � � � ; and b�q points to

y. Since y =2 Hv1
t+1 [ Iv1t+1;0, for �v1 this sequence remains una¤ected until Step t+2,0. Then,

blv1t+2(a�(�+1)) = bl
v2
t+1(a�(�+1)).
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(4) Find a contradiction:

Since in Av1t+2;0 \ (AN [AaE) the a-type agent who comes �rst in ov1ch is a�(�+1), at Step t+1,0

a�(�+1) should be the a-head of a non-empty chain. In this chain either a�(�+1) is the head, or a

b-type agent in blv1t+2(a�(�+1)) is the head, say b�j for some j 2 f1; 2; � � � ; qg.

If a�(�+1) is the head of the chain, then at �ab;v1 she is not assigned her most preferred house

in H n (Hv1
0 [Hv1

1 [� � �[Hv1
t ). But for �

v2 since a�(�+1) is assigned at Step t+1,0, at �ab;v2 she is

assigned her most preferred house in H n (Hv2
0 [Hv2

1 [� � �[Hv2
t ) (= H n (Hv1

0 [Hv1
1 [� � �[Hv1

t )),

which contradicts that �ab;v1 = �ab;v2.

If b�j is the head of the chain, then from

blv2t+1(a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y);

in the execution of IATTCab in �v2 , b�j points at Step t+1,0 to o�j+1 (or y). From the fact

that in the execution of IATTCab in �v1 at Step t+1,0 b�j is the head of a chain, by Observation

5 (i) she points at Step t+1,0 to a house not in blv1t+2(a�(�+1)) (= bl
v2
t+1(a�(�+1)), which contradicts

that for �v1 and �v2 at Step t+1,0 remaining agents point to same houses an inheritance rights.

Lemma 2.4 If f v1ch = f
v2
ch for v1; v2 2 V, then v1 = v2.

Proof. Let f v1ch (= f v2ch ) be given but not v1. By Lemma 2.3 f
v1
ch uniquely identi�es the sets

Av1t;0 \ (AN [ AaE) (= Av2t;0 \ (AN [ AaE)) for t = 1; 2; � � � (i.e., to identify them we do not need

v1 and v2). Also, from f v1ch we can derive o
v1
ch (= o

v2
ch) (by de�nition). We will show that, from

Av1t;0 \ (AN [AaE) for t = 1; 2; � � � and ov1ch, we can uniquely identify v1 (and hence also v2), which

proves the lemma.

Let � : f1; 2; � � � ; ng ! f1; 2; � � � ; ng be the bijection such that ov1ch(a�(s)) = s for s =

1; 2; � � � ; n. By Observation 4 (ii), from the sets Av1t;0 \ (AN [ AaE) for t = 1; 2; � � � we can

determine the a-blocks at every a-step. The proof is in two parts.
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(I) Let the a-blocks at Step 1,0 be

blv11 (a�(1)) : (a�(1); � � � ; y1);

blv11 (a�(2)) : (a�(2); � � � ; y2);
...

blv11 (a�(�)) : (a�(�); � � � ; y�):

By Chain-order Rule 2, at v1 the a-type agents a�(1); � � � ; a�(�) are assigned the vacant houses

and inheritance rights y1; � � � ; y� in order of the indices of vacant houses and inheritance rights.

Since this is well-de�ned, we can uniquely identify how y1; � � � ; y� are assigned to a�(1); � � � ; a�(�)

at v1.

(II) For t � 1 let the a-blocks at Step t+1,0 be

blv1t+1(a�(m0)) : (a�(m0); � � � ; ym0);

blv1t+1(a�(m0+1)) : (a�(m0+1); � � � ; ym0+1);

...

blv1t+1(a�(m1�1)) : (a�(m1�1); � � � ; ym1�1)

blv1t+1(a�(m1)) : (a�(m1); � � � ; ym1)

...

...

blv1t+1(a�(mq�1)) : (a�(mq�1); � � � ; ymq�1)

blv1t+1(a�(mq)) : (a�(mq); � � � ; ymq)

...

blv1t+1(a�(�)) : (a�(�)); � � � ; y�)

(i:e:; 1 � m0 < m1 < � � � < mq � �)

such that a�(m0); � � � ; a�(mq) are a-heads of chains at Step t,0. (By Observation 5 (i), we can
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determine the heads of chains at Step t,0. They are the agents in Av1t+1;0 who point to a house in

Hv
t;0 at Step t,0, and to a house or an inheritance right in H

v
t+1;0 [ Ivt+1;0 at Step t+1,0. Then we

can also determine the a-heads of chains at Step t,0. An a-type agent a 2 Av1t+1;0 \ (AN [AaE) is

the a-head of a chain at Step t,0 if an agent in blv1t+1(a) is the head of a chain at Step t,0.)

Then, the a-type agents a�(m0); � � � ; a�(m1�1) are in the same chain at Step t,0, and at v1, by

Chain-order Rule 3, ym0+1 is assigned to a�(m0), y
m0+2 is assigned to a�(m0+1)), � � � , and ym1�1

is assigned to a�(m1�2). Similarly, a�(m1); � � � ; a�(m2�1) are in the same chain at Step t,0, and at

v1, by Chain-order Rule 3, ym1+1 is assigned to a�(m1), y
m1+2 is assigned to a�(m1+1)), � � � , and

ym2�1 is assigned to a�(m2�2); and so on.

Then, at v1 the a-tails of chains at Step t,0 (i.e., a�(m1�1); a�(m2�1); � � � ; a�(mq�1); a�(�)) are

assigned the remaining vacant houses and inheritance rights (i.e., ym0 ; ym1 ; � � � ; ymq). By Chain-

order Rule 3 these houses and inheritance rights are assigned to a�(m1�1); a�(m2�1); � � � ; a�(mq�1); a�(�)

in order of their indices. Since this is well-de�ned, we can also uniquely identify how ym0 ; ym1 ; � � � ; ymq

are assigned to a�(m1�1); a�(m2�1); � � � ; a�(mq�1); a�(�) at v1.

Given Lemma 2.2 and Lemma 2.4 the proof of Theorem 2.1 is easy.

Proof of Theorem 2.1. Consider the mapping fch : V ! F such that fch(v) = f vch for v 2 V.

By Lemma 2.4 fch is an injection. By the facts that fch is an injection and jVj = jFj = n!, fch

is a bijection. By Lemma 2.2 and the fact that fch is a bijection, we get �
rY�I = �cfrd.

2.4 Conclusion

We studied the house allocation problem with existing tenants: n indivisible objects are to

be allocated to n agents; k objects are initially unowned; the remaining n � k objects are

owned by n � k agents; each agent needs precisely one object; agents�preferences are strict;

and monetary transfers are not allowed. There are various real-life applications of this problem,

such as the allocation of dormitory rooms to incoming and returning students at a college, and

kidney exchange practices that also involve kidneys obtained from Good Samaritan Donors and
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cadavers.

For this class of problems, Abdulkadiro¼glu and Sönmez [2] proposed randomized You request

my house �I get your turn mechanism (in short, RYRMH-IGYT), a priority-order based lottery

mechanism that is strategy-proof, ex-post e¢ cient, and ex-post group rational. This paper pro-

poses a market-based alternative mechanism, core from random distribution (in short, CFRD),

which can also be shown to be strategy-proof, ex-post e¢ cient, and ex-post group rational.

CFRD proceeds in two steps. In the �rst step, it generates an exchange market by distribut-

ing to n agents k vacant houses and n� k inheritance rights (associated with existing tenants)

uniformly at random. In the second step, it chooses the unique core allocation of the generated

exchange market (see De�nition 2.2 and Proposition 2.1) by executing the inheritors augmented

top trading cycles mechanism (in short, IATTC). In the execution of IATTC an inheritance right

helps restore e¢ ciency, by allowing for the unneeded house of the associated existing tenant (in

case she owns two houses) to be inherited by another agent.

There are interesting parallels between CFRD in a house allocation problem with existing

tenants, and the Walrasian Mechanism from equal-division in a classical exchange economy with

in�nitely divisible goods. In the latter, there is (physical) equal-division of commonly-owned

bundle, followed by the selection of a Walrasian allocation in the induced exchange market. In

the former, there is probabilistic equal-division of vacant houses and inheritance rights through

random distribution, followed by the selection of the unique core allocation in the induced

exchange market, which is also a Walrasian allocation.

Our main result is that RYRMH-IGYT and CFRD are equivalent (Theorem 2.1). Besides

being mathematically interesting, this equivalence result increases the appeal of RYRMH-IGYT

on normative grounds, by exposing that it shares the same parallels to the Walrasian Mechanism

from equal-division as CFRD. In a house allocation problem, RYRMH-IGYT reduces to random-

priority, and CFRD reduces to CFRE. Therefore, the seminal equivalence result in the literature

by Abdulkadiro¼glu and Sönmez [1] is a corollary of our more general equivalence result.

In two recent papers, Pathak and Sethuraman [25] and Carroll [7] show the equivalence
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of random-priority to certain mechanisms that execute TTC based upon randomly generated

�inheritance tables.�In CFRD, however, the execution of IATTC is based upon randomly gen-

erated �inheritor relationships between agents.�This innovation in CFRD promises a new line

of research. Future research papers may study how to execute IATTC in the houses-with-quotas

case, or when an existing tenant may initially own multiple houses, which may potentially lead

to the design of other IATTC based lottery mechanisms that are equivalent to RYRMH-IGYT.

The tools that we introduced in Section 2.3 may become useful in these e¤orts.

Appendix

Proof of Proposition 2.1.

Observe that in the execution of IATTC in �v, groups of cycles form in an order: First

group of cycles forms� call Group 1, agents in these cycles are assigned to the houses they point

and then they are removed from the market, houses that remain from the removed agents are

inherited by agents that are still in the market; second group of cycles forms� call Group 2,

agents in these cycles are assigned to the houses they point and then they are removed from the

market, houses that remain from the removed agents are inherited by the agents that are still

in the market; and so on.

Let A and H be partitioned into fAsgTs=1 and fHsgTs=1 according to cycle groups: As and Hs

are respectively the sets of agents and houses that join a cycle in Group s for s = 1; � � � ; T .

Let # : A [ H ! f1; 2; � � � ; Tg be the function such that #(x) = s if x 2 As [ Hs. (It

speci�es to which group of cycles a house or an agent belongs.)

Let PointedBy : A ! H be the function such that for an agent a 2 A, PointedBy(a) is

the house that she trades in the cycle that she joins. Clearly, #(a) = #(PointedBy(a)) for any

a 2 A.

The proof is in two parts:

(I) For any � 2M if � 6= �iattc;v, then � is not a core allocation in �v:
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Suppose � 6= �iattc;v but � is a core allocation in �v.

If �(a) 6= �iattc;v(a) for an agent a 2 A1, then a �nds �(a) less preferable than �iattc;v(a)

(because �iattc;v(a) is a�s most preferred house in H). Then � is clearly blocked by the four-tuple

< A1; H1; bl; Claim > where bl(a) = �iattc;v(a) and Claim(a) = PointedBy(a) for every a 2 A1.

Then we should have �(a) = �iattc;v(a) for every a 2 A1.

Given that �(a) = �iattc;v(a) for every a 2 A1, if �(a) 6= �iattc;v(a) for an agent a 2 A2, then a

�nds �(a) less preferable than �iattc;v(a) (because �iattc;v(a) is a�s most preferred house in H nH1

and �(a) 2 H nH1). Then � is clearly blocked by the four-tuple < A1[A2; H1[H2; bl; Claim >

where bl(a) = �iattc;v(a) and Claim(a) = PointedBy(a) for every a 2 A1 [ A2. Then we should

have �(a) = �iattc;v(a) for every a 2 A1 [ A2.

If we iterate similarly we conclude that � = �iattc;v, which is a contradiction.

(II) �iattc;v is a core allocation in �v:

Suppose �iattc;v is blocked by the four-tuple


C;HC ; bl; Claim

�
.

In the execution of IATTC, whenever an agent is assigned a house, that house is her

most preferred house among remaining ones. Therefore, for a 2 A if bl(a)Ra �iattc;v(a), then

#(bl(a)) � #(�iattc;v(a)), and if bl(a)Pa �iattc;v(a), then #(bl(a)) < #(�iattc;v(a)). Then,

X
h2HC

#(h) <
X
a2C

#(a): (F)

By De�nition 2.2 (ii), agents and houses in C [HC can be partitioned into groups, where a

group consists of a list of agents a1; a2; � � � ; am � C and a list of houses h1; h2; � � � ; hm � HC ,

and for which one of the following three cases hold.

CASE 1: a1 is the inheritor of a2, a2 is the inheritor of a3, � � � , am�1 is the inheritor of

am; a2 owns h1, a3 owns h2, � � � , am�1 owns hm�2, and am owns hm�1 and hm. A graphical

representation, in which agents point to their bequeathers and to the houses they own, is as
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follows:
a1 a2 … am1 am

h1 hm2 hm1 hm

Then, in the execution of IATTC in �v, for am, the house that she trades in the cycle that

she joins (i.e., PointedBy(am)) is hm�1 or hm; for am�1, it is hm�2 or what remains to her from

fhm�1; hmg; � � � ; for a2, it is h1 or what remains to her from fh2; � � � ; hm+1g; and for a1, it is

either a house that she owns but not in HC , say h0, or the house that remains to her from

fh1; � � � ; hmg. If for a1 the latter holds, we get

mS
s=1

PointedBy(as) = fh1; � � � ; hmg

and so
X

h2fh1;��� ;hmg

#(h) =
X

a2fa1;��� ;amg

#(a).

If for a1 the former holds, then let h00 be the house in fh1; � � � ; hmg that has not been traded

by any agent in fa2; � � � ; amg. Then,

mS
s=2

PointedBy(as) = fh1; � � � ; hmg = h00

and so
X

h2fh1;h2;��� ;hmg = h00
#(h) =

X
a2fa2;��� ;amg

#(a):

Since h00 joins a cycle after every agent in fa1; a2; � � � ; amg joins a cycle, we get #(h00) > #(a1).

Then, X
h2fh1;��� ;hmg

#(h) >
X

a2fa1;��� ;amg

#(a).

In either case, for Case 1, we getX
h2fh1;��� ;hm+1g

#(h) �
X

a2fa1;��� ;amg

#(a).

CASE 2: a1 is the inheritor of a2, a2 is the inheritor of a3, � � � , am�1 is the inheritor of am;
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a1 owns h1, a2 owns h2, � � � , am�1 owns hm�1, and am owns hm. A graphical representation, in

which agents point to their bequeathers and to the houses they own, is as follows:

a1 a2 … am1 am

h1 h2 hm1 hm

In the execution of IATTC, an agent joins a cycle before or at the same time as a house that

she owns. Then, #(hs) � #(as) for s = 1; 2; � � � ;m.

CASE 3: a1 is the inheritor of a2, a2 is the inheritor of a3, � � � , am�1 is the inheritor of am,

am is the inheritor of a1; a1 owns h1, a2 owns h2, � � � , am owns hm. A graphical representation,

in which agents point to their bequeathers and to the houses they own, is as follows:

h1

a1

hm am a2 h2

am1 …

hm1

By the same argument as in Case 2, we get #(hs) � #(as) for s = 1; 2; � � � ; k.

From the arguments in Case 1, Case 2, and Case 3, we get,

X
h2HC

#(h) �
X
h2C

#(a),

which contradicts (F).
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Chapter 3

House Swapping

3.1 Introduction

A practice that is becoming increasingly more widespread among vacationers is house swapping.

Thousands of individuals (or families) from across the world swap their houses for vacation

purposes. A two-way swap of primary houses is the most common swap form: Two swappers�

call i1 and i2, swap their primary houses for concurrent time periods (usually in summer), and

so during the swap period, free of charge, i1 stays in i2�s house and i2 stays in i1�s house. A

swap may also involve more than two individuals. In a three-way swap of primary houses, for

instance, three swappers� call in order i1, i2, and i3, swap their primary houses for concurrent

time periods, and so during the swap period, free of charge, i1 stays in i2�s house, i2 stays in i3�s

house, and i3 stays in i1�s house. Sometimes people also swap their second houses rather than

their primary houses, in which case houses are initially vacant and can be o¤ered for use without

the need for owners to leave, and therefore the stays need not be concurrent. In another swap

form, sometimes called a �hospitality exchange,�the stays of �swappers� in houses take place

in the presence of the owners of houses.

The predominant motivation behind the house-swapping practice is saving from accommo-

dation costs, but frequent swappers express some other motives as well, such as the lure of

�mingling with the natives for a richer travel experience,�or, �making friends around the globe�
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[18]. In a rather interesting case, after the war in 2003, many Shia and Sunni families in Iraq

were swapping their houses in order to escape from sectarian violence [8]. The origins of the

house-swapping practice are believed to date back to 1950�s, born in academia, but its rise in

popularity went hand in hand with the advent and spread of internet, where house-swap agency

websites serve as markets by bringing together potential swappers. At the time this paper had

been written, homelink.org reported over 13 000 listings in 78 countries, and homeexchange.com

reported over 37 000 listings in over 130 countries. According to an article in the New York

Times on June 29, 2006, the American representative of Intervac reported for the agency a rise

in membership in the preceding two years of 40 percent, and the founder of Digsville reported a

past annual growth rate in membership of approximately 40 percent [27].

This paper makes a �rst attempt to understand the theoretical properties of a house-swapping

market. A house-swapping market resembles the celebrated �housing market�of Shapley and

Scarf [34]. In modelling both markets, there are n agents each of whom owns a house; agents

seek to exchange their houses where each agent is to receive exactly one house; and monetary

transfers between agents are not allowed. The two markets vary in the nature of exchanges,

however. While in a housing market houses are traded� i.e. exchanged on a permanent basis, in

a house-swapping market they are swapped� i.e. exchanged on a temporary basis. If houses are

traded, ownerships of houses change and the outcome of exchanges is �nal; if houses are swapped,

ownerships remain unchanged and agents return to their original houses when the swap periods

terminate. This di¤erence in exchange types gives rise to di¤erent types of preferences for agents

in the two models. In the standard housing market model, an agent�s well-being depends solely

upon which house she receives; in a model designed to address real-life house-swapping markets,

however, additional factors may �gure in the well-being of an agent i:

� guest� i.e. the agent who is to receive i�s house.1 It is conceivable that i may be unwilling

to entrust her house to the use of another agent whom she deems unreliable.

� swap periods� i.e. during which time periods i is to stay in another agent�s house and her
1In the way use this word, the guest of an agent i is the agent who is to stay in i�s house, whether or not i is

to be present along her stay.
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guest is to stay in her house. It is conceivable that i may prefer to be on vacation in a

speci�c period of the year. Complementarities in i�s preferences concerning swap periods

are also natural, such as between two swap periods (e.g., if i is to swap her primary house,

most probably she will demand the swaps to take place concurrently) or a swap period

and a house (e.g., i may wish to stay in a house in Munich, Germany, particularly during

Oktoberfest).

� swap size� i.e. whether i engages in a two-way swap or a three-way swap or so on. A

prearranged swap will break down even if a single participating agent reneges later on.2

Arguably, therefore, a swap is the more susceptible to failure the more agents it involves.3

Indeed, the argument can be made that, for reasons similar to as above, timing and size

regarding trades may similarly �gure in agents� well-beings in an extended housing market

model. The core di¤erence between �swapping�and �trading�houses is therefore the dependence

of agents�preferences to their guests in the former. In an attempt to understand the possible

theoretical implications of this dependence, we consider a simple house-swapping model where

timing and swap size considerations are absent and agents�preferences are simply over (house,

guest) pairs. Our setting is appropriate to study, for instance, a market where people swap their

primary houses for a speci�c period of the year and concerns about prearranged swaps later

on breaking down are absent or have been satisfactorily addressed by some measures (e.g., at

homelink.org, a vacationer is insured against breakdown possibilities; if the owner of her assigned

vacation house later on reneges, she is compensated so as to be able to go ahead with her vacation

at the same destination).

Absent timing and swap size considerations, in our setting an allocation is a one-to-one

mapping from the set of agents to the set of houses, and an agent�s well-being at an allocation

depends upon her assigned (house, guest) pair. In order to successfully implement an allocation,

2 i.e., if i refuses to deliver her house to agent j, j will refuse to deliver her house to agent k, and so on.
3Besides its small size, a two-way swap may be appealing perhaps for an additional reason, that two agents

may see staying in exactly one another�s houses as a con�dence-building measure ensuring the safe use of their
houses.
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the primary constraint is that agents should participate voluntarily, or, to put it di¤erently, the

allocation must not admit any blocking coalitions. A coalition of agents blocks an allocation

� if there exists a way in which the coalition members can exchange their houses such that at

the outcome every coalition member is weakly better o¤ and at least one is strictly better o¤ in

comparison to under �. An allocation is individually rational if it is not blocked by any single

agent. More strictly, an allocation is pairwise stable if it is not blocked by any single agent

or any pair of agents. Even stricter, an allocation is a core allocation (or, in the core) if it is

not blocked by any coalition of agents. Clearly a core allocation is also Pareto e¢ cient, as an

allocation � which is Pareto dominated by another allocation �0 is blocked by the coalition of

all agents who can exchange their houses so as to attain �0.

In light of these de�nitions we study the theoretical properties of a house-swapping market.

As we show, the positive theoretical results in the literature obtained in the housing market model

do not extend to our setting. In a housing market, under the assumption of strict preferences

over houses, there exists a unique allocation in the core [29], obtained by the following top trading

cycles procedure (in short, TTC), credited to Gale in [34]:

Imagine a diagram consisting of agents and houses. Let each agent �point� to her most

preferred house in the diagram. Let each house �point� to its owner. There exists at least

one �cycle.�4 Assign agents in cycles to the houses they point. Then remove these agents

and houses from the diagram and in the reduced diagram, proceed similarly.

In a house-swapping market, however, under additively-separable preferences we obtain that

the allocation induced by TTC may even fail to be individually rational (Example 3.1). This is

not very surprising, because by its design, TTC operates as if agents seek to exchange their houses

so as to receive the best houses that they can, which fully disregards their guest preferences.

In a setting as in ours where preferences are simply over (house, guest) pairs, agents should

be willing to execute swaps of any size so long as their assigned (house, guest) pairs improve.

4A cycle is characterized by an ordered list i1; i2; � � � ; ik of agents where is points to is+1�s house for s =
1; � � � ; k � 1 and ik points to i1�s house.
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Nevertheless, in decentralized settings large-size swaps may rarely be executed for another rea-

son. In a decentralized setting a swap is organized by the participating agents themselves, and

the coordination di¢ culty involved in this arrangement is proportional to the swap size. A

decentralized house-swapping market may therefore be dominated by two-way swaps, as they

are associated with the lowest coordination di¢ culty. Virtually every house-swapping agency

website operates in a decentralized fashion.5 A relevant issue is, therefore, the potential loss in

e¢ ciency associated with such coordination di¢ culties. In an attempt to show why such loss

in e¢ ciency may be unavoidable, we con�ne our attention to allocations that result from only

two-way swaps and under additively-separable preferences we show that it is possible for every

such allocation to be Pareto ine¢ cient (Example 3.2).

An important question that concerns implementation is whether or not allocations exist that

are robust to blocking coalitions. Existence of a pairwise-stable allocation should be of particular

concern, as the formation of a coalition is trivial if it consists of a single agent and relatively easy

to coordinate if it consists of a pair of agents. Alas, under additively-separable preferences we

obtain that in a house-swapping market a pairwise-stable allocation is not guaranteed to exist,

and as a corollary, the core can be empty unlike in a housing market (Example 3.3).

Having shown these negative theoretical results under additive-separability, we proceed to

add more structure on preferences. We say that an agent�s preferences are guest-diseparable if

she classi�es her potential guests as acceptable or unacceptable such that constraints C0, C1

and C2 below are satis�ed. If in addition constraint C3 below is also satis�ed, we say that her

preferences are guest-dichotomous.

C0: She is herself an acceptable guest.

C1: She strictly prefers pairs with acceptable guests to pairs with unacceptable guests.

C2: She has a strict ranking of houses such that between two pairs with acceptable guests

she prefers the one with the higher-ranked house.
5To facilitate the coordination of three-way swaps, houseexchange.org.uk provides vacationers with a three-way

search option.
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C3: She is indi¤erent between two pairs where houses are the same and guests are both

acceptable.

From a practical viewpoint, a guest-diseparable preference relation can be justi�ed by infor-

mational arguments. Imagine that a centralized system is to be used to decide how houses are

to be swapped based upon preference information elicited from vacationers. On house-swapping

agency websites ample information is available pertaining to houses� e.g., size, location and

amenities� to evaluate their desirabilities for vacation purposes. Yet information needed to

evaluate the realiability of vacationers as guests is naturally limited. On some websites, for

instance, there is information on the number of swaps practiced earlier by their users. In some

cases, there are also evaluations by past swap partners judging vacationers as guests. Arguably,

then, based upon ample information pertaining to houses, a vacationer can fully rank them, but

based upon limited information pertaining to people, it is more viable for a vacationer to simply

categorize her potential guests as acceptable or unacceptable rather than fully ranking them.

As it turns out, under guest-diseparable preferences, the core is non-empty; the following

acceptable top trading cycles procedure (in short, ATTC), adapted from TTC, always induces a

core allocation (Theorem 3.1):

Imagine a diagram consisting of agents and houses. Let each agent �point�to her most pre-

ferred house among those houses in the diagram owned by agents who deem her as an acceptable

guest. Let each house �point� to its owner. There exists at least one cycle. Assign agents in

cycles to the houses they point. Then remove these agents and houses from the diagram and in

the reduced diagram, proceed similarly.

Nevertheless, unlike in a housing market under strict preferences, the core allocation is not

necessarily unique in a house-swapping market under guest-diseparable preferences (Example

3.4). Further, while in a housing market TTC is strategy-proof (truthtelling is a dominant strat-

egy) under strict preferences [28], in a house-swapping market ATTC can potentially be manip-

ulated under guest-diseparability (Example 3.4). However, if preferences are guest-dichotomous,
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we show that there exists a unique core allocation, induced by ATTC, and ATTC is strategy-

proof (Theorem 3.2).

The rest of the paper is organized as follows: Section 3.2 introduces the model. Section 3.3

shows by examples the aforementioned negative results. Section 3.4 studies the problem under

the assumptions of guest-diseparability and guest-dichotomy. The proofs of two theorems are

given in the Appendix.

3.2 The Model

A house-swapping market is a triplet hI;H;%i where

� I : f1; 2; :::; ng is a �nite set of agents;

�H : fh1; h2; : : : ; hng is a �nite set of houses such that hi 2 H is owned by agent i;

�%: (%i)i2I is a preference pro�le where %i represents agent i�s preference relation, which is

de�ned over the set of feasible (ordered) pairs

X i = f(h; j)jh 2 H; j 2 I; j = i if h = hig,

and (h; j) %i (h0; j0) indicates that i (weakly) prefers (h; j) 2 X i to (h0; j0) 2 X i:

An agent i being assigned a pair (h; j) is understood as i receiving the house h and her house

hi being received by agent j. The agent who receives hi is said to be the �guest�of agent i. As

speci�ed above, a pair (hi; j) is feasible (i.e., (hi; j) 2 X i) only if j = i, because when i receives

hi, by de�nition her guest is herself.

Let %C : (%i)i2C denote the pro�le of preference relations of a subset of agents C � I at %.

Let %�i shortly denote %Infig. Then % can equivalently be written as (%C ;%InC) or (%i;%�i)

for C � I and i 2 I.

Let �i and �i respectively represent the �strictly more preferred�and �equally preferred�

relations of agent i derived from %i. Thus (h; j) �i (h0; j0) means (h; j) %i (h0; j0) holds but
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(h0; j0) %i (h; j) does not hold, and (h; j) �i (h0; j0) means both (h; j) %i (h0; j0) and (h0; j0) %i

(h; j) hold.

For an agent i, let Pi denote the domain of admissible preference relations de�ned over the

set X i. Let P : (P1 � P2 � � � � � Pn) denote the domain of admissible preference pro�les for

agents.

An allocation � : I ! H is a bijective mapping from the set of agents to the set of houses.

LetM be the domain of admissible allocations for some �xed I and H. The inverse mapping

of an allocation � is denoted by ��1. Thus an agent i is assigned at � the pair (�(i); ��1(hi))

and �(i) = (h; j) is understood as �(i) = h and ��1(hi) = j.

A �k-way swap�involves an ordered list i1; i2; � � � ik of k agents such that is receives the house

his+1 for s = 1; � � � ; k � 1 and ik receives hi1 . An allocation � results from two-way swaps if for

every agent i either �(i) = hi (i receives her own house) or �(i) = hj and �(j) = hi for some

j 2 I (i.e., i and j execute a two-way swap).

An allocation � is blocked by a coalition of agents C � I if there exists a one-to-one mapping

bl : C ! HC such that

�HC � H is the set of houses owned by agents in C,

� (bl(i); bl�1(hi)) %i (�(i); ��1(hi)) 8i 2 C,

� (bl(i); bl�1(hi)) �i (�(i); ��1(hi)) 9i 2 C.

We call


C;HC ; bl

�
above a blocking triplet at �.

An allocation � is

� individually rational if it is not blocked by any agent;

� pairwise stable if it is not blocked by any agent or any pair of agents;

� a core allocation (or in the core) if it is not blocked by any coalition of agents C � I.
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An allocation � is Pareto-e¢ cient if it is not Pareto dominated by another allocation. Equiv-

alently, an allocation � is Pareto e¢ cient if it is not blocked by the coalition I. Clearly a core

allocation is pairwise stable and Pareto e¢ cient and a pairwise-stable allocation is individually

rational.

A mechanism ' : P !M is a one-to-one mapping from the domain of admissible preference

pro�les to the codomain of admissible allocations. Thus at a preference pro�le % the allocation

selected by a mechanism ' is '(%), and at '(%) the house received by an agent i is '(%)(i)

and her guest is '(%)�1(hi).

A mechanism ' is strategy-proof if there does not exist any %2 P , i 2 I, %0i 2 Pi such that

('(%0i;%�i)(i); '(%0i;%�i)�1(hi)) �i ('(%)(i); '(%)�1(hi)):

In simple words, a mechanism is strategy-proof if no agent can ever strictly bene�t from sub-

mitting to it a non-truthful preference relation (i.e., truthful preference revelation is a dominant

strategy).

In Section 3.3 and Section 3.4 we study house-swapping markets under additively-separable

utility functions. If agent i has an additively-separable utility function ui : H [ I ! R, then

the utility she derives from a pair (h; j) 2 X i is ui(h) + ui(j). Whenever a house-swapping

market is denoted by a triplet hI;H; ui, it is understood that u : (ui)i2I is the pro�le of agents�

additively-separable utility functions, and the preference relation %i for i 2 I can be derived

from her utility function ui as follows:

(h; j) %i (h0; j0) holds for (h; j); (h0; j0) 2 X i if and only if ui(h) + ui(j) � ui(h0) + ui(j0):

The preference relation %i of an agent i is additively separable if it is consistent with an

additively-separable utility function ui (i.e., the preference relation derived from ui is %i). A

pro�le of preference relations % is additively separable if %i is additively separable for every

i 2 I.
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3.3 Theoretical Possibilities

A closely related market to a house-swapping market is a housing market (introduced by Shapley

and Scarf [34]). In a housing market, as usual, there are a set I : f1; 2; :::; ng of agents and a

set H : fh1; h2; : : : ; hng of houses where hi 2 H is owned by agent i, and houses are to be

allocated to agents such that each agent is to receive exactly one house. The two markets

di¤er in agents�preferences, however. The housing market model is intended for markets where

houses are �traded�(exchanged permanently), not swapped, and so an agent�s preferences are

simply over houses, not (house, guest) pairs. A housing market can be thought of as a special

house-swapping market hI;H; ui where ui(j) = 0 for any i; j 2 I (i.e., the �guest�component is

inconsequential).

Under strict preferences over houses, there exists a unique core allocation in a housing market

[29], which is induced by the following top trading cycles mechanism (in short, TTC), credited

to Gale in [34]: Imagine a diagram consisting of agents and houses.

Step 1: Let each agent �point� to her most preferred house. Let each house �point� to its

owner. There exists at least one �cycle,� characterized by an ordered list i1; i2; � � � ; ik of

agents where is points to is+1�s house for s = 1; � � � ; k � 1 and ik points to i1�s house.

Assign agents in cycles to the houses they point. Then remove these agents and houses

from the diagram.

Step t > 1: Let each remaining agent �point�to her most preferred house among remaining

ones. Let each remaining house �point�to its owner. There exists at least one cycle. Assign

agents in cycles to the houses they point. Then remove these agents and houses from the

diagram.

The algorithm terminates when every agent is assigned a house.

As stated in Proposition 3.1, unlike in a housing market, in a house-swapping market and

under additively-separable preferences, the application of TTC may not lead to a desirable

allocation.

73



Proposition 3.1 In a house-swapping market hI;H; ui where agents have strict preferences over

houses (i.e., ui(h) 6= ui(h0) for any i 2 I; h; h0 2 H, h 6= h0), the allocation induced by TTC may

fail to be individually rational.

Proof. See Example 3.1.

Example 3.1 Let I = f1; 2; 3g, H = fh1; h2; h3g, and the additively-separable utility pro�le u

of agents be as given in the following table:

u1 u2 u3

u1(h2) = 3 u1(1) = 4 u2(h3) = 3 u2(2) = 4 u3(h1) = 3 u3(3) = 4

u1(h3) = 2 u1(2) = 3 u2(h1) = 2 u2(3) = 3 u3(h2) = 2 u3(1) = 3

u1(h1) = 0 u1(3) = 0 u2(h2) = 0 u2(1) = 0 u3(h3) = 0 u3(2) = 0

The derived utilities of agents from feasible (house,guest) pairs are as given in parentheses

in the following table:

u1 u2 u3

(h2; 2) (6) (h3; 3) (6) (h1; 1) (6)

(h3; 2) (5) (h1; 3) (5) (h2; 1) (5)

(h1; 1) (4) (h2; 2) (4) (h3; 3) (4)

(h2; 3) (3) (h3; 1) (3) (h1; 2) (3)

(h3; 3) (2) (h1; 1) (2) (h2; 2) (2)

When TTC is executed, at Step 1 agent 1 points to h2 which points to agent 2, agent 2 points

to h3 which points to agent 3, and agent 3 points to h1 which points to agent 1. A cycle forms

and the associated assignments are made. The allocation induced is

� : �(1) = (h2; 3); �(2) = (h3; 1); �(3) = (h1; 2):

At � each agent derives a utility of 3; � is not individually rational as each agent can derive

a utility of 4 by being assigned her own house. Indeed there exists a unique core allocation in

this example, not selected by TTC, where agents 1; 2 and 3 respectively receive h3; h1 and h2 and

each derives a utility of 5. }

74



As stated in Proposition 3.2, loss in e¢ ciency may not be avoidable if attention is con�ned

to only two-way swaps.

Proposition 3.2 In a house-swapping market hI;H; ui every allocation that results from two-

way swaps may be Pareto ine¢ cient.

Proof. See Example 3.2.

Example 3.2 Let I = f1; 2; 3g, H = fh1; h2; h3g, and the additively-separable utility pro�le u

of agents be as given in the following table:

u1 u2 u3

u1(h2) = 4 u1(1) = 3 u2(h3) = 4 u2(2) = 3 u3(h1) = 4 u3(3) = 3

u1(h1) = 2 u1(3) = 2 u2(h2) = 2 u2(1) = 2 u3(h3) = 2 u3(2) = 2

u1(h3) = 0 u1(2) = 0 u2(h1) = 0 u2(3) = 0 u3(h2) = 0 u3(1) = 0

The derived utilities of agents from feasible (house,guest) pairs are as given in parentheses

in the following table:

u1 u2 u3

(h2; 3) (6) (h3; 1) (6) (h1; 2) (6)

(h1; 1) (5) (h2; 2) (5) (h3; 3) (5)

(h2; 2) (4) (h3; 3) (4) (h1; 1) (4)

(h3; 3) (2) (h1; 1) (2) (h2; 2) (2)

(h3; 2) (0) (h1; 3) (0) (h2; 1) (0)

Clearly, in this example the unique Pareto-e¢ cient allocation, which is also the unique core

allocation, is the following where each agent derives a utility of 6:

� : �(1) = (h2; 3); �(2) = (h3; 1), and �(3) = (h1; 2)

Since � results from a three-way swap, there exists no Pareto-e¢ cient allocation that results

from two-way swaps. �
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As stated in Proposition 3.3, even a blocking pair of agents may not be avoidable in a

house-swapping market.

Proposition 3.3 In a house-swapping market hI;H; ui there may not exist a pairwise-stable

allocation.

Proof. See Example 3.3.

Corollary: In a house-swapping market hI;H; ui the core may be empty.

Example 3.3 Let I = f1; 2; 3; 4; 5g, H = fh1; h2; h3; h4; h5g, and the additively-separable utility

pro�le u of agents be as given in the following table:

u1 u2 u3

u1(h2)=10 u1(1) = 11 u2(h1) = 17 u2(2) = 10 u3(h1) = 10 u3(3) = 11

u1(h4) = 8 u1(3) = 10 u2(h3) = 15 u2(5) = 9 u3(h2) = 8 u3(1) = 10

u1(h3) = 4 u1(2) = 9 u2(h5) = 9 u2(3) = 5 u3(h3) = 5 u3(2) = 9

u1(h1) = 2:1 u1(4) = 5:5 u2(h2) = 6 u2(1) = 2 u3(h4) = 1 u3(4) = 1:5

u1(h5) = 0:4 u1(5) = 0 u2(h4) = 0 u2(4) = 0:1 u3(h5) = 0:2 u3(5) = 0:5

u4 u5

u4(h1)=10 u4(4)=10 u5(h2)=10 u5(a5)=10

u4(h4)=8 u4(1)=9 u5(h5)=8 u5(a2)=9

u4(h2)=0:6 u4(2)=0:3 u5(h1)=0:6 u5(a1)=0:3

u4(h3)=0:5 u4(3)=0:2 u5(h3)=0:5 u5(a3)=0:2

u4(h5)=0:4 u4(5)=0:1 u5(h4)=0:4 u5(a4)=0:1

The derived utilities of agents from feasible (house, guest) pairs are as given in parentheses

in the following table. For the sake of shortness, we list only the most preferred feasible pairs of

agents below, up to what is required for our arguments, but one can verify that under u no agent

is indi¤erent between two distinct feasible pairs.
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u1 u2 u3 u4 u5

(h2; 3) (20) (h1; 5) (26) (h1; 1) (20) (h1; 1) (19) (h2; 2) (19)

(h2; 2) (19) (h3; 5) (24) (h1; 2) (19) (h4; 4) (18) (h5; 5) (18)

(h4; 3) (18) (h1; 3) (22) (h2; 1) (18)
...

...

(h4; 2) (17) (h3; 3) (20) (h2; 2) (17)

(h2; 4) (15:5) (h1; 1) (19) (h3; 3) (16)

(h3; 3) (14) (h5; 5) (18)
...

(h4; 4) (13:5) (h1; 4) (17:1)

(h1; 1) (13:1) (h3; 1) (17)

(h3; 2) (13) (h2; 2) (16)

...
...

We show that there does not exist a pairwise-stable allocation in four steps:

Step 1: Any allocation at which agent 4 is not assigned (h1; 1) or (h4; 4) is not individually

rational; agent 4 blocks it. An allocation where agent 4 is assigned (h1; 1) is blocked by agent 1

and agent 3: Agent 3 prefers (h1; 1) to any other pair, and (h3; 3) �1 (h4; 4). (Note that when

agent 4 is assigned (h1; 1), agent 1 must be assigned (h4; 4).) Therefore, at any pairwise-stable

allocation agent 4 must be assigned (h4; 4).

Step 2: Any allocation at which agent 5 is not assigned (h2; 2) or (h5; 5) is not individually

rational; agent 5 blocks it. Suppose agent 5 is assigned (h2; 2). Then agent 1 is not assigned

(h2; 3) or (h2; 2) because h2 is received by agent 5. But such an allocation is blocked by agent

1 and agent 2 because (h2; 2) is more preferable to agent 1 than her assigned pair (whatever it

is), and (h1; 1) �2 (h5; 5). (Note that when agent 5 is assigned (h2; 2), agent 2 must be assigned

(h5; 5).) Therefore, at any pairwise-stable allocation agent 5 must be assigned (h5; 5).

Step 3: By Steps 1 and 2, at any pairwise-stable allocation agents 1, 2, and 3 must be

assigned h1; h2; and h3 in some order. Consider the allocations that result from two-way swaps.

An allocation where agent 1 and agent 2 swap their houses and agent 3 is assigned her own house
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is blocked by agent 2 and agent 3 because (h3; 3) �2 (h1; 1) and (h2; 2) �3 (h3; 3). An allocation

where agent 1 and agent 3 swap their houses and agent 2 is assigned her own house is blocked

by agent 1 and agent 2, because (h2; 2) �1 (h3; 3) and (h1; 1) �2 (h2; 2). An allocation where

agent 2 and agent 3 swap their houses and agent 1 is assigned her own house is blocked by agent

1 and agent 3 because (h3; 3) �1 (h1; 1) and (h1; 1) �3 (h2; 2). If each of agent 1, agent 2, and

agent 3 is assigned her own house, then the allocation is blocked by agent 1 and agent 2 because

(h2; 2) �1 (h1; 1) and (h1; 1) �2 (h2; 2).

Step 4: By Steps 1, 2, and 3, only two allocations are left for consideration:

� : �(1) = (h2; 3); �(2) = (h3; 1); �(3) = (h1; 2); �(4) = (h4; 4); �(5) = (h5; 5);

� : �(1) = (h3; 2); �(2) = (h1; 3); �(3) = (h2; 1); �(4) = (h4; 4); �(5) = (h5; 5):

The allocation � is blocked by agent 2 and agent 5 because (h5; 5) �2 (h3; 1) and (h2; 2) �5

(h5; 5). Similarly, � is blocked by agent 1 and agent 4 because (h4; 4) �1 (h3; 2) and (h1; 1) �4

(h4; 4). Therefore, there does not exist a pairwise-stable allocation. �

3.4 Guest-diseparable Preferences

As shown by examples in Section 3.3, unlike in a housing market under strict preferences, positive

theoretical results cannot be assured in a house-swapping market under additively-separable

utility functions. In an attempt to obtain positive theoretical results, we impose more structure

on preferences in this section.

De�nition 3.1 An agent i�s preference relation %i is guest-diseparable if the set I of agents

can be partitioned into the subsets I i;u of �unacceptable� guests and I i;a of �acceptable� guests

such that constraints C0, C1 and C2 below are satis�ed. If in addition %i also satis�es con-

straint C3 below, then it is guest-dichotomous.

C0: i 2 I i;a
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C1: for any (h; j); (h0; j0) 2 X i

(h; j) �i (h0; j0) if j 2 I i;a and j0 2 I i;u

C2: i strictly ranks houses such that for any (h; j); (h0; j0) 2 X i

(h; j) �i (h0; j0) if j; j0 2 I i;a and i ranks h higher than h0:

C3: for any (h; j); (h; j0) 2 X i

(h; j) �i (h; j0) if j; j0 2 I i;a

In simple words, under a guest-diseparable preference relation %i, i deems herself as an

acceptable guest (C0), which is quite natural; her �rst priority is her house to be received by an

acceptable guest (C1); and her ranking of pairs with acceptable guests is based upon her strict

ranking of houses (C2). Under guest-dichotomy, additionally, i is indi¤erent between pairs with

di¤erent acceptable guests but the same house (C3).

It is not hard to see that a guest-diseparable preference relation%i is additively separable. We

can construct an additively-separable utility function ui consistent with %i as follows: Relative

to di¤erences in utility levels across houses, utility levels for acceptable guests should be set (1)

su¢ ciently close, i.e. for any j; j0 2 I i;a; h; h0 2 H, h 6= h0

jui(j)� ui(j0)j < jui(h)� ui(h0)j

(2) and su¢ ciently above the utility levels for unacceptable guests, i.e. for any j 2 I i;a; j0 2 I i;u;

h; h0 2 H
jui(h)� ui(h0)j < ui(j)� ui(j0):

If %i is guest-dichotomous, the utility levels above for acceptable guests should be set the

same.

In a house-swapping market and under guest-diseparable preference relations, we consider

the following acceptable top trading cycles mechanism (ATTC), adapted from TTC: Imagine a
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diagram consisting of agents and houses.

Step 1: Let each agent �point� to her highest-ranked house among those houses owned by

agents who deem her as an acceptable guest. Let each house point to its owner. There

exists at least one cycle. Assign agents in cycles to the houses they point. Then remove

these agents and houses from the diagram.

Step t > 1: Let each remaining agent �point� to her highest-ranked house among those

remaining houses owned by agents who deem her as an acceptable guest. Let each remaining

house point to its owner. There exists at least one cycle. Assign agents in cycles to the

houses they point. Then remove these agents and houses from the diagram.

The algorithm terminates when every agent is assigned a house. Notice that ATTC is well-

de�ned because every agent deems herself as an acceptable guest.

Theorem 3.1 In a house-swapping market and under guest-diseparable preferences, the alloca-

tion induced by ATTC is a core allocation.

Proof. See Appendix.

As stated in Theorem 3.1, just as TTC induces a core allocation in a housing market under

strict preferences, ATTC induces a core allocation in a house-swapping market under guest-

diseparable preferences. However, unlike in that setting, here the core allocation need not be

unique. Further, unlike TTC in that setting, here ATTC can potentially be manipulated.

Proposition 3.4 In a house-swapping market and under guest-diseparable preferences, the core

allocation is not necessarily unique and ATTC is not strategy-proof.

Proof. See Example 3.4.

Example 3.4 Let I = f1; 2; 3g, H = fh1; h2; h3g, and the additively-separable utility pro�le u

of agents be as given in the following table:
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u1 u2 u3

u1(h2) = 10 u1(1) = 13 u2(h3) = 10 u2(2) = 13 u3(h1) = 10 u3(3) = 13

u1(h3) = 5 u1(2) = 12 u2(h1) = 5 u2(1) = 12 u3(h3) = 5 u3(1) = 12

u1(h1) = 0 u1(3) = 11 u2(h2) = 0 u2(3) = 11 u3(h2) = 0 u3(2) = 11

The preference relations of agents derived from u are given in the table below. The table also

presents in parentheses the derived utilities of agents from feasible (house,guest) pairs. It can

be veri�ed that the preference relations below are guest-diseparable such that every agent deems

every agent as an acceptable guest.

%1 %2 %3

(h2; 2) (22) (h3; 1) (22) (h1; 1) (22)

(h2; 3) (21) (h3; 3) (21) (h1; 2) (21)

(h3; 2) (17) (h1; 1) (17) (h3; 3) (18)

(h3; 3) (16) (h1; 3) (16) (h2; 1) (12)

(h1; 1) (13) (h2; 2) (13) (h2; 2) (11)

When ATTC is executed under the preference pro�le %, at Step 1 agent 1 points to her top-

ranked house h2 which points to agent 2; agent 2 points to her top-ranked house h3 which points

to agent 3; and agent 3 points to her top-ranked house h1 which points to agent 1. A cycle forms

and the associated assignments are made. The following core allocation is induced:

� : �(1) = (h2; 3); �(2) = (h3; 1); �(3) = (h1; 2):

Suppose that agent 1 misstates her preferences and submits the manipulated preference rela-

tion %01 given below. It can be veri�ed that %01 is also guest-diseparable such that agent 1 deems

agent 1 and agent 2 as acceptable guests and agent 3 as an unacceptable guest. Below we also

provided an additively-separable utility function u01 consistent with %01.
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%01
(h2; 2) (22)

(h3; 2) (17)

(h1; 1) (13)

(h2; 3) (11)

(h3; 3) (6)

u01

u1(h2) = 10 u1(1) = 13

u1(h3) = 5 u1(2) = 12

u1(h1) = 0 u1(3) = 1

When ATTC is executed under the preference pro�le (%01;%�1), at Step 1 agent 1 points to

her top-ranked house h2 which points to agent 2; agent 2 points to her top-ranked house h3 which

points to agent 3; and agent 3 points to h3 which points to herself (agent 3 now cannot point to

her top-ranked house h1 because under %01 she is not an acceptable guest for agent 1). Agent 3

forms a cycle alone; she receives h3. At Step 2 agent 1 points to h2 which points to agent 2 and

agent 2 points to h1 which points to agent 1. A cycle forms and the associated assignments are

made. The allocation induced is

� : �(1) = (h2; 2); �(2) = (h1; 1); �(3) = (h3; 3):

Agent 1 is better o¤ under � than under � and so the manipulation bene�tted her. Also note

that in this example the core allocation is not unique as both � and � are core allocations. �

As Theorem 3.2 implies, the multiplicity of core allocations and the susceptibility to ma-

nipulation of ATTC mentioned in Proposition 3.4 vanish if agents are exactly indi¤erent across

acceptable guests.

Theorem 3.2 In a house-swapping market and under guest-dichotomous preferences, there ex-

ists a unique core allocation and ATTC is strategy-proof.

Proof. See Appendix.
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Appendix

Proof of Theorem 3.1. Consider a house-swapping market hI;H;%i where the preference

pro�le % is guest-diseparable. Let �ATTC denote the allocation that ATTC induces under %.

Let It and Ht respectively be the set of agents and the set of houses that ATTC assigns at Step

t. Let I t and H t respectively be the set of agents and the set of houses that ATTC assigns at

Step t or after. Also, for i 2 I let iH be the set of houses owned by agents who deem i as an

acceptable guest.

Suppose �ATTC is not a core allocation. Let


C;HC ; bl

�
be a blocking triplet at �ATTC where

the cardinality jCj takes the smallest possible value. By design of ATTC, the guest of every

agent is acceptable for her at �ATTC . Then for any i 2 C, we get bl(i) 2 iH , because otherwise

the agent who owns bl(i) would deem i as an unacceptable guest and therefore she would be

worse o¤ under bl than under �ATTC . Let

Ct = C \ It and HC
t = H

C \Ht,

i.e., Ct and HC
t are the sets of coalition members and their houses that ATTC assigns at

Step t. Note that the set of houses owned by agents in Ct is exactly HC
t because under ATTC

a house is assigned at the same step as its owner.

Let t be the earliest step such that Ct 6= ;. Consider an agent i 2 Ct. By design of ATTC,

�ATTC(i) is the house in H t \ iH that i ranks highest. Since i is weakly better o¤ under bl than

under �ATTC , either bl(i) = �ATTC(i) or bl(i) 2 iH is a house that i ranks even higher than

�ATTC(i), in which case bl(i) =2 H t. But then the agent in C who owns bl(i) must have been

assigned by ATTC before Step t, which contradicts our choice of t. So bl(i) = �ATTC(i). But

the same arguments hold for any i 2 Ct and so the houses in HC
t are assigned to the agents in

Ct in exactly the same way under �ATTC and under bl. Thus the agents in Ct are equally better

o¤ under bl and under �ATTC and there exists an agent in C n Ct who is better o¤ under bl

than under �ATTC . But then
D
C n Ct; HC nHt; eblE is also a blocking triplet where ebl(i) = bl(i)

for every i 2 C n Ct, which contradicts our initial choice of C as the blocking coalition with

minimum cardinality.
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Proof of Theorem 3.2. Consider a house-swapping market hI;H;%i where the preference

pro�le % is guest-dichotomous. Let �ATTC denote the allocation that ATTC induces under %.

Let It and Ht respectively be the set of agents and the set of houses that ATTC assigns at Step

t. Let I t and H t respectively be the set of agents and the set of houses that ATTC assigns at

Step t or after. Also, for i 2 I let iH be the set of houses owned by agents who deem i as an

acceptable guest. Our proof is in two parts.

Part 1, the uniqueness of a core allocation:

By Theorem 3.1 �ATTC is a core allocation. Suppose � 6= �ATTC is also a core allocation. By

design of ATTC, the guest of every agent is acceptable for her at �ATTC . Then for any i 2 C,

we get �(i) 2 iH , because otherwise the agent who owns �(i) would block � (she deems i as an

unacceptable guest; if she is assigned her own house, however, her guest will be acceptable).

Consider the sets I1 and H1. By design of ATTC, for any agent i 2 I1, �ATTC(i) is the house

that she ranks highest in iH . But then, given that �(i) 2 iH for every i 2 I, if �(i) 6= �ATTC(i)

for any i 2 I1, hI1; H1; bli would be a blocking triplet at � where bl(i) = �ATTC(i) for every

i 2 I1. That would contradict that � is a core allocation, so �(i) = �ATTC(i) for every i 2 I1.

Consider now the sets I2 and H2. By design of ATTC, for any agent i 2 I2, �ATTC(i) is the

house that she ranks highest in H2 \ iH . But then, given that �(i) 2 iH and �(i) =2 (H1 \ iH)

for every i 2 I, if �(i) 6= �ATTC(i) for any i 2 I2, hI2; H2; bli would be a blocking triplet at �

where bl(i) = �ATTC(i) for every i 2 I2. That would contradict that � is a core allocation, so

�(i) = �ATTC(i) for every i 2 I2.

But if we keep iterating the above arguments for I3 andH3, I4 andH4, and so on, we conclude

that � = �ATTC , which is a contradiction.

Part 2, the strategy-proofness of ATTC:

Consider any i 2 I and any misstatement %0i 2 Pi where %0i is guest-dichotomous. We

prove the strategy-proofness of ATTC by showing that i prefers the (house, guest) pair that she

receives under the preference pro�le % to the pair that she receives under the preference pro�le

(%0i;%�i).
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Let Step T be when i joins a cycle when ATTC is executed under (%0i;%�i). Let i1; i2; � � � ; ik; i

be the ordered list that characterizes the cycle that i joins (i.e., i1 points to hi2 which points

to i2; i2 points to hi3 which points to i3; � � � ; ik points to hi which points to i, and i points to

hi1 which points to i1). The associated assignments are made and hence under (%0i;%�i) i is

assigned the pair (hi1 ; ik). Note that hi1 2 iH because otherwise i would not be allowed to point

to hi1.

By its design, ATTC assigns i an acceptable guest if she submits her true preference relation.

Then i is better o¤ under % than under (%0i;%�i) if i deems ik as an unacceptable guest. So

suppose ik is an acceptable guest for i. Also, let Step T � be when ATTC assigns i a house under

%. There are two possible cases:

Case 1: T � � T

If T � � T then when ATTC is executed under % and under (%0i;%�i), the same cycles

form up to Step T (because the formation of these cycles depends only on %�i). Therefore,

when ATTC is executed under %, at Step T a chain forms, characterized by the ordered list

i1; i2; � � � ; ik; i of agents, where hi1 points to i1, i1 points to hi2 which points to i2, i2 points to hi3
which points to i3,� � � ; ik points to hi which points to i. At Step T and after, this chain remains

as it is without turning into a cycle as long as i remains in the diagram but not point to hi1.

But then when ATTC is executed under %, at Step T � agent i points to either hi1 or a house

in iH that she ranks even higher than hi1 . Also, in either case her assigned guest is acceptable.

But then i�s assigned pair under % is not less preferable than (hi1 ; ik).

Case 2: T � < T

If T � < T then when ATTC is executed under % and (%0i;%�i), the same cycles form up

to Step T � (because the formation of these cycles depends only on %�i). By design of ATTC,

under %, at Step T �, i�s assigned guest is acceptable for her, and her assigned house is the house

that she ranks highest in iH \HT �. Then the house that she receives under % is either hi1 or a

house that she ranks even higher. But then i�s assigned pair under % is not less preferable than

(hi1 ; ik).
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