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Abstract

My dissertation is comprised of three essays. In the first essay, I present a dynamic partial equi-
librium model of a simple economy with a closed-end fund. My model demonstrates that a com-
bination of management fees and a time-varying information advantage for a fund manager can
account for several empirically observed characteristics of closed-end funds simultaneously. The
model is consistent with the basic time-series behavior of fund discounts, explains why funds issue
at a premium, accounts for the excess volatility of fund returns, justifies the underperformance
of funds that trade at a premium, and is consistent with many time-series correlations between
discounts, NAV returns, and fund returns.

In the second essay, I present a dynamic rational expectations model of closed-end fund discounts
that incorporates feedback effects from activist arbitrage and lifeboat provisions. I find that the
potential for activism and the existence of a lifeboat both lead to narrower discounts. Furthermore,
both activist arbitrage and lifeboats effectuate an ex post transfer of wealth from managers to
investors but an ex ante transfer of wealth from low-ability managers to high-ability managers. On
average, investor wealth is unaffected by either activist arbitrage or lifeboats because their potential
benefits are factored into higher fund prices. Although lifeboats can reduce takeover attempts, they
do not increase expected managerial wealth.

In the third essay, I present a noisy rational expectations equilibrium model in which agents who
possess private information regarding the profitability of a firm are required to provide advance dis-
closure of their trading activity. I analytically characterize an equilibrium and conduct a numerical
analysis to evaluate the implications of advance disclosure relative to a market in which informed
agents trade without providing advance disclosure. By altering the information environment along
with managerial incentives, advance disclosure increases risk in the financial market while reducing
risk in the real economy. I also find that advance disclosure has implications for equilibrium prices
and allocations, managerial compensation contracts, investor welfare, and market liquidity.
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Chapter 1

The Closed-End Fund Puzzle:
Management Fees and Private
Information

We present a dynamic partial equilibrium model of a simple economy with a closed-end fund.
Our model demonstrates that a combination of management fees and a time-varying information
advantage for a fund manager can account for several empirically observed characteristics of closed-
end funds simultaneously. The model is consistent with the basic time-series behavior of fund
discounts, explains why funds issue at a premium, accounts for the excess volatility of fund returns,
justifies the underperformance of funds that trade at a premium, and is consistent with many
time-series correlations between discounts, NAV returns, and fund returns.

1.1 Introduction

For more than four decades, economists have struggled to understand the perplexing behaviors
exhibited by closed-end fund prices. These behaviors, which over the years have become known
collectively as the closed-end fund puzzle, are baffling on a number of levels. The most well-known
feature of the puzzle is that a closed-end fund’s discount, or the difference between the price of
the fund’s shares and its net asset value (NAV), tends to follow a predictable pattern over the
fund’s life cycle. There are, however, several aspects of the closed-end fund puzzle in addition to
the basic time-series properties of discounts that are equally intriguing and important. One such
aspect is that the returns on a fund’s shares tend to be more volatile than the returns on the fund’s
underlying assets. If closed-end funds are merely a portfolio of assets, why are fund prices more
volatile than the underlying assets? This question is especially fascinating in light of the fact that
fund prices underreact to NAV returns. Another feature of the puzzle is that funds that trade at
a premium tend to underperform relative to those that trade at a discount. This raises an obvious
question: why do investors buy funds at a premium when they expect them to underperform?
Furthermore, many of the correlations between the time-series of discounts, NAV returns, and fund
returns appear to defy common sense. For example, why are discounts correlated with future fund
returns but not future NAV returns? We address all of these features of the closed-end fund puzzle
in this paper.

While numerous frictions have been suggested over the years as the basis for the behavior of
closed-end fund prices, we demonstrate that a model combining two fundamental elements can
explain most of the salient facts about closed-end funds simultaneously: (i) a time-varying infor-
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mation advantage for a fund manager; and (ii) management fees. More specifically, we propose a
dynamic partial equilibrium model in which a closed-end fund manager periodically acquires private
information regarding the future performance of an underlying asset.1 The manager then exploits
her time-varying information advantage to earn positive abnormal returns for the fund prior to
deducting management fees. Whether a fund trades at a discount or a premium depends on the
value of the manager’s information in relation to the fees she collects for managing the fund.

Because a closed-end fund issues a fixed number of nonredeemable shares that trade at a price
determined by the market, the price of a fund’s shares often diverges from the fund’s NAV in an
apparent violation of the Law of One Price. In fact, closed-end fund discounts tend to follow a
predictable pattern over a fund’s life cycle, as documented by Lee, Shleifer, and Thaler (1990) and
others. Consistent with this well-documented time-series behavior of discounts, funds in our model
issue at a premium when the expected benefit from the manager’s information advantage outweighs
the cost of the management fees. After the manager’s private information is exploited, however,
funds begin to trade at a discount because the capitalized future management fees outweigh the
expected benefits from the manager’s future information advantages. The rapid emergence of a dis-
count in our model is consistent with existing empirical studies by Weiss (1989) and Peavy (1990)
who find that funds usually begin to trade at a discount within 100 days following the initial pub-
lic offering (IPO). Furthermore, the time-varying nature of the manager’s information advantage
leads to both cross-sectional and time-series fluctuations in discounts. Lastly, fund prices in our
model converge to a fund’s NAV when the fund is terminated, which is consistent with empirical
evidence that prices converge to NAV when funds are liquidated (Brickley and Schallheim (1985))
or reorganized into an open-end mutual fund (Brauer (1984)).

In addition to accounting for the basic time-series behavior of discounts over a fund’s life cycle,
our model also explains why funds issue at a premium. According to our model, funds issue at a
premium because issue premiums are utility-maximizing for fund managers, and investors are will-
ing to pay a premium because doing so maximizes their own expected utility and clears the market.
The driving force behind this result is the management fee, which simultaneously impacts both
managerial wealth and the manager’s incentive to exploit her information advantage by selecting
the fund’s portfolio of underlying assets. It turns out that the size of the fee that maximizes the
risk-averse manager’s expected utility also maximizes the value of the fund for investors because
the fee influences how aggressively the manager trades on her private information.

Our model also accounts for the excess volatility of fund returns despite the fact that fund
prices underreact to NAV returns, as reported by Pontiff (1997). Consistent with empirical obser-
vations, fund returns in our model are more volatile than NAV returns but covary negatively with
changes in premiums. Moreover, the fundamental source of a fund’s excess volatility in our model
is the manager’s information advantage, which is consistent with empirical evidence that market
risk factors do not explain excess volatility.

We also demonstrate that a combination of management fees and a time-varying information
advantage for a fund manager can justify one of the most anomalous characteristics of closed-end
funds—the underperformance of funds that trade at a premium relative to those that trade at a
discount, which has been documented by Thompson (1978) and Pontiff (1995). Funds that trade
at a premium in our model tend to underperform because they provide insurance against extreme
returns of the underlying assets. In our model, funds trade at a premium only when the manager
possesses a large information advantage, but possessing a large quantity of private information gen-

1Our use of the term “private information” should be broadly construed as the ability to more accurately predict
future prices. While we do not rule out the possibility of a fund manager trading on “insider” information, a manager’s
information advantage could stem from, say, a skill set specially tailored to a particular economic environment. We
discuss potential sources of the manager’s information advantage in more detail in Section 1.3.1.
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erates a large abnormal return only in the relatively rare instances where the private information
indicates that there will be an extreme return for an underlying asset. In these rare cases, the
manager can modify the fund’s portfolio to capitalize on her information advantage and thereby
generate a large abnormal return for the fund. Most of the time, however, the underlying assets will
not produce an extreme return. In these cases, which occur with great frequency, the manager’s
capability to earn a large abnormal return net of management fees is greatly diminished because
her private information is not very valuable. As a result, funds that trade at a premium tend to
underperform on average. Nevertheless, risk-averse investors are willing to hold such funds even
though they expect them to underperform since those funds protect investors from extreme losses.

Finally, our model is consistent with many of the time-series correlations between discounts,
NAV returns, and fund returns. Discounts in our model are persistent over time, are unrelated
to both past and future NAV returns, and are positively correlated with future fund returns but
negatively correlated with lagged fund returns. Additionally, NAV returns and fund returns are
not perfectly correlated.

In light of the fact that there is conflicting empirical evidence regarding both the existence of
managerial ability and the impact of management fees on discounts, the appropriateness of model-
ing the source of the puzzling behaviors exhibited by closed-end fund prices as a tradeoff between
a time-varying information advantage for a fund manager and management fees warrants further
discussion. Intuitively, it seems like management fees should affect discounts because on some level
fees represent a dead weight cost to a fund’s shareholders. In line with this reasoning, Kumar
and Noronha (1992) and Johnson, Lin, and Song (2006) report that discounts are significantly
and positively related to fund expenses. At the same time, empirical studies by Malkiel (1977)
and Barclay, Holderness, and Pontiff (1993) indicate that management fees do not significantly
contribute to observed discounts. Our model provides a novel explanation for this conflicting em-
pirical evidence, although a few arguments have previously emerged in the literature to reconcile
our intuition with the facts.2 In our model, the relationship between the management fee and
the discount is nonlinear and non-monotonic because the size of the fee determines not only the
amount of wealth transferred from investors to the manager but also influences how aggressively
the manager trades on her private information. Since the degree to which the manager exploits
her information advantage affects the value of the fund in a nonlinear and non-monotone fashion,
it is not surprising that empirical studies have generated mixed evidence concerning the effect of
management fees on discounts.

The empirical evidence regarding the existence of managerial ability is conflicted, as well. In
recent work, Fama and French (2010) report that open-end mutual fund managers add little value
over the long term. Once management fees are taken into account, managers seem to produce
negative abnormal returns on average. On the other hand, Chay and Trzcinka (1999) find that
closed-end fund premiums are positively related to future managerial performance over the short
term but not the long term. Our model is not inconsistent with either of these studies. Most
of the time, the fund manager in our model generates small positive abnormal returns. These
abnormal returns become negative after deducting management fees, however, which is why funds
usually trade at a discount. Nevertheless, in the relatively rare instances when the fund trades at a
premium, the manager can generate large but short-lived gross abnormal returns. Managerial per-

2One explanation by Gemmill and Thomas (2002) is that management fees frequently show up as being insignif-
icantly related to discounts in reduced form empirical studies because fees are highly collinear with other variables
that affect closed-end fund discounts. Another explanation by Chay and Trzcinka (1999) is that reported fees do not
include soft dollar expenses. Alternatively, Deaves and Krinsky (1994) argue that higher fees increase the probability
of a takeover attempt, which in turn results in lower discounts due to the price feedback effect created by the potential
takeover.
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formance is not persistent because the manager’s information advantages dissipate rather quickly.
To our knowledge, our model is the first to simultaneously explain most of the prominent styl-

ized facts about closed-end funds. Other theorists have made some progress in explaining the basic
time-series behavior of discounts in recent years, but none have successfully explained the excess
volatility of fund returns, the underperformance of funds that trade at a premium, or the several
time-series correlations between discounts and returns. For instance, Berk and Stanton (2007)
model a tradeoff between a reduced form managerial ability and management fees. By allowing a
manager with high ability to extract the surplus she creates via a pay raise, their model is able
to account for the predictable time-series pattern exhibited by discounts over a fund’s life cycle.
Additionally, Cherkes, Sagi, and Stanton (2009) demonstrate that liquidity concerns can lead to
new funds issuing at a premium during times when seasoned funds are trading at a premium and
then subsequently falling into a discount, but their model is unable to explain the behavior of dis-
counts for funds that hold liquid assets. In contrast to these theories, our model explains not only
the time-series behavior of discounts but also the excess volatility of fund returns, the underperfor-
mance of premium funds, and many of the time-series correlations between discounts and returns.

While the source of divergence between the price of a closed-end fund and its NAV has proven
to be elusive, we are not the first to surmise that an information advantage of some sort may be
the driving force behind the puzzling behavior of closed-end fund discounts. For example, Oh and
Ross (1994) construct an equilibrium model based on an information asymmetry between a fund
manager and investor. They show that the precision of the manager’s private information can
impact a fund’s discount, but since trading takes place at only a single date in their model, it is
unable to explain even the time-series properties of discounts, let alone the many other aspects of
the closed-end fund puzzle. Similarly, Arora, Ju, and Ou-Yang (2003) propose a two-period model
in which the fund manager has an initial information advantage but is constrained by contractually
imposed investment restrictions. They numerically show that the fund can issue at a premium and
later trade at a discount, but their model does not explain either the cross-sectional or time-series
variation in discounts.

The other basic building block of our model, management fees, has also previously been pro-
posed as a source of discounts. Ross (2002a) demonstrates that a closed-end fund will trade at a
discount equal to the capitalized management fees if the manager receives a constant percentage
of the fund’s NAV in perpetuity. This simple model, however, fails to explain why funds issue at
a premium or why discounts fluctuate over time. In related work, Ross (2002b) explores varia-
tions of the model and shows that with asymmetrically-informed investors funds may issue at a
premium and that dynamic distribution policies can result in a fluctuating discount. Nevertheless,
he does not simultaneously model both issue premiums and fluctuating discounts. In contrast to
Ross (2002a) and Ross (2002b), our model can explain the time-series attributes of funds without
relying on a dynamic distribution policy or information asymmetry among investors at the time of
issuance.3 Our model also accounts for the other prominent aspects of the closed-end fund puzzle.

Several other explanations for the behavior of closed-end fund discounts have been proposed
with varying degrees of success. For example, taxes may provide a partial explanation for the
existence of discounts. Since investors who purchase a closed-end fund with unrealized capital ap-
preciation face a future tax liability, the shares of such a fund should trade at a price lower than
an equivalent fund with no unrealized capital appreciation. Malkiel (1977) finds some empirical
support for this argument, but he demonstrates that taxes alone cannot quantitatively account for

3The information asymmetry in our model arises after the IPO and is between the fund manager and the investor.
Although this may seem like a minor distinction, our model illustrates that contemporaneous asymmetric information
among investors is not necessary to produce a premium at the IPO or a subsequent discount because only investors,
who always have identical information sets, trade shares in the fund.
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the observed discounts. Kim (1994) argues that tax-timing options also contribute to discounts. On
the other hand, Brickley, Manaster, and Schallheim (1991) observe a negative correlation between
unrealized capital appreciation and the discount, which is inconsistent with the taxation argument.
Still, taxes do not explain why funds issue at a premium or why the price converges to NAV upon
termination.

Malkiel (1977) provides some empirical evidence that funds investing in restricted stocks ex-
perience deeper discounts. Similarly, Bonser-Neal, Brauer, Neal, and Wheatley (1990) and Chan,
Jain, and Xia (2005) find that international barriers can affect discounts of funds that hold foreign
assets, but Kumar and Noronha (1992) find that holding a portfolio of foreign stock does not nec-
essarily impact the discount. Nonetheless, investing in restricted or foreign assets does not explain
discount dynamics for funds that hold liquid domestic assets. Agency costs also have been explored
as a potential factor affecting discounts. Barclay, Holderness, and Pontiff (1993) find that funds
with concentrated block ownership tend to have larger discounts, which they attribute to managers
diverting fund resources for their own private benefit. However, agency costs do not explain the
basic time-series pattern of fund discounts.

Lastly, De Long, Shleifer, Summers, and Waldmann (1990) speculate that the existence of ir-
rational noise traders creates additional risk for rational investors with a short investment horizon
and results in a lower price for closed-end funds. This theory predicts that new funds will issue at
a premium when noise traders are overly optimistic about future performance and that discounts
will vary with the fluctuations in noise trader opinion, or investor sentiment. Lee, Shleifer, and
Thaler (1991) find empirical support for this hypothesis by conjecturing that the investor sentiment
driving closed-end fund discounts also affects stock prices of small firms since individual investors,
who are the source of noise-trader risk, are the predominant holders of both types of assets in the
U.S. However, Dimson and Minio-Kozerski (1999) note that closed-end funds in the U.K. are pre-
dominantly held by institutions but nevertheless tend to trade at a discount. Furthermore, Chan,
Jain, and Xia (2005) find that noise traders are not a significant contributor to fund discounts.
Other studies have produced mixed evidence in support of the investor sentiment hypothesis (see,
e.g., Chen, Kan, and Miller (1993), Chopra, Lee, Shleifer, and Thaler (1993) and Elton, Gruber,
and Busse (1998)).

The remainder of this article is organized as follows. In Section 1.2, we outline the basic features
of the model and solve for the equilibrium over a short time horizon using symbolic computational
methods. We then demonstrate that our basic model with a short time horizon can account for the
predictable pattern of discounts over a fund’s life cycle and explain why funds issue at a premium.
In Section 1.3, we extend the model to a longer time horizon using the techniques discussed in
Section 1.2. We then simulate data and assess the model’s ability to account for several empirical
observations reported in the literature; namely, the puzzling time-series correlations between dis-
counts and returns, the excess volatility of fund returns, and the underperformance of funds that
trade at a premium. Finally, Section 1.4 concludes.

1.2 Basic Model

Time is discrete and indexed by t ∈ {1, 2, 3, 4}. Trading in the financial market occurs at
t = 1, 2, 3 while consumption occurs at t = 4. A single fund manager (she) and a single represen-
tative investor (he) are present in the market. Both agents exhibit preferences, which are common
knowledge, characterized by constant absolute risk aversion (CARA), where γi and γm denote the
coefficients of risk aversion for the investor and manager, respectively.

The economy consists of three types of financial assets—a stock, a sequence of one-period bonds,
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and a closed-end fund. The stock pays a random amount, Ỹ , at t = 4 but does not pay any divi-
dends prior to that time. The stock payoff consists of the sum of three independent and normally
distributed random variables,

Ỹ ≡ X̃1 + X̃2 + X̃3, (1.1)

where X̃t ∼ N
(
µt, σ

2
t

)
for t = 1, 2, 3. As discussed in greater detail below, the value of each X̃t

is initially unknown but is observed as time progresses. For simplicity, we assume that the stock
price follows an exogenous process given by

P st =
t−1∑
τ=1

Xτ +
3∑
τ=t

(
µτ −

γiγm
Γ

σ2
τ

)
, (1.2)

where Γ ≡ γi + γm. Hence, the price at time t is equal to the conditional expectation of the stock’s
payoff less an adjustment for risk. While the specific form of the exogenous price process is not
terribly important for our analysis, this particular process is reflective of endogenous equilibrium
prices in models with symmetrically-informed agents who have CARA preferences. Alternatively,
the stock price can be determined endogenously within our framework without affecting the fun-
damental nature of our analysis. Details of the analysis of our model with endogenous stock prices
are contained in Appendices A.1 and A.2.

A couple of simplifying assumptions are made regarding the bonds. Each one-period bond has
a constant interest rate that is normalized to zero; accordingly, a bond costs one unit at time t
and pays one unit at t + 1. Additionally, the supply of each one-period bond is elastic. These
assumptions dramatically improve the tractability and computational efficiency of the model. Al-
though a non-zero interest rate would impact the prices of the stock and closed-end fund, empirical
studies have found that neither the short-term interest rate (Coles, Suay, and Woodbury (2000))
nor changes in interest rates (Gemmill and Thomas (2002) and Lee, Shleifer, and Thaler (1991))
significantly affect discounts.

The closed-end fund is an endogenous, time-varying portfolio of the stock and bond. This
relatively simple setup highlights the effect of asymmetric information on the discount, though in
reality closed-end funds typically specialize in a diversified portfolio of either stocks or bonds (see,
e.g., Dimson and Minio-Kozerski (1999)). The fund, whose shares are traded in the market, is in
unit supply, and the equilibrium price at time t is endogenous and denoted by P ft . At t = 1, the
fund undergoes an IPO. The fund is liquidated at t = 4, and its assets are distributed to the fund’s
shareholders at that time after deducting management fees. Furthermore, the fund is prohibited
from issuing new shares or repurchasing existing shares. Although the potential for early liquidation
or open-ending can impact the discount (see Brauer (1988), Deaves and Krinsky (1994), Gemmill
and Thomas (2002), Johnson, Lin, and Song (2006), Bradley et al. (2010), and Lenkey (2011)), we
assume that the fund will not be liquidated prior to t = 4 with certainty.

At each trading date, the fund manager chooses the composition of the closed-end fund accord-
ing to her preferences by allocating the fund’s financial resources among the bond and stock while
the investor optimally allocates his wealth across the bond, stock, and fund. At t = 1, the investor
receives an exogenous endowment of wealth, Wi, and he observes the fund’s initial wealth that
is designated for investment, Wf , which is usually reported in a fund’s prospectus. As is typical
in practice, the investor is unable to observe the contemporaneous composition of the fund, but
he acquires knowledge of the prior period composition as time progresses; that is, at time t the
investor has knowledge of all fund portfolios through t − 1. In some cases, the investor can infer
the fund’s portfolio at the current date based on the fund’s prior portfolios in addition to the other
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parameters and state variables.4

The fund manager obtains utility solely from the consumption, cm, of fees, φ, earned from
managing the closed-end fund plus any issue premium, ρ. The management contract is exogenous
and pays the manager a fixed amount, a, plus a fraction, b, of the fund’s NAV return,5

φ̃ = a+ b
(
Sf3 Ỹ +Bf

3 − V1

)
, (1.3)

where Sft and Bf
t denote the quantity of stock and number of bonds held by the fund from time t

to t+ 1 and
Vt ≡ Sft P st +Bf

t (1.4)

denotes the fund’s time-t NAV, which is equal to the market value of the assets in the fund’s
portfolio. The initial NAV equals the fund’s initial wealth designated for investment: V1 = Wf .
The fund’s time-t discount, Dt, is defined as the difference between the price of the fund and NAV,

Dt ≡ Vt − P ft , (1.5)

which means that the fund’s issue premium is

ρ ≡ P f1 − V1. (1.6)

Defining the discount as the simple difference, as opposed to the more conventional definition of
percentage or log difference, between the price of the fund and its NAV results in simpler expressions
for the discount. Percentage and log discounts can easily be obtained from Dt.

The investor, meanwhile, receives utility solely from the consumption, ci, of the payoff from his
portfolio. Hence,

c̃i = Si3Ỹ +Bi
3 + F3

(
Sf3 Ỹ +Bf

3 − φ̃
)
, (1.7)

where Sit denotes the quantity of stock, Bi
t denotes the number of bonds, and Ft denotes the shares

of the fund held by the investor from time t to t+ 1.
Information regarding the stock payoff, Ỹ , evolves over time. Recall that trading in the financial

market occurs at t = 1, 2, 3 and consumption occurs at t = 4. As time progresses, the manager
obtains an information advantage over the investor which she exploits to earn an excess return for
the fund. Let Iit and Ift denote the information set at time t for the investor and fund manager,
respectively. Initially, the value of each Xt is unknown to both the investor and manager: Ii1 =
If1 = ∅. At t = 2, both the manager and investor observe X1. Additionally, the manager observes
a portion of X̃2, and it is at this point that the manager can exploit her information advantage to
earn an excess return. We assume that the portion of X̃2 observed by the fund manager depends on

4Knowledge of prior fund compositions is a sufficient, but not a necessary, condition for the investor to be able
to infer the fund’s current composition when information is symmetric. The investor can still infer the fund’s
contemporaneous portfolio when information is symmetric if he instead only observes current NAV.

5This contractual form differs from most compensation contracts in the industry which pay the fund manager a
fraction of the total assets under management. While the results of the basic model developed in this section are
robust to these more prevalent contractual forms, the “two-part” contract produces more realistic solutions to the
extended model presented in Section 1.3. In the extended model, the manager is compensated with a sequence of
fees over a longer time horizon. If the compensation contract paid the manager a fraction of the total assets under
management so that each fee depended on the NAV at a particular date, then portfolio choices would affect not only
the contemporaneous fee but also all future fees. Hence, such a contract effectively makes holding stock riskier for
the manager than when she is compensated via the two-part contract. Because she has CARA preferences, to offset
the increased risk the manager would tend to allocate a small amount of the fund’s wealth to the stock at early dates
and gradually increase the allocation over time. In contrast, the two-part contract leads to stock allocations that are
stationary, which is more realistic.
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her ability, α ∈ (0, 1), to acquire information, with larger values of α representing a greater ability.
Both the manager and investor are able to discern the value of α before the fund undergoes the
IPO. We specifically assume that X̃2 is the sum of two components,

X̃2 ≡ Z̃1 + Z̃2, (1.8)

and that the manager privately observes Z1. Furthermore, we assume that Z̃1 ∼ N
(
αµ2, ασ

2
2

)
and Z̃2 ∼ N

(
(1 − α)µ2, (1 − α)σ2

2

)
, which means that the distribution of the stock payoff, Ỹ ,

is independent of ability, yet a manager with a higher ability level acquires more information
than a manager with low ability. Consequently, the information sets at t = 2 are asymmetric:
Ii2 = {X1} and If2 = {X1, Z1}. At t = 3, both agents observe X2, so the information sets are
once again symmetric: Ii3 = If3 = {X1, X2}. Finally, all information is available at the terminal
date: Ii4 = If4 = {X1, X2, X3}. This information structure enables the study of equilibrium
dynamics and, in particular, the impact of an information advantage on the closed-end fund price.
All acquisition of information is costless; consequently, potential moral hazard issues relating to
information acquisition do not arise.

The sequence of events is as follows. The fund undergoes an IPO at t = 1, and the investor and
manager subsequently choose portfolios at market-clearing prices. The investor allocates his wealth
among the bond, stock, and fund while the manager allocates the fund’s financial resources among
the bond and stock. Because preferences are common knowledge and information is symmetric,
the investor can infer the fund’s portfolio composition from the equilibrium stock price. At t = 2,
the fund discloses its portfolio holdings from the previous date, the manager acquires private
information regarding the terminal payoff of the stock, and both the investor and manager rebalance
their respective portfolios. The investor cannot infer the precise composition of the fund’s current
portfolio since he does not observe Z1, although he does form beliefs about a distribution of the
fund’s portfolio based on the manager’s preferences. At t = 3, the fund manager’s information
advantage disappears, both agents rebalance their respective portfolios, and the investor can once
again infer the fund’s portfolio from the equilibrium stock price and the composition of the fund’s
portfolio from the previous date, which is announced prior to trading. Finally, the management
fees are paid, the portfolios are liquidated, and consumption occurs at t = 4.

We make one final technical assumption regarding the relative magnitudes of the agents’ risk
aversion coefficients to ensure well-defined and meaningful solutions: Γb > γi. This assumption is
entirely reasonable if γm � γi, which is not unrealistic since in actuality the mass of investors is far
larger than that of fund managers and the coefficients of risk aversion are equivalent to the inverses
of the agents’ risk tolerances. In other words, this is an assumption about the relative masses of
the agents rather than their risk preferences.

The equilibrium is solved recursively with the aid of symbolic computational methods. Section
1.2.1 characterizes the equilibrium at t = 3. Those results are then drawn on in Section 1.2.2 to
derive the equilibrium at t = 2, which in turn is relied upon to characterize the equilibrium at t = 1
in Section 1.2.3. Some implications of the basic model are discussed in Section 1.2.4.

1.2.1 Equilibrium at t = 3

Information is symmetric at t = 3. The equilibrium price of the closed-end fund is derived
from the utility-maximizing objectives of the manager and investor. The following proposition
characterizes the equilibrium discount.

Proposition 1. At t = 3, there exists a unique equilibrium in which the closed-end fund discount
is given by

D3 = a+ b
(
V3 − V1

)
. (1.9)
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The remaining portion of this subsection describes the equilibrium derivation, beginning with
the fund manager’s objective. The fund manager’s goal at t = 3 is to maximize her expected utility
from consumption of the management fees and issue premium by choosing the composition of the
closed-end fund subject to a budget constraint:

max
Sf3

E3

[
− exp[−γmc̃m] |X1, X2

]
(1.10)

subject to

c̃m = φ̃+ ρ (1.11)

Bf
3 =

(
Sf2 − S

f
3

)
P s3 +Bf

2 , (1.12)

where Et is the expectation operator conditional on information available at time t. Since, condi-
tional on X1 and X2, the manager’s consumption is log-normally distributed, her expected utility
can be rewritten in closed form as

− exp
[
−γm

(
ρ+ a+ b

[
Sf3
(
X1 +X2 + µ3 − P s3

)
+ Sf2P

s
3 +Bf

2 − V1

]
− 1

2γmb
2
(
Sf3
)2
σ2

3

)]
(1.13)

after substituting (1.1), (1.3), (1.11), and (1.12) into (1.10) and integrating over X̃3. The manager’s
stock allocation is then derived by differentiating (1.13) with respect to Sf3 and substituting the
stock price, (1.2), into the corresponding first-order condition to obtain

Sf3 =
γi
Γb
. (1.14)

The investor faces a problem similar to that of the manager. The investor’s objective is to
maximize his expected utility from consumption of the assets in his portfolio subject to a budget
constraint, taking into account the portfolio held by the fund:6

max
Si3, F3

E3

[
− exp[−γic̃i] |X1, X2

]
(1.15)

subject to
Bi

3 =
(
Si2 − Si3

)
P s3 +Bi

2 +
(
F2 − F3

)
P f3 (1.16)

as well as (1.12) and (1.14). Since the investor’s consumption is also conditionally log-normally
distributed, his expected utility can be rewritten as

− exp
[
−γi

(
Si3
(
X1 +X2 + µ3 − P s3

)
+ Si2P

s
3 +Bi

2 + F2P
f
3 − 1

2γi
(
Si3 + (1− b)F3S

f
3

)2
σ2

3

+ F3

[
(1− b)

(
Sf3
(
X1 +X2 + µ3 − P s3

)
+ Sf2P

s
3 +Bf

2

)
+ bV1 − P f3 − a

])]
(1.17)

after substituting (1.1), (1.3), (1.7), (1.12), and (1.16) into (1.15) and integrating over X̃3. Differ-
entiating (1.17) with respect to Si3 and substituting (1.2) and (1.14) into the first-order condition
provides the investor’s stock allocation,

Si3 =
Γb− γi

Γb
. (1.18)

6Recall that the investor can infer the fund’s portfolio at t = 3 since he has knowledge of the prior composition of
the fund in addition to the other state variables and parameters.
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Finally, the fund price is obtained by differentiating the investor’s expected utility, (1.17), with
respect to F3 and substituting the stock price, stock allocations, and market-clearing condition
(F3 = 1) into the first-order condition, which gives

P f3 = V3 − a− b
(
V3 − V1

)
. (1.19)

Thus, the fund price is equal to the fund’s NAV minus an adjustment for the management fees.
It follows immediately from (1.19) that the discount, which is given by (1.9), stems from the
management fees when the investor and manager have identical information sets and there is no
possibility of a future information asymmetry. The fund will trade at a discount (as opposed to a
premium) whenever a+ bV3 > bV1; that is to say, appreciation of the NAV is a sufficient condition
for the fund to trade at a discount.

Since the closed-end fund generally trades at a price different from its NAV, it is conceivable
that an arbitrage opportunity exists. We show here, however, that the discount does not present an
arbitrage opportunity. If the fund is trading at a discount relative to NAV, then a potential arbitrage
strategy would entail purchasing shares in the fund and simultaneously taking an offsetting position
in a hedging portfolio. Since the fund payoff at t = 4, net of management fees, is

(1− b)
(
Sf3 Ỹ +Bf

3

)
+ bV1 − a,

an appropriate hedging portfolio would consist of −
(
(1 − b)Bf

3 + bV1 − a
)

bonds and −(1 − b)Sf3
shares of stock, but because the cost of this hedging portfolio equals −P f3 , there is no arbitrage
opportunity. In other words, arbitrage does not exist because the discount at t = 3 arises solely
from the future management fees, which also reduce the fund payoff.

1.2.2 Equilibrium at t = 2

The stock allocations and equilibrium fund price derived in Section 1.2.1 are used to determine
the equilibrium fund price at t = 2. Recall that information is asymmetric at t = 2 as the fund
manager observes the value of Z1 but the investor does not. The following proposition characterizes
the equilibrium in the presence of asymmetric information.

Proposition 2. At t = 2, there exists a unique equilibrium in which the closed-end fund discount
is given by

D2 = a+ b
(
V2 − V1

)
− λ (1.20)

where
λ ≡ α(1− b)(Γb− γi)

α(1− b)γi(Γb− γi + γmb) + (1− α)γ2
mb

2
. (1.21)

The derivation of the equilibrium is described in the remaining portion of this subsection. Since
the manager’s expected utility is independent of the investor’s portfolio, the manager’s problem is
relatively straightforward and is analogous to her problem at t = 3. On the other hand, because
the investor does not observe the manager’s private information, his situation is more complicated
and involves additional uncertainty.

At t = 2, the manager chooses the fund allocation to maximize her expected utility subject to
a budget constraint, bearing in mind the future stock price and fund portfolio:

max
Sf2

E2

[
− exp

[
−γm

(
ρ + a + b

[γiγm
Γ Sf3σ

2
3 + Sf2 P̃

s
3 + Bf

2 − V1

]
− 1

2γmb
2
(
Sf3
)2
σ2

3

)] ∣∣∣X1, Z1

]
(1.22)
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subject to
Bf

2 =
(
Sf1 − S

f
2

)
P s2 +Bf

1 (1.23)

in addition to (1.14), where the manager’s objective function follows from (1.13). Substituting
(1.2), (1.4), (1.8), (1.14), and (1.23) into (1.22) and integrating over Z̃2 provides the following
closed-form expression for the manager’s expected utility at t = 2:

− exp
[
−γm

(
ρ+ a+ γ2

i γm
2Γ2 σ

2
3 − 1

2(1− α)γmb2
(
Sf2
)2
σ2

2

+ b
[
Sf2
(
X1 + Z1 + (1− α)µ2 + µ3 − P s2 −

γiγm
Γ σ2

3

)
+ Sf1

(
P s2 − P s1

)])]
. (1.24)

Then, differentiating (1.24) with respect to Sf2 and substituting the stock price into the first-order
condition gives the manager’s demand function,

Sf2 =
Z1 − αµ2 + γiγm

Γ σ2
2

(1− α)γmbσ2
2

. (1.25)

Thus, the fund’s stock holdings are directly proportional to the manager’s private information, Z1.
Furthermore, the presence of Z1 in the manager’s demand function represents an additional source
of risk for the investor.

Since the investor does not observe Z1 at t = 2, he cannot infer the precise composition of the
fund’s portfolio. Given knowledge of the fund’s portfolio from the previous period, however, he can
infer a distribution of the fund’s current composition. Therefore, the investor’s problem at t = 2
is to maximize his expected utility subject to a budget constraint, taking into consideration the
results from t = 3 and the uncertainty surrounding the fund’s current portfolio:

max
Si2, F2

E2

[
− exp

[
−γi

(
γiγm

Γ Si3σ
2
3 + Si2P̃

s
3 +Bi

2 + F2P̃
f
3 − 1

2γ
(
Si3 + (1− b)F3S

f
3

)2
σ2

3

+ F3

[
(1− b)

(γiγm
Γ Sf3σ

2
3 + S̃f2 P̃

s
3 + B̃f

2

)
+ bV1 − P̃ f3 − a

])] ∣∣∣X1

]
(1.26)

subject to
Bi

2 =
(
Si1 − Si2

)
P s2 +Bi

1 +
(
F1 − F2

)
P f2 (1.27)

plus (1.14), (1.18), (1.19), (1.23), (1.25), and F3 = 1, where the investor’s objective function follows
from (1.17). Because the fund’s stock holdings, (1.25), do not depend on Z2, conditional on Z1 the
investor’s utility is log-normally distributed. Therefore, integration with respect to Z̃2 is relatively
straightforward. Substituting the aforementioned equations (except (1.25)) and (1.8) into (1.26)
and integrating over Z̃2, the investor’s expected utility can be rewritten as

E2

[
− exp

[
−γi

((
Si2 + F2(1− b)S̃f2

)(
X1 + Z̃1 + (1− α)µ2 + µ3 − P s2 −

γiγm
Γ σ2

3

)
+ Si1P

s
2 +Bi

1 + F1P
f
2 + F2

[(
Sf1P

s
2 +Bf

1

)
(1− b) + bV1 − P f2 − a

]
+ γiγ

2
m

2Γ2 σ
2
3

− 1
2(1− α)γi

(
Si2 + (1− b)F2S̃

f
2

)2
σ2

2

)] ∣∣∣X1

]
. (1.28)

The investor must also consider his uncertainty regarding the fund’s portfolio when selecting his
own portfolio. As (1.25) reveals, the manager’s stock demand is linear in Z1. Hence, the investor’s
expected utility is log-quadratic in Z̃1. Using symbolic computational methods to integrate (1.28)

11



after substituting (1.25) and F1 = 1 provides a closed-form expression for the investor’s expected
utility,7

− 1√
1− 2ασ2

2I
i
2

exp
[
Gi2 +

αµ2H
i
2 + 1

2ασ
2
2

(
H i

2

)2 + (αµ2)2Ii2(
1− 2ασ2

2I
i
2

) ]
, (1.29)

where

Gi2 ≡ Gi2
(
X1, S

i
2, F2, P

s
2 , P

f
2 , S

i
1, S

f
1 , B

i
1, B

f
1 , P

s
1 ,Wf ;α, γi, γm, µ2, µ3, σ

2
2, σ

2
3, a, b

)
H i

2 ≡ H i
2

(
X1, S

i
2, F2, P

s
2 ;α, γi, γm, µ2, µ3, σ

2
2, σ

2
3, b
)

Ii2 ≡ Ii2
(
F2;α, γi, γm, σ2

2, b
)

are functions of the underlying parameters and state variables.8 Differentiating this expression
with respect to Si2 and substituting (1.2) and F2 = 1 into the first-order condition provides the
investor’s stock demand at t = 2,

Si2 =
Γb− γi

Γb
. (1.30)

Lastly, the closed-end fund price is obtained by substituting (1.30) into (1.29), differentiating
the resulting expression with respect to F2, substituting (1.2) and F2 = 1 into the first-order
condition, and solving for price,

P f2 = V2 − a− b
(
V2 − V1

)
+ λ, (1.31)

where λ is defined in Proposition 2 and represents the expected benefit from the manager’s private
information, i.e., the expected value of the manager’s private information before Z1 is realized.
The discount, which is given by (1.20), follows immediately from (1.31). Notice that the size of the
closed-end fund discount depends on the manager’s ability to acquire information, the management
fees, and the risk preferences of the agents. The discount does not depend on either the expected
return or volatility of the underlying asset. The fund will trade at a discount (as opposed to
a premium) whenever b(V2 − V1) > λ − a. In contrast to t = 3 where any amount of NAV
appreciation leads to a discount, at t = 2 the NAV must appreciate beyond a particular level in
order for a discount to emerge. Furthermore, the investor cannot arbitrage the discount by taking
a position in the fund along with an offsetting position in a hedging portfolio because he cannot
infer the exact composition of the fund.

1.2.3 Equilibrium at t = 1

The results from t = 2, 3 are utilized in deriving the equilibrium at t = 1. Like at t = 3,
information is symmetric at t = 1. Accordingly, many of the results parallel those derived earlier.
The following proposition characterizes the equilibrium.

Proposition 3. At t = 1, there exists a unique equilibrium in which the closed-end fund discount
is given by

D1 = a− λ. (1.32)

7
∫
e−ξx

2−2νxdx =
√

π
ξ
e
ν2

ξ if ξ > 0. The assumption that Γb > γi ensures that the restriction on ξ is satisfied.
8The expressions for Gi2, Hi

2, and Ii2, as well as the analogous expressions for the constant terms in (1.35) and
(1.40), are not reported but are available upon request.
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Although the results are similar to those obtained at t = 3, the derivation here is much more
complicated due to the presence of a future information asymmetry. We describe the derivation in
the remaining portion of this subsection, starting with the fund manager’s objective.

Taking into account the t = 2 fund portfolio and stock price, the manager’s goal at t = 1 is to
maximize her expected utility subject to a budget constraint:

max
Sf1

E1

[
− exp

[
−γm

(
ρ+ a+ γ2

i γm
2Γ2 σ

2
3 − 1

2(1− α)γmb2
(
S̃f2
)2
σ2

2

+ b
[
S̃f2
(
X̃1 + Z̃1 + (1− α)µ2 + µ3 − γiγm

Γ σ2
3 − P̃ s2

)
+ Sf1

(
P̃ s2 − P s1

)])]]
(1.33)

subject to
Bf

1 = Wf − Sf1P
s
1 (1.34)

as well as (1.25), where her objective function follows from (1.24). Since (1.33) is log-quadratic in
Z̃1, we again utilize symbolic computational methods to obtain a closed-form expression for the
manager’s expected utility,

− 1√
1− 2ασ2

2I
f
1

exp

[
Gf1 +

αµ2H
f
1 + 1

2ασ
2
2

(
Hf

1

)2 + (αµ2)2If1(
1− 2ασ2

2I
f
1

) ]
, (1.35)

after substituting the t = 2 stock price and (1.25), where

Gf1 ≡ G
f
1

(
X1, S

f
1 , P

s
1 ;α, γi, γm, µ2, µ3, σ

2
2, σ

2
3, a, b, ρ

)
Hf

1 ≡ H
f
1

(
α, γi, γm, µ2, σ

2
2

)
If1 ≡ I

f
1

(
α, σ2

2

)
.

Then, since (1.35) is log-normally distributed, integrating over X̃1 is relatively straightforward and
leads to the following expression for the manager’s expected utility at t = 1:

−
√

1− α exp
[
−γm

(
ρ+ a+ bSf1

(
µ1 + µ2 + µ3 − P s1 −

γiγm
Γ

(
σ2

2 + σ2
3

))
+ γ2

i γm
2Γ2

(
σ2

2 + σ2
3

)
− 1

2γmb
2
(
Sf1
)2
σ2

1

)]
(1.36)

Lastly, differentiating (1.36) with respect to Sf1 and substituting the stock price into the first-order
condition gives the manager’s stock allocation,

Sf1 =
γi
Γb
, (1.37)

which is the same constant fraction as at t = 3.
Turning to the investor, his problem at t = 1 is to maximize his expected utility subject to a

budget constraint while considering the results from t = 2 as well as the closed-end fund’s current
composition:9

max
Si1, F1

E1

[
− exp

[
−γi

((
Si2 + F2(1− b)S̃f2

)(
X̃1 + Z̃1 + (1− α)µ2 + µ3 − P̃ s2 −

γiγm
Γ σ2

3

)
+ Si1P̃

s
2 +Bi

1 + F1P̃
f
2 + F2

[
(1− b)

(
Sf1 P̃

s
2 +Bf

1

)
+ bV1 − P̃ f2 − a

]
+ γiγ

2
m

2Γ2 σ
2
3

− 1
2(1− α)γi

(
Si2 + (1− b)F2S̃

f
2

)2
σ2

2

)]]
. (1.38)

9As at t = 3, the investor can infer the fund’s current portfolio composition.

13



subject to
Bi

1 = Wi − Si1P s1 − F1P
f
1 (1.39)

in addition to (1.25), (1.30), (1.31), (1.34), (1.37), and F2 = 1, where his objective function follows
from (1.28). Substituting these constraints into (1.38) and integrating over Z̃1 provides a closed-
form expression for the investor’s expected utility at t = 1,

− 1√
1− 2ασ2

2I
i
1

exp
[
Gi1 +

αµ2H
i
1 + 1

2ασ
2
2

(
H i

1

)2 + (αµ2)2Ii1(
1− 2ασ2

2I
i
1

) ]
, (1.40)

where

Gi1 ≡ Gi1
(
X1, S

i
1, F1, P

s
1 , P

f
1 ,Wi,Wf ;α, γi, γm, µ2, µ3, σ

2
2, σ

2
3, a, b

)
H i

1 ≡ H i
1

(
α, γi, γm, µ2, σ

2
2, b
)

Ii1 ≡ Ii1
(
α, γi, γm, σ

2
2, b
)
.

The investor’s stock allocation is then found by integrating (1.40) over X̃1, differentiating the
resulting expression with respect to Si1, and substituting the stock price and market-clearing con-
dition into the first-order condition to obtain

Si1 =
Γb− γi

Γb
. (1.41)

Similarly, the price of the closed-end fund is found by integrating (1.40) over X̃1, differentiating
the resulting expression with respect to F1, and substituting (1.41) and F1 = 1 into the first-order
condition, which gives

P f1 = V1 − a+ λ. (1.42)

Thus, the fund price is equal to NAV plus an adjustment for the management fees and the manager’s
future information advantage. The fund’s discount at t = 1 is given by (1.32). Note that the fund
will issue at a premium if λ > a.

Like at t = 3, it is conceivable that an arbitrage opportunity exists because the fund price
generally does not equal NAV. Though as we now show, the discount does not present an arbitrage
opportunity. If the fund is issued at a premium, as is typical in practice, then an arbitrage strategy
would involve taking a short position in the fund along with an offsetting position in a hedging
portfolio. It is easy to verify that P f2 can be replicated by forming a portfolio consisting of (1−b)Sf1
shares of stock and bSf1P

s
1 +Bf

1 − a+ λ bonds at t = 1. Since the cost of this portfolio equals P f1 ,
however, there is no arbitrage.

1.2.4 Implications of the Basic Model

Though relatively simple, the basic model described in the previous subsections can account for
some of the puzzling behaviors exhibited by closed-end funds. First, the basic model shows that
a combination of private information and management fees can explain the predictable pattern of
discounts observed over a fund’s life cycle, as outlined by Lee, Shleifer, and Thaler (1990). The
closed-end fund will issue at a premium if λ > a, and a discount will emerge as time progresses.
Furthermore, a simple comparison of the discounts reveals that the size of the closed-end fund
discount fluctuates over time. In particular, NAV appreciation leads to an increase in the discount,
which is consistent with the empirical findings of Malkiel (1977) and Pontiff (1995). Additionally,
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Table 1.I: Parameter Values.

Variable Symbol Value
Investor’s coefficient of risk aversion γi 1
Manager’s coefficient of risk aversion γm 40
Fixed component of management fee a 0.01675
Variance of X̃1 σ2

1 0.00417
Variance of X̃2 σ2

2 0.01667
Variance of X̃3 σ2

3 0.00417

the principle of no arbitrage along with (1.9) suggest that the discount will disappear once the
management fees are paid immediately prior to liquidation at t = 4.

As noted above, the fund will issue at a premium if λ > a. Moreover, since λ is a function of
managerial ability and the variable component of the management fee, for any given ability level
the contract parameters, a and b, can be chosen so that the fund issues at a premium. There is no
inherent reason, though, why a closed-end fund should issue at a premium rather than at NAV.10

After all, the investor receives the equilibrium rate of return over the life of the fund regardless
of whether it issues at a premium or at NAV. As we discuss below, however, there is a direct
relationship between the issue premium and the manager’s ex ante expected utility.

The relationship between the issue premium and the manager’s expected utility is best under-
stood graphically. In order to plot this relationship, we assume reasonable numerical values for
various parameters in the model. The investor’s coefficient of risk aversion is normalized to one,
and the manager’s coefficient of risk aversion of 40 is chosen to satisfy the assumption that Γb > γi
and still accommodate relatively low values for b. The fixed component of the management fee is
set to 0.01675, but it affects neither the shape of the issue premium nor the manager’s expected
utility. Finally, the variance of the stock payoff is chosen to match the return precision from Berk
and Stanton (2007), with two-thirds of the total variance allocated to the portion of the payoff that
can potentially comprise the manager’s private information, X̃2, and one-sixth allocated to each of
the remaining portions, X̃1 and X̃3. These parameter values are summarized in Table 1.I.

Figure 1.1(a) plots the issue premium and Figure 1.1(b) plots the manager’s expected util-
ity as a function of managerial ability, α, and the variable component of the management fee, b.
Comparing these figures, it is evident that the choice of b that maximizes the manager’s expected
utility for a given ability level also maximizes the issue premium.11 This relationship explains why
closed-end funds tend to issue at a premium. Provided that a is not too large, the fund manager’s
utility-maximizing choice of b gives rise to an issue premium, and given that choice of b, the investor
will pay a premium because doing so maximizes his own expected utility and clears the market.

Note that choosing the variable component of the management contract to maximize the man-
ager’s expected utility is not merely a transfer of wealth from the investor to the manager, as
changes in b influence how aggressively the manager trades on her private information and affect
the risk characteristics of the fund. In contrast, decreasing the value of the fixed component of the
management contract, a, leads to a larger issue premium and constitutes a pure wealth transfer
from the investor to the manager at the outset but also results in lower management fees and

10Pursuant to the Investment Company Act of 1940, a closed-end fund may sell its common stock at a price less
than NAV only in certain limited circumstances.

11This can be verified numerically. The relationship also holds if instead the management contract pays the manager
a fraction of the total assets under management, although the shape of the issue premium is slightly different. We
provide robustness checks of this result when the stock price is endogenously determined in Appendices A.1 and A.2.
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Figure 1.1: Issue Premium and Expected Utility.

an offsetting wealth transfer from the manager to the investor when the fund terminates. Hence,
adjustments to a do not affect the manager’s expected utility.

Additionally, the fact that the issue premium is not monotonic in b may shed some light on why
there is mixed empirical evidence regarding the impact of management fees on discounts. Since the
variable component of the management fee affects the manager’s incentive to exploit her informa-
tion advantage, which in turn affects the fund’s risk characteristics, the management fee indirectly
affects the fund price and, ultimately, the size of the closed-end fund discount. As is evident
from Figure 1.1(a), the relationship between b and the discount is nonlinear and non-monotonic.
Therefore, it is not terribly surprising, at least according to our model, that empirical studies have
produced mixed evidence concerning the effect of fees on discounts.

1.3 Extended Model

The basic model described in Section 1.2 can be extended to an economy that includes a longer
time horizon and random ability. The aims of this section are to illustrate the evolution of the
discount over time and test whether the combination of management fees and a time-varying infor-
mation advantage can explain some puzzling empirical features of closed-end funds—namely, the
correlations between discounts and returns, the excess volatility of fund returns, and the under-
performance of premium funds. We first describe the framework of the extended model in Section
1.3.1 and present the equilibrium in Section 1.3.2. We then simulate data in Section 1.3.3 and
compare the model’s predictions to some empirical characteristics of closed-end funds reported in
the literature.

1.3.1 Assumptions

This subsection outlines the assumptions of the extended model. Most of these assumptions
parallel those of basic model described in Section 1.2 but are modified to encompass a longer time
horizon and time-varying managerial ability. Extending the time horizon allows us to evaluate the
behavior of discounts and returns over a fund’s life cycle. In particular, we can use the extended
version of the model to simulate data and assess its ability to account for and explain some stylized
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facts documented in the literature. Unless otherwise noted, the assumptions of the basic model
continue to hold in the extended setting.

Time is now indexed by t = 1, 2, . . . , T + 1, where T is a multiple of 3. As described in more
detail below, the information and trading sequences of the basic model repeat for N = T

3 cycles,
which are indexed by n. Each cycle is comprised of three dates. Throughout this section, for all
n = 1, 2, . . . , N , we refer to t = 3n− 2 as the “beginning” of a cycle, t = 3n− 1 as the “middle” of
a cycle, and t = 3n as the “end” of a cycle, which are analogous to t = 1, 2, 3, respectively, in the
basic model. Consumption occurs at T + 1.

The stock pays a random amount, Ỹ , at T + 1. As in the basic model, the stock payoff consists
of the sum of independent and normally distributed random variables; accordingly, Ỹ is redefined
as

Ỹ ≡
T∑
t=1

X̃t, (1.43)

where X̃t ∼ N
(
µt, σ

2
t

)
for all t ≤ T . Likewise, the exogenous stock price process is now given by

P st =
t−1∑
τ=1

Xt +
T∑
τ=t

(
µτ −

γiγm
Γ

σ2
τ

)
. (1.44)

The assumptions regarding the bonds remain unchanged.
The closed-end fund undergoes an IPO at t = 1 and is liquidated at T +1, but it does not make

any distributions prior to liquidation. The fund manager collects a sequence of fees, φ̃n, at the
end of each cycle and consumes cm = ρ +

∑N
n=1 φ̃n at T + 1. The parameters of the management

contract, a and b, are constant over time, and the n-th cycle fee is given by

φ̃n = a+ b
(
Sf3nP̃

s
3n+1 +Bf

3n − V3n−2

)
. (1.45)

The fees are deducted from the fund’s NAV at the time they are earned; hence, between cycles the
fund’s NAV evolves according to

V3n+1 = Sf3nP
s
3n+1 +Bf

3n − φn (1.46)

for all n, and within a cycle the fund’s NAV evolves according to

Vt+1 = Sft P
s
t+1 +Bf

t (1.47)

for all t 6= 3n. Additionally, no arbitrage requires that the terminal stock price be equal to its
payoff: P̃ sT+1 = Ỹ .

Like in the basic model, the investor obtains utility solely by consuming the payoff from his
portfolio,

c̃i = SiT Ỹ +Bi
T + FT

(
SfT Ỹ +Bf

T − φ̃N
)
. (1.48)

The investor’s budget constraint satisfies

SitP
s
t +Bi

t + FtP
f
t = Sit−1P

s
t +Bi

t−1 + Ft−1P
f
t (1.49)

for all t ≤ T .
An important feature of the extended model is that the manager’s ability to acquire information

at the middle of every cycle is stochastic. This leads to a time-varying information advantage for
the fund manager. For tractability, we assume that the manager’s ability for a given cycle can be

17



either low, α`, or high, αh, with probability Υ` and Υh, respectively, and 0 < α` < αh < 1. Both
the manager and investor observe the manager’s ability for cycle n at the beginning of the cycle,
i.e., t = 3n − 2, but the ability is unknown to both of them prior to that time. Similar to the
basic model, for each cycle n we assume that X̃3n−1 is the sum of two components, Z̃n,1 and Z̃n,2,
the distributions of which depend on the manager’s ability for a particular cycle and are given by
Z̃n,1 ∼ N

(
αqµ3n−1, αqσ

2
3n−1

)
and Z̃n,2 ∼ N

(
(1− αq)µ3n−1, (1− αq)σ2

3n−1

)
for q ∈ {`, h}.

Modeling ability in this fashion reflects the notion that the value of the manager’s skills depends
on (unmodeled) economic conditions which evolve over time. One historical example of evolving
economic conditions that likely affected the value of a manager’s skills is the reunification of Ger-
many. Shortly after the fall of the Berlin Wall in 1989, a closed-end country fund specializing in
German assets experienced a dramatic rise in price, moving from a discount of roughly 10% to a
premium of 100%. This rapid change in value could be attributed to investors recognizing that the
fund manager was in a position to capitalize on new investment opportunities due to the manager’s
familiarity with the marketplace. Granted, this occurred under very unusual circumstances, but it
illustrates how investors might react to changes in economic conditions that are not extraordinary
in nature. For example, a technological or political innovation could suddenly enhance the value of
a manager with expertise in a particular industry.

The information structure follows a pattern similar to that of the basic model. At the begin-
ning of every cycle, the investor and fund manager have knowledge of all prior realizations of Xt:
Ii3n−2 = If3n−2 = {X1, X2, . . . , X3n−3} for n = 1, 2, . . . , N . Both the manager and investor ob-
serve X3n−2 at the middle of every cycle. Furthermore, the manager acquires private information
at the middle of every cycle through observation of Zn,1, which is unobservable to the investor.
Consequently, the information sets are asymmetric: Ii3n−1 = If3n−1 = {X1, X2, . . . , X3n−2} and
If3n−1 = {X1, X2, . . . , X3n−2, Zn,1}. At the end of every cycle, the information sets are once again
symmetric: Ii3n = If3n = {X1, X2, . . . , X3n−1}. For the sake of completeness, note that Ii0 = If0 = ∅
and IiT+1 = IfT+1 = {X1, X2, . . . , XT }.

The sequence of events is modified as follows. At t = 1, the fund undergoes an IPO. At the
beginning of every cycle, both the investor and manager observe the manager’s ability for that cycle
and choose portfolios at market-clearing prices subject to their respective budget constraints. The
management fee earned during the immediately preceding cycle is deducted from the NAV of the
fund and placed into escrow until T + 1 prior to selecting the fund’s new portfolio. At the middle
of every cycle, the manager acquires private information regarding the stock payoff. The investor
and manager then proceed to rebalance their respective portfolios. At the end of every cycle, the
fund manager’s information advantage disappears, and both agents select new portfolios. At T +1,
all management fees are paid, the fund is liquidated, and consumption occurs.

1.3.2 Equilibrium

The equilibrium in the extended setting is complicated by the fact that the manager’s ability
to acquire information is now stochastic. However, since the manager’s ability remains unchanged
between dates within a cycle and there are no wealth effects associated with CARA preferences,
the same techniques utilized to solve for the equilibrium in the basic setting can be used to solve for
the equilibrium closed-end fund discount at the beginning and middle of each cycle in the extended
setting. Solving for the equilibrium discount at the end of a cycle is slightly more complicated due
to the uncertainty surrounding the manager’s ability for the immediately ensuing cycle.

When selecting their respective portfolios at the end of each cycle (except cycle N), the investor
and manager are exposed to risk associated with both a component of the stock payoff and the
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manager’s ability for the immediately ensuing cycle.12 Since the manager’s ability is independent of
the stock payoff and the agents’ preferences do not exhibit wealth effects, however, the uncertainty
surrounding the manager’s ability does not impact the stock allocations. Moreover, because the
manager and investor possess symmetric information, the respective equilibrium stock allocations
at the end of cycle n are the same constant fractions as in the basic setting:

Sf3n =
γi
Γb

(1.50)

and
Si3n =

Γb− γi
Γb

. (1.51)

While the investor is able to infer the fund’s portfolio at the end of each cycle since it contains
a constant fraction of the stock, owning the fund exposes the investor to risk associated with the
manager’s ability for the next cycle. If the manager’s ability happens to be high during the next
cycle then she will obtain a greater information advantage and the fund price will be higher at the
beginning of the next cycle than if the manager’s ability turns out to be low. This uncertainty is
incorporated into the fund price as a weighted average of the investor’s expected benefit from the
manager’s private information,

δ ≡
λ`Υ`

√
1 + αhγi(1−b)(Γb−γi+γmb)

(1−αh)γ2
mb

2 + λhΥh

√
1 + α`γi(1−b)(Γb−γi+γmb)

(1−α`)γ2
mb

2

Υ`

√
1 + αhγi(1−b)(Γb−γi+γmb)

(1−αh)γ2
mb

2 + Υh

√
1 + α`γi(1−b)(Γb−γi+γmb)

(1−α`)γ2
mb

2

(1.52)

where
λq ≡

αq(1− b)(Γb− γi)
αqγi(1− b)(Γb− γi + γmb) + (1− αq)γ2

mb
2

(1.53)

for q ∈ {`, h}. The discount at the end of cycle n,

D3n = a+ b
(
V3n − V3n−2

)
− (N − n)(δ − a), (1.54)

is a combination of the future management fees and the expected benefits from the manager’s future
information advantages.

At the middle of each cycle, the manager has an information advantage over the investor. Like
in the basic setting, the information asymmetry is incorporated into the manager’s stock demand.
The equilibrium stock allocations at the middle of cycle n are

Sf3n−1 =
Zn,1 − αqµ3n−1 + γiγm

Γ σ2
3n−1

(1− αq)γmbσ2
3n−1

(1.55)

and
Si3n−1 =

Γb− γi
Γb

. (1.56)

The discount at the middle of cycle n,

D3n−1 = a+ b
(
V3n−1 − V3n−2

)
− λq − (N − n)(δ − a), (1.57)

depends on the current level of managerial ability as well as the future management fees and benefits
from private information.

At the beginning of each cycle, the investor and manager bear the risk associated with a
12Only uncertainty with respect to X̃T exists at the end of cycle N .
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component of the stock payoff but are not exposed to risk associated with managerial ability. Since
the information sets are symmetric, the equilibrium here is analogous to the equilibrium at t = 1
in the basic setting. At the beginning of cycle n, the stock allocations are

Sf3n−2 =
γi
Γb

(1.58)

and
Si3n−2 =

Γb− γi
Γb

. (1.59)

Although there is no current uncertainty regarding managerial ability, the future uncertainty is
incorporated into the fund price. Accordingly, the discount at the beginning of cycle n is given by

D3n−2 = a− λq − (N − n)(δ − a). (1.60)

Similar to the middle of each cycle, the discount at the beginning of each cycle is a combination of
management fees and the benefits from the manager’s current and future information advantages.

A few basic themes emerge from the extended model. First, the closed-end fund will trade at a
discount when the management fees outweigh the expected benefits from the manager’s private in-
formation, and vice versa. Second, the expected benefit from the manager’s information advantage,
which is captured by λq and δ, evolves over time. Specifically, at the turn of a cycle (from t = 3n
to t = 3n + 1), the expected benefit from all future private information changes by an amount
equal to λq − δ. Since this adjustment is positive whenever a high ability level is realized and
negative whenever a low ability level is realized, the expected benefit from the manager’s private
information (and hence the discount) changes even when her ability level remains unaltered. Third,
the equilibrium discounts and portfolio allocations are analogous to those in the basic model, but
there is additional uncertainty which stems from the time-varying ability of the manager and causes
the discount to fluctuate. We next evaluate the model’s ability to account for several empirical
observations documented in the literature.

1.3.3 Simulation

Since the focus of our analysis is private information and management fees, the only parameters
that may vary across simulations are managerial ability and the realizations of the components of
the stock payoff, and we assume that the distributions of these parameters are independent across
simulations. The parameter values used in the simulations are listed in Tables 1.I and 1.II. Al-
though there are a total of 13 free parameters in our model, we impose restrictions on many of these
so that only a few are truly discretionary. Here we discuss our rationale for selecting the parameter
values, beginning with those listed in Table 1.I. As previously mentioned, γi is normalized to one,
and γm is conservatively chosen to satisfy our assumption that bΓ > γi while still accommodating
relatively low values for b. Additionally, we choose the stock volatility to match the return precision
from Berk and Stanton (2007).

Next, we explain our reasons for choosing the parameter values listed in Table 1.II. The variable
component of the management fee, b, is set at 20% to be consistent with contracts in the money
management industry that charge a fixed percentage of returns. Like the stock volatility, the time
horizon of 50 cycles matches the horizon in Berk and Stanton (2007), and the fund’s initial wealth
designated for investment is set to 1. The mean stock payoff for a cycle is fixed at 0.15 so that
negative payoffs occur only when the payoff realization is more than roughly one standard devia-
tion below the mean. Additionally, we assume that two-thirds of the total payoff for a cycle can
potentially comprise the manager’s private information, X̃3n−1, and that the remaining one-third
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Table 1.II: Parameter Values.

Variable Symbol Value
Variable component of management fee b 0.20
Low ability level α` 0.05
High ability level αh 0.65
Probability of low ability Υ` 0.90
Probability of high ability Υh 0.10
Mean of X̃3n−2 µ3n−2 0.025
Mean of X̃3n−1 µ3n−1 0.10
Mean of X̃3n µ3n 0.025
Fund’s initial wealth Wf 1
Number of cycles N 50

of the total payoff is split equally between X̃3n−2 and X̃3n for all n.
After selecting these parameter values, only a handful of parameters remain that can be used

to match the empirically observed discount dynamics—these are the fixed component of the man-
agement contract, the manager’s ability levels, and the distribution of ability. To be consistent
with empirical observations, the values for the ability levels and their accompanying probability
distribution are chosen so that funds issue at a premium and are likely to begin trading at a dis-
count very quickly. The probability of the manager having a high ability level for a cycle, Υh, is
set at 10%, but in each simulation the initial level of ability is set at αh so that the fund issues at
a premium. This results in issue premiums and the emergence of discounts within a single cycle,
but it also reflects the fact that funds rarely move from trading at a discount to a premium.13

To create a large rise in the discount following the IPO, the expected benefit from the manager’s
private information must dramatically decrease, which means that λh must be much greater than
λ`. This is achieved through a large “ability-spread,” so we set the respective levels of low and
high ability, α` and αh, equal to 0.05 and 0.65. Hence, the manager adds little value in low-ability
states but has the potential to add a great deal of value in high-ability states. Finally, the fixed
component of the management fee, a, basically shifts the discount distribution and is chosen so
that the magnitude of the issue premium coincides with empirical measurements.

Figure 1.2 plots the distribution of discounts over 1000 simulations. Only the discount at the
beginning of each cycle is plotted to avoid the periodic fluctuations that arise from the acquisi-
tion of new information. The cross-sectional distribution of discounts is evident from the figure.
Furthermore, the average fund issues at a premium of 2.6% and subsequently begins to trade at
a discount of 7.4%, which is slightly smaller than the mean discount of 8.6% reported by Chay
and Trzcinka (1999) and likely due to other unmodeled factors that contribute to discounts.14 The
discount eventually converges to zero when the fund is liquidated, and the downward trend is a
result of the finite horizon of the funds.

Because the existing literature is a hodgepodge of studies that uses various measurements for
13Due to the low likelihood of realizing and maintaining a high ability level, the manager’s ability to earn a positive

abnormal return net of fees dissipates rather quickly. This could reflect, for example, changes in economic conditions
which make a particular manager’s skill set more valuable. In the short-term, the manager can exploit her ability
to earn excess returns, but her advantage is quickly competed away by other managers who adapt to the changes.
Mandatory periodic disclosures of asset holdings could also cause the manager’s information advantage to dissipate.
In any case, empirical evidence by Chay and Trzcinka (1999) indicates that managerial ability is short-lived.

14Section 1.1 discusses other potential factors that may influence the discount.
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Figure 1.2: Distribution of Closed-End Fund Discounts. The plot shows the log discount at the
beginning of each cycle, defined as log(V3n−2/P

f
3n−2). The dashed line represents the average discount, and

the solid lines represent various fractiles of the discount distribution for 1000 simulated funds.

the discount—some use percentage discounts while others use log discounts or simple discounts15—
in comparing the predictions of our model to existing empirical observations, we align our mea-
surements with and attempt to replicate as close as possible the particular empirical study being
compared. Additionally, the simulated data are modified prior to conducting our analyses. First,
the data are smoothed, meaning that only observations from the beginning of each cycle are in-
cluded. This reduces the effects of the synchronous information acquisition. Second, the first and
last observations are purged from each simulation, thereby eliminating the large and predictable
rise (fall) in the discount that occurs during the first (last) cycle for almost every fund in the
simulated sample.

Relations Between Discounts and Returns

We first check whether the relations between discounts and returns in our model are compatible
with empirical observations. As a preliminary matter, augmented Dickey-Fuller tests reject a unit
root at the 10% level for over 95% of the simulated funds, which indicates that the discounts are
stationary. This result compares favorably to Pontiff (1995), where a unit root is rejected for only
53% of funds in his sample.

Next, we evaluate the time-series correlations between log premiums, fund price returns, and
NAV returns. To be consistent with Pontiff (1995), each individual pairwise correlation is weighted
proportional to the inverse of the correlation’s standard error, and the weighted averages of these
correlations are presented in Table 1.III. The columns contain the contemporaneous variable, and
the rows contain the time-t variable.

The results from the simulation account for some prominent stylized facts found in the literature
and are for the most part qualitatively consistent with those reported by Pontiff (1995), although
rigorous quantitative comparisons are difficult due to the mismatched frequency of the data. Some
of the more puzzling statistical relations with which the model is consistent include: positively au-

15Percentage discounts are defined as one minus the ratio of the fund price to the fund’s NAV. Log discounts are
defined as the natural logarithm of the ratio of the fund’s NAV to the fund price. Simple discounts are defined as
the difference between the fund’s NAV and the fund price.

22



Table 1.III: Average Correlation Coefficients. A weighted average of the beginning-of-cycle individual
pairwise correlation coefficients between premiums and returns over 1000 simulations is reported. The
columns contain the contemporaneous variables, and the rows contain the time-τ variables, where τ ≡ 3n−2
is the beginning of the contemporaneous cycle, τ − 1 ≡ 3n − 5 is the beginning of the previous cycle, and
τ + 1 ≡ 3n + 1 is the beginning of the next cycle. Premiums are defined as − log(Vτ/P fτ ), fund returns
are defined as log(P fτ+1/P

f
τ ), and NAV returns are defined as log(Vτ+1/Vτ ). The weight of each individual

pairwise correlation coefficient is equal to the inverse of that correlation coefficient’s standard error.

Premiumτ Fund Returnτ NAV Returnτ
Premiumτ−1 0.381

Fund Returnτ−1 0.416 −0.007
Fund Returnτ 0.020
Fund Returnτ+1 −0.064

NAV Returnτ−1 0.020 −0.025 −0.022
NAV Returnτ 0.415 0.829
NAV Returnτ+1 −0.055 0.243

tocorrelated premiums (discounts are persistent); a negative correlation between current premiums
and future fund returns (premiums predict fund returns); near zero correlation between current
premiums and future NAV returns (premiums do not predict NAV returns); and less than perfect
contemporaneous correlation between fund returns and NAV returns (something besides NAV af-
fects fund prices). Consistent with other empirically observed statistical relations, our model also
predicts that current premiums are positively correlated with lagged fund returns but unrelated to
lagged NAV returns and that current fund returns are unrelated to lagged NAV returns.

There are, however, a few discrepancies between the simulation results and empirical observa-
tions. Pontiff (1995) finds that both fund returns and NAV returns are negatively autocorrelated
while our simulation produces autocorrelations near zero. He also reports a negative contempora-
neous correlation between premiums and NAV returns and a negative correlation between current
fund returns and future NAV returns while our simulation yields positive correlations. Despite
these differences, the model performs relatively well in matching the time-series correlations be-
tween discounts and returns reported in the literature.

Our model also accounts for some cross-sectional relations between discounts and returns. The
average correlation between changes in percentage discounts and the returns on the stocks held by a
fund in the simulation is −0.019, which is analogous to an observation by Lee, Shleifer, and Thaler
(1991) that the correlation between changes in discounts and returns on a market index is about
zero. Furthermore, our model produces an average correlation between changes in log premiums
and NAV returns of −0.334, which is consistent with a finding by Pontiff (1997) that the monthly
covariance between changes in log premiums and NAV returns is negative.

Based on the above comparisons, it appears as though the model adequately accounts for the
empirically observed relations between discounts and returns. We next test whether fund returns
in our model are more volatile than NAV returns, as documented in the literature.

Excess Volatility of Fund Returns

Pontiff (1997) finds that fund returns are more volatile than the returns of their underlying
assets. He also reports a negative correlation between NAV returns and changes in premiums,
which means that fund prices underreact to NAV returns. Together, these two observations are
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perplexing because they indicate that fund prices are more volatile than NAV returns even though
prices tend to underreact to NAV returns. In the previous subsection, we report that our model
leads to a negative correlation between changes in premiums and NAV returns. In this subsection,
we assess whether our model produces fund returns that are more volatile than the underlying NAV
returns. We find that it does.

For each fund in the sample, the log of the ratio of the fund return variance to the fund’s
NAV return variance is calculated. A positive log variance ratio indicates that the volatility of the
fund return is greater than the volatility of the underlying NAV return. The average log variance
ratio from the simulations is approximately 0.122 and is significantly different from zero, although
it is smaller than the four-month average log variance ratio of 0.434 reported by Pontiff (1997).
Nevertheless, our model accounts for the excess volatility of fund returns.

The primary source of excess volatility is the discount itself, which is best appreciated by
considering the NAV return over a single cycle, Rv ≡ V3n+1/V3n−2, and the fund return over a
single cycle, Rf ≡ P f3n+1/P

f
3n−2. Given V3n−2, the conditional variance of the NAV return is

V
[
Rv |V3n−2

]
=

V[V3n+1]
V 2

3n−2

, (1.61)

where V is the variance operator, and the conditional variance of the fund return can be written as

V
[
Rf |P3n−2, V3n−2

]
=

V[V3n+1] + V[λ]
(V3n−2 −D3n−2)2

(1.62)

after substituting (1.60) since the NAV return for the current cycle is independent of the manager’s
ability during the ensuing cycle. Comparing these expressions, it is evident that if the fund is
trading at a discount (i.e., D3n−2 > 0) then the variance of the fund return is greater than the
variance of the NAV return. On the other hand, if the fund is trading at a premium then the
variance of the fund return may or may not be greater than the variance of the NAV return,
depending on the size of the premium and the variance of λ. Furthermore, our conclusion that the
discount is the primary source of a fund’s excess volatility is consistent with a finding by Pontiff
(1997) that the excess volatility is unrelated to market factors since discounts in our model depend
on the ability of the manager.

Profitable Trading Strategies

Perhaps one of the most anomalous empirical observations is that closed-end funds with large
discounts tend to outperform the market while those with large premiums tend to underperform
the market, adjusted for risk, as documented by Thompson (1978) and Pontiff (1995). Given our
current set of assumptions, our model is unable to account for such underperformance. By slightly
modifying our assumptions, however, our model not only produces underperforming premium funds
but also provides an economic explanation for this phenomenon. Specifically, our model produces
underperforming premium funds when the stock price is endogenously determined. We formally
describe the modifications to our model that will generate underperformance of premium funds in
Appendix A.1, though we note here that endogenizing the stock price does not alter either the fun-
damental concept of our model or the nature of our analysis. Indeed, the only practical difference
between the equilibrium in our featured model described in Section 1.3.2 and in our modified model
is the extent to which the manager can profit from her information advantage, as an endogenous
stock price influences how aggressively the manager trades on her private information. In this sub-
section, we first demonstrate the aforementioned underperformance using simulated data from our
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Table 1.IV: Risk-Adjusted Performance. The returns from an equally-weighted dynamic portfolio that
is long the 2% of funds with the largest discount are regressed on the returns from an equally-weighted
portfolio of the stocks traded by the those funds and the returns from an equally-weighted dynamic portfolio
that is short the 2% of funds with the largest premium are regressed on the returns from an equally-weighted
portfolio of the stocks traded by those funds. The returns from an equally-weighted portfolio of all funds are
regressed on the returns from a portfolio of all stocks. The coefficients from these regressions are presented
with t-statistics in parentheses. Significance at the 95% level is indicated by ∗∗, and significance at the 99%
level is indicated by ∗∗∗.

Discount Premium All Funds

Jensen’s alpha
−0.083 3.714 −0.003
(−0.46) (3.73)∗∗∗ (−0.01)

Beta with stock index
0.756 −2.269 0.416

(4.17)∗∗∗ (−2.28)∗∗ (1.48)

modified model with an endogenous stock price. We then explain why significant underperformance
does not occur under our original set of assumptions with an exogenous price process.

To assess whether our model generates premium (discount) funds that underperform (outper-
form) the market, we analyze two distinct investment strategies as in Pontiff (1995). The first
strategy entails forming an equally-weighted dynamic portfolio, which we refer to as the “discount
portfolio,” consisting of the 2% of funds that have the largest discount. The second strategy involves
the construction of another equally-weighted dynamic portfolio, which we refer to as the “premium
portfolio,” consisting of the 2% of funds that have the largest premium.16 These portfolios are
initially created at the beginning of the second cycle and are held until the beginning of the next
cycle, at which point they are rebalanced. The process repeats for N − 2 cycles.

The returns from holding a long position in the discount portfolio and a short position in the
premium portfolio are regressed on the returns from an equally-weighted portfolio comprised of
the stocks traded by the funds in the respective portfolios. As a benchmark, the returns from
an equally-weighted portfolio comprising all simulated funds are regressed on the returns from an
equally-weighted portfolio of all simulated stocks. The coefficients from these regressions are re-
ported in Table 1.IV. There is a positive and highly significant risk-adjusted abnormal return for
the shorted premium portfolio, measured as the intercept from the aforementioned regressions as
in Jensen (1968). The risk-adjusted abnormal returns for the discount portfolio and the benchmark
portfolio are not significantly different from zero. Thus, it appears as though funds in our model
that trade at a premium significantly underperform the market, adjusted for risk, but funds that
trade at a discount do not outperform the market on a risk-adjusted basis.

To illustrate the extent of the profits that can be earned by buying funds that trade at a large
discount and selling funds that trade at a large premium, we calculate the returns accruing to both
the discount portfolio and the premium portfolio. Table 1.V reports the terminal value of one dollar
invested at the beginning of the second cycle for each of these strategies, along with an equally-
weighted benchmark portfolio comprising all simulated funds. The discount portfolio outperforms
the benchmark portfolio by 16%, while the premium portfolio underperforms the benchmark port-
folio by 55% over N − 2 cycles.

Given the documented poor relative performance of closed-end funds that trade at a premium,
the question remains: why do investors purchase closed-end funds that trade at a premium? The
answer, we argue, is that large-premium funds provide insurance against extreme realizations of

16The results presented below are robust to portfolios of various sizes within the neighborhood of 2%.
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Table 1.V: Illustration of Returns. One dollar is invested in an equally-weighted dynamic portfolio
consisting of the 2% of funds with the largest discount and an equally-weighted dynamic portfolio consisting
of the 2% of funds with the largest premium. Each portfolio is rebalanced at the beginning of every cycle. A
portfolio comprising all funds serves as a benchmark. The terminal value is the return from the investment
over N − 2 cycles. The intra-cycle return is the return accruing within cycles, and the inter-cycle return is
the return accruing between cycles. The average excess return is the time-series average of the difference
between either the discount portfolio or the premium portfolio and the benchmark portfolio. t-statistics are
in parentheses. Significance at the 95% and 99% levels are indicated by ∗∗ and ∗∗∗, respectively.

Discount Premium All Funds
Terminal value 1.126 0.442 0.974

Intra-cycle return 1.086 0.436 1.011
Inter-cycle return 1.037 1.012 0.963

Average excess return
0.309 −1.568

(2.00)∗∗ (−3.06)∗∗∗

the manager’s private information. A fund will trade at a premium in our model only when the
manager has a high level of ability, which allows her to observe a larger portion of the stock payoff.
The high ability level, however, does not necessarily translate into positive abnormal returns net
of management fees. If the realization of Z̃n,1 is close to αqµ3n−1, then the manager’s private infor-
mation is less valuable in the sense that knowledge of Zn,1 does not dramatically alter the fund’s
portfolio composition. On the other hand, the private information is tremendously valuable given
an extreme realization of Z̃n,1. If Zn,1 is very small, then the fund will hold less stock and thereby
avoid a hefty loss that otherwise would have been incurred; alternatively, if Zn,1 is really large, then
the fund will hold more stock and thereby earn a sizable gain that otherwise would not have been
realized. Because the investor is risk-averse, he is willing to purchase shares in the fund to obtain
the abnormal return when the stock payoff is low even though he expects the fund to underperform
on average. Conversely, there is no insurance component of a fund that trades at a large discount
since the manager of such a fund has low ability. As is evident from Figure 1.3, which plots the
net-of-fee returns of premium and discount funds as a function of Zn,1, the single-cycle returns for
funds that trade at a premium tend to be quite large for extreme realizations of Z̃n,1 but negative
for non-extreme realizations, while the returns for funds that trade at a discount tend to cluster
around zero.

The concept of insurance in the portfolio delegation setting is not unique to closed-end funds.
For instance, Glode (2011) demonstrates that insurance concerns drive the negative risk-adjusted
performance of open-end mutual funds. In his model, fund managers actively seek abnormal returns
in bad states of the economy, and these active returns covary positively with the pricing kernel. In
our model, however, insurance does not necessarily imply a positive relation between the pricing
kernel and abnormal returns of funds that trade at a premium since abnormal returns are also
earned in extremely good states.

A closer inspection of the returns accruing to the discount and premium portfolios from the
above illustration provides some evidence in favor of the insurance argument. The aggregate return
of each portfolio can be decomposed into the return accruing within cycles (from t = 3n− 2 to 3n)
and the return accruing between cycles (from t = 3n to 3n+ 1), and Table 1.V lists the intra-cycle
and inter-cycle returns of both the discount portfolio and the premium portfolio. A fair portion
of the returns accruing to the discount portfolio occurs between cycles. This suggests that high
ability shocks, which possibly could be attributed to manager replacement as in Wermers, Wu, and
Zechner (2008), contribute to the excess return for the discount portfolio. Conversely, the premium

26



−0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.2

0

0.2

0.4

0.6

Z
τ

F
un

d 
R

et
ur

n τ

(a) Premium Fund Returns
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(b) Discount Fund Returns

Figure 1.3: Fund Returns. The plots show the log fund returns over a cycle, defined as log(P f3n+1/P
f
3n−2),

as a function of the realization of Z̃n,1. Panel (a) plots the returns for funds that are trading at a premium
at the beginning of the cycle, and panel (b) plots the returns for funds that are trading at a discount at the
beginning of the cycle.

portfolio losses are amassed within cycles, suggesting that ability shocks play a minimal role in
the returns of funds that trade at a premium. Since a premium fund earns negative returns net
of management fees when there are non-extreme realizations of Z̃n,1, the losses accruing to the
premium portfolio are a result of the insurance against extreme realizations of Z̃n,1 failing to pay.

While premium funds in our model tend to underperform when the stock price is endogenously
determined, no such underperformance occurs when the stock price follows an exogenous process.
This is due to the fact that the stock price influences how aggressively the manager trades on her
private information, but the price does not respond to the manager’s trades when it follows an
exogenous process. As a result, the manager can better exploit her information advantage when
the stock price is exogenous. At the times when the manager possesses an information advantage
over the investor, her stock allocations with an exogenous (from (1.55)) and endogenous (from
(A.2) Appendix A.1) price can be rewritten as

Sf3n−1 =
1

(1− αq)γmbσ2
3n−1

[(
Zn,1 − αqµ3n−1

)
+
γiγm

Γ
σ2

3n−1

]
(1.63)

and
Sf3n−1 =

Γb− γi
γmb

(
αqγi + (1− αq)Γb

)
σ2

3n−1

[(
Zn,1 − αqµ3n−1

)
+

γiγmb

Γb− γi
σ2

3n−1

]
, (1.64)

respectively. The first term inside the brackets in each of these equations represents the aggressive-
ness with which the manager trades on her information advantage while the second term captures
the portfolio adjustment resulting from a reduction in risk (since the manager observes a portion of
X̃3n−1) that is independent of the specific realization of the manager’s private information. Com-
paring the coefficients on these two equations reveals that the manager trades more aggressively
when the stock price is exogenous. Consequently, she can better capitalize on her information
advantage to earn much larger abnormal returns with an exogenous stock price, which means that
premium funds in our model do not underperform when the stock price is exogenous.
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1.4 Conclusion

We present a dynamic partial equilibrium model in which a closed-end fund manager periodically
acquires private information about the future performance of an underlying asset. Although the
manager adds value by exploiting her information, whether the fund trades at a premium or discount
depends on the value of her private information in relation to the management fees. Our model
accounts for several empirically observed characteristics of closed-end funds. Funds in our model
issue at a premium but rapidly move into a discount, and there is both cross-sectional and time-
series variation in discounts. The model also is consistent with the observed relations between
discounts and returns, as well as the excess volatility of fund returns. The model explains why
funds issue at a premium and provides a justification as to why investors purchase seasoned funds
that trade at a premium even though they are expected to underperform funds that trade at a
large discount.
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Chapter 2

Activist Arbitrage, Lifeboats, and
Closed-End Funds

We present a dynamic rational expectations model of closed-end fund discounts that incorpo-
rates feedback effects from activist arbitrage and lifeboat provisions. We find that the potential
for activism and the existence of a lifeboat both lead to narrower discounts. Furthermore, both
activist arbitrage and lifeboats effectuate an ex post transfer of wealth from managers to investors
but an ex ante transfer of wealth from low-ability managers to high-ability managers. On average,
investor wealth is unaffected by either activist arbitrage or lifeboats because their potential benefits
are factored into higher fund prices. Although lifeboats can reduce takeover attempts, they do not
increase expected managerial wealth.

2.1 Introduction

Closed-end funds are investment companies that hold a portfolio of financial assets, but unlike
mutual funds, closed-end funds issue a fixed number of non-redeemable shares that trade at prices
determined by the market. Most funds tend to trade at a discount relative to their net asset value
(NAV), which means that a profit can be earned by terminating the fund and distributing its as-
sets to the shareholders, as demonstrated by Brickley and Schallheim (1985). This potential for a
quick profit creates an incentive for an outsider to purchase shares in a discounted fund and force
a liquidation—a process known as activist arbitrage.

Activist arbitrage involves purchasing shares in a fund that is trading at a discount, taking some
action in an attempt to eliminate the discount, and subsequently redeeming the shares at NAV if
the endeavor is successful. Although accurately predicting which funds an activist arbitrageur will
target is extremely difficult, Bradley, Brav, Goldstein, and Jiang (2010) find that activists tend
to seek out funds that trade at large discounts, likely because there are greater financial returns
to be realized when these funds restructure. Since ordinary investors share in the profit created
by an activist, rational investors will recognize that a fund with a deep discount may become the
target of an activist and purchase shares in the fund, hoping to piggy-back on the activist’s efforts.
In doing so, they will bid up the fund price, thereby causing the discount to shrink. This makes
the closed-end fund a less attractive target and activist arbitrage less likely to occur. Thus, the
potential for activist arbitrage creates an interesting “feedback loop” whereby, in equilibrium, the
discount accurately reflects investors’ beliefs regarding the probability of activism.

Lifeboats are another source of feedback on closed-end fund prices. A lifeboat is a provision,
usually contained in a fund’s prospectus, that describes remedial actions for the fund to undertake
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to reduce or eliminate the discount if the fund price drops below a predetermined level. Common
lifeboats include implementing a managed distribution plan (MDP), conducting a tender offer at
NAV, repurchasing shares at market price, or converting to an open-end mutual fund. For reasons
outlined below, we focus solely on MDPs, which mandate minimum periodic dividend distributions
to a fund’s shareholders. Regardless of the specific type of lifeboat, the potential beneficial effects
of a lifeboat will result in higher prices, thereby making it less likely that the lifeboat will be trig-
gered. Like with the potential for activist arbitrage, the equilibrium discount must incorporate this
feedback effect in a way that accurately reflects investors’ expectations about the future impact of
the lifeboat.

Due to the aforementioned feedback loops, the interaction between closed-end fund prices, ac-
tivist arbitrage, and lifeboat provisions is nontrivial. To better understand the equilibrium relation-
ships between activist arbitrage, lifeboats, and closed-end funds, we construct a dynamic rational
expectations equilibrium model of closed-end fund discounts that incorporates the feedback effects
from these two important institutional features.1 Our model is a discrete-time extension of the
model presented by Berk and Stanton (2007) but differs from theirs by allowing for the endoge-
nous triggering of a lifeboat provision and initiation of a restructuring attempt. In our model, the
divergence between NAV and the fund price arises from a tradeoff between management fees and a
manager’s ability to generate excess returns. As the discount grows, the probability of an activist
initiating a restructuring attempt increases, as does the probability of triggering the lifeboat. At
the same time, the presence of activist arbitrageurs and lifeboat provisions exerts upward pressure
on the fund price, causing the discount to shrink. Our model also incorporates the fact that fund
governance characteristics, such as supermajority voting requirements (Bradley, Brav, Goldstein,
and Jiang (2010)) or the existence of staggered boards (Del Guercio, Dann, and Partch (2003)),
affect the incidence of activism as well as the fact that different lifeboat parameters, such as the
dividend payout rate and lifeboat trigger level, influence the impact of lifeboats on closed-end funds.

We obtain analytical expressions for the discount in a variety of settings: where no activist or
lifeboat exists, where only an activist exists, where only a lifeboat exists, and where both an ac-
tivist and a lifeboat exist. Our solutions are not in closed-form, however, so we conduct a numerical
simulation to ascertain the impact of activist arbitrage and lifeboats on closed-end funds. In the
absence of both activist arbitrageurs and lifeboats, a discount emerges whenever investors believe
that management fees outweigh the manager’s contribution. Using this setting as a benchmark, we
discover that activist arbitrage and lifeboat provisions influence funds in a number of ways.

Both activism and lifeboats independently cause fund prices to rise, which results in funds is-
suing at a larger premium than when neither an activist nor a lifeboat is present. The magnitude
and persistence of the increased prices depends on the ability of the fund manager, with a greater
effect on funds with low-ability managers. The primary function of activism and lifeboats, however,
is to provide insurance against poor management. When prompted, both activist arbitrage and
lifeboat provisions effectuate an ex post transfer of wealth from managers to investors, but since
funds with high-quality management are less likely to have their lifeboats triggered or encounter
an activist arbitrageur, the increased issue premium results in an ex ante expected wealth transfer
from low-ability managers to high-ability managers. On average, investors neither gain nor lose
from either activist arbitrage or lifeboat provisions because their potential benefits are incorporated
into higher fund prices.

Consistent with empirical observations by Brauer (1984) and Brickley and Schallheim (1985),
funds in our model that are successfully liquidated tend to have deeper discounts prior to the liq-

1In contrast to previous studies by Lee, Shleifer, and Thaler (1991), Berk and Stanton (2007), Cherkes, Sagi, and
Stanton (2009), Lenkey (2011), and others, we do not attempt to explain the source of closed-end fund discounts.
See, e.g., Dimson and Minio-Kozerski (1999) for a survey of the closed-end fund literature.
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uidation event than funds that are not liquidated, and large abnormal returns occur at the time
of a liquidation announcement. Additionally, funds in our model with an MDP have narrower dis-
counts than funds without an MDP, and discounts shrink upon the adoption of an MDP, which is
consistent with empirical findings by Johnson, Lin, and Song (2006) and Wang and Nanda (2008).

When activist arbitrageurs and lifeboat provisions coexist, MDPs tend to be adopted less fre-
quently and fewer reorganizations take place. We find that introducing a lifeboat has the greatest
impact when activist arbitrage is unlikely to occur and that activist arbitrage has the biggest effect
when the lifeboat is unlikely to be triggered. In other words, activism and lifeboats serve as sub-
stitutes for one another. Furthermore, introducing a lifeboat to an environment where an activist
arbitrageur already exists provides additional insurance against low-ability management only when
the lifeboat is liable to be triggered.

Since fund managers face a loss of wealth and non-pecuniary benefits when a restructuring
occurs, as demonstrated by Brauer (1984), some authors have suggested that a lifeboat can be used
to ward off activist arbitrageurs by mitigating a fund’s discount.2 While lifeboats do indeed lessen
the severity of discounts and decrease the incidence of restructuring events, our results indicate
that lifeboats are not a suitable means for enhancing managerial wealth. On the contrary, we find
that an MDP decreases the expected value of management fees over the life of a fund, even when
the fund might potentially face a premature liquidation caused by an activist arbitrageur. This is
because an MDP itself facilitates a partial liquidation of the fund.

Despite an extensive amount of academic research on closed-end funds, there is a paucity of the-
oretical models in the closed-end fund literature that include either activist arbitrage or lifeboats.
To the best of our knowledge, our work is the first truly dynamic model of fund discounts that in-
corporates activist arbitrage and lifeboat provisions. In a static setting, Deaves and Krinsky (1994)
model a tradeoff between managerial ability and fees, with an exogenous probability of open-ending
that depends on the difference between ability and fees. They demonstrate numerically that the
relationship between the discount and probability of restructuring is not monotonic, but that a
higher probability of restructuring leads to a narrower discount over a range of values. Cherkes,
Sagi, and Wang (2009) model a sequential game between a fund manager and activist wherein the
fund manager can implement an MDP with the purpose of reducing the financial incentive for an
activist to attempt a restructuring. Empirically, they find that funds with an MDP experience
fewer attacks and are less likely to be liquidated than funds without an MDP. Their model, how-
ever, does not account for the time-series dynamics of closed-end funds.

Our current work also contributes to the growing literature on feedback loops in more general fi-
nancial market settings. Edmans, Goldstein, and Jiang (2012) study the interaction between market
prices and takeover attempts of industrial firms. Empirically, they find that investors anticipating
takeovers drive up prices, thereby deterring takeover activity. Bond, Goldstein, and Prescott (2010)
investigate the equilibrium implications where a market activist does not observe fundamentals but
decides whether to intervene based on prices. In contrast to their model, prices in our model affect
the likelihood of activism but do not influence the activist’s beliefs about fundamentals (managerial
ability). Moreover, our analysis focuses on how different fund governance characteristics as well as
various parameterizations of a lifeboat provision affect equilibrium discounts, returns, and expected
wealth.

The remainder of the paper is organized as follows. In Section 2.2, we derive analytical ex-
pressions for the discount in a variety of settings. We then present the results from a simulation
analysis in Section 2.3. Finally, Section 2.4 concludes.

2See, e.g., Cherkes, Sagi, and Wang (2009) and Johnson, Lin, and Song (2006).
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2.2 Model

The general framework of our benchmark model, which does not include either activist arbitrage
or lifeboats, is a discrete-time analog of Berk and Stanton (2007). We later incorporate activism
and lifeboats in Sections 2.2.2 and 2.2.3, respectively. In our benchmark model, closed-end fund
discounts result from a tradeoff between management fees and a fund manager’s perceived ability
to generate excess returns. Rational investors form beliefs about managerial ability and update
them over time based on observed fund returns. Accordingly, funds trade at a discount when-
ever investors believe that management fees outweigh the expected value created by the manager’s
ability, and vice versa. The key insight of Berk and Stanton (2007), which we also incorporate
into our model, is that the fund manager’s compensation can never fall but will increase whenever
his perceived ability rises above a certain level. This compensation structure reflects the optimal
managerial contract derived by Harris and Holmström (1982) (where wages are never decreased
but employees receive pay raises) extended to a labor market with frictions, such as costly job
switching. The specific (unmodeled) form of the manager’s pay raise is assumed to be an influx of
capital to manage through a rights offering or the creation of a new fund, which reduces his ability
to generate excess returns since his fixed skill level is spread thinner over the additional capital
under management. This mechanism is also employed by Berk and Green (2004) to explain the
flow of capital in mutual funds.

Although conceptually identical to Berk and Stanton (2007), our benchmark model is mathemat-
ically very different from theirs. While they model an economy in continuous time with normally
distributed excess returns and normally distributed managerial ability, we find it more natural
to model activism and lifeboat events in discrete time due to the existing institutional practices
surrounding reorganizations and lifeboats, as both reorganizations and lifeboat implementations fre-
quently require shareholder approval, which often comes from proxy votes at a shareholder meeting
that may not occur until months after a lifeboat is triggered or an attack is initiated by activist.
Furthermore, since activist arbitrage and lifeboat provisions can give rise to truncated distribu-
tions of otherwise normally distributed future fund discounts, we assume that excess returns are
Bernoulli distributed to lessen the computational burden. We also find it computationally con-
venient to assume a uniform distribution for managerial ability when we conduct our simulation
analysis in Section 2.3. These different assumptions necessitate the construction of a model that is
distinct from Berk and Stanton (2007), even though the broad concepts are the same.

We explicitly model only a single asset—a closed-end fund. Trading in the financial market
occurs at discrete dates indexed by t = 1, 2, . . . , T . The closed-end fund undergoes an initial public
offering (IPO) at t = 1 and is scheduled to liquidate at T , at which time the fund’s shareholders
receive the value of the assets under management.

The closed-end fund earns a gross return during each period that is comprised of two com-
ponents. The first component is a random return from a portfolio of financial assets held by the
fund. Let r̃t+1 denote the return on the fund’s portfolio from time t to t+ 1. This return is serially
independent and observable by all parties. The second component of the fund’s gross return is a
random excess return generated by a fund manager. The excess return, which is also observable
by all parties, from time t to t + 1 is given by the product γtα̃t+1, where α̃t+1 ∈ {α`, αh} and
γt ∈ [0, 1]. Here, α̃t+1 denotes the potential excess return that can be generated during a period,
but as discussed in more detail below, this potential excess return is scaled by γt. Additionally,
α̃t+1 is uncorrelated with the return on the fund’s portfolio both contemporaneously and across
time. To compensate the manager, a management fee, φ, that is equal to a fixed percentage of the
assets under management is assessed on the fund each period.

The true probability that the manager earns a high excess return, αh, during a period is denoted
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by Π and is constant over time. Accordingly, a low excess return, α`, will be realized with probabil-
ity 1− Π. This probability is exogenous and unobservable, but investors form beliefs regarding Π
which evolve over time in a Bayesian fashion. Let πt denote the investors’ beliefs about Π at time
t. The posterior probability of πt, conditional on observing n high excess returns after t periods,
follows a beta distribution with parameters at and bt: πt ∼ Beta (at, bt). If the prior parameters
are a1 and b1 so that π1 ∼ Beta (a1, b1), then it follows immediately from DeGroot (2004, p. 160,
Theorem 1) that the posterior parameters are at = a1 + n and bt = b1 + t− n. Furthermore, since
α̃t+1 is Bernoulli distributed, the marginal distribution of α̃t+1 is a beta-binomial distribution but
reduces to a Bernoulli distribution. Therefore, investors rationally believe that a high excess return
will occur with posterior probability given by

πt =
at

at + bt
,

which evolves according to

πt+1 = πt +
χt+1 (at + bt)− at

(at + bt) (at + bt + 1)
, (2.1)

where χt+1 is an indicator function that takes the value one if αt+1 = αh and zero otherwise.
As in Berk and Stanton (2007), we assume that the fund manager is compensated using an

insurance contract, pursuant to which the manager’s wage may never fall but may increase whenever
the manager’s perceived ability,

α∗t ≡ γt [πtαh + (1− πt)α`] ,

rises above a particular exogenous threshold, Υ.3 Specifically, we assume that if α∗t would otherwise
be greater than Υ, then γt is adjusted downward to the point where the perceived ability at time t
equals Υ. For all future dates, γt retains its newly-adjusted value unless the investors’ updated be-
liefs would necessitate an additional downward adjustment. This mechanism reflects the manager’s
capability to raise additional capital when his perceived ability to generate excess returns is high,
which in turn reduces his ability to produce excess returns. Because the investors’ beliefs regarding
Π are unaffected by the adjustment process, the evolution of πt is still described by (2.1).

Assets in our model are priced as though investors are risk neutral. Consequently, the equilib-
rium expected rate of return for all financial assets, including both the closed-end fund and the
portfolio held by the fund, must equal the market expected rate of return, which is denoted by µ.
Additionally, Pt denotes the fund price, Vt denotes the NAV of the fund, and

Dt ≡
Pt
Vt

(2.2)

denotes the fund discount at time t. A discount greater than one means that the fund trades at a
premium.

We now proceed to derive analytical expressions for the closed-end fund discount in various
settings. We first derive an expression for the discount in the absence of both an activist arbitrageur

3We assume that Υ is constant and independent of the existence of activist arbitrageurs or lifeboat provisions.
Consequently, the evolution of γt is unaffected by the presence of either activists or lifeboats. Since managerial
pay raises lead to larger discounts, ceteris paribus, it is plausible that managers could attempt to ward off activists
or decrease the likelihood of triggering a lifeboat by foregoing pay raises until the expected benefit from a raising
additional capital outweighs the costs associated with an increased probability of an activist attack or a lifeboat
trigger. In terms of our model, this would entail increasing the excess return adjustment threshold, Υ, which is liable
to lead to less severe discounts. Therefore, our simulation results presented in Section 2.3 likely underestimate the
impact of activist arbitrage and lifeboats on closed-end fund discounts.
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and a lifeboat provision in Section 2.2.1 to provide a benchmark for additional analysis. We then
investigate the impact of activist arbitrage in Section 2.2.2 and the effect of a lifeboat provision in
Section 2.2.3. Finally, we derive an expression for the discount in an environment with both an
activist arbitrageur and a lifeboat in Section 2.2.4.

2.2.1 Benchmark Discount

In the absence of both an activist arbitrageur and a lifeboat provision, the fund’s NAV return
is a combination of the return on the fund’s portfolio, the excess return generated by the manager,
and the management fee. Therefore, NAV evolves as

Ṽt+1 = Vt (1 + r̃t+1 − φ+ γtα̃t+1) , (2.3)

and the expected one-period NAV return is

Et

[
R̃vt+1

]
= M + γtEt [α̃t+1] , (2.4)

where
M ≡ 1 + µ− φ.

It is apparent from (2.4) that the expected NAV return generally will not equal the market expected
rate of return, µ. As a result, for the market to clear the fund price must adjust so that the expected
fund return,

Et

[
R̃ft+1

]
≡
Et

[
P̃t+1

]
Pt

, (2.5)

equals the market expected rate of return. Typically, the fund price will not equal NAV. Instead,
the closed-end fund will trade at a discount described by the following proposition.4

Proposition 1. In the absence of both an activist arbitrageur and a lifeboat provision, the closed-
end fund discount at each date t < T is

Dt =
1

1 + µ
Et

[
D̃t+1 (M + γtα̃t+1)

]
. (2.6)

While this proposition describes the discount for all dates t < T , the principle of no arbitrage
implies that at time T the discount vanishes, i.e., DT = 1.5 Additionally, the primary determinant
of the discount is the relation between the management fee and the excess return generated by
the manager. A fund that generates zero expected excess return for all dates and charges no fees
always trades at NAV.

2.2.2 Activist Arbitrage

The goal of an activist arbitrageur is to eliminate the discount through a reorganization. While
discounts can be eliminated in a variety of ways—for instance, by converting the closed-end fund
to an open-end mutual fund or by merging with an existing mutual fund—we focus solely on fund
liquidation because it allows us to compute the impact of activism but avoids unnecessary compli-
cations that might arise if the fund were to continue operating in a different form. Furthermore,

4Proofs for all Propositions are contained in Appendix B.2.
5No arbitrage also implies that the discount at time T equals one in the other versions of the model discussed in

Sections 2.2.2, 2.2.3, and 2.2.4.
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we make no assumptions regarding the specific mechanisms through which a restructuring attempt
occurs, although in reality activists tend to rely on proxy contests and non-binding shareholder pro-
posals. As we demonstrate numerically in Section 2.3, activist arbitrage has the potential to impact
closed-end fund discounts through actual liquidation, unsuccessful liquidation attempts, and the
possibility of future liquidation attempts, even if the fund is never actually liquidated or attacked
by an activist. In this section, we outline our assumptions and derive analytical expressions for the
discount in the presence of an activist arbitrageur.

Liquidating a fund via shareholder activism can take a substantial amount of time, possibly
entailing several rounds of shareholder proposals and proxy votes in the face of managerial resis-
tance.6 While there is no guarantee that a liquidation attempt will be successful, the likelihood
of successfully liquidating a closed-end fund through activism depends, to a large extent, on the
fund’s governance characteristics. Del Guercio, Dann, and Partch (2003) report that out of 42 fund
restructuring proposals over a 4 year period, the board of directors recommended against approval
in all 17 proposals that failed and in favor of approval in almost all 25 successful reorganizations.
In a separate study, Brauer (1988) finds that managerial entrenchment can also hinder activism.
Apparently, a fund’s board and management both strongly influence the success of a liquidation
attempt. In our model, we assume that, given a liquidation attempt, the fund will successfully liq-
uidate with probability q, which is exogenous and constant over time. Although we do not explicitly
model the source of the liquidation probability, q could represent, inter alia, supermajority voting
requirements, the existence of staggered boards, the presence of large blockholders, or the ease of
communication between an activist and shareholders. Empirical evidence that these features affect
the probability of a successful restructuring is provided by Barclay, Holderness, and Pontiff (1993),
Del Guercio, Dann, and Partch (2003), and Bradley et al. (2010).

If at time t− 1 an activist takes steps to initiate a liquidation attempt, the fund is considered
to be under attack at t, and the uncertainty regarding whether the undertaking will be successful
is resolved during the ensuing period. This could occur through, for example, a proxy vote or
adoption of a shareholder proposal. If the liquidation attempt is successful, the closed-end fund
will liquidate at t+ 1. In such a case, the fund’s expected liquidation value is

Vt (M + γtEt [α̃t+1]) . (2.7)

If, on the other hand, the liquidation attempt fails, the fund retains its closed-end form with NAV
evolving according to (2.3), but additional attempts may be made in the future. Because there is
a two-period lag between the initiation of an attempt and the liquidation event, no attacks will
commence later than T − 3.7

For attempting a liquidation, an activist incurs a cost, c ∈ (0, 1), that is equal to a constant
percentage of NAV. We do not model the source of this cost, but it could comprise the costs of
activism outlined by Grossman and Hart (1980), i.e., the cost of acquiring information about the
target fund and administrative expenses associated with soliciting shareholders to approve the liq-
uidation as well as with liquidating the fund if the attempt succeeds. Since an activist will not
initiate a liquidation attempt unless the expected gains from doing so outweigh the costs, we as-
sume that no attempts will occur unless the discount falls below a certain threshold, κ (c, q), which
is a continuous function κ : (0, 1) × (0, 1) → [0, 1] that is decreasing in the cost of activism and

6See Bradley et al. (2010) for a detailed account of a restructuring attempt and Barclay, Holderness, and Pontiff
(1993) or Del Guercio, Dann, and Partch (2003) for techniques that a large blockholder or board of directors may
utilize to defeat restructuring attempts.

7Barclay, Holderness, and Pontiff (1993) find that fund restructuring attempts are usually either successfully
completed or abandoned within two years, and Brav et al. (2008) report that the median holding period for activist
hedge funds that target industrial corporations is about 1.5 years.

35



increasing in the probability of liquidation. This attack threshold reflects the need for a larger
profit margin when costs are high or the likelihood of successful liquidation is low.

While the existence of a discount lower than the attack threshold is a necessary condition for
activism, it is not by itself sufficient. Empirically, not every fund that trades at a deep discount
becomes a target. Perhaps this is due to some idiosyncratic features of funds which we do not ex-
plicitly model, such as managerial entrenchment, in combination with the small number of activists
who target closed-end funds.8 We incorporate this uncertainty of activism by assuming that the
occurrence of an attempt is random, with a deeper discount giving rise to a greater likelihood of
an attack. Specifically, we assume that the probability of activism is given by

ρκ ≡
κ−Dt

κ− θκ
(2.8)

for Dt ∈ (θκ, κ), where, similar to the attack threshold, θκ (c, q) is a continuous function θκ :
(0, 1)× (0, 1)→ [0, 1] that is decreasing in the cost of activism and increasing in the probability of
liquidation. No attempt will be made if Dt ≥ κ, but an activist is certain to initiate an attempt
if Dt ≤ θκ. The role of θκ is to control the rate at which the probability of activism increases as
the discount widens. Whether a liquidation attempt is made at time t is purely a function of the
current discount, the probability of success, and the cost structure. Previous liquidation attempts,
including any that may have occurred at t− 1, have no bearing on whether an attempt is made at
t, provided, of course, that no prior attempts were successful.

As in the case where no activist arbitrageur is present, the expected NAV return typically will
not equal the market expected rate of return, and the fund price must adjust in order for the
market to clear. The following proposition describes the discount if a liquidation is attempted at
time t and there is some uncertainty as to whether an additional attempt will be made at t+ 1 if
the current attempt is unsuccessful. The discount in the case of an attempt at t+ 1 is denoted by
D̃A
t+1 while D̃¬At+1 denotes the discount if no attempt occurs at t+ 1.

Proposition 2. In the presence of an activist arbitrageur and the absence of a lifeboat provision,
the closed-end fund discount at each date t < T is

Dt =
Et

[(
q (κ− θκ) + (1− q)

(
κD̃A

t+1 − θκD̃¬At+1

))
(M + γtα̃t+1)

]
(κ− θκ) (1 + µ) + (1− q)Et

[(
D̃A
t+1 − D̃¬At+1

)
(M + γtα̃t+1)

] , (2.9)

provided that there is uncertainty regarding whether a liquidation attempt will occur at t+ 1.

Proposition 2 provides a general expression for the discount in the presence of an activist
arbitrageur and the absence of a lifeboat provision. Depending on the situation, however, this
expression may take a simpler form. For instance, if Dt ≤ θκ then an activist will attack at t + 1
with certainty, provided, of course, that any current attempt is unsuccessful and the fund still
exists. In such a case, ρκ = 1, which is equivalent to setting D̃¬At+1 equal to D̃A

t+1 in (2.9) (this
follows from making the same substitution in (B.1) in the proof). Thus, the discount reduces to

Dt =
1

1 + µ
Et

[(
q + (1− q) D̃A

t+1

)
(M + γtα̃t+1)

]
. (2.10)

Conversely, if Dt ≥ κ then there is no possibility of a liquidation attempt at t + 1. In this case,
ρκ = 0, which is equivalent to setting D̃A

t+1 equal to D̃¬At+1 in (2.9), and the discount is given by
8Brauer (1984) finds that there is less managerial resistance to restructuring for funds that are actually restructured

while Bradley et al. (2010) observe that “there are only a handful of arbitrageurs who actively engage in attempts to
liquidate” closed-end funds and that “successful open-ending attempts are not easy to predict.”
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(2.10) with D̃¬At+1 in place of D̃A
t+1.

The above equations describe the discount during a liquidation attempt. Alternatively, in the
absence of a liquidation attempt there is zero chance of liquidating at t+1, which means that q = 0.
Then, if Dt ∈ (θκ, κ) so that there is a positive probability of an attempt at t + 1, it follows from
(2.9) that the discount at time t is

Dt =
Et

[(
κD̃A

t+1 − θκD̃¬At+1

)
(M + γtα̃t+1)

]
(κ− θκ) (1 + µ) + Et

[(
D̃A
t+1 − D̃¬At+1

)
(M + γtα̃t+1)

] . (2.11)

Following the same logic as above, if Dt ≤ θκ then the discount reduces to (2.6) with D̃t+1 replaced
by D̃A

t+1 since an activist is certain to initiate an attempt at t + 1 in this case. Furthermore, if
Dt ≥ κ then there is no possibility of an attempt at t + 1 and the discount is given by (2.6) with
D̃¬At+1 substituted for D̃t+1. A summary of these situation-dependent discounts is provided in Table
B.I in Appendix B.1.

2.2.3 Lifeboats

Lifeboats are widely used, with empirical studies estimating that anywhere from 53% to 88% of
all funds have some sort of lifeboat provision (see Curtis and Robertson (2008) and Bradley et al.
(2010)). In some instances lifeboat provisions call for mandatory action to reduce the discount while
in other cases they only require that a fund consider taking action, thereby giving discretion to the
fund’s board of directors. Not surprisingly, discretionary lifeboats have been found to be ineffective
at preventing large discounts from developing since the fund’s board, which may have an incentive
to maintain the status quo, can prevent implementation of the lifeboat if it determines that taking
corrective action would not be in the best interests of the shareholders. On the other hand, as we
show in Section 2.3, mandatory lifeboats are able to reduce discounts even if the lifeboat is never
triggered because investors anticipate future corrective action should the fund price fall.

In this section, we investigate how a single type of lifeboat—a managed distribution plan—
impacts the closed-end fund discount. We choose to study MDPs due to their relative prevalence
and prolonged effect on funds.9 Pursuant to an MDP, a fund is required to distribute a periodic
dividend to its shareholders. We assume that the dividend rate, δ, is a constant percentage of NAV.
If an MDP is in effect at time t, the fund pays a dividend at t+ 1,

dt+1 = δVt. (2.12)

Since the dividend is distributed from the assets under management, the NAV dynamics, which
must incorporate the dividend payment, are given by

Ṽt+1 = Vt (1 + r̃t+1 − φ+ γtα̃t+1 − δ) (2.13)

once an MDP has been implemented. If an MDP has not been adopted, however, the shareholders
do not receive a dividend at t+1, and NAV evolves according to (2.3). As is evident from (2.13), the
dividend distribution reduces the value of the assets under management relative to the benchmark
case, which diminishes both expected future gross earnings as well as management fees. Thus, when
the management fee is larger than the expected managerial contribution, an MDP enhances the

9Johnson, Lin, and Song (2006) report that 20% of funds in their sample have an MDP commitment while Wang
and Nanda (2008) report that the percentage of funds with an MDP had grown from roughly 10% to 40% over the
period from 1994 to 2006.
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market value of the fund, resulting in a narrower discount. The implication is similar to Cherkes,
Sagi, and Wang (2009), who show that an MDP acts as a mechanism to transfer wealth from
management to investors.10

The fund is initially issued without any dividend policies, and it will not adopt an MDP unless
the lifeboat is triggered, i.e., the fund price falls below the predetermined level specified in the
lifeboat provision, which we denote by λ ∈ (0, 1). If Dt < λ, then the lifeboat is triggered at time
t. As is typical in practice, during the ensuing period the fund’s shareholders vote on whether the
lifeboat should be implemented, and the results are known by the market participants at t + 1.
The first dividend is paid at t + 2 if the shareholders approve the lifeboat; otherwise, the fund
remains without an MDP. We assume that the fund contains only a single lifeboat provision and
that the dividend rate cannot be increased if the discount once again falls below λ after the MDP
has been implemented. Furthermore, because there is a lag between shareholder approval and the
first dividend payment, an MDP will not be adopted later than T −2 since all assets are liquidated
and distributed at T .

Although the prospectus may mandate a shareholder vote whenever the lifeboat is triggered,
as noted by Curtis and Robertson (2008) and Bradley et al. (2010), the board of directors often
objects to implementing an MDP.11 Consequently, because shareholders may be influenced by the
board’s recommendation to reject adoption of the MDP, there is no guarantee that shareholders will
vote in favor of the MDP when the lifeboat is triggered. Moreover, the board’s recommendations
are likely to be influential when the discount is not very deep, but shareholders are more prone to
ignore the board’s advice when the fund price deviates from NAV by a wide margin. To incorporate
this uncertainty of adoption into our model, we assume that the probability of implementation is
given by

ρλ ≡
λ−Dt

λ− θλ
(2.14)

for Dt ∈ (θλ, λ), where θλ is an exogenous parameter that controls the rate at which the probability
of approval increases as Dt falls. If Dt ≥ λ, then the lifeboat is not triggered and the probability
of adoption is zero. Conversely, if Dt ≤ θλ, then the MDP will be adopted with certainty.

Similar to the cases discussed above where there is no lifeboat provision, the expected fund
return,

E
[
R̃ft+1

]
≡
E
[
P̃t+1 + dt+1

]
Pt

, (2.15)

generally will not equal the market expected rate of return. Hence, the fund price must adjust in
order for the market to clear. The following proposition describes the discount in the presence of a
lifeboat provision. The discount when an MDP is in effect at t+ 1 is denoted by D̃δ

t+1 while D̃¬δt+1

denotes the discount if an MDP is not in effect at t+ 1.

10Since an MDP reduces the amount of capital under management, the mechanism used to explain the existence
of discounts in our benchmark model—namely, that the manager’s ability to earn excess returns is inversely related
to the amount of capital under management—implies that the potential excess returns should increase whenever a
dividend is paid (i.e., γt should undergo an upward adjustment). For computational efficiency, we do not adjust γt
upward when a dividend is paid in our simulation in Section 2.3. Consequently, our results likely underestimate the
impact of lifeboats on closed-end funds.

11For example, in 2003 the board of The Zweig Total Return Fund advised shareholders to vote against converting
the closed-end fund to a mutual fund because the fund “may be forced to pay for redemptions by selling portfolio
securities at inopportune times and incurring increased transaction costs” even though such a conversion would likely
result in “short-term profits.” Furthermore, albeit in a different context, Choi, Fisch, and Kahan (2009) demonstrate
that the advice provided by independent proxy voting advisers depends on a firm’s governance characteristics.
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Proposition 3. In the presence of a lifeboat provision and the absence of an activist arbitrageur,
at each date t < T (i) if an MDP has previously been adopted then the discount is

Dt =
1

1 + µ

(
δ + Et

[
D̃δ
t+1 (M + γtα̃t+1 − δ)

])
, (2.16)

but (ii) if an MDP has not previously been adopted then the discount is

Dt =
Et

[(
λD̃δ

t+1 − θλD̃¬δt+1

)
(M + γtα̃t+1)

]
(λ− θλ) (1 + µ) + Et

[(
D̃δ
t+1 − D̃¬δt+1

)
(M + γtα̃t+1)

] , (2.17)

provided that there is uncertainty regarding whether an MDP will be adopted by t+ 1.

Like the case where an activist arbitrageur is present, Proposition 3 provides general expressions
for the discount in the presence of a lifeboat, but these expressions may take a simpler form in
certain situations. Specifically, if an MDP is not in effect but Dt ≤ θλ, then the MDP definitely will
be adopted by t+ 1 so ρλ = 1. Because dividend distributions will not begin until t+ 2, however,
this is equivalent to setting D̃¬δt+1 equal to D̃δ

t+1 in (2.17) (this follows from making an identical
substitution in (B.2) in the proof). In this case, the discount is equal to (2.6) with D̃δ

t+1 in place
of D̃t+1. In contrast, if Dt ≥ λ then the lifeboat is not triggered and ρλ = 0, which is equivalent
to setting D̃δ

t+1 equal to D̃¬δt+1 in (2.17). Thus, the discount in this scenario also is given by (2.6)
but with D̃¬δt+1 substituted for D̃t+1. A summary of these state-dependent discounts is provided in
Table B.I.

2.2.4 Combination of Activist Arbitrage and a Lifeboat

The two previous subsections explore how the presence of an activist arbitraguer or a lifeboat
provision, in isolation, can impact the closed-end fund discount. In reality, though, activism and
lifeboats are intertwined, as funds that contain a lifeboat provision can become a target of an
activist arbitrageur. Furthermore, the presence of a lifeboat provision can affect the discount and
thereby influence the timing or occurrence of activism while at the same time the presence of an
activist can affect whether a lifeboat provision is triggered. In this section, we derive expressions
for the discount in the presence of both an activist arbitrageur and a lifeboat provision.

The assumptions outlined in the previous sections also apply here. Because an activist may
contemplate an attack under the conditions outlined in Section 2.2.2 even when a lifeboat provi-
sion is triggered, given our assumptions for the probability of a liquidation attempt, ρκ, and the
probability of adopting an MDP, ρλ, the expression for the discount happens to be quadratic in the
specific case where there is uncertainty regarding both whether an MDP will be implemented and
whether an activist will attempt a liquidation at t+ 1. As a result, multiple equilibria may poten-
tially exist. We consider this potential for multiple equilibria when deriving analytical expressions
for the discount and when conducting our simulation analysis.

Depending on the situation, the expression for the discount may take one of several possible
forms. While there are numerous scenarios to consider, the following proposition generally describes
the discount in the presence of both an activist and a lifeboat provision. The discount is denoted
by D̃¬δAt+1 when there is neither a liquidation attempt nor an MDP in effect, by D̃δA

t+1 where an
MDP has been adopted and the fund is under an activist attack, by D̃δ¬A

t+1 where an MDP has been
adopted and there is no liquidation attempt, and by D̃A¬δ

t+1 where there is a liquidation attempt but
no MDP in effect at t+ 1.
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Proposition 4. At each date t < T , if both an activist arbitrageur and a lifeboat provision exist
and (i) if an MDP has previously been adopted then the discount is

Dt =
δ (κ− θκ) + Et

[(
q (κ− θκ) + (1− q)

(
κD̃δA

t+1 − θκD̃δ¬A
t+1

))
(M + γtα̃t+1 − δ)

]
(κ− θκ) (1 + µ) + (1− q)Et

[(
D̃δA
t+1 − D̃δ¬A

t+1

)
(M + γtα̃t+1 − δ)

] , (2.18)

(ii) if an MDP has not previously been adopted, the lifeboat is triggered, and there is no possibility
of a liquidation attempt at t+ 1 then the discount is

Dt =
Et

[(
q (λ− θλ) + (1− q)

(
λD̃δ¬A

t+1 − θλD̃¬δAt+1

))
(M + γtα̃t+1)

]
(λ− θλ) (1 + µ) + (1− q)Et

[(
D̃δ¬A
t+1 − D̃¬δAt+1

)
(M + γtα̃t+1)

] , (2.19)

and (iii) if an MDP has not previously been adopted, the lifeboat is triggered, and there is uncertainty
regarding both whether an MDP will be adopted and the possibility of a liquidation attempt at t+ 1
then the discount is

Dt =
−y ±

√
y2 − 4xz

2x
, (2.20)

where

x ≡ (1− q)Et
[(
D̃δA
t+1 + D̃¬δAt+1 − D̃A¬δ

t+1 − D̃δ¬A
t+1

)
(M + γtα̃t+1)

]
y ≡ − (1 + µ) (κ− θκ) (λ− θλ)

− (1− q)Et
[(

(κ+ λ) D̃δA
t+1 + (θκ + θλ) D̃¬δAt+1 − (κ+ θλ) D̃A¬δ

t+1 − (λ+ θκ) D̃δ¬A
t+1

)
(M + γtα̃t+1)

]
z ≡ Et

[(
q (κ− θκ) (λ− θλ) + (1− q)

(
κλD̃δA

t+1 + θκθλD̃
¬δA
t+1 − κθλD̃A¬δ

t+1 − λθκD̃δ¬A
t+1

))
(M + γtα̃t+1)

]
.

Depending on the situation, the general expressions for the closed-end fund discount contained
in Proposition 4 may reduce to simpler equations, which are summarized in Table B.II in Appendix
B.1. For the case where an MDP has previously been adopted, the logic is similar to Section 2.2.2
where an activist arbitrageur is present and there is no lifeboat provision, but here the discount
incorporates the effects of the previously implemented MDP. If Dt ≤ θκ then a liquidation attempt
is certain to occur at t + 1 so ρκ = 1, which is equivalent to setting D̃δ¬A

t+1 equal to D̃δA
t+1 in (2.18)

(this results from making the same substitution in (B.3) in the proof). Thus, the discount is

Dt =
1

1 + µ

(
δ + Et

[(
q + (1− q) D̃δA

t+1

)
(M + γtα̃t+1 − δ)

])
. (2.21)

On the other hand, if Dt ≥ κ then there is zero probability of a liquidation attempt at t + 1 and
the discount is equal to (2.21) with D̃δ¬A

t+1 in place of D̃δA
t+1.

The discount takes a different form when the fund is not currently under an activist attack
and q = 0. If Dt ∈ (θκ, κ) so that there is uncertainty regarding whether an activist will initiate
a liquidation attempt at t + 1, the discount is derived by setting q equal to zero in (2.18), which
results in

Dt =
δ (κ− θκ) + Et

[(
κD̃δA

t+1 − θκD̃δ¬A
t+1

)
(M + γtα̃t+1 − δ)

]
(κ− θκ) (1 + µ) + Et

[(
D̃δA
t+1 − D̃δ¬A

t+1

)
(M + γtα̃t+1 − δ)

] . (2.22)

The discount takes an even simpler form whenever Dt /∈ (θκ, κ). If an activist attack is certain to
occur at t + 1 then the discount reduces to (2.16) with D̃δA

t+1 in place of D̃δ
t+1, but if there is no
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possibility of an attack then the discount reduces to (2.16) with D̃δ
t+1 replaced by D̃δ¬A

t+1 .
The preceding discussion describes the discount when an MDP has previously been imple-

mented. If, however, an MDP has not been adopted, there are several possibilities for the discount.
In the simplest scenarios there is no uncertainty regarding either the possibility of an attack or
adoption of the MDP at t+1. When this lack of uncertainty results from a discount weakly greater
than both κ and λ, the MDP will not be adopted and no liquidation attempt will occur at t + 1.
If the fund is not currently under attack then the discount is given by (2.6) with D̃¬δAt+1 in place of
D̃t+1, but if the fund is currently under attack then the discount is equal to (2.10) with D̃¬δAt+1 sub-
stituted for D̃A

t+1. On the other hand, the lack of uncertainty could result from a discount weakly
less than both θκ and θλ. In this case, the MDP will be adopted and an attempt definitely will take
place at t+ 1. Similar to the other situation without uncertainty, if the fund is not currently under
attack then the discount is given by (2.6) with D̃t+1 replaced by D̃δA

t+1, but if the fund is currently
under attack then the discount is given by (2.10) with D̃δA

t+1 instead of D̃A
t+1. Alternatively, if

Dt ∈ (λ, θκ) then an attack will occur with certainty but an MDP will not be adopted at t + 1.
Here, the discount is equal to (2.6) with D̃t+1 replaced by D̃A¬δ

t+1 if the fund is not currently under
attack or (2.10) with D̃A¬δ

t+1 substituted for D̃A
t+1 if the fund is currently under attack. Finally, if

Dt ∈ (κ, θλ) then an MDP definitely will be adopted but an attack will not take place at t + 1.
Accordingly, the discount is given by (2.6) with D̃t+1 replaced by D̃δ¬A

t+1 if the fund is not currently
under attack or (2.10) with D̃δ¬A

t+1 substituted for D̃A
t+1 if the fund is currently under attack.

Expressions for the discount are slightly more complicated when there is uncertainty regarding
either the possibility of a liquidation attempt or adoption of an MDP at t + 1. We first describe
the situations where there is uncertainty with respect to an activist attack but not with respect to
adoption. If Dt ∈ (λ, κ) then an attack may possibly take place but an MDP will not be adopted
at t+ 1 because the lifeboat is not triggered. In this situation, the discount is equal to (2.9) if the
fund is currently under attack or (2.11) if the fund is not currently under attack, with D̃A¬δ

t+1 and
D̃¬δAt+1 substituted for D̃A

t+1 and D̃¬At+1, respectively, in both cases. Conversely, if Dt ∈ (θκ, θλ) then
an MDP will definitely be adopted and an attack is possible at t+ 1. Here, the discount is given by
(2.9) if the fund is currently under attack or (2.11) if the fund is not currently under attack, with
D̃δA
t+1 and D̃δ¬A

t+1 substituted for D̃A
t+1 and D̃¬At+1, respectively, in both cases.

Alternatively, there could be uncertainty with respect to adoption of an MDP but not with
respect to an activist attack. If Dt ∈ (κ, λ) then an MDP might be adopted but an attack will not
occur at t+ 1. When the fund is currently under an attack the discount is given by (2.19). When
the fund is not currently under an attack, however, q = 0 and the discount reduces to 2.17 with
D̃δ¬A
t+1 and D̃¬δAt+1 substituted for D̃δ

t+1 and D̃¬δt+1, respectively. In contrast, if Dt ∈ (θλ, θκ) then an
MDP may be adopted and an attack will definitely occur at t+ 1. In this situation, the discount is
equal to (2.19) with D̃δ¬A

t+1 and D̃¬δAt+1 replaced by D̃δA
t+1 and D̃A¬δ

t+1 if the fund is currently under an
attack or (2.17) with D̃δ

t+1 and D̃¬δt+1 replaced by D̃δA
t+1 and D̃A¬δ

t+1 if the fund is not currently under
an attack.

Finally, there may be uncertainty surrounding the possibility of both a liquidation attempt and
an MDP adoption, in which case the expression for the discount is quadratic. If the fund is under
attack then the discount is given by (2.20) with x, y, and z defined in Proposition 4. Conversely,
if the fund is not currently under attack then x, y, and z are redefined by setting q = 0.

In sum, the discount may take any one of several possible expressions when both an activist
arbitrageur and a lifeboat provision exist, depending on the situation. All of these possibilities are
summarized in Table B.II.
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2.3 Simulation

Analytical expressions for the closed-end fund discount in various settings were derived in Sec-
tion 2.2 and are summarized in Tables B.I and B.II in Appendix B.1. Since these expressions are
not in closed form, however, we conduct a numerical simulation analysis to determine how closed-
end funds are affected, both qualitatively and quantitatively, by activist arbitrageurs and lifeboat
provisions. We first briefly consider the benchmark case in Section 2.3.1. We then explore how
changes in the cost of activism and the probability of shareholder approval impact closed-end funds
in an activist environment in Section 2.3.2 before examining the effect of various dividend rates
and trigger thresholds in a lifeboat setting in Section 2.3.3. Lastly, we investigate the joint impact
of activism and lifeboats in Section 2.3.4.

The parameters used in our analysis are contained in Table B.III. The time horizon of the fund
is 25 years. While shorter than most other dynamic models of closed-end funds in the literature,
this is the maximum attainable horizon due to computational constraints. We set the expected
rate of return, µ, to 2.5%. In “high” states the manager earns an excess return of 10% while in
“low” states the manager earns zero excess return, as we assume that even in bad states the fund
manager does not destroy value. The prior parameters for the distribution of πt, a1 and b1, are
both set to one, meaning that the investors’ initial beliefs regarding Π follow a uniform distribution.
These beliefs, combined with an initial excess return scale factor, γ1, of one, correspond to an initial
expected excess return of 5%. The management fee is fixed at 2% of the value of the assets under
management and approximates the average fee charged by closed-end funds.12 Finally, the excess
return adjustment threshold, Υ, is chosen so that the fund issues at NAV in the benchmark case.

To be consistent with investors’ initial beliefs about the manager’s ability level, we divide the
unit interval into deciles and simulate discounts for eleven different values of Π ranging from zero
to one. These discounts are equally weighted when computing relevant statistics. As a result,
the manager’s actual ability level is uniformly distributed and is compatible with investors’ inital
beliefs. We simulate 1,000 discount paths for each level of ability.

Numerical values for the discounts are obtained through a four-step procedure. First, we con-
struct a binomial tree for investors’ beliefs regarding the manager’s ability, πt, where each branch
represents a potential realization of α̃t+1. Second, we use this tree to create another binomial tree
for the excess return scale factor, γt. Third, we recursively solve a binomial tree for each discount
scenario by exploiting the fact that all of the terminal nodes must equal one since no arbitrage re-
quires that the discount vanish upon termination.13 Lastly, we simulate paths through the discount
trees.

2.3.1 Benchmark Simulation

Figure 2.1 plots the distribution of discounts in the absence of both an activist arbitrageur and
a lifeboat provision. Figure 2.1(a) plots the distribution of aggregate discounts for all ability levels
while Figure 2.1(b) plots the distribution of mean discounts for individual levels of ability. As is
evident from the figures, the closed-end funds issue at NAV, and most begin to trade at a discount
during the next period. At any point in time, the vast majority of funds trade at a discount, but

12Over different periods of time, Bradley et al. (2010) report that the average management fee ranges from 1.45 to
2.22 percent of NAV.

13In the benchmark setting there is only one discount tree to solve. In the activist setting we solve two trees—one
where the fund is currently under attack and one where it is not. Similarly, in the lifeboat setting we solve trees
where an MDP has been adopted and where an MDP has not been adopted. The combined setting requires four
trees.
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Figure 2.1: Discount Distributions. The plots show distributions of simulated closed-end fund discounts.
In Figure (a), the solid lines represent various discount fractiles of the entire simulated sample of 11,000 funds.
In Figure (b), the solid lines represent the mean discount of 1,000 simulated funds for various ability levels.
In both figures, the dashed line denotes the mean discount of the aggregate sample.

some funds trade at a premium. Furthermore, a lower ability level is associated with a deeper
discount.

2.3.2 Activist Simulation

We now investigate the effects of activism. Before conducting the simulation, we must first
parameterize the functions which regulate the probability of an attack, κ and θκ. We define the
attack threshold as κ ≡ (1− c) qσ, which is decreasing in the cost of activism and increasing in the
probability of liquidation. The probability of success is scaled by an exogenous parameter σ > 0,
with lower values leading to a higher attack threshold. Similarly, we define θκ ≡ (1− c) qη where
η > σ. Note that if the liquidation probability is one then an attack is certain to occur when the
discount falls below 1− c. On the other hand, no attempt will take place when the probability of
liquidation is zero since this corresponds to an attack threshold of zero. Likewise, if the cost of
activism is equal to one then no liquidation attempts will occur. However, a zero cost does not
lead to a certainty of attack, reflecting the fact that the few activists who target closed-end funds
tend to seek out funds with deeper discounts.

In some of our analysis we examine how changes in the cost structure and liquidation proba-
bility affect closed-end funds while in other cases it is convenient to isolate the impact of a single
parameter. Therefore, unless otherwise noted, we fix the probability of liquidation, q, at 60% and
the cost of activism, c, at 4%.14 We also set σ equal to 1/9 and η equal to 2/3. With these
parameter values the attack threshold, κ, is 0.907 and θκ is 0.683, meaning that the probability
of attack increases by roughly 4.5% when the discount drops by one percentage point within the

14The cost of activism does not represent the actual cost borne by a single activist. Rather, it a normalization
that balances the disproportionate costs and benefits of activism. On one hand, activists typically own only a small
fraction of a fund’s shares, meaning that they receive only a portion of the gains from liquidation. On the other
hand, activists usually coordinate their liquidation efforts with other activists and thereby share the costs associated
with a liquidation attempt. In any case, while c possesses some economic content, the choice of c merely affects the
shape of κ and θκ.
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Figure 2.2: Discount Ratios with Activism. In Figure (a), the solid lines represent the ratio of the
mean discount in an activist setting to the mean discount in the benchmark case for various ability levels
while the dashed line represents the ratio for the entire sample of 11,000 funds where c = 4% and q = 60%.
In Figure (b), the solid lines show the ratio of the mean discount in an activist setting to the mean discount
in the benchmark case for various values of q when c is fixed at 4%, and the dashed lines depict the ratio for
various values of c when q is fixed at 60%.

range defined by θκ and κ. The values for σ and η also ensure the existence of equilibrium.15

Results

A comparison of discounts in the presence of an activist to discounts in the benchmark case
is depicted in Figure 2.2 and illustrates the feedback effect from potential activism. Figure 2.2(a)
plots time series of ratios of mean discounts when an activist is present to mean discounts in the
benchmark case for various levels of managerial ability. There are a couple of noteworthy conse-
quences of activist arbitrage evident from the figure. First, the presence of an activist leads to
a 1.14% increase in the issue premium for all funds. Second, while mean discounts are weakly
less severe than in the benchmark case regardless of ability level, the impact of activism is most
pronounced when the fund manager has a low level of ability because, on average, a low ability
level results in a deeper discount, which in turn leads to a greater likelihood of liquidation.

The quantitative effect of potential activism on the discount depends on the liquidation prob-
ability as well as the cost of activism, as evidenced by Figure 2.2(b), which plots time series of
ratios of mean discounts in an activist setting to mean discounts in the benchmark case for the
entire sample of simulated funds. The solid lines depict the ratios for various values of q when c
is fixed at 4% while the dashed lines represent the ratios for various values of c when q is fixed
at 60%. Not surprisingly, the presence of an activist has the greatest impact on discounts when
the cost of activism is low and the liquidation probability is high. If the liquidation probability
is very low then discounts are unaffected by the presence of an activist since a liquidation is not
attempted. Furthermore, changes in the probability of liquidation appear to have a larger impact,
ceteris paribus, on discounts than changes in the cost of activism.

15Since the potential for activism affects the discount but the discount itself influences the probability of an attack,
within a subset of parameter values it is possible that there is no value for the discount such that the probability of
activism and the discount are in equilibrium.
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Table 2.I: Liquidations. For various liquidation probabilities, q, and ability levels, Π, the number of
liquidations per 1,000 simulations is reported in Panel A, the mean survival time of prematurely liquidated
funds is reported in Panel B, the mean excess change in discount upon a new attack is reported in Panel C,
and the mean excess change in discount upon a liquidation is reported in Panel D. The cost, c, is fixed at
4%.

Π
q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 All

Panel A: Number of Liquidations
0.3 42 22 13 3 0 1 0 1 0 0 0 82
0.4 205 91 47 15 11 3 1 0 0 0 0 373
0.5 389 194 106 54 22 12 1 0 0 0 0 778
0.6 630 324 184 102 50 23 8 2 1 0 0 1324
0.7 781 495 278 156 100 50 28 2 2 0 0 1892
0.8 904 643 395 257 175 92 42 11 3 0 0 2522
0.9 989 800 553 371 236 144 66 13 5 1 0 3178

Panel B: Mean Survival Time
0.3 11.3 11.5 10.8 11.3 - 11.0 - 9.0 - - - 11.2
0.4 12.2 11.4 10.9 11.4 10.3 10.7 11.0 - - - - 11.7
0.5 12.5 11.7 10.9 10.8 10.0 9.7 9.0 - - - - 11.9
0.6 12.9 11.9 11.5 10.6 10.8 9.6 10.0 8.0 12.0 - - 12.1
0.7 12.6 12.3 12.1 11.8 11.0 10.7 9.2 11.0 8.5 - - 12.2
0.8 12.0 12.4 11.9 11.7 11.7 11.1 10.4 8.9 7.7 - - 11.9
0.9 11.2 11.9 12.0 12.2 11.7 11.4 11.0 8.4 8.2 8.0 - 11.7

Panel C: Mean Excess Change in Discount upon Attack
0.3 4.6 5.0 5.0 4.6 7.3 6.8 - 11.6 - - - 4.9
0.4 5.4 5.5 5.9 6.0 7.2 5.7 5.0 - - - - 5.6
0.5 5.8 5.9 6.3 6.4 6.0 6.8 7.1 - 7.5 - - 6.1
0.6 6.0 6.1 6.0 6.2 6.3 6.3 7.0 8.3 5.7 - - 6.2
0.7 5.8 5.7 5.8 5.8 5.9 6.0 5.6 5.5 6.1 - - 5.8
0.8 5.3 5.3 5.3 5.2 5.3 5.3 5.3 5.6 5.2 - - 5.3
0.9 4.5 4.4 4.5 4.5 4.6 4.6 4.7 4.9 4.7 4.6 - 4.5

Panel D: Mean Excess Change in Discount upon Liquidation
0.3 12.0 11.0 11.7 11.9 - 12.5 - 5.0 - - - 11.8
0.4 9.4 9.5 8.8 8.4 8.1 9.2 9.3 - - - - 9.5
0.5 7.2 7.0 6.8 6.6 6.4 5.1 3.6 - - - - 7.2
0.6 5.2 5.1 5.0 4.6 4.4 4.5 3.4 3.0 4.0 - - 5.4
0.7 3.5 3.6 3.4 3.3 3.2 3.1 3.1 3.1 3.5 - - 3.8
0.8 2.1 2.2 2.3 2.1 2.1 2.1 2.0 1.6 1.9 - - 2.6
0.9 1.0 1.2 1.3 1.3 1.2 1.1 1.0 0.7 1.1 0.8 - 1.6

The influence of the cost of activism, liquidation probability, and managerial ability level on
closed-end funds is not limited to the discount. These parameters affect several other fund features,
including the ex ante likelihood of premature liquidation, survival time, excess discount changes
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upon attacks and liquidations, and the expected wealth of investors and managers. Tables 2.I,
2.II, and 2.III demonstrate the effects of different parameter values on these attributes. Data for
probabilities of liquidation less than 0.3 are omitted since the presence of an activist arbitrageur
has no impact on funds in these cases because the discount never reaches the attack threshold.

Panel A in Table 2.I, which displays the number of liquidations per 1,000 simulated funds, re-
veals that the ex ante probability of a premature liquidation is increasing in q but decreasing in Π.
Evidently, funds with lower management quality are much more likely to be prematurely liquidated.
Panel A in Table 2.II shows that a larger cost of activism also results in fewer liquidations. As
Panel B in both Tables demonstrates, however, the mean survival time of prematurely liquidated
funds is not dramatically affected by either the liquidation probability, managerial ability, or cost.

Prior empirical studies have observed that discounts tend to shrink upon both the initiation
of an activist attack and the announcement of a restructuring. Our sample of simulated funds
also experiences discount changes when an activist attacks and when a liquidation takes place, as
shown in Panels C and D, respectively, of both Tables 2.I and 2.II. To calculate the excess discount
change upon a liquidation, we take the difference between the mean discount change for funds that
liquidate at a particular date and the mean discount change for funds that do not liquidate at that
date and then compute the average of these differences over time. We perform a similar calculation
to find the excess discount change upon an attack, but in computing the excess change at time t we
exclude funds that are under attack at t−1 in order to focus on the impact of a “new” attack as well
as eliminate shifts in the discount that occur following an unsuccessful attempt. Our simulation
results are similar to empirical estimates in the literature. Bradley et al. (2010) report that the
discount shrinks between 5% and 6% when a restructuring attempt is initiated while Del Guercio,
Dann, and Partch (2003) observe that the discount shrinks by about 8.5% upon a restructuring
announcement. Moreover, we find that the liquidation probability has an immense effect on excess
discount changes which occur upon a liquidation but a much smaller impact on those changes which
occur upon an attack. Conversely, the cost structure seems to affect the discount changes which
occur upon an attack to a greater extent than those which occur upon a liquidation. We also
observe that the excess change upon both an attack and a liquidation is relatively stable across
ability levels. This is a consequence of the manager’s perceived ability, which is manifested through
the discount, being the basis for activism rather than actual ability.

Activist arbitrage also has a dramatic effect on wealth. Panels E and F in Table 2.II display the
percentage increase in the expected present value of terminal NAV and management fees, respec-
tively, relative to the benchmark case. Terminal NAV is defined as NAV at the time of liquidation
regardless of the liquidation date, and management fees include all fees paid during the life of
the fund plus any issue premium. In computing these values, we set r̃t+1 equal to µ for all t in
order to eliminate unnecessary noise. The only sources of variability are with respect to α̃t+1, the
activist’s decision whether to initiate a liquidation attempt, and whether the shareholders approve
the attempt. Cash flows are discounted at rate µ. Since Table 2.II lists the results over the entire
distribution of managerial ability for each c-q pair, the data represents the ex ante expected in-
crease in value of terminal NAV and management fees. Panel E indicates that the expected present
value of terminal NAV is not substantially different than in the benchmark case,16 but Panel F
shows that the expected present value of management fees in the activist setting is less than in the
benchmark case whenever c is small or q is large. Not surprisingly, the value of the management
fees is inversely related to the ex ante probability of liquidation.

Table 2.III provides the effects on wealth for individual ability levels and liquidation probabili-
16We attribute the difference to “rounding error,” or a lack of precision when numerically solving the discount

trees.
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Table 2.II: Impact of Cost Structure. Data for 11,000 simulations over the entire distribution of
managerial ability are reported for various liquidation probabilities, q, and costs, c. The content of each
panel is as described in Tables 2.I and 2.III. The return from the fund’s portfolio, r̃t+1, is equal to µ for all
t.

q
c 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: Number of Liquidations
0.02 224 652 1121 1830 2511 3267 4192
0.04 82 373 778 1324 1892 2522 3178
0.06 4 203 521 981 1381 1908 2385
0.08 0 57 276 557 975 1388 1775

Panel B: Mean Survival Time
0.02 11.4 11.8 11.8 11.9 11.9 11.5 11.0
0.04 11.2 11.7 11.9 12.1 12.2 11.9 11.7
0.06 10.8 11.4 11.8 12.0 12.1 12.2 12.3
0.08 - 11.0 11.9 12.0 12.2 12.3 12.6

Panel C: Discount Change upon Attack
0.02 4.7 5.2 5.4 5.2 4.9 4.2 3.1
0.04 4.9 5.6 6.1 6.2 5.8 5.3 4.5
0.06 4.9 6.1 6.8 7.0 6.9 6.6 6.0
0.08 - 6.4 7.5 7.9 7.9 7.9 7.5

Panel D: Discount Change upon Liquidation
0.02 11.1 8.7 6.6 4.7 3.3 2.2 1.3
0.04 11.8 9.5 7.2 5.4 3.8 2.6 1.6
0.06 12.8 10.1 7.9 5.9 4.3 3.0 1.9
0.08 - 10.8 8.0 6.4 4.7 3.2 2.1

Panel E: Value of Terminal NAV
0.02 0.1 0.3 0.4 0.5 0.6 0.7 0.7
0.04 0.0 0.1 0.3 0.4 0.5 0.6 0.6
0.06 0.0 0.1 0.2 0.4 0.5 0.5 0.6
0.08 - 0.0 0.1 0.2 0.4 0.5 0.5

Panel F: Value of Management Fees
0.02 -0.5 -1.4 -2.3 -4.0 -5.5 -7.7 -11.1
0.04 -0.2 -0.7 -1.5 -2.6 -3.7 -5.3 -7.1
0.06 0.0 -0.4 -1.0 -2.0 -2.7 -3.7 -4.5
0.08 - -0.1 -0.5 -1.0 -1.9 -2.6 -3.2

ties. Decomposing the results in this manner reveals that, on average, the expected present value
of terminal NAV is greater than in the benchmark case when the fund manager has a low ability
level but less than in the benchmark case when managerial ability is high. The opposite applies
to the expected value of management fees. Since premature liquidation reduces the amount of fees

47



Table 2.III: Activism and Value. For various liquidation probabilities, q, and ability levels, Π, the
percentage increase in the expected present value of terminal NAV relative to the benchmark case is reported
in Panel A, and the percentage increase in the expected present value of management fees relative to the
benchmark case is reported in Panel B. Terminal NAV is defined as NAV at the time of liquidation regardless
of the liquidation date. The cost of activism, c, is fixed at 4%, and the return from the fund’s portfolio,
r̃t+1, is equal to µ for all t.

Π
q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 All

Panel A: Expected Present Value of Terminal NAV
0.3 1.2 0.3 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0
0.4 5.4 1.2 0.1 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.1
0.5 9.8 2.7 0.4 -0.5 -0.6 -0.7 -0.7 -0.6 -0.6 -0.6 -0.6 0.3
0.6 15.4 4.5 0.8 -0.9 -1.0 -1.1 -1.1 -1.0 -1.0 -0.9 -0.9 0.4
0.7 19.3 6.7 1.2 -1.2 -1.5 -1.6 -1.7 -1.5 -1.4 -1.4 -1.3 0.5
0.8 23.3 8.7 2.1 -1.1 -1.8 -2.3 -2.2 -2.0 -1.9 -1.8 -1.8 0.6
0.9 26.6 11.2 3.2 -1.2 -2.1 -2.8 -2.8 -2.6 -2.4 -2.3 -2.2 0.6

Panel B: Expected Present Value of Management Fees
0.3 -2.0 -0.9 -0.5 0.0 0.2 0.1 0.2 0.1 0.1 0.1 0.1 -0.1
0.4 -8.9 -3.8 -1.7 0.0 0.1 0.5 0.6 0.7 0.6 0.6 0.6 -0.7
0.5 -16.2 -7.9 -4.0 -1.4 0.2 0.7 1.3 1.4 1.3 1.3 1.3 -1.5
0.6 -25.4 -13.1 -6.8 -3.2 -0.3 0.9 1.8 2.1 2.1 2.1 2.1 -2.6
0.7 -31.9 -19.7 -9.8 -4.3 -2.0 0.6 1.5 3.1 3.0 3.1 3.0 -3.7
0.8 -38.5 -25.3 -14.8 -8.4 -4.4 -0.5 2.0 3.6 4.0 4.1 4.0 -5.3
0.9 -44.0 -33.1 -21.2 -12.4 -6.4 -1.9 1.9 4.5 5.0 5.2 5.1 -7.1

paid to the manager relative to the benchmark setting and there is a greater ex ante likelihood of
early liquidation when managerial ability is low, the aggregate fees received by low-ability managers
are expected to be less valuable than in the benchmark case. Furthermore, because a low-ability
manager generates a negative expected return net of fees, premature liquidation enhances the ex-
pected present value of terminal NAV relative to the benchmark case when managerial ability is
low. Conversely, the expected present value of terminal NAV is less than in the benchmark case
while the expected value of management fees is greater than in the benchmark case for high levels
of managerial ability because there is little chance of liquidation and the fund issues at a premium,
which is captured by the manager, when an activist arbitrageur exists.

Taken together, the effects on wealth provided in Table 2.III and Panels E and F of Table
2.II illustrate an important consequence of activist arbitrage. While an actual liquidation event
effectuates a wealth transfer from management to investors, the existence of an activist arbitrageur
results in an ex ante transfer of wealth from low-ability managers to those with high ability. The
possibility of activist arbitrage does not result in greater wealth for investors ex ante because any
increase in the present value of terminal NAV is incorporated into the initial fund price in the form
of an issue premium. However, the possibility of activist arbitrage reduces the expected value of
management fees.
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Summary and Implications

As is clear from the simulation results, there are several economic repercussions of activist arbi-
trage. Akin to an insurance policy against low-quality asset management, the primary consequences
of activism are an ex post expected wealth transfer from low-ability fund managers to investors
along with an ex ante expected wealth transfer from low-ability to high-ability managers. Investors
realize a sizeable gain when a fund is liquidated, but they must pay for this potential windfall at
the IPO in the form of an issue premium, thereby offsetting the expected future benefit from liqui-
dation. Since high-ability fund managers are far less likely to experience a premature liquidation,
they benefit from the issue premium at the expense of low-ability managers. The possibility of
premature liquidation also causes discounts to shrink, even for funds that are never liquidated or
attacked, as investors rationally incorporate potential future liquidations into current fund prices.

Since the extent to which a closed-end fund is affected by potential activist arbitrage depends
largely on the cost structure and liquidation probability, the governance provisions adopted by a
fund’s founders have considerable and enduring consequences. For instance, staggered boards, su-
permajority voting requirements, and the establishment of large blockholders all tend to reduce the
likelihood that a liquidation attempt will be successful. In terms of our model, these governance
features result in a lower value of q. Other anti-takeover practices, such as credibly signaling to
engage in a costly proxy battle, increase the anticipated cost of a liquidation attempt, c. Because
low values of q and high values of c discourage activism and consequently diminish the insurance
effect that it provides, funds with strong anti-takeover provisions should, ceteris paribus, outlast
but trade at a lower price than funds with weaker anti-takeover provisions. In extreme cases, a
combination of governance provisions could eliminate activism altogether.

Activist arbitrage also gives rise to an interesting tradeoff facing the founders of a closed-end
fund. On one hand, anti-takeover provisions decrease the expected present value of terminal NAV
but increase the expected value of management fees when managerial ability turns out to be low.
The opposite effect materializes when managerial ability happens to be high. Therefore, if man-
agerial ability initially is unknown to both investors and management, fund organizers must find
the appropriate balance between a larger issue premium and the potential insurance effects from
activism when selecting governance provisions.

Although outside the scope of our model, the potential for activist arbitrage could mitigate
some detrimental agency problems due to the varying degrees to which different parameter values
affect expected wealth. Our results are based on an assumption that managerial ability is unknown
to both the manager and investors at the time of IPO. If, however, the fund manager privately
observes his ability level prior to accepting an employment position with a fund, then the potential
for activist arbitrage could serve as a mechanism to either screen for higher quality managers or
signal the quality of management to investors since activist arbitrage increases the expected wealth
for managers with high ability at the expense of low-ability managers. Similarly, the potential for
activist arbitrage may entice managers to exert more effort and thereby generate greater excess
returns for the fund, as funds with larger returns have narrower discounts and are therefore less
likely to undergo a premature termination. We do not address the specific ways in which activist
arbitrage can help alleviate adverse selection and moral hazard issues but leave them as topics for
future research.

2.3.3 Lifeboat Simulation

We next examine the impact of a lifeboat on closed-end funds. Like in the activist setting,
we sometimes analyze how changes in both the dividend rate and lifeboat trigger threshold affect
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Figure 2.3: Discount Ratios with a Lifeboat. In Figure (a), the solid lines represent the ratio of the
mean discount in a lifeboat setting to the mean discount in the benchmark case for various ability levels
while the dashed line represents the ratio for the entire sample of 11,000 funds. In Figure (b), the solid lines
show the ratio of the mean discount in a lifeboat setting to the mean discount in the benchmark case for
various values of λ when δ is fixed at 9%, the dashed lines show the ratio for various values of δ when λ is
fixed at 0.90, and the bold solid line shows the ratio when δ is 9% and λ is 0.90.

closed-end funds while other times we find it convenient to study the effects of a single parameter.
Unless otherwise noted, we fix the dividend rate, δ, at 9% and the lifeboat trigger, λ, at 90% of
NAV. These assumptions are consistent with empirical observations (see, e.g., Johnson, Lin, and
Song (2006), Wang and Nanda (2008), and Curtis and Robertson (2008)). To ensure the existence
of equilibrium, we also set θλ ≡ λ− 0.1, which means that the probability of MDP implementation
increases by 10% when the discount drops by one percentage point within the range defined by θλ
and λ.

Results

Figure 2.3 compares discounts in the presence of a lifeboat to discounts in the benchmark case
and demonstrates the feedback effect from a lifeboat provision. Time series of ratios of mean
discounts when a lifeboat exists to mean discounts in the benchmark case for various levels of man-
agerial ability is plotted in Figure 2.3(a). Similar to the activist setting, the existence of a lifeboat
leads to approximately a 1.05% increase in the issue premium for all funds. Mean discounts are
also milder than in the benchmark case for all levels of ability, but the effects of the lifeboat are
more prominent when the fund manager has a low ability level since a low level of ability leads to
a deeper discount, which in turn increases the probability of implementing an MDP.

The degree to which a lifeboat affects the discount depends on the dividend rate and lifeboat
trigger. Figure 2.3(b) plots time series of ratios of discounts in the presence of a lifeboat provision to
discounts in the benchmark case for the entire sample of simulated funds. The solid lines represent
the ratios for various values of λ when δ is fixed at 9%, the dashed lines represent the ratios for
various values of δ when λ is fixed at 0.90, and the bold solid line depicts the ratios when δ and λ
are equal to 9% and 0.90, respectively. Evidently, the effects of the lifeboat provision are largest
when the dividend rate is high and the lifeboat trigger is close to one. This result is consistent
with Johnson, Lin, and Song (2006), who observe that MDP funds with higher dividend rates have
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Table 2.IV: Lifeboats. For various lifeboat trigger levels, λ, and ability levels, Π, the number of adoptions
per 1,000 simulations is reported in Panel A, the mean adoption time is reported in Panel B, the mean excess
change in discount upon adoption is reported in Panel C, the percentage increase in the expected present
value of all fund distributions relative to the benchmark case is reported in Panel D, and the percentage
increase in the expected present value of the management fees is reported in Panel E. Fund distributions
include dividend payments plus the terminal liquidation value. The dividend rate, δ, is fixed at 9%, and the
return from the fund’s portfolio, r̃t+1, is equal to µ for all t.

Π
λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 All

Panel A: Number of Adoptions
0.84 259 132 51 26 4 2 0 0 0 0 0 474
0.87 769 340 167 82 26 16 2 0 0 0 0 1402
0.90 971 594 358 197 103 50 22 3 1 1 0 2300
0.93 1000 813 609 420 257 172 73 17 8 0 0 3369
0.96 1000 963 852 692 551 381 229 90 38 6 0 4802

Panel B: Mean Adoption Time
0.84 10.9 10.7 10.3 10.0 9.8 10.0 - - - - - 10.7
0.87 11.0 10.4 10.0 9.5 8.9 8.8 9.0 - - - - 10.7
0.90 9.6 9.7 9.6 8.9 9.5 8.9 7.6 6.7 9.0 6.0 - 9.5
0.93 7.7 8.7 8.8 8.8 8.7 8.5 8.1 7.2 7.0 - - 8.4
0.96 6.0 7.2 7.6 8.0 8.2 8.1 7.8 7.3 6.7 6.2 - 7.4

Panel C: Mean Excess Change in Discount upon Adoption
0.84 6.4 6.5 7.4 7.2 8.7 9.8 - - - - - 6.6
0.87 4.4 4.7 5.2 5.6 5.5 6.3 7.5 - - - - 4.7
0.90 2.9 3.2 3.7 3.8 4.3 4.9 4.1 5.5 5.6 6.3 - 3.3
0.93 1.8 2.2 2.5 2.8 3.0 2.9 3.6 3.5 3.4 - - 2.3
0.96 1.2 1.3 1.4 1.6 1.9 2.0 2.3 2.7 2.6 2.1 - 1.5

Panel D: Expected Present Value of Distributions
0.84 3.1 0.8 0.0 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1 0.1
0.87 9.1 2.1 0.2 -0.4 -0.6 -0.6 -0.5 -0.5 -0.5 -0.5 -0.4 0.3
0.90 13.3 4.3 0.8 -0.7 -1.0 -1.1 -1.0 -1.0 -0.9 -0.9 -0.8 0.4
0.93 16.1 6.6 2.0 -0.6 -1.5 -1.8 -1.8 -1.5 -1.4 -1.3 -1.3 0.4
0.96 18.5 9.1 3.6 -0.1 -1.5 -2.5 -2.6 -2.3 -2.1 -1.8 -1.7 0.4

Panel E: Expected Present Value of Management Fees
0.84 -5.1 -2.4 -0.8 -0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.3 -0.4
0.87 -15.0 -6.4 -2.8 -0.9 0.5 0.7 1.1 1.1 1.1 1.0 1.0 -1.3
0.90 -22.0 -12.5 -7.0 -3.3 -0.5 0.7 1.3 1.9 2.0 1.9 1.9 -2.5
0.93 -26.7 -19.6 -14.1 -8.8 -4.3 -2.0 0.9 2.5 2.8 3.0 3.0 -4.7
0.96 -30.6 -27.2 -23.2 -17.7 -13.2 -7.9 -3.5 1.0 2.7 3.8 4.0 -8.8

much less severe discounts than MDP funds with low dividend rates. A low lifeboat trigger has a
negligible impact on discounts since it is unlikely that an MDP will be adopted in such a case while
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the marginal impact from raising the dividend rate is much greater for smaller values of δ than for
larger values. Overall, changes in the lifeboat trigger appear to have a bigger impact on discounts
than changes in the dividend rate, especially when δ is larger than 9%.

In addition to impacting the discount, the dividend rate, lifeboat trigger, and level of managerial
ability affect closed-end funds in many other ways, including the incidence of adoptions, the mean
time of adoption, excess discount changes upon adoptions, and the expected wealth of investors and
managers. Tables 2.IV and 2.V display the effects that different parameter values have on these
features.

As shown in Panel A in Table 2.IV, which reports the number of MDP adoptions per 1,000
simulated funds, the ex ante probability of adopting an MDP is increasing in the trigger threshold
but decreasing in managerial ability. Panel A in Table 2.V provides the number of adoptions for
11,000 simulated funds over the entire distribution of managerial ability and shows that the likeli-
hood of adopting an MDP is also decreasing with the dividend rate. Furthermore, MDPs tend to
be implemented sooner when the trigger threshold is high and the dividend rate is low, as suggested
by Panel B in both tables, which display the mean time of adoption. Apparently, MDPs are more
likely to be implemented for funds with lower management quality, higher lifeboat triggers, and
lower dividend rates, but the primary determinants of how long a fund exists without an MDP
appear to be the trigger threshold and dividend rate.

In both Tables 2.IV and 2.V, Panel C displays the mean excess discount change upon the adop-
tion of an MDP for our simulated sample of funds. Analogous to the activist setting, to compute
the excess change upon adoption, we first take the difference between the mean discount change for
funds that implement an MDP at a particular date and the mean discount change for funds that do
not, and we then calculate the average of these differences over time. We find that adopting funds,
on average, experience a greater convergence of the discount toward NAV whenever managerial
ability is high, the lifeboat trigger is low, and the dividend rate is high. Our simulated discount
changes are comparable to an empirical finding by Johnson, Lin, and Song (2006) who report a
mean excess discount change of roughly 4% upon adoption of an MDP.

Perhaps the most notable consequence of a lifeboat provision is its impact on wealth, as demon-
strated by Panels D and E in Tables 2.IV and 2.V, which display the percentage increase in the
expected present value of all fund distributions and management fees relative to the benchmark
case. In computing these values, we set r̃t+1 equal to µ for all t in order to eliminate unneces-
sary noise. The only sources of variability are with respect to α̃t+1 and the shareholders’ decision
whether to approve adoption of an MDP. Cash flows are discounted at rate µ. Table 2.V shows
that the ex ante expected present value of fund distributions, which consists of terminal NAV plus
dividends, in the lifeboat setting does not differ much from the benchmark case but that the ex-
pected value of management fees is less than in the benchmark setting, especially when λ is high.

The effects on wealth for individual ability levels and lifeboat triggers are reported in Table
2.IV. On average, the expected present value of distributions is greater than in the benchmark
case when managerial ability is low but less than in the benchmark case when the manager has a
high ability level. The converse is true for management fees. The rationale for this observation is
the same as in the case of activist arbitrage. Because an MDP reduces the amount of fees paid to
the manager relative to the benchmark setting and there is a greater ex ante likelihood of adoption
when managerial ability is low, the aggregate fees received by low-ability managers are expected to
be less valuable than in the benchmark case when a lifeboat exists. A lifeboat also provides a boost
to the expected present value of distributions relative to the benchmark case when managerial abil-
ity is low since a low-ability manager generates a negative return net of fees. On the other hand,
a lifeboat decreases (increases) the expected present value of distributions (management fees) for
high levels of managerial ability because there is little chance of adoption and the fund issues at a
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Table 2.V: Impact of Dividend Rate. Data for 11,000 simulations over the entire distribution of
managerial ability are reported for various lifeboat trigger thresholds, λ, and dividend rates, δ. The content
of each panel is as described in Table 2.IV. The return form the fund’s portfolio, r̃t+1, is equal to µ for all t.

δ
λ 0.03 0.06 0.09 0.12 0.15 0.18 0.21

Panel A: Number of Adoptions
0.84 739 564 474 397 379 349 312
0.87 1900 1627 1402 1255 1155 1106 1028
0.90 2879 2523 2300 2126 2030 1896 1861
0.93 4146 3681 3369 3145 3035 2935 2848
0.96 5593 5097 4802 4639 4426 4295 4198

Panel B: Mean Adoption Time
0.84 10.2 10.6 10.7 10.9 10.9 11.1 11.0
0.87 9.3 10.1 10.6 10.8 11.1 11.2 11.3
0.90 7.8 8.8 9.5 9.9 10.3 10.7 10.7
0.93 6.8 7.8 8.4 8.9 9.3 9.8 10.0
0.96 6.0 6.8 7.4 7.8 8.3 8.5 8.8

Panel C: Discount Change upon Adoption
0.84 2.9 4.9 6.6 7.8 9.4 9.8 10.7
0.87 1.9 3.4 4.7 5.8 6.7 7.5 8.1
0.90 1.5 2.4 3.3 4.0 4.7 5.3 5.9
0.93 1.2 1.8 2.3 2.8 3.3 3.7 4.1
0.96 0.8 1.1 1.5 1.8 2.1 2.4 2.6

Panel D: Value of Distributions
0.84 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.87 0.2 0.2 0.3 0.3 0.3 0.3 0.3
0.90 0.2 0.3 0.4 0.4 0.4 0.4 0.4
0.93 0.2 0.3 0.4 0.5 0.5 0.5 0.5
0.96 0.2 0.4 0.4 0.5 0.5 0.6 0.6

Panel E: Value of Management Fees
0.84 -0.3 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4
0.87 -0.9 -1.2 -1.3 -1.3 -1.3 -1.4 -1.3
0.90 -1.8 -2.3 -2.5 -2.6 -2.7 -2.5 -2.7
0.93 -3.4 -4.4 -4.7 -4.8 -4.8 -4.7 -4.8
0.96 -5.8 -7.8 -8.8 -9.5 -9.3 -9.4 -9.5

larger premium when it contains a lifeboat provision.
Panels D and E in Tables 2.IV and 2.V reveal that the effects on wealth brought about by a

lifeboat provision are qualitatively similar to those caused by activist arbitrage. An MDP can ef-
fectuate an ex post transfer of wealth from management to investors, but the existence of a lifeboat
results in an ex ante transfer of wealth from low-ability managers to managers with high ability.
A lifeboat provision does not lead to greater expected wealth for investors since any increase in
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the present value of distributions is incorporated into the initial fund price in the form of an issue
premium. A lifeboat does, however, reduce the expected value of management fees.

Summary and Implications

Similar to activist arbitrage, the primary function of a lifeboat is to serve as an insurance policy
against low realizations of managerial ability. Conditional on low-quality management, lifeboats
cause an ex post expected wealth transfer from managers to investors. However, lifeboats produce
an ex ante expected wealth transfer from low-ability to high-ability managers because high-ability
managers capture an issue premium but rarely distribute assets via an MDP. Additionally, discounts
tend to remain closer to NAV when a lifeboat exists, even for funds where an MDP is never adopted.

The extent of a lifeboat’s impact depends on the trigger threshold and dividend rate. As the
preceding simulation results demonstrate, higher values of λ and δ permit a lifeboat to exert a
greater influence over funds. Moreover, changes in the lifeboat trigger threshold seem to have a
greater effect on discounts and other fund attributes than do changes in the dividend rate, especially
when δ is already relatively high (such as around 10−15%). Because the effects of a lifeboat depend
on λ and δ, selecting an appropriate trigger threshold and dividend rate at inception could allow a
lifeboat to function as either a screening or signaling device if the fund manager privately observes
his ability level before he accepts an employment position. A lifeboat could also help to alleviate
agency costs associated with moral hazard. Like with activist arbitrage, we leave effects of a lifeboat
on these agency issues for future research.

2.3.4 Combined Simulation

In this section, we explore the interplay between activist arbitrage, lifeboat provisions, and
closed-end funds. As we demonstrate below, the existence of a lifeboat impacts the extent and
consequences of activist arbitrage, and vice versa. To streamline the computations, we focus on
how changes in the parameters that have the largest impact in the individual cases—the probability
of liquidation and the lifeboat trigger threshold—affect funds when activists and lifeboats coexist.
The cost of activism, c, is fixed at 4%, and the dividend rate, δ, is set at 9%. The values for σ, η,
and θλ remain unchanged.

As we alluded to in Section 2.2.4, it is possible that more than one equilibrium may exist since
in some cases (to wit, when the lifeboat is triggered at t and there is uncertainty regarding the
possibility of both an adoption and a liquidation attempt at t+1) the expression for the discount is
quadratic. However, the situation arises only when Dt is within the bounds defined by both (θκ, κ)
and (θλ, λ). We deal with this quandary by obtaining both solutions and then choosing the value
for Dt that is still within the specified bounds. Fortunately, only unique solutions exist when this
procedure is followed.

Results

A comparison of discounts in a combined setting to discounts in the benchmark case is presented
in Figure 2.4. Time series of ratios of mean discounts when an activist and a lifeboat coexist to
mean discounts in the benchmark case for various levels of managerial ability is plotted in Figure
2.4(a). When the liquidation probability is 60% and the trigger threshold in 0.90, funds issue at
a premium of 1.22%, which is about 7% greater than in an activist environment and 16% greater
than in a lifeboat setting. Figure 2.4(b) plots time series of similar ratios for various values of q
and λ. The solid lines represent ratios for several values of q when λ is equal to 0.90, the dashed
lines depict ratios for a range of λ values when q is fixed at 60%, and the bold solid line shows the
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Figure 2.4: Discount Ratios with an Activist and Lifeboat. In Figure (a), the solid lines represent
the ratio of the mean discount where both an activist arbitrageur and lifeboat provision exist to the mean
discount in the benchmark case for various ability levels while the dashed line represents the ratio for the
entire sample of 11,000 funds. In Figure (b), the solid lines show the ratio of the mean discount in a combined
setting to the mean discount in the benchmark case for various values of q when λ is fixed at 0.90, the dashed
lines show the ratio for various values of λ when q is fixed at 60%, and the bold solid line shows the ratio
when q is 60% and λ is 0.90.

ratio when q = 60% and λ = 0.90. The addition of a lifeboat causes discounts to be less severe
than the case where only an activist is present for relatively small liquidation probabilities, but a
lifeboat has little effect on discounts when the liquidation probability is large. Similarly, permitting
an activist to operate when a lifeboat exists causes discounts to converge toward NAV when the
lifeboat trigger is relatively low, but it has little effect on discounts when the trigger is high.

Like in the other simulations, funds are affected by the liquidation probability and trigger
threshold in several ways besides the discount. Comparing Panel A in Table 2.VI with the last
column of Panel A in Table 2.I, we observe that, for the most part, there are fewer liquidations
when a lifeboat exists, though the degree to which a lifeboat reduces the number of liquidations
depends on the trigger threshold. A lifeboat with a low trigger cuts the number of liquidations
only when the liquidation probability is relatively small. For large values of q, lifeboats with low
triggers are ineffective at decreasing the number of liquidations. As λ increases, however, lifeboats
are able to reduce the number of liquidations for large values of q and eliminate them altogether for
small values. Our findings are consistent those of Johnson, Lin, and Song (2006), who find that the
survival rate for funds with an MDP is greater than the survival rate for funds without an MDP.17

A quick glance at Panel B suggests that lifeboats do not dramatically affect the average survival
time for funds that are prematurely liquidated.

At the same time, a comparison of Panel C in Table 2.VI with the last column of Panel A in
Table 2.IV reveals that the potential for activism results in fewer MDP adoptions for moderate and
high probabilities of liquidation but has little effect on adoptions when the liquidation probability
is small. The potential for activism actually precludes adoptions for funds with low trigger levels
when q is relatively high. Furthermore, Panel D shows that the presence of an activist leads to

17Although we do not report the results for attempts, we find that a lifeboat also reduces the number of restructuring
attempts. This is consistent with Cherkes, Sagi, and Wang (2009), who find that funds with MDPs in place are
attacked less frequently than funds without an MDP.
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Table 2.VI: Liquidations and Lifeboats. Data for 11,000 simulations over the entire distribution of
managerial ability are reported for various liquidation probabilities, q, and lifeboat trigger thresholds, λ.
The content of each panel is as described in Tables 2.I and 2.IV.

q
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: Number of Liquidations
0.84 0 0 35 386 829 1335 1882 2530 3165
0.87 0 0 0 108 611 1320 1879 2495 3175
0.90 0 0 0 0 136 819 1790 2516 3139
0.93 0 0 0 0 15 266 1071 2259 3156
0.96 0 0 0 0 1 163 743 1579 2720

Panel B: Mean Survival Time
0.84 - - 12.2 11.9 11.9 12.1 12.1 11.9 11.7
0.87 - - - 11.5 11.5 12.0 12.1 12.0 11.8
0.90 - - - - 11.1 11.3 11.9 11.9 11.7
0.93 - - - - 11.5 12.1 11.7 11.6 11.7
0.96 - - - - 12.0 13.5 13.2 12.5 11.4

Panel C: Number of Adoptions
0.84 462 490 425 26 0 0 0 0 0
0.87 1383 1380 1406 1255 706 0 0 0 0
0.90 2314 2296 2307 2338 2126 1517 396 0 0
0.93 3368 3373 3331 3353 3371 3255 2681 1343 0
0.96 4809 4836 4795 4816 4831 4834 4709 4320 3119

Panel D: Mean Adoption Time
0.84 10.8 10.8 10.7 10.9 - - - - -
0.87 10.5 10.7 10.6 10.8 11.2 - - - -
0.90 9.4 9.4 9.5 9.5 9.6 10.2 12.1 - -
0.93 8.4 8.4 8.4 8.4 8.3 8.5 9.0 10.1 -
0.96 7.3 7.3 7.3 7.4 7.4 7.4 7.5 7.9 8.5

later adoption times whenever q is large relative to λ.
In addition to affecting the incidence of liquidations and adoptions, a combination of activism

and a lifeboat also impacts the excess changes in the discount that occur upon attacks, liquidations,
and adoptions. A comparison of Panels A and B in Table 2.VII with the last column of Panels C
and D in Table 2.I shows that a lifeboat diminishes the excess changes in the discount that occur
upon both an attack and a liquidation when the trigger threshold is high relative to the liquidation
probability. Either a low trigger threshold or a small probability of liquidation insulates the excess
discount changes from the effects of a lifeboat provision. In contrast, the existence of an activist
arbitrageur augments the average excess discount change upon an adoption when q is sufficiently
large, as demonstrated by comparing Panel C in Table 2.VII with the last column of Panel C in
Table 2.IV, but has no effect when the liquidation probability is small.

The expected wealth transfers described in the previous subsections also show up in the com-
bined setting. As a point of reference for comparing the wealth of investors and managers in the
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Table 2.VII: Discount Changes and Value. Data for 11,000 simulations over the entire distribution of
managerial ability are reported for various liquidation probabilities, q, and lifeboat trigger thresholds, λ. The
content of Panels A, B, and C is as described in Tables 2.I and 2.IV. Panels D and E display the percentage
increase in the expected present value of all fund distributions and management fees, respectively, relative
to the activist setting. The cost, c, is fixed at 4%, the dividend rate, δ, is fixed at 9%, and the return from
the fund’s portfolio is equal to µ for all t.

q
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: Discount Change upon Attack
0.84 - - 4.8 5.7 6.1 6.1 5.8 5.3 4.5
0.87 - - - 5.2 5.9 6.1 5.9 5.4 4.5
0.90 - - - - 5.8 5.9 5.8 5.4 4.5
0.93 - - - - 5.4 5.5 5.4 5.2 4.5
0.96 - - - - 4.8 5.3 5.2 4.9 4.4

Panel B: Discount Change upon Liquidation
0.84 - - 11.6 9.5 7.2 5.4 3.8 2.6 1.6
0.87 - - - 8.9 7.0 5.5 3.9 2.6 1.6
0.90 - - - - 6.5 5.0 3.8 2.6 1.6
0.93 - - - - 6.6 4.7 3.6 2.5 1.6
0.96 - - - - 6.8 4.7 3.5 2.5 1.7

Panel C: Discount Change upon Adoption
0.84 6.6 6.7 6.6 6.2 - - - - -
0.87 4.7 4.7 4.7 4.6 4.9 - - - -
0.90 3.3 3.2 3.3 3.3 3.3 3.6 4.1 - -
0.93 2.3 2.3 2.3 2.3 2.3 2.6 3.1 3.8 -
0.96 1.5 1.5 1.5 1.5 1.5 1.6 2.0 2.5 3.2

Panel D: Value of Distributions
0.84 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1
0.87 0.3 0.3 0.3 0.2 0.2 0.0 0.1 0.0 -0.1
0.90 0.4 0.4 0.3 0.2 0.1 0.2 0.2 0.1 0.0
0.93 0.4 0.4 0.4 0.2 0.1 0.1 0.4 0.5 0.0
0.96 0.5 0.5 0.4 0.3 0.2 0.1 0.4 0.7 1.0

Panel E: Value of Management Fees
0.84 -0.4 -0.4 -0.3 -0.1 -0.2 0.0 0.0 0.0 0.1
0.87 -1.2 -1.2 -1.1 -0.6 -0.4 0.0 0.0 0.2 0.1
0.90 -2.6 -2.5 -2.4 -1.9 -1.1 -0.7 -0.1 0.1 0.3
0.93 -4.7 -4.7 -4.4 -4.0 -3.3 -2.3 -1.7 -0.7 0.2
0.96 -8.8 -8.9 -8.7 -8.2 -7.5 -6.6 -5.7 -4.3 -3.1

combined setting, we use the wealth of the respective parties in the environment with an activist but
not a lifeboat (Section 2.3.2) rather than the wealth of the parties in the benchmark case (Section
2.3.1) because we wish to understand the marginal impact of a lifeboat. Our underlying rationale
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Table 2.VIII: Activism, Lifeboats, Ability, and Value. For various liquidation probabilities, q, and
ability levels, Π, the percentage increase in the expected present value of all fund distributions relative to
the activist setting is reported in Panel A, and the percentage increase in the expected present value of
management fees relative to the activist setting is reported in Panel B. Fund distributions include dividend
payments plus NAV at the time of liquidation regardless of the liquidation date. The cost of activism, c, is
fixed at 4%, the lifeboat trigger threshold, λ, is fixed at 0.90, the dividend rate, δ, is fixed at 9%, and the
return from the fund’s portfolio is equal to µ for all t.

Π
q 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Panel A: Expected Present Value of Distributions
0.1 13.6 4.2 0.9 -0.7 -1.0 -1.1 -1.0 -1.0 -0.9 -0.9 -0.8
0.2 13.5 4.3 0.7 -0.7 -1.0 -1.1 -1.0 -0.9 -0.9 -0.9 -0.8
0.3 11.8 4.0 0.7 -0.6 -1.0 -1.0 -1.0 -0.8 -0.8 -0.8 -0.8
0.4 7.5 3.1 0.7 -0.4 -0.6 -0.8 -0.8 -0.7 -0.6 -0.6 -0.6
0.5 4.3 1.9 0.2 -0.2 -0.4 -0.4 -0.4 -0.3 -0.3 -0.3 -0.3
0.6 2.2 1.4 0.4 0.1 -0.2 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1
0.7 1.0 0.4 0.5 0.1 -0.1 0.1 0.1 0.0 0.0 0.0 0.0
0.8 0.3 0.3 0.2 -0.1 -0.1 0.2 -0.1 0.0 0.0 0.0 0.0
0.9 0.1 -0.2 -0.5 0.4 -0.3 -0.1 0.1 0.0 0.0 0.0 0.0

Panel B: Expected Present Value of Management Fees
0.1 -22.5 -12.5 -7.3 -3.3 -0.6 0.4 1.4 1.9 1.8 1.9 1.9
0.2 -22.4 -12.5 -6.6 -3.4 -0.6 0.5 1.5 2.0 2.0 1.9 1.9
0.3 -20.1 -11.8 -6.3 -3.5 -1.2 0.4 1.4 1.8 1.8 1.8 1.8
0.4 -14.3 -9.4 -5.3 -3.1 -1.2 -0.2 0.8 1.2 1.2 1.3 1.3
0.5 -8.9 -5.9 -2.4 -1.3 -0.4 -0.4 0.3 0.6 0.6 0.7 0.7
0.6 -3.8 -4.5 -1.8 -0.8 -0.5 -0.5 0.0 0.3 0.1 0.2 0.2
0.7 -1.5 -0.6 -1.2 -1.1 0.6 0.3 1.0 -0.1 -0.1 0.0 0.0
0.8 -1.0 -2.0 -0.4 -0.1 1.7 0.8 0.1 0.0 0.1 0.0 0.0
0.9 -0.3 0.3 1.4 -1.6 1.8 0.1 1.0 0.1 0.1 0.1 0.0

for this decision is that a fund’s founders are able to precisely define the parameters of a lifeboat
provision in the prospectus but only indirectly affect the prevalence of activism through various
governance provisions. The numbers we report are the percentage increase in the expected present
value of distributions and management fees in an environment with both an activist arbitrageur
and a lifeboat provision relative to a setting with an activist but without a lifeboat.

Panels D and E in Table 2.VII show that introducing a lifeboat does not affect investor wealth,
but it does decrease the value of management fees when either the trigger threshold is high or the
liquidation probability is low. Table 2.VIII decomposes the impact of a lifeboat over the aggregate
distribution of managerial ability into the effects it has on individual ability levels when λ is 0.90.
When the liquidation probability is small, the addition of a lifeboat results in a substantial increase
in the expected present value of NAV, and an even larger fall in the expected present value of
management fees, for low-ability management while the expected value of fees rises for high-ability
managers. This finding is similar to what we observe when either an activist or lifeboat exists
independently. When the liquidation probability is large, however, a lifeboat’s marginal impact on
wealth is negligible.
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Summary and Implications

The simulation results clearly demonstrate that lifeboat provisions can be effective at warding
off activist arbitrageurs. Indeed, the existence of a lifeboat reduces the number of liquidations as
well as the excess changes in the discount that occur upon both an attack and a liquidation. Despite
limiting activism, however, the results also show that introducing a lifeboat to an environment that
already permits activism further decreases the expected value of management fees, at least when
the manager’s ability level is initially unknown. Hence, our results indicate that lifeboats are
not a suitable means for enhancing managerial wealth, even though they may discourage activist
arbitrageurs from initiating restructuring attempts.

On the contrary, activist arbitrage and lifeboat provisions serve as substitutes for one another.
A lifeboat provides additional insurance against low realizations of managerial ability when the
liquidation probability is small relative to the lifeboat trigger. While the existence of both a
lifeboat and an activist arbitrageur leads to narrower average discounts than when only an activist
exists, the addition of a lifeboat really only affects discounts over the long term for funds with
low-quality management. Furthermore, lifeboats have a bigger effect on the discount when the
liquidation probability is small. Overall, lifeboats are most effective at providing insurance and
shrinking the discount when a fund has strong defensive governance provisions, which may help to
explain the conflicting empirical findings regarding the effect of lifeboat provisions on discounts.18

2.4 Conclusion

Despite a vast amount of academic research on closed-end funds, very few models incorporate the
impact of activist arbitrage or lifeboat provisions. To better appreciate the equilibrium implications
of activist arbitrage and lifeboats, we construct a dynamic rational expectations model of closed-end
fund discounts that encompasses their feedback effects. We find that both lifeboats and activism
cause fund prices to rise and discounts to shrink. We also demonstrate that lifeboats and activist
arbitrageurs effectuate an ex post wealth transfer from managers to investors but an ex ante transfer
of wealth from low-ability managers to high-ability managers. Investors, on average, neither profit
nor suffer from the existence of activist arbitrageurs or lifeboat provisions because their potential
benefits are incorporated into higher fund prices. When lifeboats and arbitrageurs coexist, fewer
reorganizations occur, and MDPs are adopted less often.

Our current research is an initial inquiry into the equilibrium consequences of lifeboats and
activist arbitrage. While exploratory in nature, it opens up some interesting avenues for future
research. Due to their effects on wealth, lifeboats or activism could potentially help to mitigate
harmful adverse selection or moral hazard problems in the closed-end fund sector.

18Del Guercio, Dann, and Partch (2003) report that lifeboats do not significantly affect discounts, but Bradley
et al. (2010) find that lifeboats cause discounts to shrink.
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Chapter 3

Advance Disclosure of Insider Trading

We present a noisy rational expectations equilibrium model in which agents who possess private
information regarding the profitability of a firm are required to provide advance disclosure of their
trading activity. We analytically characterize an equilibrium and conduct a numerical analysis
to evaluate the implications of advance disclosure relative to a market in which informed agents
trade without providing advance disclosure. By altering the information environment along with
managerial incentives, advance disclosure increases risk in the financial market while reducing risk
in the real economy. We also find that advance disclosure has implications for equilibrium prices
and allocations, managerial compensation contracts, investor welfare, and market liquidity.

3.1 Introduction

Insider trading regulations are one of the most contested issues surrounding financial markets.
Advocates of insider trading argue that the information content of informed trades leads to more
efficient markets and that it provides a source of compensation for corporate executives. Mean-
while, opponents of insider trading contend that it skews managerial incentives by encouraging
overly risky projects, reduces liquidity, decreases profits earned by ordinary investors, and is simply
unfair. While there is some merit to these arguments, the overarching question of whether insider
trading is ultimately desirable in a general equilibrium context remains unanswered.

Regardless of the desirability of prohibiting insider trading, most commentators agree that the
current approaches to regulating insider trading are largely ineffective.1 This has led authors in
both scholarly journals and the popular press to suggest new regulations requiring insiders to pro-
vide advance disclosure of their trading activity, which is a departure from current laws that require
certain insiders to disclose their trading activity within two business days following a trade.2 Ad-
vance disclosure, it is thought, will increase investor welfare by reducing insider trading profits.
Most of the existing research on this subject, however, is based predominantly on intuition rather
than sound economic analysis.

To understand the economic implications of potential advance disclosure regulations, we con-
1The two primary legal mechanisms used to combat insider trading are SEC Rule 10b-5 and §16(b) of the Securities

Exchange Act of 1934. Rule 10b-5 prohibits trading on material non-public information, but such trading is extremely
difficult to detect and prove. Furthermore, this rule does not prevent insiders from trading on private information that
is not “material.” Section 16(b) prevents corporate executives and directors from earning a profit on any combined
purchase and sale of stock in their corporation that occurs within a six month period. Although this law can prevent
short-swing profits, it fails to prevent insiders from profiting over a longer time horizon. See Fried (1998) for a
thorough discussion of these and other means of restricting insider trading.

2See, e.g., Klein (1983), Samuelson (1988), Fried (2006), and Bebchuk and Fried (2009).
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struct a competitive rational expectations equilibrium model in which informed insiders are required
to provide advance public disclosure of their trading activity. Investors, who are uninformed, learn
about the insiders’ private information from these disclosures. While the general framework of
our model can be applied to a wide variety of circumstances, we focus on a special case where
a corporate manager and other insiders—who could be, for example, corporate board members,
other employees, or independent accountants or attorneys—obtain private information regarding
the profitability of a firm. These insiders can then trade on the basis of their private information
to earn insider trading profits. In the benchmark case, insiders trade without providing advance
disclosure, and the stock price serves as a noisy signal of the insiders’ private information. Con-
versely, when insiders disclose their trading activity in advance, their disclosures serve as a noisy
signal of their private information. Because these two signals are generally distinct, an equilibrium
with advance disclosure can differ dramatically from an equilibrium without advance disclosure.

Currently, little is understood about the full spectrum of equilibrium consequences arising out of
an advance disclosure requirement. In this article, we attempt to shed some light on this inherently
complex issue. Since advance disclosure affects the quantity of the insiders’ private information that
is revealed to the rest of the market, equilibrium prices and allocations must adjust in response to
the new information environment. This in turn impacts the amount of insider trading profits that
accrue to insiders. Furthermore, because managers are indirectly compensated by means of insider
trading profits, an advance disclosure requirement affects the value and composition of managerial
compensation packages and, as a byproduct, the incentives for managers to undertake individually
costly actions that enhance firm value. Precisely how advance disclosure affects these and many
other equilibrium attributes are important questions that are largely unexplored in the extant lit-
erature on insider trading and disclosure.

We find that the equilibrium characteristics of a market in which informed insiders trade with-
out providing advance disclosure and investors learn from prices differ across many dimensions from
the equilibrium characteristics of a market in which investors learn from insiders’ advance disclo-
sures of trades.3 In particular, we find that advance disclosure mitigates many of the perceived
drawbacks of insider trading while maintaining the benefits, though we refrain from taking a strict
stance on the ultimate desirability of advance disclosure regulations. First and foremost, advance
disclosure gives rise to markets that are informationally more efficient. This enhanced efficiency has
far-reaching consequences and impacts many other equilibrium attributes. Since greater market
efficiency means that there is less uncertainty surrounding the intrinsic value of assets, prices are
higher and risk premiums are smaller, on average, in a market with advance disclosure. At the
same time, prices are more volatile because a greater amount of information is conveyed to the
market and incorporated into prices. Markets also tend to be more liquid with advance disclosure
since the increased efficiency makes stock prices less susceptible to fluctuations in liquidity trades.

Additionally, the enhanced efficiency brought about by advance disclosure impacts the extent
to which insiders can profit by trading on the basis of their private information, which in turn has
a few ramifications of its own. Since the manager of the firm is indirectly compensated through her
insider trading profits, altering the regulatory environment to require advance disclosure necessi-
tates an adjustment to the manager’s compensation package if her ex ante level of expected utility
is to be maintained. We therefore endogenize the manager’s compensation package and find that
it has a higher market value in equilibrium with advance disclosure, which suggests that insider
trading profits comprise a substantial portion of managerial compensation. Moreover, changing the
manager’s compensation package affects her incentives to undertake individually costly actions that
enhance firm value. In equilibrium, we observe that advance disclosure results in a lower level of

3Our results should be viewed with the caveat that we analyze only a linear equilibrium in a static environment.
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managerial effort, on average, but gives rise to larger effort Sharpe ratios. The diminished ability
of the manager to earn insider trading profits also lowers her incentive to undertake excessively
risky projects. Without advance disclosure, the manager may find it beneficial to take on overly
risky projects for the purpose of creating additional private information on which she can trade.
However, advance disclosure severely reduces the incentive to do so because far less profit is earned
by trading on the private information.

Furthermore, advance disclosure affects the equilibrium allocations and welfare of insiders as
well as individual investors. We find that investors tend to hold more stock in equilibrium while
insiders tend to hold less. We also observe that advance disclosure leads to greater ex ante expected
utility for investors but reduced ex ante expected utility for insiders other than the manager. The
manager’s expected utility is unaltered in equilibrium because her compensation package is ad-
justed.4 Lastly, we find that insiders will not voluntarily commit to provide advance disclosure of
their trading activity.

Our model differs from many of the extant models in the disclosure literature which utilize
a framework similar to that of Kyle (1985). In a typical Kyle model, there is an insider who
possesses private information, liquidity traders, and a market maker who infers a portion of the
insider’s private information after observing order quantities submitted by both the insider and
liquidity traders. Since these types of models do not include a rational counter-party with whom
the insider trades, they tend to focus on prices, liquidity, and the insider’s trading profits. For
example, in the only other existing economic model of advance disclosure of an informed insider’s
trades,5 to the best of our knowledge, Huddart, Hughes, and Williams (2010) examine the impact of
pre-announcement of an insider’s trades in a Kyle environment. Like us, they find that markets are
more efficient with advance disclosure, that insiders’ welfare falls when they must provide advance
disclosure, and that insiders will not voluntarily commit to provide advance disclosure of their
trading activity. Their model, however, is silent regarding many of the equilibrium attributes that
we study, including investor welfare, asset allocations, managerial compensation, managerial effort,
and the incentive for managers to undertake risky projects. In related work, Huddart, Hughes, and
Levine (2001) evaluate the effect of current regulations that require certain insiders to disclose their
trades within a short period of time after any transactions occur. Over a longer time horizon, the
authors find that post-announcement leads to more efficient prices, greater liquidity, and smaller
insider trading profits relative to a setting where insiders trade without any disclosure. Empiri-
cally, Cohen, Malloy, and Pomorski (2012) report that insiders do in fact opportunistically trade
on private information.

While not all models in the insider trading literature utilize a Kyle framework, most assume
that insiders trade strategically rather than competitively (e.g., Bhattacharya and Spiegel (1991),
Leland (1992), and Spiegel and Subrahmanyam (1992), but cf. Ausubel (1990)). This approach
undoubtedly is appropriate for situations where a single insider possesses private information, but
there are liable to be many cases where several individuals possess private information. After all,
business is not conducted in a vacuum. When there are a handful of insiders, they lose their ability
to strategically control prices and the amount of information conveyed to the rest of the market

4Since we do not adjust the endowment of the other insiders in response to an advance disclosure requirement, we
are able to evaluate the impact of advance disclosure on insiders whose utility is permitted to vary under different
regulatory regimes. In reality, there are likely to be many cases where altering an insider’s compensation package is
either impracticable or, if the insider lacks sufficient bargaining power, unnecessary. For example, Babenko and Sen
(2011) document that non-executive employees are able to profit from information that they possess about the firms
by which they are employed.

5There are other models that explore the pre-announcement of trade by an uninformed investor. These include,
for example, sunshine trading where uninformed liquidity traders pre-announce their trades (Admati and Pfleiderer
(1991)) and trades conducted under SEC Rule 10b5-1 (Jagolinzer (2009)).
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through their trades. That is, they must behave like price-takers as well as information-takers. Our
model explores this understudied perspective and assumes that insiders behave competitively.

The remainder of the paper is organized as follows. In Section 3.2, we derive analytical solutions
for equilibrium prices and allocations in two separate regulatory environments—one in which insid-
ers must provide advance disclosure of their trading activity and one in which they trade without
disclosure. We also obtain analytical expressions for an optimal compensation package in these
two settings, thereby providing some insights into how advance disclosure may indirectly impact
firm value through changes in the incentive structure. Unfortunately, our solutions are not readily
interpretable, so we resort to a numerical analysis, which we present in Section 3.3. Finally, Section
3.4 concludes.

3.2 Model

Time is discrete and indexed by t ∈ {0, 1, 2}. For convenience, we sometimes refer to the interval
between t = 0 and t = 1 as the first period and the interval between t = 1 and t = 2 as the second
period. The economy is comprised of a single firm and three types of rational agents—a single firm
manager, a continuum of identical investors with mass Ni, and a continuum of identical directors
with mass Nd—plus liquidity traders. Along with the manager, directors are considered “insiders”
because they are privy to information that is unobservable to investors, and their presence ensures
the equilibrium will be competitive in nature.6 At t = 0, the manager is hired to run the firm for two
periods until t = 2, at which time the firm liquidates and distributes its assets to its shareholders.

There are two types of financial assets in the economy—a risky stock and a sequence of one-
period riskless bonds. Each one-period bond, which is in elastic supply, has an exogenous interest
rate equal to zero. Thus, a bond purchased at time t pays one unit at t+ 1.7 The stock, which is in
unit supply, represents a claim on equity in the firm. The manager can influence the profitability of
the firm, and hence the stock payoff, by undertaking some action At ∈ R+, which is unobservable
to the other agents, during each of the two periods. The stock does not pay any dividends, but
it provides a terminal payoff, Ỹ , at t = 2 that depends linearly on managerial action and two
independent and normally distributed random variables, X̃t ∼ N

(
µt, σ

2
t

)
for t = 1, 2. Specifically,

Ỹ ≡ θ(A1 +A2) + X̃1 + X̃2, (3.1)

where θ ∈
[
0,
√
γσ2

2

)
is an exogenous parameter that affects the impact of managerial action. The

restriction on the admissible values for θ ensures that managerial action neither destroys firm value
nor trivializes the risk associated with holding the stock. The equilibrium price of the stock at
t = 1 is endogenous and denoted by P .

All agents obtain utility solely from the consumption of the payoff from financial assets. Con-
sumption occurs at t = 1, 2, and agents exhibit identical time-additive-separable preferences char-
acterized by constant absolute risk aversion, with γ denoting the coefficient of risk aversion. Addi-
tionally, the manager incurs a cost ψ(At) at time t for undertaking action At, where for simplicity
we define

ψ(At) ≡ 1
2A

2
t . (3.2)

6We use the term “director” to include members of the board of directors as well as other members of senior
management who possess private information. Since their existence means that there is a continuum of individuals
who possess private information, all insiders must behave competitively rather than strategically when trading.

7While in principle the model can accommodate a non-zero interest, this assumption greatly enhances the tractabil-
ity and computational efficiency of the model.
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This cost is modeled as a monetary cost and is incorporated into the manager’s utility function.
We further assume that the preferences and cost function are common knowledge.

Each director receives an identical exogenous endowment of stock and bonds at t = 0, which
we denote by Sd0 and Bd

0 , respectively. Similarly, each investor receives an identical exogenous
endowment of stock, Sie ≡

(
1−NdS

d
0

)
/Ni, and bonds, Bi

e. A portion of each investor’s endowment
is assigned to the manager as compensation while the remaining amount is retained in a personal
portfolio until trading occurs at t = 1. The manager, on the other hand, is not endowed with any
financial assets. Instead, she obtains her wealth by managing the firm and is compensated with a
mixture of stock and bonds pursuant to a management contract, the details of which are discussed
below. The quantity of stock and bonds held by an agent of type ` from time t to t+ 1 is denoted
by S`t and B`

t , respectively, for ` ∈ {m, d, i}, where m denotes the manager, d denotes directors,
and i denotes investors.

Under the management contract, the manager is granted Sm0 shares of stock and Bm
0 bonds at

time zero. The parameters of the contract—Sm0 and Bm
0 —are endogenously chosen by investors,

but the contract must satisfy the manager’s reservation utility, U , which represents an outside
option for the manager.8 The manager is free to trade both assets in the financial market at t = 1.
Later in this section, we consider two different regulatory schemes—one in which the manager and
directors must provide advance disclosure of their trading activity and one in which they trade
without disclosure. When advance disclosure is required, prior to observing the stock price the
manager and directors must commit to a particular stock trading activity, i.e., submit a non-
cancellable “market order,” that they are obliged to disclose to the market before trading occurs
at t = 1. Conversely, in the absence of advance disclosure, the manager and directors determine
their trading strategies after observing the stock price a la Grossman and Stiglitz (1980). In either
case, neither the manager nor directors can both purchase and sell stock at t = 1.9 Note that the
optimal choice for the parameters of the management contract will depend on whether advance
disclosure is required.

At the end of the first period, the manager and directors acquire an information advantage
over investors that stems from their relationships with the firm. In particular, they observe the
realization of X̃1 while investors do not. By permitting the manager and directors to trade at t = 1,
however, investors can infer a conditional distribution of X̃1 from either the equilibrium stock price
or the advance disclosure of the insiders’ trading activity. To avoid fully revealing equilibria, we
assume that at t = 1 liquidity traders demand a stochastic and unobservable quantity of stock,
k̃ ∼ N

(
0, σ2

k

)
. Furthermore, during the first period the manager and directors receive a private

signal of these liquidity trades,10

h̃m ≡ k̃ + ε̃m, (3.3)

while investors observe a different private signal,

h̃i ≡ k̃ + ε̃i, (3.4)
8For simplicity, we assume that the manager cannot retire after one period and that the contract cannot be

renegotiated.
9Pursuant to §16 of the Securities Exchange Act of 1934, corporate executives and directors must disclose to the

SEC all personal trading of stock in their firm and may be required to forfeit any profit earned as a result of a
combined purchase and sale within a six month period.

10All insiders receive an identical signal distinct from the signal observed by investors. The difference between the
observed signals could arise from, for example, access to information within the firm that foreshadows macroeconomic
conditions but does not affect firm profitability. While this assumption conveniently adds an additional layer of noise
which prevents the equilibrium with advance disclosure from being fully revealing, it is not required for our analysis.
Alternatively, the additional layer of noise could arise from, say, endowment shocks or perquisites that are correlated
with the profitability of the firm.
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where ε̃m and ε̃i are independent and identically normally distributed with zero mean and variance
σ2
ε . Conditional on their noisy signals, agents revise their beliefs about the extent of liquidity

trading and arrive at a posterior distribution of liquidity trades equal to

k̃|h` ∼ N
(

h`σ
2
k

σ2
k + σ2

ε

,
σ2
kσ

2
ε

σ2
k + σ2

ε

)
(3.5)

for ` ∈ {m, i}, which follows from Bayesian updating. Finally, we assume that X̃1, X̃2, k̃, ε̃m, and
ε̃i are mutually independent.

The sequence of events is as follows. At t = 0, investors receive their endowments. They then
offer a management contract to the manager, and we assume that the manager will accept provided
that her reservation utility is satisfied. Directors also disclose their stock holdings at this time, as
required by current law.11 During the first period, the manager undertakes action A1, for which
she incurs a cost, ψ(A1), and the values of the first random component of the stock payoff, X1, and
the signal of the liquidity trades, hm, are realized, at which time they are observed by the manager
and directors but not by investors. At the same time, investors privately observe hi. At t = 1,
trading in the financial market occurs. If advance disclosure is required, the manager and directors
must commit to and disclose their stock trading activity before trading takes place. The parties
then consume a portion of their wealth. During the second period, the manager undertakes action
A2, for which she incurs a cost, ψ(A2). Finally, at t = 2, the second random component of the
stock payoff, X2, is realized, the portfolios are liquidated, and the agents consume their remaining
wealth.

3.2.1 No Advance Disclosure of Trading

We first derive an equilibrium in the absence of advance disclosure. Although trading on the
basis of material non-public information is illegal in some cases, we feel that a market in which
insiders trade freely on their private information is an appropriate benchmark because: (i) insider
trading restrictions are notoriously difficult to enforce; (ii) insiders can legally trade on private
information that is not material; and (iii) according to DeMarzo, Fishman, and Hagerty (1998),
legalizing a limited amount of insider trading is socially optimal. Without advance disclosure,
the model is akin to Grossman and Stiglitz (1980) except that we incorporate a signal of the
liquidity trades and the effects of managerial action on firm value. Nevertheless, characterizing an
equilibrium and optimal compensation contract in this setting provides a useful point of reference
for evaluating the impact of advance disclosure.

Equilibrium Without Advance Disclosure of Trading

To maintain tractability, we assume that the stock price is a linear function of the manager’s
private information, X1, and the stochastic liquidity trades, k. The following theorem characterizes
an equilibrium in the absence of advance disclosure.

Theorem 1. Without advance disclosure of trading, there exists a partially revealing rational ex-
11Section 16 of the Securities Exchange Act of 1934, as amended by the Sarbanes-Oxley Act of 2002, mandates

that directors and officers disclose any changes in their stock ownership within two business days.
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pectations equilibrium in which the stock price and allocations are given by

P = λ1 + λ2(X1 + ωk) + λ3hi (3.6)

Si1 =
1

Γ6

[
−(1 +Nd)Γ2

(
ω(X1 + ωk − µ1)− σ2

1
σ2
ε
hi

)
+ Γ3

]
(3.7)

Sm1 =
1

Γ6

[
NiΓ2

(
ω(X1 − µ1) + σ2

1
σ2
ε
hi

)
− Γ5k + Γ4

]
(3.8)

Sd1 = Sm1 , (3.9)

where

λ1 ≡ θA1 + µ2 +
1

Γ6
(NiΓ2ωµ1 + Γ4)

(
γσ2

2 − θ
)

λ2 ≡
Γ5

Γ6
(1 +Nd)

λ3 ≡ −
NiΓ2σ

2
1

(
γσ2

2 − θ2
)

Γ6σ2
ε

ω ≡ γσ2
2 − θ2

1 +Nd
(3.10)

Γ1 ≡ σ2
1

(
σ2
k + σ2

ε

)(
γσ2

2 − θ2
)

Γ4 ≡ Γ3 + ω2γ2σ2
1σ

2
2σ

2
kσ

2
ε

Γ2 ≡ ωσ2
kσ

2
ε

(
γσ2

2 − θ2
)

Γ5 ≡ NiωΓ1 + Γ4

Γ3 ≡ (Γ1 + ωΓ2)
(
γσ2

2 − θ2
)

Γ6 ≡ (1 +Nd)Γ4 +NiΓ3.

The remaining portion of this subsection describes the derivation of the equilibrium, which
results from the utility-maximizing objectives of the agents. Note that all agents behave like price-
takers because there is a continuum of both outsiders (investors) and insiders (the manager and
directors). Consequently, the equilibrium is competitive. We proceed by first deriving the stock
demand functions for the manager, directors, and investors. We then aggregate these demands
with liquidity trades to obtain an equilibrium price.

The manager’s problem at t = 1 is fairly standard. She observes the first component of the
stock payoff, X1, as well as the stock price, P , and she chooses her portfolio composition and level
of action, A2. The liquidity trades, k, and the private signals, hm and hi, are not pertinent to
her decisions because the manager need not make any inferences about unobservable variables. As
a result, the only relevant uncertainty she faces is with respect to X̃2. The manager’s objective,
therefore, is to maximize her expected utility from consumption, Cmt for t = 1, 2, by selecting a
portfolio and action level:

max
A2, Sm1 , B

m
1

E
[
u
(
Cm1
)

+ βu
(
C̃m2
)
|X1

]
(3.11)

subject to

Cm1 = Sm0 P +Bm
0 −

(
Sm1 P +Bm

1

)
− ψ(A1) (3.12)

C̃m2 = Sm1 Ỹ +Bm
1 − ψ(A2), (3.13)
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where E is the expectation operator, u(·) is the utility function, and β is a time preference pa-
rameter.12 Equating the manager’s expected marginal utility from consumption across dates by
adjusting her bond holdings allows her objective function to be rewritten in closed form as

max
A2, Sm1

−2
√
β exp

[
− 1

2γ
(
Sm1
(
θ(A1 +A2) +X1 + µ2 − P

)
+ Sm0 P +Bm

0 − 1
2

(
A2

1 +A2
2 + γ(Sm1 )2σ2

2

))]
(3.14)

after substituting (3.1), (3.2), (3.12), and (3.13) into (3.11) and integrating with respect to X̃2.
Then, the first-order conditions can be solved to obtain the manager’s optimal action strategy,

A2 = θSm1 , (3.15)

and demand function,

Sm1 =
θA1 +X1 + µ2 − P

γσ2
2 − θ2

, (3.16)

which depends on her private information.
Directors face a problem similar to that of the manager because they also observe the first

component of the stock payoff in addition to the stock price. However, directors do not undertake
any actions to influence firm value. Since preferences are common knowledge, though, directors
can deduce the manager’s action strategy and demand function, which they take into account when
selecting a portfolio to maximize their expected utility from consumption, Cdt for t = 1, 2. It follows
that each director’s objective is:

max
Sd1 , B

d
1

E
[
u
(
Cd1
)

+ βu
(
C̃d2
)
|X1

]
(3.17)

subject to

Cd1 = Sd0P +Bd
0 −

(
Sd1P +Bd

1

)
(3.18)

C̃d2 = Sd1 Ỹ +Bd
1 (3.19)

and (3.15) and (3.16). Substituting (3.1), (3.15), (3.18), and (3.19) into (3.17), integrating the
resulting expression with respect to X̃2, and equating marginal utility from consumption across
dates by adjusting the bond holdings, the objective function can be rewritten in closed form as

max
Sd1

−2
√
β exp

[
−1

2γ
(
Sd1
(
θA1 + θ2Sm1 +X1 + µ2 − P

)
+ Sd0P +Bd

0 − 1
2γ
(
Sd1
)2
σ2

2

)]
. (3.20)

Substituting the manager’s demand function, (3.16), into the first-order condition of this expression
provides the director’s demand function,

Sd1 =
θA1 +X1 + µ2 − P

γσ2
2 − θ2

, (3.21)

12Section 16 of the Securities Exchange Act of 1934 prohibits corporate executives and directors from taking a short
position in any security issued by the firm that they manage. As a consequence, the manager technically should face
an additional constraint when choosing her optimal portfolio: Sm1 ≥ 0. However, we ignore this constraint to maintain
tractability and calibrate the model so that the manager never actually takes a short position in the simulation in
Section 3.3. This qualification applies to all of the manager’s and directors’ optimization problems contained in this
article, but it does not pertain to investors.
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which is identical to that of the manager. This equivalence results from the identical preferences
and information sets of the agents.

While the optimization problems for the manager and directors are fairly straightforward, in-
vestors face a more intricate problem because they do not directly observe the private information,
although they can deduce the manager’s action strategy and demand function since preferences are
common knowledge. However, because investors do not directly observe X1, they cannot deduce
the precise level of action that the manager will undertake during the second period. Given a price,
though, they can infer a distribution of that action level. As mentioned above, we restrict the stock
price to be a linear function of X1 and k. Specifically, we assume that P is a linear function of

q ≡ X1 + ωk,

where ω is given by (3.10). Because k is unobservable, the stock price serves as a noisy signal of
X1 but does not fully reveal its value. Nonetheless, after observing q through P , investors can
update their beliefs about X̃1 in a Bayesian fashion to form a posterior distribution of the private
information,

X̃1|P ∼ N
((

ωµ1σ
2
ε − hiσ2

1

)
ωσ2

k + qσ2
1

(
σ2
k + σ2

ε

)
ω2σ2

kσ
2
ε + σ2

1

(
σ2
k + σ2

ε

) ,
ω2σ2

1σ
2
kσ

2
ε

ω2σ2
kσ

2
ε + σ2

1

(
σ2
k + σ2

ε

)). (3.22)

Given their updated beliefs about X̃1, investors can infer a conditional distribution of A2. As a
result, each investor faces uncertainty with respect to X̃1 and X̃2, and their objective is to maximize
expected utility from consumption, Cit for t = 1, 2, by choosing a portfolio of stock and bonds:

max
Si1, B

i
1

E
[
u
(
Ci1
)

+ βu
(
C̃i2
)
|P
]

(3.23)

subject to

Ci1 = Si0P +Bi
0 −

(
Si1P +Bi

1

)
(3.24)

C̃i2 = Si1Ỹ +Bi
1 (3.25)

as well as (3.15) and (3.16). Since X̃2 and X̃1|P are both normally distributed, the objective
function can be rewritten in closed form as

max
Si1

−2
√
β exp

[
−1

2γ

(
Si1
(
θA1 + E

[
X̃1|P

]
+ µ2 − P

)
γσ2

2

γσ2
2 − θ2

+ Si0P +Bi
0 − 1

2γ
(
Si1
)2
σ2

2

(
1 +

γ2V
[
X̃1|P

]
σ2

2(
γσ2

2 − θ2
)2
))]

, (3.26)

where V is the variance operator, after substituting (3.1), (3.15), (3.16), (3.24), and (3.25) into
(3.23), integrating with respect to X̃1 and X̃2, and adjusting the investor’s bond holdings so that his
expected marginal utility is constant over time. Each investor’s demand function then is obtained
by solving the first-order condition of his maximization problem, yielding

Si1 =

(
θA1 + E

[
X̃1|P

]
+ µ2 − P

)(
γσ2

2 − θ2
)

γ2V
[
X̃1|P

]
σ2

2 +
(
γσ2

2 − θ2
)2 . (3.27)

The market-clearing condition requires that aggregate demand equals supply: Sm1 + NdS
d
1 +

NiS
i
1 + k = 1. Enforcing this condition provides the equilibrium stock price, which is given by
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(3.6) in Theorem 1. A quick glance at the stock price confirms our assumption that it is a linear
function of q. Finally, substituting the appropriate expressions for E

[
X̃1|P

]
, V
[
X̃1|P

]
, and (3.6)

into (3.27) as well as (3.6) into (3.16) and (3.21) provides the respective stock holdings for investors,
the manager, and directors, which are given by (3.7), (3.8), and (3.9).

Optimal Compensation Without Advance Disclosure of Trading

As mentioned above, the manager is granted a package of stock and bonds as compensation
for managing the firm. The parameters of the compensation package—Sm0 and Bm

0 —are optimally
chosen by investors to maximize their expected utility while providing the manager with her reser-
vation utility. In this section, we describe our derivation of the contract parameters. Although
analytical solutions for Sm0 and Bm

0 are attainable, they are not readily interpretable. Therefore,
we present our results numerically in Section 3.3 instead of reporting analytical expressions for the
optimal contract parameters.

Our first step is to determine the manager’s expected utility at t = 0, conditional on a portfolio
and action level, which we find by substituting (3.4), (3.6), and (3.8) into (3.14), yielding

E
[
− exp

[
−1

2γ
(
Bm

0 + Sm0
(
δm1 X̃1 + δm2 k̃ + δm3 ε̃i + θA1 + δm4

)
+ δm5 X̃

2
1 + δm6 k̃

2

+ δm7 ε̃
2
i + δm8 X̃1k̃ + δm9 X̃1ε̃i + δm10k̃ε̃i + δm11X̃1 + δm12k̃ + δm13ε̃i + δm14 − 1

2A
2
1

)]]
, (3.28)

where δmj for j = 1, . . . , 14 are constants.13 After integrating (3.28) over X̃1, k̃, and ε̃i using
symbolic computational methods,14 the manager’s optimal action strategy is obtained by solving
her first-order condition with respect to A1, giving

A1 = θSm0 . (3.29)

Substituting this action strategy back into the integrated expression provides the manager’s ex-
pected utility at t = 0, which also serves as her participation constraint in the contracting problem
and is displayed on the left hand side of (3.32) below.

The ex ante expected utility for an investor is derived in a similar fashion. We first substitute
(3.4), (3.6), (3.7), and (3.29) into (3.26). Because the stock price depends on Sm0 , we also substitute
the market-clearing condition, Sm0 = 1 −NdS

d
0 −NiS

i
0, so that the investor’s expected utility can

be written independently of the manager’s initial stock allocation. This gives

E
[
− exp

[
−1

2γ
(
Bi

0 + Si0
(
δi1X̃1 + δi2k̃ + δi3ε̃i + δi4S

i
0 + δi5

)
+ δi6X̃

2
1 + δi7k̃

2

+ δi8ε̃
2
i + δi9X̃1k̃ + δi10X̃1ε̃i + δi11k̃ε̃i + δi12X̃1 + δi13k̃ + δi14ε̃i + δm15

)]]
, (3.30)

where δij for j = 1, . . . , 15 are constants. We then integrate over X̃1, k̃, and ε̃i to obtain a closed-
form expression for the investor’s expected utility, which serves as the investor’s objective function
in the contracting problem and is displayed in (3.31) below.

The contracting problem is relatively simple. Investors select a portfolio of stock and bonds to
maximize their expected utility subject to satisfying the manager’s reservation utility:

max
Si0, B

i
0

− exp
[
−1

2γ
(
Bi

0 + ϕi1
(
Si0
)2 + ϕi2S

i
0 + ϕi3

)]
(3.31)

13The expressions for these coefficients, as well as the analogous coefficients in equations (3.30), (3.31), (3.32),
(3.59), (3.61), (3.62), and (3.63), are not reported but are available upon request.

14
∫∞
−∞ e

−ax2−2bxdx =
√

π
a
e

b2
a if a > 0. The restriction on the admissible values for θ is a sufficient condition to

satisfy this inequality.
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subject to
− exp

[
−1

2γ
(
Bm

0 + ϕm1
(
Sm0
)2 + ϕm2 S

m
0 + ϕm3

)]
≥ U, (3.32)

where ϕij and ϕmj for j = 1, . . . , 3 are constants. To solve this problem we invoke the asset supply
constraints. Since the aggregate stock holdings at t = 0 must sum to one and the number of
bonds held by the manager and investors must equal NiB

i
e, we can substitute Sm0 = 1 − NdS

d
0 −

NiS
i
0 and Bm

0 = Ni(Be − Bi
0) into (3.32), which provides an expression for Bi

0 after a bit of
algebra. Substituting this expression for Bi

0 into (3.31) and solving the corresponding first-order
condition provides an investor’s utility-maximizing choice of Si0. Finally, plugging this value back
into the manager’s participation constraint gives an investor’s utility-maximizing choice of Bi

0.
The contract parameter—Sm0 and Bm

0 —follow immediately from the asset supply constraints. We
present numerical results in Section 3.3.

3.2.2 Advance Disclosure of Trading

We now investigate the impact of advance disclosure. With advance disclosure, investors can
infer a noisy signal of X1 based on the disclosed stock trading activity of the manager and directors.
Unlike the case without advance disclosure, the stock price is determined by investors and contains
no additional information about X1. In this section, we derive an equilibrium price and allocations
when advance disclosure is required. The notation is the same as above, except that a circumflex
(̂ ) is added to some variables to distinguish them from the setting without advance disclosure.

Equilibrium With Advance Disclosure of Trading

To maintain tractability, we assume that the equilibrium stock price is a linear function of the
first random component of the stock payoff, X1, the stochastic liquidity trades, k, and the insiders’
private signal of the liquidity trades, hm. The following theorem characterizes an equilibrium when
advance disclosure is required.

Theorem 2. With advance disclosure of trading, there exists a partially revealing rational expec-
tations equilibrium in which the stock price and allocations are given by

P̂ = λ̂1 + λ̂2(X1 + ρhm) + λ̂3k (3.33)

Ŝi1 =
1

Γ̂2

[(
σ2

1 + ρ2σ2
ε

)(
θÂ1 + Ŝm1 θ

2 + µ2 − P̂
)

+ σ2
1

(
X1 + ρ(hm − k)

)
+ µ1ρ

2σ2
ε

]
, (3.34)

Ŝm1 =
2

Γ̂3

[(
σ2
k + σ2

ε

)(
θÂ1 +

(
1− λ̂2

)
(X1 + ρhm) + µ2 − λ̂1

)
+ 1

2γλ̂
2
3σ

2
kσ

2
ε Ŝ

m
0

]
(3.35)

Ŝd1 = Ŝm1 +
1

Γ̂1

[(
Ŝd0 − Ŝm0

)
λ̂2

3σ
2
kσ

2
ε

]
(3.36)
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where

λ̂1 ≡ θÂ1 + µ2 +
1

Γ̂1Γ̂4

[
λ̂2

3σ
2
kσ

2
ε

((
Γ̂4 − 2

(
σ2
k + σ2

ε

)
Γ̂2

)
θ2 + γΓ̂1Γ̂2

)
Ŝm0

+NiΓ̂1Γ̂3ρ
2σ2
εµ1 − Γ̂2Γ̂3

(
1−Ndλ̂

2
3σ

2
kσ

2
ε Ŝ

d
0

)]
λ̂2 ≡

2
Γ̂4

[
1
2γNiσ

2
1Γ̂1 +Niρ

2σ2
ε

(
σ2
k + σ2

ε

)
θ2 + (1 +Nd)

(
σ2
k + σ2

ε

)
Γ̂2

]

λ̂3 ≡
Γ̂2 −Niρσ

2
1

Ni

(
σ2

1 + ρ2σ2
ε

)
ρ ≡ −

λ̂3σ
2
k

σ2
k + σ2

ε

(3.37)

Γ̂1 ≡ λ̂2
3σ

2
kσ

2
ε + 2

(
σ2
k + σ2

ε

)
σ2

2 Γ̂3 ≡ γΓ̂1 − 2
(
σ2
k + σ2

ε

)
θ2

Γ̂2 ≡ γ
(
σ2

1σ
2
2 + ρ2

(
σ2

1 + σ2
2

)
σ2
ε

)
Γ̂4 ≡ γNi

(
σ2

1 + ρ2σ2
ε

)
Γ̂1 + 2(1 +Nd)

(
σ2
k + σ2

ε

)
Γ̂2.

The equilibrium derivation is described in the remaining portion of this subsection. As in
the case without advance disclosure, all agents behave competitively. When advance disclosure
is required, the manager and directors must commit to a particular stock trading activity prior
to observing the stock price, but they need not determine their bond holdings or consumption
pattern until after the stock price is observed. Thus, the manager and directors face a sequence of
maximization problems, which we now proceed to solve recursively.

Subsequent to observing the stock price, the manager’s objective is to maximize her expected
utility from consumption by selecting an action level and the quantity of bonds to hold in her
portfolio:

max
Â2, B̂m1

E
[
u
(
Ĉm1
)

+ βu
( ˜̂
Cm2
)
|X1

]
(3.38)

subject to

Ĉm1 = Ŝm0 P̂ + B̂m
0 −

(
Ŝm1 P̂ + B̂m

1

)
− ψ

(
Â1

)
(3.39)

˜̂
Cm2 = Ŝm1

˜̂
Y + B̂m

1 − ψ
(
Â2

)
. (3.40)

At this point in time, the only uncertainty the manager faces is with respect to X̃2. Accordingly,
she optimally chooses her bond holdings to equate her expected marginal utility from consumption
across dates after substituting (3.1), (3.2), (3.39), and (3.40) into (3.38) and integrating with respect
to X̃2. Carrying out this procedure, her objective function, conditional on P̂ , can be rewritten in
closed form as

max
Â2

−2
√
β exp

[
−1

2γ
(
Ŝm1
(
θ
(
Â1 + Â2

)
+X1 + µ2 − P̂

)
+ Ŝm0 P̂ + B̂m

0 − 1
2

(
Â2

1 + Â2
2 + γ

(
Ŝm1
)2
σ2

2

))]
. (3.41)

Solving the first-order condition of this maximization problem gives the manager’s optimal action
strategy,

Â2 = θŜm1 . (3.42)
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Additionally, directors and investors can deduce this action strategy since preferences are common
knowledge.

Because the manager does not observe the stock price before committing to a particular stock
trading activity, she must determine her optimal stock holdings based on her beliefs about the
distribution of P̂ . Since the manager observes X1 and hm, it follows immediately from (3.5) and
(3.33) that, from the manager’s perspective,

˜̂
P |X1, hm ∼ N

(
λ̂1 + λ̂2(X1 + ρhm) +

λ̂3σ
2
khm

σ2
k + σ2

ε

,
λ̂2

3σ
2
kσ

2
ε

σ2
k + σ2

ε

)
. (3.43)

Consequently, the manager’s utility is log-normally distributed prior to observing the stock price,
and (3.41) can easily be integrated with respect to ˜̂

P after substituting (3.42) to obtain a new
objective function,

max
Ŝm1

−2
√
β exp

[
−1

2γ
(
Ŝm1
(
θÂ1 + θ2Ŝm1 +X1 + µ2 − E

[ ˜̂
P |X1, hm

])
+ Ŝm0 E

[ ˜̂
P |X1, hm

]
+ B̂m

0 − 1
2

(
Â2

1 + γ
(
Ŝm1
)2
σ2

2 + 1
2γ
(
Ŝm1 − Ŝm0

)2V
[ ˜̂
P |X1, hm

]))]
. (3.44)

Finally, solving the first-order condition of this optimization problem provides the manager’s stock
demand function,

Ŝm1 =
θÂ1 +X1 + µ2 − E

[ ˜̂
P |X1, hm

]
+ 1

2γŜ
m
0 V
[ ˜̂
P |X1, hm

]
γ
(
σ2

2 + 1
2V
[ ˜̂
P |X1, hm

])
− θ2

, (3.45)

which is similar to her demand function without advance disclosure, except that with advance
disclosure her stock demand incorporates the uncertainty surrounding the stock price and depends
on her stock holdings during the previous period. Interestingly, the manager’s stock demand at
t = 1, ceteris paribus, is proportional to the amount of stock she receives under the management
contract at t = 0.

The maximization problem for directors is similar to that of the manager. After observing the
stock price, each director must choose the quantity of bonds to hold in his portfolio to maximize
his expected utility from consumption:

max
B̂d1

E
[
u
(
Ĉd1
)

+ βu
( ˜̂
Cd2
)
|X1

]
(3.46)

subject to

Ĉd1 = Ŝd0 P̂ + B̂d
0 −

(
Ŝd1 P̂ + B̂d

1

)
(3.47)

˜̂
Cd2 = Ŝd1

˜̂
Y + B̂d

1 . (3.48)

In solving this problem, each director equates his expected marginal utility across dates by appro-
priately choosing his bond holdings after substituting (3.1), (3.42), (3.47), and (3.48) into (3.38)
and integrating with respect to X̃2. Like the manager, directors must determine their optimal stock
holdings based on their beliefs about the distribution of P̂ since they do not observe the stock price
before committing to a particular stock trading activity. Because directors and managers both
observe X1 and hm, they share the same beliefs about ˜̂

P , the distribution of which is given by
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(3.43). Integrating over ˜̂
P , the objective function can be rewritten as

max
Ŝd1

−2
√
β exp

[
−1

2γ
(
Ŝd1
(
θÂ1 + θ2Ŝm1 +X1 + µ2 − E

[ ˜̂
P |X1, hm

])
+ Ŝd0E

[ ˜̂
P |X1, hm

]
+ B̂d

0 − 1
2γ
((
Ŝd1
)2
σ2

2 + 1
2

(
Ŝd1 − Ŝd0

)2V
[ ˜̂
P |X1, hm

]))]
. (3.49)

The demand function for directors,

Ŝd1 =
θÂ1 +X1 + µ2 − E

[ ˜̂
P |X1, h

]
+ 1

2γŜ
m
0 V
[ ˜̂
P |X1, hm

]
γ
(
σ2

2 + 1
2V
[ ˜̂
P |X1, hm

])
− θ2

+
1
2

(
Ŝd0 − Ŝm0

)
V
[ ˜̂
P |X1, h

]
σ2

2 + 1
2V
[ ˜̂
P |X1, hm

] , (3.50)

is then derived by substituting the manager’s demand function, (3.45), into the corresponding
first-order condition, and it equals the manager’s demand function plus a term that adjusts for
the disparity in price risk faced by the manager and directors. Note that this additional term,
conditional on the portfolio holdings at t = 0, is constant and independent of X1, k, and hm, which
means that directors’ disclosures do not contain any information in addition to that conveyed by
the manager’s disclosure.

We now turn to the investors. Although investors do not observe the realization of X̃1, they are
able to infer a conditional distribution of X̃1 from the insiders’ stock trading disclosures, and the
mechanism by which this occurs is analogous to their inferences from the equilibrium stock price
in the case without advance disclosure. First, note that E

[ ˜̂
P |X1, hm

]
is linear in X1 and hm, while

V
[ ˜̂
P |X1, hm

]
is independent of X1 and hm. Then, since the insiders’ demand functions are linear

in X1 and E
[ ˜̂
P |X1, hm

]
, it follows that their demand functions are linear in X1 and hm. Hence,

Ŝm1 and Ŝd1 serve as identical noisy signals of X1 and can be written as linear functions of

r ≡ X1 + ρhm, (3.51)

where ρ is a constant whose expression is given by (3.37). After observing r through the insiders’
disclosures, investors can use Bayesian updating to revise their beliefs, leading to the following
posterior distribution of X̃1:15

X̃1|k, r ∼ N
(
ρ2µ1σ

2
ε + (r − ρk)σ2

1

σ2
1 + ρ2σ2

ε

,
ρ2σ2

1σ
2
ε

σ2
1 + ρ2σ2

ε

)
. (3.52)

Since preferences are common knowledge and the manager discloses her trading activity, in-
vestors can infer the precise value of Â2, which is given by (3.42). Consequently, similar to the case
without advance disclosure, investors face uncertainty only with respect to X̃1 and X̃2 at t = 1.
Hence, each investor’s objective is to maximize his expected utility from consumption by selecting
a portfolio of stock and bonds:

max
Ŝi1, B̂

i
1

E
[
u
(
Ĉi1
)

+ βu
( ˜̂
Ci2
)
| k, Ŝm1

]
(3.53)

subject to

Ĉi1 = Ŝi0P̂ + B̂i
0 −

(
Ŝi1P̂ + B̂i

1

)
(3.54)

˜̂
Ci2 = Ŝi1

˜̂
Y + B̂i

1 (3.55)

15In equilibrium, investors can infer the value of k from the insiders’ disclosures and their own demand.
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in addition to (3.42) and (3.45). Substituting (3.1), (3.42), (3.54), and (3.55) into (3.53), integrating
with respect to X̃1 and X̃2, and equating expected marginal utility across dates by adjusting bond
holdings allows this objective to be rewritten as

max
Ŝi1

−2
√
β exp

[
−1

2γ
(
Ŝi1
(
θÂ1 + θ2Ŝm1 + E

[
X̃1|k, Ŝm1

]
+ µ2 − P̂

)
+ Ŝi0P̂ + B̂i

0 − 1
2γ
(
Ŝi1
)2(

σ2
2 + V

[
X̃1|k, Ŝm1

]))]
. (3.56)

Solving the first-order condition of this maximization problem provides the demand function for
investors,

Ŝi1 =
θÂ1 + θ2Ŝm1 + E

[
X̃1|k, Ŝm1

]
+ µ2 − P̂

γ
(
σ2

2 + V
[
X̃1|k, Ŝm1

]) , (3.57)

from which the equilibrium stock price is derived.
Since aggregate demand must equal supply and insiders pre-commit to a particular trading

activity, the market-clearing condition requires that NiŜ
i
1 = 1 − Ŝm1 − NdŜ

d
1 − k. Imposing this

condition results in the following expression for the equilibrium stock price:

P̂ = θÂ1 + θ2Ŝm1 + E
[
X̃1|k, Ŝm1

]
+ µ2 −

γ

Ni

(
σ2

2 + V
[
X̃1|k, Ŝm1

])(
1− Ŝm1 −NdŜ

d
1 − k

)
. (3.58)

To verify our initial assumption that P̂ is linear in X1, hm, and k, note that since V
[
X̃1|k, Ŝm1

]
is independent of X1, hm, and k, the stock price is a linear function of E

[
X̃1|k, Ŝm1

]
, Ŝm1 , and

k. As we argued above, Ŝm1 is a linear function X1 and hm, and (3.52) combined with (3.51)
demonstrates that E

[
X̃1|k, Ŝm1

]
is linear in X1, hm, and k. Thus, P̂ is a linear function of X1,

hm, and k. The precise values for the coefficients on these parameters are reported in Theorem
2. Only λ̂1 is influenced by endogenous variables, Â1 and Ŝm0 . The remaining expressions depend
on exogenous parameters, and ρ is the solution to a cubic polynomial.16 Equilibrium allocations,
which are given by (3.35), (3.36), and (3.34), are derived by substituting (3.33) into the respective
demand functions.

Optimal Compensation With Advance Disclosure of Trading

Since advance disclosure influences equilibrium prices and allocations as well as the amount of
the manager’s private information conveyed to the rest of the market, it also affects the extent to
which the manager can profit from her private information and hence the distribution of the her
utility. As a consequence, the optimal compensation package in the absence of advance disclosure
generally will be suboptimal when advance disclosure is required. We therefore derive an optimal
compensation package when advance disclosure is required. Like without advance disclosure, the
solutions for the optimal contract parameters with advance disclosure are not readily interpretable,
so we present our results numerically in Section 3.3.

Derivation of the optimal contract with advance disclosure closely follows the process used to
derive the optimal compensation package without advance disclosure. First, the manager’s expected
utility at t = 0, conditional on a portfolio and action level, is found by substituting (3.3), (3.33),

(3.42), (3.45), and the appropriate expressions for E
[ ˜̂
P |X1, h

]
and V

[ ˜̂
P |X1, h

]
into (3.41), resulting

16There exists a unique real solution for ρ given our calibration is Section 3.3.
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in

E
[
− exp

[
−1

2γ
(
B̂m

0 + Ŝm0
(
δ̂m1 X̃1 + δ̂m2 k̃ + δ̂m3 ε̃m + θA1 + δ̂m4 Ŝ

m
0 + δ̂m5

)
+ δ̂m6 X̃

2
1 + δ̂m7 k̃

2

+ δ̂m8 ε̃
2
m + δ̂m9 X̃1k̃ + δ̂m10X̃1ε̃m + δ̂m11k̃ε̃m + δ̂m12X̃1 + δ̂m13k̃ + δ̂m14ε̃i + δ̂m15 − 1

2A
2
1

)]]
, (3.59)

where δ̂mj for j = 1, . . . , 15 are constants. After integrating (3.59) over X̃1, h̃m, and k̃, the manager’s
optimal action strategy is derived by solving the first-order condition with respect to Â1, resulting
in

Â1 = θŜm0 . (3.60)

Then, substituting this expression back into the integrated expression gives the manager’s expected
utility at t = 0, which is displayed on the left hand side of (3.63) below.

Similarly, an investor’s expected utility at t = 0, conditional on a portfolio and the manager’s
action strategy, which investors can deduce because preferences are common knowledge, is derived
by substituting (3.3), (3.33), (3.35), (3.36), (3.34), (3.60), the expressions for E

[
X̃1|k, Ŝm1

]
and

V
[
X̃1|k, Ŝm1

]
, and the stock supply constraint, Ŝm0 = 1−NdŜ

d
0 −NiŜ

i
0, into (3.56), yielding

E
[
− exp

[
−1

2γ
(
B̂i

0 + Ŝi0
(
δ̂i1X̃1 + δ̂i2k̃ + δ̂i3ε̃m + δ̂i4Ŝ

i
0 + δ̂i5

)
+ δ̂i6X̃

2
1 + δ̂i7k̃

2

+ δ̂i8ε̃
2
m + δ̂i9X̃1k̃ + δ̂i10X̃1ε̃m + δ̂i11k̃ε̃m + δ̂i12X̃1 + δ̂i13k̃ + δ̂i14ε̃i + δ̂i15

)]]
, (3.61)

where δ̂ij for j = 1, . . . , 15 are constants. We then integrate over X̃1, h̃m, and k̃ to obtain a
closed-form expression of the investor’s expected utility. The resulting contracting problem is:

max
Ŝi0, B̂

i
0

− exp
[
−1

2γ
(
B̂i

0 + ϕ̂i1
(
Ŝi0
)2 + ϕ̂i2Ŝ

i
0 + ϕ̂i3

)]
(3.62)

subject to
− exp

[
−1

2γ
(
B̂m

0 + ϕ̂m1
(
Ŝm0
)2 + ϕ̂m2 Ŝ

m
0 + ϕ̂m3

)]
≥ U, (3.63)

where ϕ̂ij and ϕ̂mj for j = 1, . . . , 3 are constants. The optimal contract parameters are derived in
a similar fashion as when there is no advance disclosure in Section 3.2.1. Numerical results are
presented in Section 3.3.

3.3 Simulation

In the previous section, we characterize two distinct equilibria—one in which agents who possess
private information are required to provide advance disclosure of their trading activity and one in
which they trade without providing advance disclosure. Although analytical expressions for prices
and allocations in these equilibria are attainable, they are not readily interpretable. Therefore,
we conduct a numerical analysis to better understand and compare several characteristics of the
equilibria. We first examine macroeconomic features such as market efficiency, prices, risk premi-
ums, and liquidity. We then investigate the effects of advance disclosure on individuals, including
portfolio allocations, insider trading profits, welfare, and the optimal management contract. Lastly,
we explore the impact of advance disclosure at the firm level by studying managerial effort levels
and the propensity for managers to undertake excessively risky projects.

As part of the numerical analysis, we examine how the quantity of private information af-
fects the equilibrium outcomes. In furtherance of this objective, we define Z̃ ≡ X̃1 + X̃2, where
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Table 3.I: Parameter Values.

Variable Symbol #1 #2 #3 #4
Mean of Z̃ µz 100 100 1000 1000
Variance of Z̃ σ2

z 64 64 6400 6400
Impact of managerial action θ 0 3 0 12
Variance of liquidity trades σ2

k 0.01 0.01 0.01 0.01
Variance of signal of liquidity trades σ2

ε 0.01 0.01 0.01 0.01
Mass of investors Ni 15 15 150 150
Mass of directors Nd 4 4 5 5
Investors’ bond endowment Bi

e 1 1 1 1
Director’s bond endowment Bd

0 1 1 1 1
Directors’ stock endowment Sd0 0.05 0.05 0.0065 0.0065
Manager’s reservation utility U −10−7 −10−7 −10−11 −10−11

Risk aversion coefficient γ 6 6 7 7
Time preference parameter β 1 1 1 1

Z̃ ∼ N
(
µz, σ

2
z

)
, and let α ∈ (0, 1) denote the quantity of private information observed by the

manager. We also assume that the respective distributions of X̃1 and X̃2 are X̃1 ∼ N
(
αµz, ασ

2
z

)
and X̃2 ∼ N

(
(1 − α)µz, (1 − α)σ2

z

)
. Under this specification, the sum of the random components

of the stock payoff, X̃1 and X̃2, is unaffected by the quantity of private information, but a larger α
gives rise to more private information.

Although most of the qualitative results are robust to various calibrations, we simulate data
using four distinct calibrations because the quantitative impact of advance disclosure depends on
the particular parameter values assumed. The parameter values for these calibrations are listed in
Table 3.I. The major differences between the calibrations are the parameter values for the mass
of investors, Ni, and the effect of managerial action, θ. These calibrations highlight how both
the manager’s contribution and the relative “size” of the insiders influence the impact of advance
disclosure. The mean and variance of the stock payoff (without managerial action), µz and σ2

z ,
are chosen so that 99% of payoff realizations are within roughly 25% of the mean, which helps
ensure that insiders do not take a short position in the stock since current laws prohibit corporate
executives and directors from taking a short position in any security issued by their firm. The
impact of managerial action, θ, is then selected so that the manager adds approximately 1% to the
value of the firm in equilibrium. The variance of the liquidity trades, σ2

k, and the noise component
of the agents’ signals of the liquidity trades, σ2

ε , are both set at 0.01, which means that the noise
component of the investors’ signal of the insiders’ private information is not predisposed to be either
smaller or larger with advance disclosure. In two of the calibrations insiders comprise a quarter of
the market, and in the other two calibrations they comprise only 4% of the market. The manager’s
reservation utility, U , and the directors’ stock endowment, Sd0 , are adjusted in order that the ex
ante expected utility is of the same order of magnitude for all agents within a particular calibration.

We simulate 10,000 realizations of X̃1, k̃, h̃i, and h̃m for several values of α ranging from 0.03
to 0.70. This range of α seems realistic and ensures that both the manager’s stock holdings and
the stock price are always positive. For consistency, we use the same realizations of the simulated
variables for each calibration and level of α.
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Figure 3.1: Efficiency. The percentage increase in market efficiency resulting from advance disclosure,
measured as (Σ̂/Σ− 1)× 100, is plotted for various values of α and multiple calibrations. The thin solid line
represents calibration #1, the dots represent calibration #2, the bold solid line represents calibration #3,
and the asterisks represent calibration #4. Table 3.I lists parameter values for these calibrations.

3.3.1 Market Efficiency

We first discuss market efficiency because it forms a basis for much of our subsequent analysis.
Following Spiegel and Subrahmanyam (1992), we measure efficiency, which is denoted by Σ, as the
inverse of the variance of the stock payoff, conditional on the information available to the market
(i.e., investors) at t = 1. A higher level of efficiency means that there is less uncertainty regarding
the stock payoff. The following corollary provides expressions for market efficiency.

Corollary 1. Market efficiency without advance disclosure of trading is given by

Σ =
Γ3

Γ4σ2
2

(3.64)

while market efficiency with advance disclosure of trading is given by

Σ̂ =
σ2

1 + ρ2σ2
ε

ρ2σ2
1σ

2
ε +

(
σ2

1 + ρ2σ2
ε

)
σ2

2

. (3.65)

Proof. See Appendix.

While these analytical expressions for efficiency are easily derived, we resort to a numerical
comparison because the presence of ρ, which is a solution to a cubic polynomial, makes an analytical
comparison infeasible. Figure 3.1, which plots the percentage increase in market efficiency resulting
from advance disclosure of trading, indicates that advance disclosure gives rise to markets that
are more efficient. This result is consistent with Huddart, Hughes, and Levine (2001) as well as
Huddart, Hughes, and Williams (2010), who find that market efficiency increases with both pre-
and post-disclosure of insider trading.

The degree to which managerial action affects the stock payoff, θ, appears to have a negligible
impact on efficiency, likely because managerial action comprises only a small fraction of total firm
value. The mass of investors relative to that of insiders, however, seems to dramatically affect
efficiency, especially when insiders possess a great deal of private information. This latter effect on
efficiency is related to the liquidity of the market. When the mass of investors is large, the price
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(a) Average Price
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(b) Volatility

Figure 3.2: Price. The percentage increase in the mean price and the volatility of price resulting from
advance disclosure, (E[P̂ ]/E[P ] − 1) × 100 and (V[P̂ ]1/2/V[P ]1/2 − 1) × 100, is plotted for various levels of
α and multiple calibrations. The thin solid line represents calibration #1, the dots represent calibration
#2, the bold solid line represents calibration #3, and the asterisks represent calibration #4. Table 3.I lists
parameter values for these calibrations.

reacts to a lesser extent in response to a liquidity trade, ceteris paribus, because there are more
investors to absorb fluctuations in supply. That is, without advance disclosure insiders are able to
adjust their demand in response to liquidity shocks. As a consequence, both the liquidity trades and
the manager’s signal of the liquidity trades exert a smaller influence over the stock price. Yet, the
mass of investors only affects the investors’ signal of the insiders’ private information with advance
disclosure, as a marginal increase in Ni causes the magnitude of ρ to decrease but does not affect
ω. This means that the insiders’ disclosures become more informative as Ni increases while the
informativeness of the price without advance disclosure remains constant. Hence, the increase in
market efficiency that results from the advance disclosure of trading is more pronounced whenever
the mass of insiders is relatively small.

3.3.2 Price

We next evaluate the effect of advance disclosure on price. Figures 3.2(a) and 3.2(b) plot the
percentage increase in average price and volatility, respectively, in a market with advance disclosure
relative to a market without advance disclosure. These figures indicate that advance disclosure leads
to higher average prices and greater volatility. Both of these results are largely attributable to the
enhanced market efficiency generated by advance disclosure. On average, the stock price will be
higher with advance disclosure since there is less uncertainty regarding the stock payoff. At the
same time, there is a greater degree of variability in the private information made available to
the market with advance disclosure because a larger portion of the insiders’ private information is
revealed. Since the private information revealed to the market is incorporated into the stock price,
the increased variability of information gives rise to greater price volatility. Thus, advance disclosure
“accelerates the resolution of uncertainty” and appears to exacerbate the increased volatility caused
by insider trading, as documented by Leland (1992).
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Figure 3.3: Risk Premium. The percentage increase in the average risk premium resulting from advance
disclosure, measured as (Π̂/Π − 1) × 100, is plotted for various levels of α. The thin solid line represents
calibration #1, the dots represent calibration #2, the bold solid line represents calibration #3, and the
asterisks represent calibration #4. Table 3.I lists parameter values for these calibrations.

3.3.3 Risk Premium

The risk premium, which is denoted by Π, is calculated as the difference between the stock’s
expected payoff and its price.17 Both with and without advance disclosure, the risk premium is
a function of the insiders’ private information, the liquidity trades, and the private signals of the
liquidity trades. Consequently, the risk premium is stochastic. For the sake of comparison, we
therefore derive expressions for the average risk premium.

Corollary 2. The average risk premium without advance disclosure of trading is given by

Π = γσ2
2

Γ4

Γ6
(3.66)

while the average risk premium with advance disclosure of trading is given by

Π̂ =
1

Γ̂3

[
γ
(
Γ̂1

(
θÂ1 +

(
1− λ̂2

)
µ1 + µ2 − λ̂1

)
+ λ̂2

3σ
2
kσ

2
εθ

2Ŝm0
)]
. (3.67)

Proof. See Appendix.

Figure 3.3 depicts the percentage increase in average risk premiums for various levels of α.
Evidently, advance disclosure gives rise to a smaller average risk premium. Along with the impact
on price, the effect on the risk premium is attributable to enhanced efficiency—investors command
a smaller risk premium when there is less uncertainty surrounding the stock payoff.

3.3.4 Liquidity

Similar to Leland (1992), we measure liquidity, which is denoted by Λ, as the inverse impact
on price from a marginal increase in the quantity of liquidity trades: (∂P/∂k)−1. A market that

17Defining the risk premium as the percentage difference between the stock’s expected payoff and its price produces
quantitative results almost identical to the ones presented in Figure 3.3 but generates more complicated analytical
expressions.
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Figure 3.4: Liquidity. The percentage increase in liquidity resulting from advance disclosure, measured
as (Λ̂/Λ− 1)× 100, is plotted. The thin solid line represents calibration #1, the dots represent calibration
#2, the bold solid line represents calibration #3, and the asterisks represent calibration #4. Table 3.I lists
parameter values for these calibrations.

experiences a smaller price change in response to a marginal change in the amount of liquidity
trades is considered to be more liquid than a market that experiences a larger price change. The
following corollary provides expressions for liquidity.

Corollary 3. Liquidity without advance disclosure of trading is given by

Λ =
Γ6σ

2
ε(

Γ5σ2
ε −NiΓ2σ2

1

)(
γσ2

2 − θ2
) (3.68)

while liquidity with advance disclosure of trading is given by

Λ̂ =
(
ρλ̂2 + λ̂3

)−1
. (3.69)

Proof. See Appendix.

Figure 3.4, which plots the percentage increase in liquidity arising from advance disclosure,
indicates that a market with advance disclosure is more liquid than a market without advance
disclosure except when insiders possess very little private information. On one hand, the increased
efficiency in a market with advance disclosure makes stock prices less susceptible to liquidity trades.
On the other hand, advance disclosure precludes insiders from adjusting their demand in response
to a liquidity shock, thereby making prices more susceptible to liquidity trades. Thus, a market
with advance disclosure will be more (less) liquid whenever the former (latter) effect dominates. As
Figure 3.4 demonstrates, the gain from enhanced efficiency outweighs the loss from the inflexibility
of the insiders’ demand except when improved efficiency is of little value because the insiders possess
only a small amount of private information. Thus, advance disclsoure may help to mitigate any
reduction in liquidity caused by insider trading (see, e.g., Kyle (1985) and Leland (1992)). Note
that our results are consistent with Huddart, Hughes, and Levine (2001), who find that post-trading
disclosure enhances liquidity, but conflict with Huddart, Hughes, and Williams (2010), who find
that pre-announcement leads to a loss of liquidity.
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(b) Bond Compensation
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(c) Stock Compensation
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(d) Value of Stock Compensation

Figure 3.5: Compensation Contract. For various levels of α and multiple calibrations, (a) plots the per-
centage increase in the expected market value of the total compensation package ((E[P̂ ]Ŝm0 +B̂m0 )/(E[P ]Sm0 +
Bm0 )− 1)× 100, (b) plots the percentage increase in bond compensation (B̂m0 /B

m
0 − 1)× 100, (c) plots the

the percentage increase in stock compensation (Ŝm0 /S
m
0 − 1) × 100, and (c) plots the percentage increase

in the expected value of stock compensation ((E[P̂ ]Ŝm0 )/(E[P ]Sm0 ) − 1) × 100 as a consequence of advance
disclosure. The thin solid line represents calibration #1, the dots represent calibration #2, the bold solid
line represents calibration #3, and the asterisks represent calibration #4. Table 3.I lists parameter values
for these calibrations.

3.3.5 Allocations

Figure 3.5 illustrates the effect of advance disclosure on the parameters of the management
contract—Sm0 and Bm

0 —which are the solutions to the contracting problems described in Sections
3.2.1 and 3.2.2. Figures 3.5(b) and 3.5(c) plot the respective percentage increases in bond and stock
compensation (quantity of bonds and number of shares) with advance disclosure relative to a set-
ting without advance disclosure. These figures indicate that the manager receives more bonds and
less stock when she must provide advance disclosure of her trading activity. Furthermore, Figures
3.5(a) and 3.5(d) indicate that the expected value of the total compensation package, E[P ]Sm0 +Bm

0 ,
is for the most part higher with advance disclosure while the expected value of the stock compen-
sation, E[P ]Sm0 , tends to be lower with advance disclosure. The fact that managers receive more
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(a) Investors
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(b) Manager

0.1 0.2 0.3 0.4 0.5 0.6 0.7

−60

−45

−30

−15

0

α

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 S

to
ck

 A
llo

ca
tio

n

(c) Directors
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(d) Trading Aggressiveness

Figure 3.6: Equilibrium Allocations. The percentage increase in the mean equilibrium stock allocations
resulting from advance disclosure are plotted in Figures (a)-(c). Figure (d) plots the relative aggressiveness
with which insiders trade on their private information, measured as ((∂Ŝm1 /∂X1)/(∂Sm1 /∂X1) − 1) × 100,
with advance disclosure. The thin solid line represents calibration #1, the dots represent calibration #2, the
bold solid line represents calibration #3, and the asterisks represent calibration #4. Table 3.I lists parameter
values for these calibrations.

valuable compensation packages with advance disclosure suggests that insider trading profits with-
out advance disclosure comprise a substantial portion of managerial compensation. This result is
consistent with previous findings that managerial compensation is weakly increasing in the amount
of mandated disclosure (Hermalin and Weisbach (2012)) and that firms that restrict insider trading
tend to provide more valuable managerial compensation packages (Roulstone (2001)).

Market efficiency, the distribution of the future stock price, and managerial action all influence
the composition of the optimal compensation package. Overall, larger variations in both the com-
position and expected value of the compensation package occur when advance disclosure leads to
a bigger increase in market efficiency and greater volatility. Because greater efficiency leads to a
stock price that more accurately reflects the insiders’ private information, the manager cannot gain
as much from purchasing undervalued shares or selling overvalued ones, which means that she earns
smaller profits from insider trading. Consequently, the market value of her compensation package
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(b) Manager
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(c) Directors

Figure 3.7: Trading Profit. The percentage increase in the Sharpe ratio of trading profits resulting from
advance disclosure, ((E[π̂`]/V[π̂`]1/2)/(E[π`]/V[π`]1/2) − 1) × 100, is plotted. The thin solid line represents
calibration #1, the dots represent calibration #2, the bold solid line represents calibration #3, and the
asterisks represent calibration #4. Table 3.I lists parameter values for these calibrations.

increases in order to satisfy her reservation utility. Furthermore, with higher stock price volatility,
each share of stock provides a lower amount of expected utility, so a portion of the manager’s stock
compensation is replaced with bonds.

In addition to receiving less stock pursuant to the management contract, the manager also tends
to hold less stock at t = 1, on average, when she provides advance disclosure of her trading activity,
as demonstrated by Figure 3.6, which displays the percentage increase in the average equilibrium
stock allocations at t = 1 brought about by advance disclosure. Directors also tend to hold fewer
shares in a market with advance disclosure, but investors hold a greater amount of stock. By re-
moving more of the information asymmetries from the market, advance disclosure induces investors
to hold more stock. Finally, Figure 3.6(d) reveals that insiders trade much less aggressively on their
private information when they must provide advance disclosure.
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(b) Directors

Figure 3.8: Welfare. The certainty equivalent of additional consumption without advance disclosure
that is necessary to provide the agents with the same ex ante expected utility that is obtained with advance
disclosure is plotted for various levels of α and multiple calibrations. The thin solid line represents calibration
#1, the dots represent calibration #2, the bold solid line represents calibration #3, and the asterisks represent
calibration #4. Table 3.I lists parameter values for these calibrations.

3.3.6 Trading Profits

Differences in the stock allocations and the aggressiveness with which insiders trade are both
significant factors in the amount of trading profits earned by the agents. We measure trading
profits as the gain in wealth directly attributable to stock ownership, and it consists of the amount
received from the terminal payoff at t = 2 plus (minus) any sales (purchases) at t = 1. The trading
profit for an investor of type `, which is denoted by π`, is given by

π` ≡ S`1Y +
(
S`0 − S`1

)
P (3.70)

for ` ∈ {m, d, i}.
Since trading profits are stochastic, it seems natural to evaluate the impact of advance disclosure

on these profits by comparing a Sharpe ratio of trading profits. Specifically, we compute the ratio of
expected trading profits to the standard deviation of trading profits both with and without advance
disclosure. We then divide this Sharpe ratio with advance disclosure by its counterpart without
advance disclosure and subtract one from the resulting fraction. Agents can expect to earn larger
trading profits per unit of risk when this metric, which is plotted in Figure 3.7, is positive. For
the most part, advance disclosure leads to a lower Sharpe ratio of trading profits for investors but
a higher Sharpe ratio of trading profits for the manager and directors. However, if we look only
at the expected trading profits, which are unreported, we observe that the trading profits for the
manager and directors fall, on average, with advance disclosure. This finding is consistent with
the post- and pre-announcement results of Huddart, Hughes, and Williams (2010) and Huddart,
Hughes, and Levine (2001). We also observe a corresponding rise in the expected trading profits
for investors.

3.3.7 Welfare

Interestingly, the effect of advance disclosure on the Sharpe ratio of trading profits does not
seem to correlate with its effect on welfare. Figure 3.8 measures the change in welfare resulting from
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Figure 3.9: Managerial Effort. The increase in the Sharpe ratio of managerial effort resulting from
advance disclosure, (E[(Ŝm0 +Ŝm1 )θ2]/V[(Ŝm0 +Ŝm1 )θ2]1/2)/(E[(Sm0 +Sm1 )θ2]/V[(Sm0 +Sm1 )θ2]1/2)−1, is plotted
for various values of α and θ. The remaining parameter values are listed in Table 3.I under calibration #1.

advance disclosure. It depicts the certainty equivalent of additional consumption without advance
disclosure necessary to provide the investors and directors with the same ex ante expected utility
that they obtain with advance disclosure. The manager always receives her reservation expected
utility. Figure 3.8 shows that investors’ ex ante expected utility rises but that directors’ ex ante
expected utility falls with advance disclosure.

3.3.8 Managerial Effort

Advance disclosure can also indirectly affect the manager’s incentives to undertake individually
costly actions that enhance firm value. Since the manager’s action strategies derived in Section
3.2 depend on her stock holdings, it follows that managerial effort itself depends on the manager’s
stock holdings. Accordingly, the aggregate effort levels with and without advance disclosure are(
Ŝm0 + Ŝm1

)
θ2 and

(
Sm0 + Sm1

)
θ2, respectively. Provided that θ 6= 0, advance disclosure results in

greater effort when the manager holds more stock. Firm value is never destroyed through negative
effort since the manager always holds a non-negative amount of stock.

Because the manager’s stock allocation at t = 1, and hence her effort level, is stochastic and
depends on the realizations of several random variables, we compare effort with advance disclosure
to effort without advance disclosure by examining a Sharpe ratio of managerial effort. Figure
3.9 plots the percentage increase in the Sharpe ratio of managerial effort resulting from advance
disclosure for various values of α and θ. The figure clearly indicates that the average amount of
effort per unit of risk increases with advance disclosure, and this increase is more pronounced when
the insiders possess a great deal of private information. However, the expected effort level falls with
advance disclosure because the manager is granted less stock pursuant the management contract
and holds less stock on average after trading at t = 1.

3.3.9 Incentive to Undertake Excessive Risk

Next, we investigate how advance disclosure affects the manager’s incentive to undertake ex-
cessive risk for the purpose of generating additional private information. We consider a slight
modification of the model outlined in Section 3.2 that permits the manager to take on additional
risky projects that have a zero expected payoff. These projects generate more private information
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Figure 3.10: Risk Incentive. The ratio of the partial derivative of the manager’s ex ante expected utility
with respect to J1 with advance disclosure to the partial derivative without advance disclosure is plotted
over a range of values for α and Sm0 . The remaining parameters are listed in Table 3.I under calibration #1.

but do not create any additional value for the firm on average. We denote the quantity of additional
risky projects undertaken at time t by Jt and the payoff from these projects by Rt, where Jt ∈ R+

and R̃t ∼ N
(
0, σ2

R

)
for t = 1, 2. We further assume that these projects are linearly incorporated

into the stock payoff, which in this setting becomes

˜̄Y ≡ θ(Ā1 + Ā2) + J1R̃1 + J2R̃2 + X̃1 + X̃2, (3.71)

where a macron (̄ ) is added to some variables to distinguish them from versions of the model
previously discussed. The manager chooses J1 at t = 0 and, along with directors, observes the
realization of R̃1 before trading occurs at t = 1. Investors do not directly observe R1, but they can
use the information available to them in the market to form a conditional distribution of R̃1. The
manager also selects J2 at t = 1, and R2 is realized at t = 2. Furthermore, R̃1, R̃2, X̃1, X̃2, k̃, ε̃m,
and ε̃i are mutually independent.

As before, we assume that the stock price and disclosures are linear functions of the insiders’
private information, which now includes R1. Hence, the stock price is a linear function of q̄ ≡
J1R1 + X1 + ω̄k in a market without advance disclosure, and the insiders’ trading disclosures are
linear functions of r̄ ≡ Ĵ1R1 + X1 + ρ̄hm in a market with advance disclosure. The equilibria are
derived in a similar fashion as in Section 3.2, but for the sake of brevity, we do not report the
equilibrium outcomes. We note, however, that the action strategies are the same as in Section 3.2
while the prices and allocations now incorporate the additional risky projects.

Solving a revised maximization problem for the manager that includes the decision to undertake
additional risky projects, we find that the manager optimally chooses J2 = 0 both with and without
advance disclosure. In both cases, there is no incentive for the manager to create extra risk because
she is risk averse and the added uncertainty does not generate more private information on which
she can capitalize. Conversely, the optimal choice of J1 depends on whether she provides advance
disclosure of her trading activity since the value of the additional private information can potentially
outweigh the added risk. Although we are unable to obtain an analytical solution for J1, we can
numerically compute the change in the manager’s ex ante expected utility from a marginal increase
in J1 to gauge the manager’s incentive to undertake additional risky projects at t = 0. Figure 3.10
plots the ratio of this partial derivative with advance disclosure to the partial derivative without
advance disclosure over a range of values for α and Sm0 when J1 = 0. As is evident from the plot,
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Figure 3.11: Expected Utility Ratio. The ratio of the manager’s ex ante expected utility with advance
disclosure to her ex ante expected utility without advance disclosure is plotted over a range of α and Sm0 in
figure (a). The remaining parameters are listed in Table 3.I under calibration #1.

the value of the aforementioned ratio is close to zero over the entire range of α and Sm0 , which
means that the incentive for the manager to undertake excessive risk is dramatically reduced when
she must provide advance disclosure of her trading activity.

3.3.10 Voluntary Disclosure

Our final task is to investigate whether the manager would voluntarily commit to provide
advance disclosure of her trading activity in the absence of a requirement to do so. Consistent with
Huddart, Hughes, and Williams (2010), we find that she will not. Holding her bond compensation
constant, we compare the manager’s ex ante expected utility with advance disclosure to her ex
ante expected utility without advance disclosure over a range of values for Sm0 and α. Figure 3.11
plots a ratio of these utility levels for calibration #1.18 Since agents exhibit CARA preferences,
a ratio greater than one indicates a drop in expected utility, and vice versa. It is clear from
the figure that, given a quantity of future private information and an initial portfolio of stock and
bonds, the manager’s expected utility falls when she must provide advance disclosure of her trading
activity. Hence, the manager will prefer to not commit to advance disclosure after receiving her
compensation package at t = 0, even though she is ex ante indifferent because her compensation
package is adjusted so that she always receives her reservation utility.

3.3.11 Sensitivity of Results

In this section, we briefly discuss the sensitivity of our results to the realizations of the simulated
variables. As previously mentioned, we simulate 10,000 realizations each of X1, k, hi, and hm. To
check whether this number of realizations provides a sufficient amount of data from which to draw
reliable inferences, we group the realizations into 10 buckets of 1,000 realizations each and compare
the simulation results for each bucket. For brevity, we focus on average prices and allocations
because they affect many other equilibrium attributes, such as trading profits, welfare, managerial
effort, and the incentive to undertake excessively risky projects. Market-wide equilibrium charac-
teristics like market efficiency and liquidity are unaffected by the realizations.

18The other calibrations lead to identical qualitative conclusions.
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Figure 3.12: Sensitivity. The percentage increase in the mean equilibrium price and stock allocations
resulting from advance disclosure is plotted for several simulations of 1, 000 realizations each. The parameter
values are listed in Table 3.I under calibration #1.

Figure 3.12(a) plots the average stock price while Figures 3.12(b)-(d) plot the average equilib-
rium stock allocations for 10 different simulations of 1,000 realizations each. As indicated by the
figures, each simulation produces results which are quantitatively similar and qualitatively iden-
tical. Therefore, we conclude that 10,000 realizations is a sufficient number to produce reliable
solutions.

3.4 Concluding Remarks

We construct a noisy rational expectations equilibrium model in which informed insiders provide
advance disclosure of their trading activity. Relative to a market in which informed insiders trade
without providing advance disclosure and investors learn from prices, we find that there are several
benefits to a market in which investors learn from insiders’ advance disclosures of trades. In
particular, advance disclosure gives rise to markets that: (i) are informationally more efficient; (ii)
are ordinarily more liquid; (iii) have larger managerial effort Sharpe ratios; and (iv) discourage
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excessively risky projects. A drawback of advance disclosure, however, is that prices are more
volatile. Additionally, there are many consequences of advance disclosure that are neither beneficial
nor detrimental. First, prices are higher and risk premiums are smaller, on average, in a market with
advance disclosure. Second, investors tend to hold more stock in equilibrium while insiders tend to
hold less. Third, the market value of the manager’s compensation package is higher. Fourth, the
Sharpe ratio of trading profits may either rise or fall. We also observe that advance disclosure leads
to greater ex ante expected utility for investors but reduced ex ante expected utility for insiders
other than the manager. The manager’s expected utility is unaltered in equilibrium because her
compensation package is adjusted. Finally, we find that insiders will not voluntarily commit to
provide advance disclosure of their trading activity.

Our model also presents several interesting avenues for future research. For instance, one
could extend the set of permissible types of trades to include limit orders. The effect of advance
disclosure on independent information acquisition, as in Fishman and Hagerty (1992) or McNichols
and Trueman (1994), is potentially intriguing, as well.
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Appendix A

The Closed-End Fund Puzzle:
Management Fees and Private
Information

A.1 Endogenous Stock Price without Liquidity Traders

In this section, we modify our model to allow for an endogenous stock price. We first describe
the modifications to our model and present the new equilibrium. We then verify the robustness of
our results.

Modifying our model to allow for an endogenous stock price requires two adjustments to our
set of assumptions. First, we eliminate our assumption that the stock price process is exogenously
given by (1.44). Second, to overcome a no-trade theorem that otherwise would prevent trade
from occurring among the asymmetrically-informed agents, we assume that the investor is slightly
unsophisticated in that he is unable to infer the manager’s private information from the equilibrium
stock price. The investor in the modified version of our model has rational expectations in the sense
of Muth (1961) and Lucas and Prescott (1971), as he correctly anticipates the distribution of future
asset prices and chooses utility-maximizing portfolios based on his prior information. The only limit
to his rationality is that he is unable to “reverse engineer” or invert the price function as in Radner
(1979) or Grossman and Stiglitz (1980) to infer the manager’s private information. This is arguably
a weaker assumption than the device traditionally used by theorists to overcome no-trade theorems
in a model like ours; namely, noise traders who provide shocks to supply that are completely random
and do not respond in any way to expectations about future prices. Heuristically, this version of our
model can be thought of as the limiting case of another variation of our model with an endogenous
stock price, fully rational investors, and liquidity traders, which we discuss in Appendix A.2.

Under our new set of assumptions, the endogenously determined equilibrium stock price is
equivalent to the exogenous process we assumed for our featured model whenever information is
symmetric but not when information is asymmetric. Hence, at the beginning and end of each cycle
the stock price is given by (1.44) and the allocations are given by (1.50) and (1.51). At the middle
of cycle n, the manager’s private information is incorporated into the stock price, which is given by

P s3n−1 =
3n−2∑
τ=1

Xτ +
T∑

τ=3n

(
µτ − γiγm

Γ σ2
τ

)
+
γiZn,1 + (1− αq)b

(
Γµ3n−1 − γiγmσ2

3n−1

)
αqγi + (1− αq)Γb

, (A.1)
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Figure A.1: Issue Premium and Expected Utility.

as well as the stock allocations, which are given by

Sf3n−1 =
(Γb− γi)

(
Zn,1 − αqµ3n−1

)
+ γiγmbσ

2
3n−1

γmb
(
αqγi + (1− αq)Γb

)
σ2

3n−1

(A.2)

and

Si3n−1 =
(Γb− γi)

(
αqµ3n−1 − Zn,1 + (1− αq)γmbσ2

3n−1

)
γmb

(
αqγi + (1− αq)Γb

)
σ2

3n−1

. (A.3)

Furthermore, since endogenizing the stock price impacts the extent to which the manager can profit
from her information advantage, it also affects the discount. The weighted average of the expected
benefit of the manager’s private information with an endogenous stock price is now given by

δ̂ ≡
λ`Υ`

√
1− (1−αh)αhγi(Γ+γm)(Γb−γi)2(

γm(αhγi+(1−αh)Γb)
)2 + λhΥh

√
1− (1−α`)α`γi(Γ+γm)(Γb−γi)2(

γm(α`γi+(1−α`)Γb)
)2

Υ`

√
1− (1−αh)αhγi(Γ+γm)(Γb−γi)2(

γm(αhγi+(1−αh)Γb)
)2 + Υh

√
1− (1−α`)α`γi(Γ+γm)(Γb−γi)2(

γm(α`γi+(1−α`)Γb)
)2 . (A.4)

Accordingly, equilibrium discounts are now described by (1.54), (1.57), and (1.60) with δ̂ in place
of δ.

In summary, the only real difference between the equilibrium in our modified model and in our
featured model is the effect of the manager’s information advantage on her portfolio choices when
information is asymmetric at the middle of every cycle. With an endogenous stock price, there is a
price feedback effect that limits the manager’s capacity to profit from her information advantage.

We verify the robustness of the results obtained from our featured model in the remaining
portion of this appendix. To generate a distribution of discounts that matches empirical observa-
tions, we make two minor adjustments to our calibration. First, we set the fixed component of the
management contract, a, equal to 0.0185. Second, we set the fund’s initial wealth designated for
investment, Wf , equal to 1.5, which ensures that the fund price does not turn negative in any of
the simulations. All other parameter values remain the same.

Figure A.1 plots the issue premium and the manager’s ex ante expected utility for various values
of α and b. Similar to our featured model discussed in Section 1.2, the choice of b that maximizes
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Figure A.2: Distribution of Closed-End Fund Discounts.

the manager’s expected utility also maximizes the issue premium for a given level of ability, α, when
the stock price is endogenously determined. The other results are also robust to an environment
with an endogenous stock price. Figure A.2 plots the discount distribution, which is similar to the
distribution of discounts in Figure 1.2. As Table A.I reveals, the time-series correlations between
discounts and returns with an endogenous stock price are very similar to those obtained with an
exogenous price process. Furthermore, our modified model produces an average correlation between
changes in percentage discounts and the returns on the stock held by each fund equal to −0.016.
It also yields an average correlation between changes in log premiums and NAV returns of −0.268.
Both of these correlations are consistent with those generated by our featured model. Lastly, our
modified model produces a log variance ratio of 0.462.

A.2 Endogenous Stock Price with Liquidity Traders

In this section, we evaluate the robustness of our results to a setting with an endogenous stock
price and liquidity traders. We first outline our assumptions and present the new equilibrium. We
then discuss the robustness of our results.

We make a few modifications to our original set of assumptions. First, we assume that there
are J ∈ N stocks that each pay a different random amount at T + 1. For simplicity, we assume
that the manager’s ability to acquire information is the same for each stock. This could result
from, say, knowledge about a particular industry. Including additional risky assets about which
the fund manager obtains an information advantage produces discounts that better quantitatively
match empirical observations, but the number of assets does not affect the qualitative results. The
payoff of each stock consists of the sum of independent and jointly normally distributed random
variables; accordingly, the payoff vector1 is defined as

Ỹ ≡
T∑
t=1

X̃t, (A.5)

where X̃t ∼ N
(
µt,Σt

)
for all t ≤ T , µt is a vector of expected payoffs, and Σt is a diagonal

J ×J covariance matrix. We also assume that the stock prices are endogenously determined rather
1Unless otherwise noted, all bold symbols in this appendix denote a J × 1 vector.
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Table A.I: Average Correlation Coefficients.

Premiumτ Fund Returnτ NAV Returnτ
Premiumτ−1 0.339

Fund Returnτ−1 0.504 −0.133
Fund Returnτ −0.200
Fund Returnτ+1 −0.038

NAV Returnτ−1 0.005 −0.020 −0.021
NAV Returnτ 0.345 0.707
NAV Returnτ+1 −0.039 0.238

exogenously given by (1.44).
Second, to facilitate trade among the rational, asymmetrically informed agents, we assume that

at the middle of every cycle liquidity traders demand a stochastic and unobservable amount of each
stock denoted by k̃n ∼ N

(
0,Σk

)
for all n, where 0 is a vector of zeros and Σk is a diagonal J × J

covariance matrix.2 The volatility of liquidity trades is constant across stocks, and σ2
k denotes this

volatility for an individual stock. Furthermore, these liquidity shocks are independent across time
and stocks. When solving the model, to maintain tractability we assume that the stock prices at
the middle of cycle n are linear functions of

rn ≡ Zn,1 + (1− αq)γmbΣ3n−1kn. (A.6)

Because kn is unobservable, the stock prices serve as a noisy signal of Zn,1 but do not fully reveal
its value. However, after observing r through Ps

3n−1, the investor can update his beliefs about Z̃n,1
in a Bayesian fashion to form a posterior of the manager’s private information which is normally
distributed with mean(

αqΣ3n−1 + (1− αq)2γ2
mb

2Σ2
3n−1Σk

)−1
αq
(
(1− αq)2γ2

mb
2Σ2

3n−1Σkµ3n−1 + Σ3n−1r
)

(A.7)

and variance (
αqΣ3n−1 + (1− αq)2γ2

mb
2Σ2

3n−1Σk

)−1
αq(1− αq)2γ2

mb
2Σ3n−1Σ2

3n−1Σk. (A.8)

Despite the existence of liquidity traders, the basic techniques described in Section 1.2 can be
used to solve this modified version of the model. Since information is symmetric and there are
no liquidity trades at the end of each cycle, the equilibrium stock prices at the end of cycle n are
analogous to the stock price in our original model and are given by

Ps
3n =

3n−1∑
τ=1

Xτ +
T∑

τ=3n

(
µj,τ −

γiγm
Γ Στ1

)
, (A.9)

where 1 is a vector of ones. Similarly, the stock allocations are given by

Sf3n = γi(Γb)−11 (A.10)

and
Si3n = (Γb− γi)(Γb)−11. (A.11)

2Since the sole purpose of the liquidity traders is to generate trade in an environment with asymmetric information,
we assume that the liquidity traders do not trade when information is symmetric at the beginning and end of each
cycle. This assumption eliminates unnecessary liquidity trader risk.
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Figure A.3: Issue Premium and Expected Utility.

The future liquidity trades impact the fund price. In this setting, the weighted average of the
investor’s expected benefit from the manager’s private information is given by

δ̄ ≡ J
λ̄`Υ`Φ

−J/2
` + λ̄hΥhΦ−J/2h

Υ`Φ
−J/2
` + ΥhΦ−J/2h

, (A.12)

where

λ̄q ≡
αq(1− αq)(1− b)(Γb− γi)σ2

3n−1σ
2
k

αq + (1− αq)
(
αqγi(1− b)(Γb− γi + γmb) + (1− αq)γ2

mb
2
)
σ2

3n−1σ
2
k

(A.13)

and

Φq ≡
αq(1− αq)(1− bt)(Γb− γi)σ2

3n−1σ
2
k

λ̄q
(
αqΓ + (1− αq)γ2

mb(αqγi + (1− αq)Γb)σ2
3n−1σ

2
k

)2
×
(
αqΓ2 + (1− αq)γ2

mb
(
2αqγiΓ + (1− αq)Γ2b+ (1− αq)γ2

i γ
2
mbσ

2
3n−1σ

2
k

)
σ2

3n−1σ
2
k

)
. (A.14)

The discount at the end of cycle n has a similar form as in our original model and is given by

D3n = a+ b
(
V3n − V3n−2

)
− (N − n)

(
δ̄ − a

)
. (A.15)

The greatest divergence between our original model and our modified model with liquidity
traders occurs at the middle of each cycle. The stock price at the middle of cycle n is given by

Ps
3n−1 =

3n−2∑
τ=1

Xτ +
T∑

τ=3n

(
µτ −

γiγm
Γ Στ1

)
+ θq1 + θq2

(
Zn,1 + (1− αq)γmbΣ3n−1kn

)
, (A.16)

where

θq0 ≡ αqΓI + (1− αq)γ2
mb
(
αqγi + (1− αq)Γb

)
Σ3n−1Σk

θq1 ≡ (1− αq)θ−1
q0

(
αqI + (1− αq)γ2

mb
2Σ3n−1Σk

)(
Γµ3n−1 − γiγmΣ3n−11

)
θq2 ≡ θ−1

q0

(
αqΓI + (1− αq)γiγ2

mbΣ3n−1Σk

)
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Figure A.4: Distribution of Closed-End Fund Discounts.

and I is the identity matrix. The expressions for the stock allocations at the middle of cycle n are

Sf3n−1 = θ−1
q0

(
(1−αq)γmΣk

(
(Γb− γi)

(
Zn,1 −αqµ3n−1

)
+ γiγmbΣ3n−11

)
+αq

γi
b 1
)
− θq2kn (A.17)

and

Si3n−1 = (Γb−γi)θ−1
n0

(
(1−αq)γmΣk

(
αqµ3n−1−Zn,1 +(1−αq)γmbΣ3n−1

(
1−kn

))
+αq 1

b1
)
, (A.18)

and the discount at the middle of cycle n is

D3n−1 = a− b(V3n−1 − V3n−2)− Jλ̄q − (N − n)
(
δ̄ − a

)
. (A.19)

The expression for the stock prices at the beginning of each cycle are similar to the stock prices
at the end of each cycle. At the beginning of cycle n, the equilibrium stock prices are given by

Ps
3n−2 =

3n−3∑
τ=1

Xτ +
T∑

τ=3n−2

(
µj,τ −

γiγm
Γ Στ1

)
, (A.20)

and the stock allocations are given by (A.10) and (A.11). The discount at the beginning of cycle n
is

D3n−2 = a− Jλ̄q − (N − n)
(
δ̄ − a

)
. (A.21)

Since most of the manager’s private information about each individual stock is revealed to the
investor through the equilibrium stock price, we must recalibrate our model to quantitatively match
the distribution of discounts observed empirically. Unless otherwise noted, the parameter values
remain the same as in our featured model discussed in Section 1.3.3. In this setting, we assume
that the manager obtains private information about twenty stocks, so we set J equal to 20. We
also set α` and αh equal to 0.02 and 0.50, respectively. Additionally, the fixed component of the
management contract, a, now equals 0.06.

Figure A.3 plots the issue premium and the manager’s ex ante expected utility for various
values of α and b when J = 1. For many ability levels, the choice of b that maximizes the
manager’s expected utility also maximizes the issue premium. For some relatively high levels of
α, though, there is no value of b that maximizes both the manager’s expected utility and issue
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Table A.II: Average Correlation Coefficients.

Premiumτ Fund Returnτ NAV Returnτ
Premiumτ−1 0.613

Fund Returnτ−1 0.197 0.016
Fund Returnτ −0.152
Fund Returnτ+1 −0.170

NAV Returnτ−1 −0.059 −0.004 0.001
NAV Returnτ 0.152 0.851
NAV Returnτ+1 −0.149 0.196

premium. However, in these cases the utility-maximizing choice of b still leads to relatively large
issue premiums.

The distribution of discounts with liquidity traders is comparable to the distribution from
our featured model and is depicted in Figure A.4. Likewise, the time-series correlations between
discounts and returns are also robust to an environment with liquidity traders, as evidenced by
Table A.II. Moreover, the average correlation between changes in percentage discounts and the
returns on the stocks held by a fund is −0.054 while the average correlation between changes in log
premiums and NAV returns is −0.199. Finally, the log variance ratio is 0.105.
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Appendix B

Activist Arbitrage, Lifeboats, and
Closed-End Funds

B.1 Discounts and Parameter Values

Table B.I: Summary of Discounts. The appropriate equation for the discount under a variety of cir-
cumstances is listed. The “Substitution” column denotes the proper adjustment to make to the superscript
on the D̃t+1 variable.

Substitution
Scenario Equation Out In

Panel A: Activist and Lifeboat Absent
All scenarios (2.6) - -

Panel B: Activist Present and Lifeboat Absent
Current attempt and Dt ∈ (θκ, κ) (2.9) - -
Current attempt and Dt ≤ θκ (2.10) - -
Current attempt and Dt ≥ κ (2.10) A ¬A
No attempt and Dt ∈ (θκ, κ) (2.11) - -
No attempt and Dt ≤ θκ (2.6) ∅ A

No attempt and Dt ≥ κ (2.6) ∅ ¬A

Panel C: Lifeboat Present and Activist Absent
MDP adopted (2.16) - -
MDP not adopted and Dt ∈ (θλ, λ) (2.17) - -
MDP not adopted and Dt ≤ θλ (2.6) ∅ δ

MDP not adopted and Dt ≥ λ (2.6) ∅ ¬δ
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Table B.II: Summary of Discounts with Activist and Lifeboat. The appropriate equation for the
discount under a variety of circumstances is listed. In general, the “Substitution” column denotes the
proper adjustment to make to the superscript on the D̃t+1 variable. For the case where Dt ∈ (θλ, κ), the
“Substitution” column indicates that q should equal zero.

Substitution
Scenario Equation Out In

Panel A: MDP Previously Adopted
Current attempt and Dt ∈ (θκ, κ) (2.18) - -
Current attempt and Dt ≤ θκ (2.21) - -
Current attempt and Dt ≥ κ (2.21) δA δ¬A
No attempt and Dt ∈ (θκ, κ) (2.22) - -
No attempt and Dt ≤ θκ (2.16) δ δA

No attempt and Dt ≥ κ (2.16) δ δ¬A

Panel B: MDP Not Adopted
Current attempt and Dt ≤ min {θκ, θλ} (2.10) A δA

Current attempt and Dt ∈ (θκ, θλ) (2.9) A δA
¬A δ¬A

Current attempt and Dt ∈ (θλ, θκ) (2.19) δ¬A δA
¬δA A¬δ

Current attempt and Dt ∈ (κ, θλ) (2.10) A δ¬A
Current attempt and Dt ∈ (λ, θκ) (2.10) A A¬δ
Current attempt and Dt ∈ (θλ, κ) (2.20) - -
Current attempt and Dt ∈ (κ, λ) (2.19) - -
Current attempt and Dt ∈ (λ, κ) (2.9) A A¬δ

¬A ¬δA
Current attempt and Dt ≥ max {κ, λ} (2.10) A ¬δA
No attempt and Dt ≤ min {θκ, θλ} (2.6) ∅ δA

No attempt and Dt ∈ (θκ, θλ) (2.11) A δA
¬A δ¬A

No attempt and Dt ∈ (θλ, θκ) (2.17) δ δA
¬δ A¬δ

No attempt and Dt ∈ (κ, θλ) (2.6) ∅ δ¬A
No attempt and Dt ∈ (λ, θκ) (2.6) ∅ A¬δ
No attempt and Dt ∈ (θλ, κ) (2.20) q 0
No attempt and Dt ∈ (κ, λ) (2.17) δ δ¬A

¬δ ¬δA
No attempt and Dt ∈ (λ, κ) (2.11) A A¬δ

¬A ¬δA
No attempt and Dt ≥ max {κ, λ} (2.6) ∅ ¬δA
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Table B.III: Parameter Values.

Variable Symbol Value
Time horizon T 25
Expected return µ 0.025
Low excess return α` 0
High excess return αh 0.1
Prior “success” parameter a1 1
Prior “failure” parameter b1 1
Excess return scale factor γ1 1
Management fee φ 0.02
Excess return adjustment threshold Υ 0.023775
Cost of attack c 0.04
Probability of liquidation q 0.60
Liquidation probability scale factor σ 1/9
Liquidation probability scale factor η 2/3
Dividend rate δ 0.09
Lifeboat trigger λ 0.90
Approval threshold θλ 0.80

B.2 Proofs

Proof of Proposition 1. At every point in time, the expected return for the fund must equal the
market expected rate of return. Therefore,

1 + µ = Et

[
R̃ft+1

]
= Et

[
P̃t+1

]
/Pt

= Et

[
D̃t+1Ṽt+1

]
/Pt

= Et

[
D̃t+1 (M + α̃t+1)

]
Vt/Pt,

which can be solved for Dt to obtain the desired result. The second equality follows from (2.5),
the third equality follows from (2.2), and the final equality follows from (2.3) and the lack of serial
correlation and cross-correlation between the return on the fund’s portfolio and the excess return
generated by the fund manager.
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Proof of Proposition 2. At every point in time, the expected return for the fund must equal the
market expected rate of return. Therefore,

1 + µ = Et

[
R̃ft+1

]
= Et

[
P̃t+1

]
/Pt

=
q

Pt
Et

[
Ṽt+1

]
+

1− q
Pt

(
ρκEt

[
D̃A
t+1Ṽt+1

]
+ (1− ρκ)Et

[
D̃¬At+1Ṽt+1

])
(B.1)

= q
Vt
Pt
Et [M + γtα̃t+1] + (1− q) Vt

Pt

(
κ−Dt

κ− θκ
Et

[
D̃A
t+1 (M + γtα̃t+1)

]
+
Dt − θκ
κ− θκ

Et

[
D̃¬At+1 (M + γtα̃t+1)

])
,

which can be solved for Dt to obtain the desired result. The third equality follows from (2.2) while
the final equality follows from (2.7), (2.8), and the lack of serial correlation and cross-correlation
between the return on the fund’s portfolio and the excess return generated by the fund manager.

Proof of Proposition 3. At every date, the expected return on the fund must equal the market
expected rate of return. For (i), this implies

1 + µ = Et

[
R̃ft

]
= Et

[
P̃t+1 + dt+1

]
/Pt

= Et

[
D̃δ
t+1Ṽt+1 + dt+1

]
/Pt

=
Vt
Pt
Et

[
D̃δ
t+1 (M + γtα̃t+1 − δ) + δ

]
,

which can be solved for Dt to obtain the desired result. The second equality follows from (2.15),
the third equality follows from (2.2), and the final equality follows from (2.12), (2.13), and the lack
of serial correlation and cross-correlation between the return on the fund’s portfolio and the excess
return generated by the fund manager.

Similarly, the implication for (ii) is

1 + µ = Et

[
R̃ft

]
= Et

[
P̃t+1

]
/Pt

=
ρλ
Pt
Et

[
D̃δ
t+1Ṽt+1

]
+

1− ρλ
Pt

Et

[
D̃¬δt+1Ṽt+1

]
(B.2)

=
Vt
Pt

(
λ−Dt

λ− θλ
Et

[
D̃δ
t+1 (M + γtα̃t+1)

]
+
Dt − θλ
λ− θλ

Et

[
D̃¬δt+1 (M + γtα̃t+1)

])
,

which can solved for Dt to obtain the desired result. The third equality follows from (2.2) while
the final equality follows from (2.3), (2.14), and the lack of serial correlation and cross-correlation
between the return on the fund’s portfolio and the excess return generated by the fund manager.
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Proof of Proposition 4. At every date, the expected return for the fund must equal the market
expected rate of return. For (i), this implies

1 + µ = Et

[
R̃ft+1

]
= Et

[
P̃t+1 + dt+1

]
/Pt

=
q

Pt
Et

[
Ṽt+1 + dt+1

]
+

1− q
Pt

(
ρκEt

[
D̃δA
t+1Ṽt+1 + dt+1

]
+ (1− ρκ)Et

[
D̃δ¬A
t+1 Ṽt+1 + dt+1

] )
(B.3)

= δ
Vt
Pt

+ q
Vt
Pt
Et [M + γtα̃t+1 − δ]

+ (1− q) Vt
Pt

(
κ−Dt

κ− θκ
Et

[
D̃δA
t+1 (M + γtα̃t+1 − δ)

]
+
Dt − θκ
κ− θκ

Et

[
D̃δ¬A
t+1 (M + γtα̃t+1 − δ)

])
,

which can be solved for Dt to obtain the desired result. The second equality follows from (2.15),
the third equality follows from (2.2) while the final equality follows from (2.8), (2.12), (2.13) and
the lack of serial correlation and cross-correlation between the return on the fund’s portfolio and
the excess return generated by the fund manager.

The implication for (ii) is

1 + µ = Et

[
R̃ft+1

]
= Et

[
P̃t+1

]
/Pt

=
q

Pt
Et

[
Ṽt+1

]
+

1− q
Pt

(
ρλEt

[
D̃δ¬A
t+1 Ṽt+1

]
+ (1− ρλ)Et

[
D̃¬δAt+1 Ṽt+1

])
(B.4)

= q
Vt
Pt
Et [M + γtα̃t+1] + (1− q) Vt

Pt

(
λ−Dt

λ− θλ
Et

[
D̃δ¬A
t+1 (M + γtα̃t+1)

]
+
Dt − θλ
λ− θλ

Et

[
D̃¬δAt+1 (M + γtα̃t+1)

])
,

which can be solved for Dt to obtain the desired result. The second equality follows from (2.5), the
third equality follows from (2.2) and (2.7) while the final equality follows from (2.3), (2.14), and
the lack of serial correlation and cross-correlation between the return on the fund’s portfolio and
the excess return generated by the fund manager.
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For (iii),

1 + µ = Et

[
R̃ft+1

]
= Et

[
P̃t+1

]
/Pt
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q

Pt
Et
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Ṽt+1
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1− q
Pt
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(
ρκEt
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D̃δA
t+1Ṽt+1

]
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[
D̃δ¬A
t+1 Ṽt+1

])
+ (1− ρλ)

(
ρκEt

[
D̃A¬δ
t+1 Ṽt+1

]
+ (1− ρκ)Et

[
D̃¬δAt+1 Ṽt+1

]) ]
= q

Vt
Pt
Et [M + γtα̃t+1]

+ (1− q) Vt
Pt

[
λ−Dt

λ− θλ

(
κ−Dt

κ− θκ
Et

[
D̃δA
t+1 (M + γtα̃t+1)

]
+
Dt − θκ
κ− θκ

Et

[
D̃δ¬A
t+1 (M + γtα̃t+1)

])
+
Dt − θλ
λ− θλ

(
κ−Dt

κ− θκ
Et

[
D̃A¬δ
t+1 (M + γtα̃t+1)

]
+
Dt − θκ
κ− θκ

Et

[
D̃¬δAt+1 (M + γtα̃t+1)

])]
,

which can be rearranged to obtain xD2
t + yDt + z = 0, where x, y, and z are defined in the

Proposition. The second equality follows from (2.5), the third equality follows from (2.2) and (2.7)
while the final equality follows from (2.3), (2.8), (2.14), and the lack of serial correlation and cross-
correlation between the return on the fund’s portfolio and the excess return generated by the fund
manager.
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Appendix C

Advance Disclosure of Insider Trading

Proof of Corollary 1. Without advance disclosure,

Σ =
(
V
[
Ỹ |P

])−1

=
(
V
[
θ2S̃m1 + X̃1 + X̃2|P

])−1

=
(

γ2σ2
1σ

4
2σ

2
kσ

2
ε

(1 +Nd)2σ2
1

(
σ2
k + σ2

ε

)
+ σ2

kσ
2
ε

(
γσ2

2 − θ2
)2 + σ2

2

)−1

=
Γ3

Γ4σ2
2

,

where the second equality follows from (3.1), (3.15), and the fact that Sm1 is a function of X̃1, the
third equality follows from (3.16) and (3.22), and the last equality is a product of algebra.

On the other hand, with advance disclosure,

Σ̂ =
(
V
[ ˜̂
Y |Ŝm1

])−1

=
(
V
[
X̃1 + X̃2|Ŝm1

])−1

=
(

ρ2σ2
1σ

2
ε

σ2
1 + ρ2σ2

ε

+ σ2
2

)−1

=
σ2

1 + ρ2σ2
ε

ρ2σ2
1σ

2
ε +

(
σ2

1 + ρ2σ2
ε

)
σ2

2

,

where the second equality follows from (3.1) and the fact that Ŝm1 is observed by the market, the
third equality follows from from (3.52), and the last equality is a consequence of algebra.

Proof of Corollary 2. To find the expected payoff without advance disclosure, we substitute the
manager’s action strategy, (3.15), and stock holdings, (3.8), into the stock payoff, (3.1), and inte-
grate over X̃2. We then subtract the stock price, (3.6), substitute (3.4) for hi, and integrate over
X̃1, k̃, and ε̃i to obtain the average risk premium, which is given by (3.66). Likewise, the average
risk premium with advance disclosure is derived by first substituting (3.35) and (3.42) into (3.1)
and integrating over X̃2. Then, (3.33) is subtracted, (3.3) is substituted for hm, and the resulting
expression is integrated over X̃1, k̃, and ε̃m, yielding (3.67).

Proof of Corollary 3. The expressions follow immediately from substituting hi = k + εi into (3.6)
and hm = k + εm into (3.33) and differentiating with respect to k.
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