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My dissertation is titled Essays on the Economics of Education. It is submitted in par-

tial fulfillment of the requirements for the degree of Doctor of Philosophy (Economics) from

Carnegie Mellon University.

Overall, education research is conducted at varying grain sizes with experts from many

fields, ranging from neuroscientists focused on brain scans of a few students to cognitive

psychologists interested in single classrooms to public policy experts evaluating federal

standards across the entire country. My dissertation shows some of this variety, and it is or-

ganized as follows. Essay 1 is an evaluation of magnet schools in a large urban district in the

US. In the essay, we develop a novel technique for dealing with selective attrition, and then

apply it to explore the effects of the magnet programs on student behavior and test scores.

It is joint work with John Engberg, Dennis Epple, Holger Sieg, and Ron Zimmer, and that

essay itself appears as a separate publication in 2014 in the Journal of Labor Economics,

volume 32, issue 1. Essay 2 is an evaluation of a math cognitive tutor (MCT) system in

Chilean and Mexican public middle schools. By exploiting a clean experimental design, we

show that students enrolled in schools which were randomly assigned to adopt the MCT

significantly improved their standardized math test scores as compared to control group

peers. This essay is part of a larger joint project with Ignacio Casas, Luis Quintero, and

Paul Goodman. Finally, essay 3 contains an investigation into student hint-seeking behav-

ior while using the MCT. I show that students who ask for the available hints early on in

sections realize quicker learning gains, and that male students benefit more than female

peers.

Financial support for this research has been provided by the Institute of Education Sci-

ences (IES R305A070117 and R305D090016) and the Inter-American Development Bank

(ATN/KK-11117-RS). The work is also supported by Carnegie Mellon University’s Pro-

gram in Interdisciplinary Education Research (PIER), funded by the US Dept of Education

(R305B090023). Many employees of Carnegie Learning, including Susan Berman, Steve

Ritter, and Steve Fancsali, were extremely helpful in procuing the necessary data for essay

3.

2



I would like to thank my committee for their feedback and help throughout my pur-

suit of a PhD in Economics. My parents and brother have been supportive throughout

my academic career. My friends in graduate school (Billie Davis, Luis Quintero, Marco

Vincenzi, Melanie Zilora, David Bergman, Will Boney, Grace Haaf, Ruth Poproski, Andy

Schultz, Dan Walter, and many others) have helped with coursework, research, writing, and

everything in between. I am also grateful to Lawrence Rapp for his unending support of
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Essay 1

Bounding the Treatment Effects of Education Programs

That Have Lotteried Admission and Selective Attrition
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1 Introduction

The purpose of this paper is to estimate sharp bounds on treatment effects of education

programs that ration excess demand by admission lotteries when selective attrition can-

not be ignored. Many school districts use lotteries to determine access to over-subscribed

educational programs. Lottery winners are accepted into the program, with the ultimate

choice of attendance left to the student and his family. Lottery losers do not have the

option to participate in the program, but have many different outside options. As a conse-

quence, lottery losers often decide to pursue options outside of the traditional public school

system and attend charter or private schools. If educational outcomes are not observed

for students that leave the school system and attrition rates differ by lottery status, the

randomization inherent in the lottery assignment is not necessarily sufficient to identify

meaningful treatment effects. Selective attrition may also arise when lottery winners that

initially participate in the program drop out because they experience unfavorable outcomes.

The starting point of our analysis is the insight that lotteries can be viewed as experi-

mental designs with multiple sources of non-compliance that arise from parental or student

decisions. Since our application focuses on magnet programs, we develop our methods in

this context.1 We focus on two of the most important outside options: parents can send

their children to a non-magnet program within the district or they can leave the school

district and send their children to a private school or a public school in a different district.

We model this behavior as non-compliance with the intended treatment using five latent

household types. It is useful to distinguish among these latent types since not all types of

non-compliance lead to selective attrition problems. We face different types of missing data

problems for different non-compliers.

The first type is a “complying stayer” that chooses the magnet program if it wins the

lottery. The second type is a “non-complying stayer” that does not choose the magnet

program even if it wins. Both of these types stay in the district regardless of lottery

1The methods derived in this paper apply quite broadly to many different educational programs such as

charter schools and open enrollment policies.
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outcome.2 The third and fourth types leave the district if they lose the lottery. The third

type is a “leaver” and will not enroll its child in the district independently of the outcome

of the lottery. The fourth type complies with the lottery and participates in the magnet

program if it wins the lottery and leaves if it loses. We denote these households as “at risk,”

since they are at risk of leaving the district. Given that many urban school districts are

experiencing declining enrollment, which affects funding and district programs, this type is

important from a policy perspective. Finally, there is a fifth type, the “always takers,” that

enrolls in the magnet option regardless of the outcome of the lottery.

The household types are latent, i.e. unobserved by both the researcher and the school

district administrators.3 Differential attrition arises in this model due to the presence of ”at

risk” households for whom we do not observed educational outcomes when they leave. We

show how to identify and estimate the proportions of these five latent types. We also char-

acterize differences in observed characteristics among these types. If the households that

cause the differential attrition problem differ in observed characteristics from the other la-

tent types, one may also expect that they differ in unobserved characteristics. Our approach

thus allows us to characterize the extent of the differential attrition problem.

We then discuss how to estimate sharp bounds on the treatment effect of educational

programs. The object of interest is the (local) average treatment effect for complying stayers.

It is well-known that the standard IV estimator is only consistent if selective attrition can

be ignored.4

2The district offers a standard education program to all households that do not win the lottery.
3Comparing our approach to the one developed in Angrist, Imbens, and Rubin (1996), note that we

have two types of “never-takers” that we denote by “noncomplying stayers” and “leavers.” Similarly, we

have two types of “compliers” that we denote by “complying stayers” and “at risk” households. The main

difference arises because individuals have more than one outside option and outcomes are not observed for

“at risk” households that leave the district when they lose the lottery. These two assumptions give rise to

the differential attrition problem.
4If there are two different types of compliers, the IV estimator does not identity a local average treatment

effect. A related paper is Heckman, Urzua, and Vytlacil (2006), who also consider multiple unordered

treatments with an instrument shifting agents into one of the treatments.
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If point identification is not feasible, researchers have typically relied on “worst-case”

scenarios to construct bounds for treatment effects. Horowitz and Manski (2000) provide

a framework that exploits the assumption that the support of the outcome variable is

bounded. Lee (2009) has recently proposed the use of sample trimming rules to construct

more informative bounds. The basic idea of his estimator is to assume that the marginal

group that only participates because of the treatment is either at the top of the bottom of

the observed distribution. Our approach is in the spirit of Lee’s, but uses known quantiles

of the outcome distribution (test scores at the state level) to create ”worst-case” scenarios.

Our approach has the advantage that it does not rely on a trimming rule which is helpful

when samples are small and power is an issue. Moreover, our estimator allows us to impose

all orthogonality conditions that arise from our model simultaneously which can result in

significant efficiency gains. This is exhibited by our empirical findings that show that our

bound estimates are typically tighter than the ones obtained from the Lee estimator.5

Our approach also explicitly deals with heterogeneity in treatment across different

schools (or job training centers, as in Lee.) Since estimation is not feasible for each school,

researchers often pool data across schools. This creates an aggregation problem in es-

timation. Our estimators deal with the aggregation problem that is encountered when

researchers have to pool among lotteries to deal with small sample problems. We show that

flexible weighting schemes can be employed to estimate meaningful weighted averages of

the underlying mean treatment effects.

We apply the techniques developed in this paper to study the effectiveness of magnet

programs in a mid-sized urban school district. A second contribution of this paper is that we

provide new research to understand the causal effects of magnet programs. While debates

surrounding the effectiveness of other school choice options such as charter schools and

educational vouchers have attracted much attention from researchers and policymakers,

5There are two related papers that use bounding methods. Dinardo, McCrary, and Sanbonmatsu (2006)

develops a bounding method that requires an instrument for attrition. Blundell, et al (2007) develops

bounds for the quantiles of the treatment distribution, rather than using an extreme quantile of the outcome

distribution to bound the average treatment effect.
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magnet programs have gotten less attention despite the fact that they are much more

prevalent than charter schools or educational voucher programs.

Our findings show that magnet programs help the district to attract and retain students.

Approximately 25 percent of applicants to magnet programs that serve K-5 students are

“at risk.” Thus selective attrition poses an important problem for the school district in

our application. Households that selectively attrit come from neighborhoods that have

higher incomes and are more educated than households that stay in the district regardless

of the outcome of the lottery. These “at risk” households have many options outside the

public school system, but apparently they view the existing magnet programs as desirable

programs for their children. We also find that the market for elementary school education

is more competitive than the market for middle and high school education. The fraction of

households at risk declines with the age of the students.

Our findings for achievement effects are mixed. While the point estimates of the upper

and lower bounds point to positive treatment effects, sample sizes are still too small to

provide precise estimates. This is largely the case because standardized achievement tests

were only conducted in grades 5, 8, and 11 during most of our sample period. For a

variety of behavioral outcomes, we do not face these data limitations. We find that our

bounds analysis is informative and demonstrates that magnet programs offered by the

district improve behavioral outcomes such as offenses, attendance, and timeliness.

Our paper is related to a growing literature that evaluates educational programs using

lottery based estimators.6 Lotteries were used by Rouse (1998) to study the impact of

the Milwaukee voucher program. Angrist, et al (2002) also study the effects of vouchers

when there is randomization in selection of recipients from the pool of applicants using data

from Colombia. Hoxby and Rockhoff (2004) use lotteries to study Chicago charter schools.

Cullen, Jacob, and Levitt (2006) have analyzed open enrollment programs in the Chicago

Public Schools. Ballou, Goldring, and Liu (2006) examine a magnet program. Hastings,

Kane, Staiger (2008) estimate a model of school choice based on stated preferences for

6Angrist (1990) introduced the use of lotteries to study the impact of military service on earnings.
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schools in Charlotte. Since school attendance was partially the outcome of a lottery, they

use the lottery outcomes as instruments to estimate the impact of attending the first choice

school. Abdulkadiroglu, et al (2009) and Hoxby and Murarka (2009) study charter schools

in Boston and New York, respectively, and find strong achievement effects. Dobbie and

Fryer (2009) study a social experiment in Harlem and show that high-quality schools or

high-quality schools coupled with community investments generate the achievement gains.

All of these papers focus on applications in which selective attrition is not present and thus

do not explicitly deal with the key selective attrition problem discussed in this paper.7

The rest of the paper is organized as follows. Section 2 develops our new methods

for estimation of treatment effects when program participation is partially determined by

lotteries and selective attrition cannot be ignored. We discuss identification and estimation.

Section 3 provides some institutional background for our application and discusses our main

data sources. Section 4 reports the empirical findings of our paper. Finally, we offer some

conclusions and discuss the policy implications of our work in Section 5.

2 Identification and Estimation

2.1 The Research Design

We consider a design that arises when randomization determines eligibility to participate

in an educational program. Consider the problem of a parent that has to decide whether

or not to enroll a student in a magnet program offered by a school district.8 We only

consider households that participate in a lottery that determines access to an oversubscribed

(magnet) program. Let W denote a discrete random variable which is equal to 1 if the

student wins the lottery and 0 if it loses. Let w denote the fraction of households that win

the lottery.

7Angrist, et al (2002) encounter a related issue of selective test participation since students in private

schools are more likely to take college entrance exams than public school students.
8We use the terms “parent” or “households” to describe the decision maker and “student” to describe

the person that participates in the program.
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We assume that a student who wins the lottery has three options: participate in the

magnet program, participate in a different, non-magnet program offered by the same school

district, or leave the district and pursue educational opportunities outside the district. A

student who loses and is not an always-taker has only the last two options. Let M be 1 if

a student attends the (magnet) program and 0 otherwise. Finally, let A denote a random

variable that is 1 if a student attends a school in the district and 0 otherwise.

To model compliance with the intended treatment, we use five latent types to classify

households into compliers and non-compliers. We make the following assumption.

Assumption 1

1. Let sm denote the fraction of “complying stayers.” These households will remain in

the district when they lose the lottery. If they win the lottery, they comply with the

intended treatment and attend the magnet school.

2. Let sn denote the fraction of “noncomplying stayers.” These households will remain in

the district when they lose the lottery. If they win the lottery, they will not comply with

the intended treatment and instead will attend a non-magnet program in the district.

3. Let l denote the fraction of “leavers.” These are households that will leave the district

regardless of whether they are admitted to the magnet program.9

4. Let r denote the fraction that is “at risk.” These households will remain in the district

and attend the magnet program if admitted to the magnet program, and they will leave

the district otherwise.

9Parents have incomplete information and need to gather information to learn about the features of

different programs. Parents have to sign up for lotteries months in advance. At that point, they have not

accumulated all relevant information. Once they have accumulated all relevant information, they may decide

to opt out of the public school system if their preferred choice dominates the program offered by the district.

In addition, household circumstances may change. For example, parents may obtain a job that requires

moving to a different metropolitan area. Note that there are typically no penalties for participating in the

lottery and declining to participate in the program.
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5. Let at denote the fraction of “always takers.” They will attend the magnet school

regardless of the outcome of the lottery.

Since the household type is latent, one key empirical problem is identifying and estimating

the proportions of each type in the underlying population. These parameters are informative

about the effectiveness of magnet programs in attracting and retaining households that

participate in the lottery. Moreover, we will show that households “at risk” cause the

selective attrition problem.

The latent types of households are likely to differ in important characteristics and we

need to characterize these differences. If households “at risk” differ among observed char-

acteristics from the other latent types, one may also expect that they differ by unobserved

characteristics. As a consequence, ignoring the selective attrition problem will be problem-

atic. By characterizing the observed characteristics of all latent types, we can thus gain

some important insights into the potential importance of the selective attrition problem.

To formalize these ideas, consider a random variable X that measures an observed

household characteristic such as income or socio-economic status. Appealing to our de-

composition, let µr, µsm , µsn , µl and µat denote the means of random variable X con-

ditional on belonging to group r, sm, sn, l, and at, respectively. The goal of the first

part of the analysis is then to identify and estimate the following eleven parameters

(w, r, sn, sm, l, a, µr, µsn , µsm , µl, µat).
10

The next objective is to study the effects of the program on student outcomes. Let T be

an outcome measure of interest, for example, the score on a standardized achievement test.

Following Fisher (1935), we adopt standard notation in the program evaluation literature

and consider a model with three potential outcomes:

T = A M T1 + A (1−M) T0 + (1−A) T2 (1)

where T1 denotes the outcome if the student attends the magnet school, T0 if he attends

a different program in the district, and T2 if he attends a school outside of the district.11

10It is straightforward to allow X to be a vector.
11This approach shares many similarities with the “switching regression” model introduced into economics
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We will later assume that T is not observed for students that do not attend a public school

within the district, i.e. iT2 is not observed. This assumption is plausible since researchers

typically only have access to data from one school district. Private schools rarely provide

access to their confidential data and often do not administer the same standardized tests as

public schools. Attention, therefore, focuses on the individual treatment effect ∆ = T1−T0.

Note that ∆ is unobserved for all students. Conceptually, we can define five different average

treatment effects, one for each latent group.12

ATEType = E[T1 − T0|Type = 1] Type ∈ {Sn, Sm, R, L,At} (2)

The key research question is then whether we can identify and estimate these types of

treatment effects when selective attrition is important. To answer this question, we first

discuss how to characterize the extent of the selective attrition problem. We then derive

bounds estimators for the relevant treatment effects.

2.2 Identification of the Fraction of Latent Types

First we need to establish the information set of the researcher.

Assumption 2 The researcher observes probabilities and conditional means for the feasible

outcomes shown in Table 1.

Note that only six of the eight outcomes listed in Table 1 are possible since a student

attending a magnet program (M = 1) must also attend a public school (A = 1).

Identification can be established sequentially. First, we discuss identification of the

probabilities that characterize the shares of the latent types. We have the following result.

by Quandt (1972), Heckman (1978, 1979), and Lee (1979). Heckman and Robb (1985) and Bjorklund and

Moffitt (1987) treated heterogeneity in treatment as a random coefficients model. It is also known in the

statistical literature as the Rubin Model developed in Rubin (1974, 1978). See also Heckman and Vytlacil

(2007) for an overview of the program evaluation literature.
12There are other effects that may also be of interest such as treatment effect on the treated or the marginal

treatment effect. For a discussion see, among others, Heckman and Vytlacil (2005) and Moffitt (2008).
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Table 1: Observed Outcomes

W M A Pr{W,M,A} E[X|W,M,A] = E[X|M,A]

I 1 1 1 w (r + sm + at)
rµr+smµsm+atµat

r+sm+at

II 1 1 0 not possible

III 1 0 1 w sn µsn

IV 1 0 0 w l µl

V 0 1 1 (1− w)at µat

VI 0 1 0 not possible

VII 0 0 1 (1− w) (sn + sm) snµsn+smµsm
sn+sm

VIII 0 0 0 (1− w) (r + l) rµr+lµl
r+l

Proposition 1 The parameters (w, r, sn, sm, l, a) are identified by the six non-degenerate

probabilities in Table 1.

Proof: Parameter w is the fraction that wins the lottery:

w = Pr(W = 1,M = 1, A = 1) + Pr(W = 1,M = 1, A = 0) (3)

+ Pr(W = 1,M = 0, A = 1) + Pr(W = 1,M = 0, A = 0)

Given w, sn is identified from (1,0,1):

sn = Pr(W = 1,M = 0, A = 1)/w (4)

l is identified from (1,0,0):

l = Pr(W = 1,M = 0, A = 0)/w (5)

at is identified from (0,1,1):

at = Pr(W = 0,M = 1, A = 1)/(1− w) (6)

Given w and sn, sm is identified from (0,0,1):

sm = Pr(W = 0,M = 0, A = 1)/(1− w) − sn (7)
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Given at, l, sn, and sm, r is identified of the identity:

r = 1− l − sm − sn − at (8)

Q.E.D.

Note that there is no over-identification at this stage since the six probabilities in Table

1 add up to one, and the last three non-degenerate probabilities add up to 1− w.

Next we discuss identification of the five conditional means of household characteristics.

We have the following result.

Proposition 2 Given (w, r, sn, sm, l, at), the parameters (µr, µsm , µsn , µl, µat) are identified

by the observed conditional expectations observed in Table 1.

Proof: µl is identified from (1,0,0):

µl = E(X|W = 1,M = 0, A = 0) (9)

Similarly µsn is identified from (1,0,1):

µsn = E(X|W = 1,M = 0, A = 1) (10)

and µat is identified from (0,1,1):

µat = E(X|W = 0,M = 1, A = 1) (11)

Given µsn , µsm is identified from (0,0,1):

µsm = [(sn + sm)E(X|W = 0,M = 0, A = 1) − snµsn ]/sm (12)

Given µsm and µat , µr is identified from (1,1,1):

µr = [(r + sm + at)E(X|W = 1,M = 1, A = 1) − smµsm − atµat ]/r (13)

Q.E.D.

14



There is one over-identifying condition at this stage. This restriction arises due to the

condition that W is orthogonal to X.13 Propositions 1 and 2 then imply that the parameters

(w, r, sn, sm, l, at, µr, µsn , µsm , µl, µat) are identified. We can thus study the effectiveness of

magnet programs to attract and retain students. Moreover, the fraction of households that

are “at risk” is the key parameter that measures the selective attrition between lottery

winners and losers. We show this in the next section.

2.3 Identification of Treatment Effects

We now turn to the analysis of identification of causal treatment effects of magnet programs

on educational and behavioral outcomes. We assume that the researcher only observes

outcomes, T , for students that remain in the school district, i.e. we do not observe outcomes

for “leavers” and “at risk” households that lose the lottery.

It is useful to assume initially that we observe the latent household type. Table 2 provides

a summary of the relevant conditional expectations.14 Conditioning on lottery outcomes,

there are ten conditional expectations. Three of these pertain to outcomes that are not

observed since students in these latent groups leave the school district (T2). The remaining

seven conditional expectations relate to household types that remain in the district.

From Table 2, it is evident that even if we observed the latent types, there is little

hope in identifying ATESn , ATER, ATEL, or ATEAt . For stayers that never attend the

magnet program, we cannot identify E[T1|Sn = 1]. For students at risk, we cannot identify

E[T0|R = 1]. For leavers, we can neither identify E[T1|L = 1] nor E[T0|L = 1]. For

always-takers we never observe E[T0|At = 1]. Without imposing additional assumptions

on the selection of students into latent groups, ATESn , ATER, ATEL and ATEAt are not

identified. Attention, therefore, focuses on identification of ATESm . Note that ATESm

13The lotteries are assumed to be fair and blind in the sense that the district does not pre-select winners

and losers based on beliefs about attendance or any socio-economic or student characteristic found in X.
14Note that we are implicitly assuming that the mean performance of stayers who would decline lottery

admission is the same whether they win or lose the lottery, i.e. E[T0|Sn = 1,W = 1] = E[T0|Sn = 1,W =

0] = E[T0|Sn = 1].
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Table 2: Mean Outcomes Conditional on Type

Complying Non-Complying Always

Stayers Stayers At Risk Leavers Takers

W = 1 E[T1|Sm = 1] E[T0|Sn = 1] E[T1|R = 1] E[T2|L = 1] E[T1|At = 1]

W = 0 E[T0|Sm = 1] E[T0|Sn = 1] E[T2|R = 1] E[T2|L = 1] E[T1|At = 1]

Note that T2 is never observed.

would be identified if types were not latent. Of course, household types are not observed

and as a consequence identification of ATESm is not straightforward. One key result of this

paper is that the local average treatment effect for compliers is not point identified if there

is selective attrition.

Proposition 3

If there is selective attrition (r 6= 0) and if households that are at risk have different expected

outcomes than compliers in the treated case (E[T1|Sm = 1] 6= E[T1|R = 1]), then the local

average treatment effect for compliers, ATESm, is not identified.

Proof:

We only observe mean outcomes for the students conditional on W , M and A. For students

who win the lottery and attend the magnet school, we observe

E[T |W = 1,M = 1, A = 1] =
smE[T1|Sm = 1] + rE[T1|R = 1] + atE[T1|At = 1]

sm + r + at
(14)

For students who lose the lottery and attend the magnet school, we observe

E[T |W = 0,M = 1, A = 1] = E[T1|At = 1] (15)

We also observe mean performance of stayers who lose the lottery:

E[T |W = 0,M = 0, A = 1] =
smE[T0|Sm = 1] + snE[T0|Sn = 1]

sm + sn
(16)
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Finally, we also observe the mean performance of stayers who win the lottery and decline

to enroll in the magnet program:

E[T |W = 1,M = 0, A = 1] = E[T0|Sn = 1] (17)

Equations (16) and (17) imply that we can identify E[T0|Sm = 1] and E[T0|Sn = 1], since sn

and sm have been identified before. Equation (15) implies that we can identify E[T1|At = 1].

However, equation (14) then implies that we cannot separately identify E[T1|Sm = 1] and

E[T1|R = 1]. Q.E.D.

Proposition 3 illustrates that attrition per se is not the problem. If the fraction of “at

risk” households is negligible (i.e., r = 0), identification is achieved even if the fraction

of leavers is large.15 The lack of point identification arises from the “at risk” households

which cause the selective attrition problem. Selective attrition is only a problem if “at risk”

households have different mean outcomes than compliers.16

Since point identification is no longer feasible when selective attrition is not negligible,

attention focuses on set identification and the construction of bounds.17

Proposition 4

i) Suppose we have an upper bound, denoted by T u1 , for E[T1|R = 1] i.e. T u1 satisfies

E[T1|R = 1] ≤ T u1 . We can then construct a lower bound for the E[T1|Sm = 1] and

ATESm.

ii) Suppose we have a lower bound, denoted by T l1, for E[T1|R = 1], i.e. T l1 satisfies

E[T1|R = 1] ≥ T l1, we can then construct an upper bound for the E[T1|Sm = 1] and ATESm.

15Recall that if r = l = 0 our research design simplifies to the one considered in Angrist, Imbens and

Rubin (1996).
16We can generalize Proposition 3 by assuming that E[T1|Sm = 1, X] 6= E[T1|R = 1, X], i,e, by condition-

ing on some observables X. If controlling for selection on observables is sufficient to deal with the selection

problem, a matching approach can be justified. For a discussion of matching estimators, see, among others,

Rosenbaum and Rubin (1983), Heckman, Ichimura, and Todd (1997), and Abadie and Imbens (2006).
17Point identification cannot be achieved in many econometric applications. In that case, attention nat-

urally shifts to characterizing informative bounds on the parameters of interest. See, for example, Manski

(1997), Horowitz and Maski (2000), Imbens and Manski (2004), Chernozhukov, Imbens, and Newey (2006),

and Lee (2009).
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Proof:

Consider the first part of the statement. Equation (14) then implies that:

E[T1|Sm = 1]

=
sm + r + at

sm
E[T |W = 1,M = 1, A = 1]− rE[T1|R = 1] + atE[T1|At = 1]

sm

≥ sm + r + at
sm

E[T |W = 1,M = 1, A = 1]− rT u1 + atE[T1|At = 1]

sm
(18)

where the last inequality follows from E[T1|R = 1] ≤ T u1 . Since all terms in the last line of

equation (18) are identified, we conclude that we can construct a lower bound. Replacing

T u1 with T l1 and reversing the inequality yields the upper bound. Q.E.D.

There are many ways of constructing both lower bounds or upper bounds depending

on the outcome variable and the application. For example, a plausible assumption for the

construction of an upper bound of the mean treatment effect is that the ”at risk” households

are at least as good as the compliers, T l1 = E[T1|Sm = 1] ≤ E[T1|R = 1].

A better approach that we explore in this paper is to bound outcomes using known

percentiles of the outcome distribution. These type of aggregate distributions are often

available in applications in education at the state level, as we discuss in detail in the next

section.

Alternatively, we can apply the trimming approach suggested by Lee (2009). This

approach is applied in our context by first ordering magnet students from lowest to high-

est performance on the outcome variable being studied. Then treatment observations are

dropped from the sample based both on the proportions of missing data in the control and

treatment groups and the distribution of the outcome variable being bounded.

We have thus seen that selective attrition implies that we have to focus on the construc-

tion of bounds since point identification is not feasible. It is therefore important to have

a simple test to determine whether r is zero. If we cannot reject the null hypothesis that

r = 0, treatment effects are point identified and can be estimated using standard linear IV

estimators. A simple way to estimate r is to regress Ai on Wi. The slope coefficient in that
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regression is equal to r. At minimum, researchers that work with lottery data in educa-

tional applications should run this regression and test whether one of the key identifying

assumptions of the IV estimator is valid. If we reject the null that r is equal to zero, the

bounds analysis suggested in this paper is more appropriate than IV estimation.

2.4 A GMM Estimator

Suppose we observe a random sample of N applicants to an education program, indexed by

i. We view these as N independent draws from the underlying population of all applicants

to this program. Let Wi,Mi, Ai, and Xi now denote the random variables that correspond

to observation i. The proofs of identification are constructive. Replacing population means

by sample means thus yields consistent estimators for the parameters of interest. Never-

theless, it is useful to place the estimation problem within a well defined GMM framework.

This allows us to estimate simultaneously all parameters and compute asymptotic stan-

dard errors. We can estimate the fractions of each latent type based on moment conditions

derived from the choice probabilities in Table 1. Define:

f1(Ai,Mi,Wi) =



1
N

∑N
i=1

[
WiMiAi − w(r + sm + at)

]
1
N

∑N
i=1

[
Wi(1−Mi)Ai − w sn

]
1
N

∑N
i=1

[
Wi(1−Mi)(1−Ai)− w l

]
1
N

∑N
i=1

[
(1−Wi)MiAi − (1− w) at

]
1
N

∑N
i=1

[
(1−Wi)(1−Mi)Ai − (1− w)(sn + sm)

]
and note that E[f1(Ai,Mi,Wi)] = 0. Similarly we can estimate the mean characteristics of

each type. Define:

f2(Ai,Mi,Wi, Xi) =



1
N

∑N
i=1

[
WiMiAiXi − w[rµr + smµsm + atµat ]

]
1
N

∑N
i=1

[
Wi(1−Mi)AiXi − w sn µsn

]
1
N

∑N
i=1

[
Wi(1−Mi)(1−Ai)Xi − w l µl

]
1
N

∑N
i=1

[
(1−Wi)MiAiXi − (1− w)at µat

]
1
N

∑N
i=1

[
(1−Wi)(1−Mi)AiXi − (1− w)[snµsn + smµsm ]

]
1
N

∑N
i=1

[
(1−Wi)(1−Mi)(1−Ai)Xi − (1− w)[rµr + lµl]

]
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and note that E[f2(Ai,Mi,Wi)] = 0. Finally, we can construct additional orthogonality

conditions to construct both upper and lower bounds. Consider first the case of estimating

an upper bound for compliers, denoted by E[T u1 |Sm = 1], by setting the lower bound for

E[T1|R = 1] to the 5th percentile of the observed outcome distribution, denoted by T l1.

Define:

f3(Ai,Mi,Wi, Ti) =



1
N

∑N
i=1

[
TiWiMiAi − w(smE[T u1 |Sm = 1] + rT l1 + atE[T1|At = 1])

]
1
N

∑N
i=1

[
Ti(1−Wi)MiAi − (1− w)atE[T1|At = 1]

]
1
N

∑N
i=1

[
Ti(1−Wi)(1−Mi)Ai − (1− w)(smE[T0|Sm = 1] + snE[T0|Sn = 1])

]
1
N

∑N
i=1

[
TiWi(1−Mi)Ai − wsnE[T0|Sn = 1]

]
and we have E[f3(Ai,Mi,Wi)] = 0. Similarly, we can construct an orthogonality condition

for the lower bound if we use the 95th percentile outcome for T u1 . This value comes from state

level data for test scores and from our sample of non-missing data for all other outcomes.

Combining all orthogonality conditions, we can estimate the parameters of the model using

a GMM estimator (Hansen, 1982). Note that the estimator above easily generalizes to the

case in whichX is a vector of random variables. We simply stack all orthogonality conditions

to obtain a simultaneous estimator. The main advantage of the GMM framework is that

we can estimate all parameters jointly by imposing all relevant orthogonality conditions.

Moreover it is straightforward to obtain standard errors for the upper and lower bounds

using a GMM framework. Many of the parameters of the model – especially all parameters

that characterize the fraction of latent types – can be estimated using linear estimators.18

We find in the application that imposing the additional orthogonality conditions that model

the mean characteristics of the types (f2(Ai,Mi,Wi, Xi) above) yields significant efficiency

gains.

Thus far we have considered the problem of estimating causal effects using data from

one lottery. In practice, researchers often need to pool data from multiple lotteries to

obtain large enough sample sizes. We discuss in detail in Appendix A of this paper the

problems that are encountered when aggregating across lotteries. Using a suitable weighting

procedure, we show that we can estimate weighted averages of the underlying parameters of

18An appendix is available upon request which shows exactly how to set up the linear estimators.
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the model. Weights can be chosen in accordance to the objectives of the policy or decision

maker.

3 Data

Our application focuses on magnet programs that are operated by a mid-sized urban school

district that prefers to not be identified. Magnet schools emerged in the United States in the

1960’s. Magnet schools are designed to draw students from across normal attendance zones.

In contrast, a feeder school typically only admits students that live inside the attendance

zone. As a consequence, the composition of feeder schools reflects residential choices of

parents and is largely driven by the composition of local neighborhoods. Magnet schools

were thus initially used as a way to reduce racial segregation in public schools.

More recently, magnet programs have been viewed as attractive options to increase

school choice, to retain students with better socio-economic backgrounds in public schools,

and to increase student achievement. In some cases, magnet programs are housed in sepa-

rate schools. But they can also be a program within a more comprehensive school. Magnet

programs offer specialized courses or curricula. There are magnet programs for all grade

levels in our district. We only consider magnet programs that are academically oriented.

These magnet programs typically provide specialized education in mathematics, the sci-

ences, languages, or humanities. Other magnet programs have a broader focus on topics

such as international studies or performing arts.

Every academic year, interested students submit applications for one magnet program

of their choice. Some magnet programs in the district have a competitive entrance process,

requiring an entrance examination, interview, or audition. We do not include these magnet

programs in this study since the admission procedure does not use randomization. Instead

we focus on magnet programs that do not have competitive entrance procedures. If the

number of applications submitted during registration for any magnet program exceeds the

number of available spaces, the district holds a lottery to determine the order in which

21



applicants will be accepted.

In the case of over-subscription, a computerized random selection determines each stu-

dent’s lottery number. The lottery is binding in the sense that students with lower numbers

are accepted, and higher numbered students are rejected. There is a clear cut-off number

that separates the groups. We do not observe students attending magnet schools that lose

the lottery, i.e. there are no “always-takers” in our sample.

To preserve racial balance in the magnet programs, separate lotteries are held for black

students and other students. Some programs also have preferences for students with siblings

already attending the magnet programs or for students who live close to the school. Separate

lotteries are held for those students with an acceptable preference category for each magnet

program. All in all, each lottery is held for a given program, in a given academic year,

separately by race, and, finally, separately by preference code.

Lottery winners (lotteried-in) have the option to participate in the magnet program,

with the ultimate choice of participation left to the student and his family. Lottery losers

(lotteried-out) do not have this option, and thus must make their schooling choice without

the availability of the magnet option. When winners decline admission, the students on

the wait list become eligible. Again the rank on the wait list is determined by the original

lottery. With a fair and balanced lottery, the winners and losers will be determined by

chance, thus creating two groups that are similar to each other both on observable and

unobservable characteristics.

The district granted us access to its longitudinal student database. We use data from the

1999-2000 school year through 2005-2006. In addition to demographic data, the database

contains detailed information about educational outcomes. This information is linked to

each student by a unique ID number. The demographic characteristics for the students in-

clude race, gender, free/reduced lunch eligibility, and addresses.19 Using the addresses, we

can assign census tract level variables to each student. We use two community characteris-

19The race variable is one if a student is African American and zero otherwise. The gender variable is one

for girls and zero for boys.
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Table 3: Descriptive Statistics

Variable Entire Sample

(2054 obs)

Elem School

(820 obs)

Middle School

(457 obs)

High School

(777 obs)

Gender 0.51

(0.50)

0.51

(0.50)

0.51

(0.50)

0.51

(0.50)

Race 0.75

(0.44)

0.59

(0.49)

0.79

(0.40)

0.88

(0.32)

FRL 0.33

(0.47)

0.33

(0.47)

0.35

(0.48)

0.32

(0.47)

Poverty 0.23

(0.14)

0.22

(0.14)

0.23

(0.14)

0.24

(0.15)

Education 0.29

(0.19)

0.34

(0.22)

0.28

(0.18)

0.25

(0.14)

Offenses 0.99

(2.23)

0.18

(0.99)

1.15

(2.32)

1.67

(2.71)

Suspension Days 1.88

(4.71)

0.29

(1.62)

1.97

(4.39)

3.32

(6.17)

Absences 13.28

(14.56)

8.74

(7.96)

10.30

(8.54)

19.30

(19.30)

Tardies 7.31

(13.10)

3.94

(7.03)

8.66

(12.89)

9.70

(16.55)

Win Percentage 61.8 52.1 53.2 77.1
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tics that measure the socio-economic composition of the neighborhoods in which students

reside. Poverty is the percentage of adults in the student’s census tract with an income

level below the poverty line. Education is the percentage of adults in the student’s census

tract with at least a college degree.

As pertaining to student educational outcomes, the database includes the school of

attendance in each year and standardized scores for the state assessment tests. In addition,

we observe a variety of behavioral outcome measures such as offenses, suspensions, and

absences. The database also contains the outcomes of the magnet lotteries. One of the

key features of the database is that it contains unusually good information about students

residing in the district that attend private, charter, and home schools. Unfortunately, we do

not observe test scores or behavioral outcome measures for students outside of the district.

Table 3 shows descriptive statistics for the entire sample used in this study as well as three

important sub-samples that we also consider in estimation.20 We only consider binding

lotteries in this research. In total, over the time frame of the data, there are 173 binding

lotteries with 1,269 students lotteried-in and 785 students lotteried-out.

Before we implement the estimators, we check whether the lotteries are balanced on

student observables. While assignment within lotteries may be random, participation in

a lottery is not. To make use of within-lottery randomness and not the between-lottery

non-randomness, we perform a check for balance by running a lottery-fixed effect regression

for each observable characteristic as a dependent variable with acceptance as the only in-

dependent variable other than the fixed effects. Separate lotteries are held by race, so race

is left out of the balance analysis. We test every other observable student characteristic in

the data set.

Following Cullen, Jacob, and Levitt (2006) we use equation (7) to determine whether

20For a small sample of students we imputed absences and tardies. Also note that outcome variables are

not observed for students that leave the district. Thus the means of the outcome variables in Table 3 reflect

means of stayers.
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Table 4: Lottery Balance Result

Variable Entire Sample Elem School Middle School High School

Gender 0.0053

(0.0262)

0.0366

(0.0384)

-0.0183

(0.0559)

-0.0257

(0.0469)

FRL 0.0056

(0.0229)

0.0111

(0.0322)

-0.0501

(0.0482)

0.0385

(0.0431)

Poverty -0.0050

(0.0068)

-0.0023

(0.0092)

0.0044

(0.0136)

-0.0160

(0.0135)

Education 0.0041

(0.0078)

0.0110

(0.0127)

-0.0038

(0.0165)

-0.0007

(0.0125)

the lottery is balanced:

Xi = β1Wi +
J∑
j=1

Iijβ2j + vi (19)

where Xi is the observable characteristic of interest, Wi is a dummy equal to 1 if student

i wins lottery j, Iij is an indicator variable equal to 1 if student i participated in lottery

j, and vi is the error term.21 We estimate a separate regression for each observable. The

coefficient β1 determines the fairness of the lottery system. If we cannot reject the null

hypothesis that it is equal to zero, then acceptance into a magnet is not determined by the

value of that particular student observable, X.

The first column of Table 4 shows the results when all students in all binding lotteries are

included in the regressions. β1 is not significant for any tested variable at 10 %. The second

and third columns consider the three sub-samples of interest. The second column includes

all students in elementary school while the third column focuses on middle school students

and the fourth on high school students. We find that the estimates of β1 are not significantly

21Alternatively we could use multivariate Behrens-Fisher type test statistics which require less restrictive

assumptions. See, for example, Kim (1992)
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different from zero. We thus find that the lotteries are fair, creating separate winner and

loser groups that are similar in observed characteristics. Any differences between winners

and losers are small and statistically insignificant. This holds for the overall population in

binding lotteries and for the smaller sub-samples that were tested.

4 Empirical Results

4.1 Attraction, Retention and Selective Attrition

To study the importance of selective attrition in our sample, we implement a number of

different estimators. First, we use a GMM estimator that only imposes the orthogonality

conditions that identify the fraction of latent household types. Then we add the orthog-

onality conditions that capture the mean characteristics of the types. The characteristics

include race, gender, free or reduced lunch, poverty, and college education. Recall that

the last two measures are based on neighborhood characteristics as reported by the U.S.

Census. We report estimates for three samples which include all students that applied to an

oversubscribed magnet program that is associated with an elementary school (ES), middle

school (MS), and high school (HS), respectively. We pool across all lotteries in each sample

and, therefore, use the weighted estimator discussed in Appendix A. Tables 5 and 6 report

the point estimates and estimated standard errors for each of the three samples.

Comparing the estimates in the upper and lower panels of Table 5 clearly allows us to

evaluate whether there are efficiency gains that arise when using a GMM estimator.22 We

find that there are significant efficiency gains in the estimates of two key parameters, the

fraction of compliers and the fraction at risk. Estimated standard errors are up to 50 percent

larger when one ignores the additional orthogonality conditions. We thus conclude that our

approach of jointly estimating the model using GMM is preferable to simpler methods.

Table 5 reveals some interesting new insights into the importance of selective attrition

22This comparison is also interesting since the GMM estimates and associated standard errors in the upper

panel are identical to the results that could be obtained using simpler linear estimators.
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Table 5: Empirical Results: Selective Attrition

First Set of Orthogonality Conditions

Fraction Fraction Fraction Fraction

At Risk Stay, Attend Stay, Non Leave

ES 0.25 (0.04) 0.61 (0.05) 0.06 (0.01) 0.08 (0.01)

MS 0.12 (0.15) 0.60 (0.16) 0.24 (0.04) 0.04 (0.01)

HS 0.15 (0.09) 0.70 (0.09) 0.08 (0.01) 0.06 (0.01)

First and Second Set of Orthogonality Conditions

Fraction Fraction Fraction Fraction

At Risk Stay, Attend Stay, Non Leave

ES 0.25 (0.04) 0.61 (0.04) 0.06 (0.01) 0.08 (0.01)

MS 0.12 (0.05) 0.61 (0.06) 0.24 (0.04) 0.04 (0.01)

HS 0.14 (0.06) 0.72 (0.06) 0.08 (0.01) 0.06 (0.01)

Estimated standard errors are reported in parentheses.

in our application. Recall that the fraction of households at risk is the key parameter

that captures selective attrition. We find that selective attrition is substantial and ranges

between 12 and 25 percent across our three samples. We also find that the majority of

students will stay in the district regardless of the outcome of the lottery. The majority,

61 to 71 percent, will attend the magnet program if they win they lottery. The fraction

of households that will leave the district regardless of the outcome of the lottery ranges

between 4 and 8 percent. Overall, these results suggest that most households consider

the magnet programs desirable. We conclude that magnet programs are effective tools for

attracting and retaining households and students.

Equally interesting are the observed mean characteristics of the latent types of house-

holds reported in Table 6. These and the ones reported in the lower part of Table 5 are the

results from the first and second set of orthogonality conditions (f1 and f2). For each char-

acteristic, the differences across household types (at risk, leavers, stayers) are statistically
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Table 6: Empirical Results: Characteristics

Gender

At Risk Stay, Attend Stay, Non Leave

ES 0.57 (0.09) 0.47 (0.03) 0.55 (0.11) 0.47 (0.08)

MS 0.85 (0.34) 0.43 (0.06) 0.50 (0.08) 0.31 (0.13)

HS 0.55 (0.34) 0.57 (0.05) 0.49 (0.08) 0.41 (0.08)

Race

At Risk Stay, Attend Stay, Non Leave

ES 0.50 (0.09) 0.70 (0.04) 0.39 (0.11) 0.18 (0.07)

MS 0.99 (0.41) 0.80 (0.05) 0.80 (0.06) 0.28 (0.14)

HS 0.89 (0.41) 0.93 (0.03) 0.85 (0.07) 0.79 (0.06)

FRL

At Risk Stay, Attend Stay, Non Leave

ES 0.12 (0.04) 0.43 (0.03) 0.19 (0.07) 0.07 (0.04)

MS 0.26 (0.15) 0.47 (0.06) 0.26 (0.09) 0.07 (0.06)

HS 0.15 (0.11) 0.39 (0.04) 0.25 (0.06) 0.12 (0.05)

Poverty

At Risk Stay, Attend Stay, Non Leave

ES 0.21 (0.03) 0.23 (0.01) 0.20 (0.04) 0.14 (0.01)

MS 0.24 (0.10) 0.24 (0.02) 0.23 (0.02) 0.13 (0.02)

HS 0.28 (0.12) 0.25 (0.01) 0.24 (0.02) 0.19 (0.02)

Education

At Risk Stay, Attend Stay, Non Leave

ES 0.40 (0.05) 0.29 (0.02) 0.41 (0.05) 0.53 (0.04)

MS 0.20 (0.11) 0.29 (0.02) 0.30 (0.03) 0.55 (0.08)

HS 0.27 (0.14) 0.25 (0.01) 0.21 (0.02) 0.36 (0.03)

Estimated standard errors are reported in parentheses.
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significant. We find that ”at risk” households are on average less likely to be African Amer-

ican and on free or reduced lunch programs than households that are stayers. Moreover,

they come from better educated neighborhoods.23 These differences are more pronounced

at the elementary school level where the fraction of ”at risk” households is the greatest. We

thus conclude that magnet programs are effective devices for the school district to retain

more affluent households. Not surprisingly, the leavers are the most affluent group and come

from neighborhoods with the highest levels of education. These households may just apply

to the magnet programs as a back-up option in case their students should unexpectedly not

be admitted to an independent, charter, or parochial school.24

The demographic differences, summarized above, between ”at risk” students and ”stay-

ers” drive our assumptions on the bounds. Poor minority students are known to perform

poorly in school compared to wealthier majority peers (Dobbie and Fryer, 2009). Therefore,

our upper bound estimation assumes that the ”at risk” students are only as good as the

”stayers,” while the lower bound estimation assumes that the at risk students are in the

95th percentile of the outcome distribution.

Table 6 also permits interesting comparisons across grade levels. Elementary and middle

school lotteries are somewhat more competitive than high school lotteries. The former have

average win rates of 52 percent and 53 percent respectively while the latter have an average

win rate of 77 percent. Elementary programs attract a clientele from more highly educated

neighborhoods. The fraction of African American families is also lower among applicants

to elementary school lotteries. Not surprisingly, we find that the fraction of at risk families

and the fraction of leavers is also higher among elementary school students. These findings

highlight the fact that, among the magnet school applicants, the market for elementary

school education is more competitive than the market for high school education.

23Note that the differences in household characteristics are statistically significant from zero at all con-

ventional levels.
24It could also be that these households left the district because of job transfers or other issues unrelated

to schools.
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4.2 Treatment Effects

We have seen in the previous section that the fraction of “at risk” households is large

and significantly different from zero in our application in all three samples. Moreover,

households that are “at risk” of leaving the district have more favorable socio-economic

characteristics than other types except for ”leavers”. As a consequence, we conclude that

selective attrition cannot be ignored in this application. Since treatment effects are only

set-identified when selective attrition matters, we implement our bounds estimators. We

implement our bounds estimators by adding the orthogonality conditions for these variables

to the conditions, discussed in Section 4.1, for estimating the proportions of latent types and

the demographic characteristics of latent types. For comparison purposes, we also report

the IV estimates that ignore selective attrition.

We start our analysis by focusing on achievement effects. The main problem encountered

in this part of the analysis arises due to missing data. This is largely the case because

standardized achievement tests were only conducted in grades 5, 8, and 11 during most of

our sample period. For our middle school sample, there are only 155 observations for which

we have test scores. For the high school sample, the reduction is of similar magnitude.25

Including households that participate in the lotteries but subsequently leave the district

gives us with 213 middle school students and 203 high school students. Table 7 summarizes

our main findings using standardized test scores in reading and mathematics as outcome

variables.

We find that the point estimates of the upper and lower bounds point to positive treat-

ment effects, but sample sizes are too small to provide precise estimates. While few people

would advocate the use of the simple IV estimator in the presence of selective attrition, it is

useful to compare the results of our bounds analysis with the IV approach. One surprising

finding is that the simple IV estimates suggest statistically significant positive treatment

effects. Our bounds analysis reveal that this inference is not correct.

25Moreover we find some evidence that lower performing students are more likely to drop out of the sample,

perhaps because they drop out of school.
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Table 7: Empirical Results: Achievement

Reading Mathematics

Upper Bound Lower Bound IV Upper Bound Lower Bound IV

ATESm ATESm ATESm ATESm ATESm ATESm

MS 66.25 3.68 139.71 180.89 91.08 138.56

(118.30) (172.69) (77.33) (124.89) (183.69) (63.63)

HS 77.05 -25.09 81.97 87.09 -24.22 94.30

(64.79) (136.24) (47.17) (57.62) (148.00) (40.70)

Estimated standard errors are reported in parentheses.

We next turn our attention to behavioral outcomes measured one year after the lotteries

were conducted.26 The main advantage of studying these outcomes is that we do not face

the data limitations that we encounter with test scores. Comprehensive records of four

important behavioral measures are available: suspensions, offenses, absences, and tardies.

Table 8 summarizes our main findings. Note that a negative treatment effect is a reduc-

tion in undesirable behavior and thus a good outcome. For elementary students, we find

that magnet programs significantly reduce offenses and suspensions. There are no measur-

able effects on tardies and absences. We find that there are few significant treatment effects

at the middle school level. The estimates themselves suggest that middle school magnet

programs have a negative effect on offenses, no effect on suspensions, and possibly an in-

crease in absences and tardies. Again, however, these estimates at the middle school level

are generally not significant. For the high school sample, we find strong evidence that the

magnet schools reduce absences and tardies while having no significant effects on offenses

or suspensions. Comparing the IV estimates with the bounds, we find that the IV estimates

are often of similar magnitude to our upper bound estimates and have smaller estimated

standard errors than the bound estimates.

26Previously Cullen, Jacob, and Levitt (2006) and Imberman (2010) have studied behavioral outcomes

when examining school choice programs.
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Table 8: Empirical Results: Behavioral Outcomes

Offenses Suspensions

Upper Bound Lower Bound IV Upper Bound Lower Bound IV

ATESm ATESm ATESm ATESm ATESm ATESm

ES -0.28 -0.26 -0.26 -0.49 -0.45 -0.47

(0.09) (0.09) (0.09) (0.15) (0.15) (0.14)

MS -0.62 -0.48 -0.66 -0.22 0.00 -0.56

(0.36) (0.36) (0.35) (1.17) (1.18) (0.77)

HS -0.03 0.28 0.20 -0.47 0.14 0.03

(0.34) (0.39) (0.31) (0.87) (0.93) (0.75)

Absences Tardies

Upper Bound Lower Bound IV Upper Bound Lower Bound IV

ATESm ATESm ATESm ATESm ATESm ATESm

ES -2.26 0.98 -1.70 -0.95 0.52 -0.98

(0.90) (1.24) (0.77) (0.73) (0.87) (0.59)

MS 1.98 4.16 1.82 3.04 4.97 2.32

(1.60) (2.02) (1.36) (1.82) (2.07) (2.07)

HS -8.64 -5.35 -7.77 -7.90 -6.61 -9.41

(3.32) (3.60) (2.55) (2.78) (2.87) (2.45)

Estimated standard errors are reported in parentheses.
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We thus conclude that our bounds analysis is informative and demonstrates that magnet

programs offered by the district improve behavioral outcomes. In particular, we find that

offenses are signicantly lower for elementary school students, while high school students have

significantly better attendance and timeliness records. It is also important to note that the

95th percentile of all the behavioral outcomes is zero. Thus our lower bound estimates for

all behavioral outcomes is the most pessimistic possible, since it attributes flawless behavior

to all who leave the district.

4.3 Comparison with the Lee Estimator

The main alternative to our estimator is the one proposed by Lee (2009) that relies on

trimming to construct an estimator for the lower and upper bounds of the treatment effect.

It is, therefore, useful to compare both approaches using the data from our application.

Table 9 compares our estimates with those obtained from Lee’s trimming method.27 As

we detail in the appendix, weighting is appropriate when estimating bounds using data

from multiple lotteries. In implementing Lee’s estimator, we do not weight lotteries by

number of applicants.28 Hence, the comparison in Table 9 reflects both a difference in the

approach to bounding as well as a difference in weighting, potentially confounding the two

effects. For the outcomes considered in Table 9, we have confirmed that the results from

our weighted estimator are similar to those when we do not weight by lotteries. This is not

always the case, however. For example, for MS reading, weighting by lotteries proves to be

quite important.29 Hence, it would be desirable in future work to extend the Lee estimator

to weight lotteries. The two methods could then be compared on a common footing in

27The results are similar for other outcomes analyzed in this paper. The four outcomes were chosen for

the following reason. We have a large sample for elementary school offenses. Our point estimates suggest

that the magnet schools may reduce offenses. For tardies, our estimates suggest no effect. The sample size

for high school math is small and our estimates suggest no significant treatment effect. Finally, the sample

for middle school math is also small, but our estimates suggest that there may be a positive treatment effect.
28Lee’s estimator has not yet been extended to estimate bounds when combining data from multiple

lotteries, though it is surely possible to do so.
29Details are available on request.
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applications with multiple lotteries.

Table 9 suggests that the empirical results are similar, but there is at least one note-

worthy difference. We find that our estimator provides tighter bounds estimates for the

magnet treatment effects than the one proposed in Lee (2009) in this application. Table 9

also reports the trimming proportions p̂ for Lee’s estimator for all outcomes. Note that p̂ is

the trimming proportion and is defined just as in Lee’s paper. The TE CI is the treatment

effect confidence interval.

We find that the trimming rates are much greater in our application than in Lee’s

application, where p̂ = 0.068. This is due to the fact that our proportion of non-missing

data between the control and treatment groups differs significantly since we never observe

outcomes for those who leave the district. These students are exclusively contained in the

control group since nobody can be in a magnet program yet outside of the district. The

other main difference between our application and Lee’s application is sample size. Lee

reports over 3000 observations in the treatment group before and after trimming. These

sample are much larger than the ones in our application. Trimming can, therefore, lead to

small sample estimation problems in some applications.

5 Conclusions

We have considered a research design that arises when randomization is used to determine

access to oversubscribed programs offered by public school systems. We have developed a

new empirical method which deals with selective attrition. Our approach classifies potential

participants as stayers, always-takers, leavers, and those that are at risk. We show that the

last type of households causes the selective attrition problem. These ”at risk” households

are also most interesting from a policy perspective since the decision to remain in public

schooling crucially depends on the outcome of the lottery. If selective attrition matters,

point identification of local average treatment effects for compliers cannot be established.

Instead we show how to construct and estimate informative bounds.
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Table 9: Comparison with Lee Estimator

Our Estimator Lee’s Estimator

ES Offenses UB : -0.28 (0.09) UB : -0.33 (0.08) [347]

LB : -0.26 (0.09) LB : -0.27 (0.08) [357]

Point Estimate Range : 0.02 Point Estimate Range : 0.06

Simple TE CI : [-0.46 , -0.08] Simple TE CI : [-0.49 , -0.11]

p̂ = 0.337

ES Tardies UB : -0.95 (0.73) UB : -3.58 (0.58) [217]

LB : 0.52 (0.87) LB : -0.68 (0.74) [306]

Point Estimate Range : 1.47 Point Estimate Range : 2.90

Simple TE CI : [-2.38 , 2.23] Simple TE CI : [-4.72 , 0.77]

p̂ = 0.362

HS Math UB : 87.09 (57.62) UB : 243.69 (301.97) [33]

LB : -24.22 (148.00) LB : -150.83 (252.33) [33]

Point Estimate Range : 111.31 Point Estimate Range : 394.52

Simple TE CI : [-314.30 , 200.03] Simple TE CI : [-645.40 , 835.55]

p̂ = 0.660

MS Math UB : 180.89 (124.89) UB : 382.86 (286.89) [45]

LB : 91.08 (183.69) LB : 65.11 (243.81) [48]

Point Estimate Range : 89.81 Point Estimate Range : 317.75

Simple TE CI : [-268.95 , 425.67] Simple TE CI : [-412.76 , 945.16]

p̂ = 0.426
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We have applied our new methods to study the effectiveness of magnet programs. Our

empirical results suggest that selective attrition cannot be ignored in our application. We

find that magnet programs are useful tools that help the district to attract and retain stu-

dents from middle class backgrounds. Finally, we have also studied the impact of magnet

programs on achievement and a variety of behavioral outcomes. Our findings for achieve-

ment effects are mixed. While the point estimates of the bounds point to positive treatment

effects, sample sizes are too small to provide precise estimates. For a variety of behavioral

outcomes, we do not face these data limitations. Our evidence suggests that magnet pro-

grams often improve behavioral outcomes.

We believe that the techniques discussed in this paper can be extended and applied to

variety of different problems. Chan and Hamilton (2006), for example, consider clinical

AIDS trials and show that attrition is prevalent. Dinardo, McCrary, and Sanbonmatsu

(2006) show that attrition is also a problem in the Moving To Opportunity randomized

experiment. The techniques developed in this paper can be applied to study these types of

questions as well.
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Essay 2

The Efficacy of a Pre-Algebra Cognitive Tutor in Chile and

Mexico
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1 Introduction

1.1 Implementing the Math Cognitive Tutor in the Classroom

This paper examines the impact of an educational intervention on the mathematics perfor-

mance of 7th grade students in public middle schools in Chile and Mexico. A math cognitive

tutor (MCT) targeted at the pre-algebra level represents the intervention. Of the total time

devoted to mathematics, students are expected to spend around 3
5 of it in the classroom

and 2
5 in the computer lab using the MCT software.

There are significant pedagogical changes that are strongly suggested for teachers to

use in the classroom portion of the overall curriculum. For the planning of the traditional

classes, the teacher can utilize performance reports provided by the MCT system that are

individualized to each student. A more collaborative “group learning” strategy, where the

teacher serves more as a mentor or coach while students practice problems (instead of a pure

lecturer), is also suggested for those classes. Teachers required training before beginning

their use of the MCT curriculum. Previous work (Casas, Goodman, & Pelaez (2011) and

Casas, Imbrogno, & Vergara (2013)) has highlighted these classroom changes and training

provided to teachers. This paper does not include much further discussion of the classroom

changes, but instead focuses on the computer-based MCT instruction and its impact on the

7th grade students.

1.2 The ACT-R Theory Behind the MCT

The MCT is based on Anderson’s (1993a, b) cognitive theory called adaptive control of

thought-rational, or ACT-R. Cognition is modeled as a system of piecemeal knowledge

components. According to the theory, the link between declarative, or factual, knowledge

and procedural knowledge (problem-solving skill) is strengthened as a power function of

practice. Repeated attempts to solve a problem through the use of a particular skill allows

students to perform that skill both more quickly and more accurately. In other words,

practice improves the performance measure of time spent or errors made by reducing them
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over repeated attempts. The models in Nowell & Rosenbloom (1981) and Anderson &

Schooler (1991) showing this relationship mathematically can be shown in the simplest form

using a performance measure P , learning rate b (less than one), and number of attempts N

as:

P = bN (1)

As the number of attempts increases, the performance measure (amount of time to solve

a problem, probability of making an error) decreases. A graphical representation of this

relationship is often referred to as a “learning curve.”

Using the MCT software, students can demonstrate proficiency in many knowledge com-

ponents separately. The MCT combines student actions and a generalized power function to

estimate how well the student understands each knowledge component. It uses this estima-

tion to build individualized instruction that focuses on the specific components with which

each student struggles. The MCT presents different problems to different students as they

progress through the software because its choice of problems to present to each individual

is determined by its interpretation of which knowledge components the student has and has

not learned. The MCT tailors instruction to the demonstrated ability level of the student

and selects problems designed to increase student learning in areas of weakness until a level

of mastery is shown. Students gradually build up their more complex problem-solving skills

by separate acquisition of a number of these smaller building blocks.

Using the ACT-R theory of individual knowledge components, the MCT is able to break

down student misunderstandings at a finer grain level than even individual problems. The

MCT itself tracks the knowledge components as separate skills,30 and an example of the

component skills in a given problem should suffice to demonstrate the effectiveness of the

ACT-R approach in the MCT. Say a student is asked to identify the greatest common factor

(GCF) of 27 and 18. A problem in the MCT proceeds in separate steps. In the first step of

30A knowledge component and a skill are the same thing. “Skill” is the term used by the MCT itself in

its presentation to students.
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the problem, he is asked to list separately the factors of 27 and 18 (skill 1). In the second

step, he is asked to identify the common factors of 27 and 18 by appealing to his previous

lists (skill 2). Finally, he is asked to identify the greatest common factor of 27 and 18 by

referring to his last step (skill 3). See Table 1 for a visual on the problem steps. The three

separate skills require a student to (1) factor numbers, (2) choose common numbers between

sets, and (3) choose the greatest number from a set. If a student makes a mistake or asks

for a hint in the first step, at the conclusion of the problem the MCT is unlikely to produce

an immediately subsequent problem asking him to identify the GCF of two numbers again.

Instead, it will track back and give the student a problem that focuses on the missing skill

(skill 1) either explicitly, as in “List the factors of 36” or in another domain, such as “Please

reduce the fraction 12
48 ,” where the student must begin the problem by demonstrating the

same skill 1 as in the GCF problem.

Table 1: Demonstration of MCT Skills Breakdown

What is the greatest common factor of 27 and 18?

Step Description Skill Skill Description

List factors of 27 1 Factor a number

List factors of 18 1 Factor a number

Identify common factor of 27 and 18 2 Choose common numbers between sets

Identify greatest common factor of 27 and 18 3 Choose the greatest number from a set

1.3 Bridge to Algebra MCT

The main technological system in this study is the Bridge to Algebra MCT produced by

Carnegie Learning, Inc. It covers math material commonly referred to in the U.S. as pre-

algebra (such as number sense and algebraic thinking, fractions, decimals, linear functions,

and number systems). Koedinger & Anderson (1993), Koedinger, Anderson, Hadley, &

Mark (1997), Anderson & Schunn (2000), and Anderson (2002) provide descriptions of

40



the the application of ACT-R to the development of the software itself, plus early im-

plementation and design issues. The MCT provides each student a personalized learning

environment. A problem generator provides each student with a different set of problems for

each skill module. When presented with a problem, the student can ask for hints during all

the problem solving processes. Problems are presented in order of complexity. The system

keeps track of the number of mistakes and hints used over time. When a skill is completed,

the student receives feedback and moves to the next module. The principles underlying the

tutor include individualized instruction, opportunities for practice, a scaffolding and hint

system that focuses attention on appropriate processes for problem solving, an extensive

feedback system that facilitates learning for the student, and an extensive data system that

permits diagnosis of student problem solving processes. These principles are designed to

enhance learning.

Students do not have to finish the entire software curriculum, and, in fact, very few

of them actually do. The prepared Bridge to Algebra curriculum consists of 14 units, 57

sections, and 552 skills.31 Students progress through the curriculum by mastering skills

and sections. According to the MCT developers, these are the best measures of the student

learning that has occurred via the software part of the curriculum.

Each section in the MCT contains many skills, and the student must pass all of them to

pass a section. The student can advance to the next section without passing all skills once

he spends sufficient time and effort on the section, as measured by the number of problems

attempted. But the student would still “fail” the section even though he moves on. In order

to “master” a section, the student must master all skills within that section. By design then,

it is more difficult to master a section than a skill, even leaving aside the fact that there is

more material involved. Mastering 9 out of 10 skills in each of four sections, plus 10 of 10 in

a fifth section, would result in a skills mastered percentage of 92% (46 skills mastered out

of 50), but a sections mastered percentage of just 20% (1 section mastered out of 5). Also

by design, the number of “skills mastered” is much greater than the number of “sections

31The entire Bridge to Algebra curriculum offered by Carnegie Learning is longer. A subset was used in

this study.
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mastered,” and the two measures are highly correlated. Because the MCT curriculum is

personally adaptive for each student, the number of questions required to master a skill

varies. If a student correctly answers the steps in a few problems involving a specific

skill, he is adjudged to have mastered that skill. But errors and hints, again related to a

specific skill, often result in more questions composed of that skill being asked of a student.

Therefore, skills and sections mastered are better indicators of demonstrated understanding

than simply time spent or problems faced, or even problems answered correctly. Skills

mastered and sections mastered are part of the output of the MCT for the use of the

teachers and students that reflect the underlying estimation of the student-specific learning

curves.

1.4 Related Efficacy Work

The main rationale for this research is the following: in most countries in the world, eco-

nomic development is based on an educated population, well versed in math, science, and

other similar disciplines (National Research Council, 2007; Hanushek & Woessmann, 2008).

An educational system that creates a supply of people well versed in mathematics and sci-

ence is likely to be in a better position to improve the country’s economic development. In

countries where literacy, language, and mathematics understanding are low, the opportu-

nity for economic development will be low. The goal of this study is to demonstrate the

success, or lack of success, of a classroom MCT intervention. If successful, broader diffusion

of this MCT could be expected.

Second, this research examines the generalizability of the MCT system. The existing

assessments of this specific MCT occur in English-speaking settings. One should note that

the issue here is not simply translating from English to Spanish. There are additional

changes in the problem content and reprogramming to fit the local contexts. For example,

word problems related to “starting a lemonade stand must be adapted for international

student understanding. This study takes place in public schools in Chile and Mexico.

Changes were made in the language, problems, and programming to adopt the MCT to
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Spanish-speaking environments. There are no systematic studies of this MCT in a Central

or South American environment, though other researchers (such as Banerjee, Cole, Duflo,

& Linden, 2007) have shown positive treatment effects from similar computer-assisted math

learning programs in international settings.

The third purpose is to shed more light on the processes that produce successful, or

unsuccessful, MCT interventions. As suggested in Cook (2003), we seek to peer into the

“black box” and describe some of the implementation quality and measurements of interven-

ing processes that lead to effective use of the MCT. Though our measurements are different,

we follow a similar thought process as Pane, McCaffrey, Steele, Ikemoto, & Slaughter (2010)

in this regard. This MCT technology has been adopted in large school districts in the U.S.32

for many middle and high school math courses. Papers on the student performance results

of this technology enhanced learning system have found mixed evidence. Some studies on

MCT (Koedinger & Anderson, 1993; Koedinger et al., 1997; Morgan & Ritter, 2002; Ritter,

Anderson, Koedinger, & Corbett, 2007; Arroyo, Woolf, Royer, Tai, & English, 2010; Ritter,

2011) have shown positive treatment effects while others (Dynarski, 2007; Cabalo, Jaciw,

& Vu, 2007; Campuzano, 2009; Pane et al., 2010) have shown insignificant or even negative

treatment effects. We add to the program evaluation literature by focusing on implementa-

tion quality in addition to the more straightforward question of overall effectiveness in an

effort to understand why some studies report positive treatment effects and others disagree.

If the difference is a matter of proper implementation, we hope to improve upon the process

of bringing the MCT into classrooms.

1.5 Country Settings

In the past two decades, several technology driven initiatives to improve education in South

American countries have been introduced with varying degrees of success (de Ferranti et al.,

2003; Scheurmann & Pedro, 2009; Chong, 2011). In general, the focus of these initiatives

has been two-fold: providing basic technology infrastructure in the schools, plus computer

32Including Los Angeles, Chicago, St. Louis, Miami, Baltimore, and Pittsburgh
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literacy (for teachers and students) through training. Even though there have been clear

advancements in the access to information and to electronic educational materials, the

promises of these types of interventions to achieve improved learning have not yet been

fully accomplished. Performance in national and international tests such as Program for

International Student Assessment (PISA) and Trends in International Mathematics and

Science Study (TIMMS) in the region has not increased as expected, and in some cases has

even deteriorated (Hanushek & Woessmann, 2009).

Chile was ranked 96th out of 133 countries regarding quality of primary education in a

2009-2010 report by the World Economic Forum (Schwab, 2009). Even though international

2009 PISA tests reported large gains in math and language education in Chile with respect

to the 2006 tests, Chile is still far below the average of the Organization for Economic

Co-Operation and Development (OECD) countries. From the 2009-2010 World Economic

Forum report:

The main area requiring improvement for Chile going forward remains the un-

satisfactory quality of its educational system, notwithstanding increasing in-

vestment in education and rising educational attainment rates. Despite a slight

improvement in both cases, primary and higher education continue to be as-

sessed fairly poorly at 96th and 45th ranks, respectively, pointing to the need

for further upgrading if Chile is to catch up with best practice countries and

establish an innovation-conducive environment.

According to the Chilean Ministry of Education,33 there is a dramatic gap in quality of

education between public and private schools (K-12) in Chile. This situation has produced

large inequality and critical social unrest in Chile for the past few years. With very few

exceptions, the best results on the national Chilean tests (in English, The System for Mea-

suring the Quality of Education; Spanish acronym SIMCE) are achieved exclusively in the

private schools, even though they represent just 8% of the K-12 educational system. Many

of the public school math teachers have little or no formal training in math. This MCT

33Information pulled from the Ministry’s website at http://www.mineduc.cl/
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implementation was done exclusively in public schools.

The situation is much the same in Mexico. Although their rank of 65th out of 133 in

health and primary education in the same World Economic Forum report outstrips Chile,

there is still much progress to be made, especially in math and science in the public schools.

From the report:

Last but not least, the higher education and training system (74th) does not

seem to provide the economy with the necessary pool of skilled labor, notably

scientists and engineers (94th), and is not creating an environment conducive to

adopting new technologies (71st in the technological readiness pillar) and gen-

erating new ones (78th in the innovation pillar). Further action is needed to

liberalize markets, upgrade the educational system, and improve public gover-

nance in the country.

2 Data

2.1 Test Scores and Demographics

The first international implementation for the adapted Bridge to Algebra MCT occurred

in public schools of one selected district each in Santiago, Chile, and Mexico City, Mexico,

in 2011. Within the selected Chilean district, all 24 schools were invited to participate.

Of those, 15 expressed initial interest in participating in the study and, after further con-

sultation about the necessary training and pedagogical changes that would be required of

teachers from schools that ended up in the treatment group, 12 remained in our study

sample. The final design randomized six schools into treatment and six into control.34 In

34There was also an all-boys school in the Santiago district which is significantly better than the rest

of the district schools in terms of socioeconomic statuses and achievement levels of students. That school

participated in the study in a different way. Due to concerns that they did not have enough computers to

allow appropriate access for all students, the school split its student population into treatment and control

groups. Because it was so different from the other district schools, it is left out of the analysis that follows.
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total, there are 310 Chilean students in six treatment schools and 358 in six control schools

that are used in the results for this paper. All of the students are in 7th grade. About half

the schools had a single classroom for all students, and all schools with multiple classrooms

had only one teacher responsible for covering them all.

In Mexico, the randomization took place at the classrooml level in four public schools

of a district near Mexico City. Each school had the same teacher teaching four different

sections of math classes. Within each school, one of the four sections was randomly assigned

to use the MCT while the other three served as control groups. The choice of one treatment

and three control classes per school stemmed from computer access limitations. In total,

there are 156 Mexican students in treatment classrooms and 478 in control classrooms.

Again, the students were 7th graders.

The student achievement outcome measure used in this study comes from two compre-

hensive, grade-level pre-algebra exams given to all students. In both countries, the exams

used were outside copies of the national standardized exams from Chile (SIMCE, as refer-

enced earlier). One exam was given in May, near the beginning of the school year and before

the MCT implementation. The other was given six months later. Both exams consisted of

44 multiple choice questions. The tests were reviewed and approved by both the Chilean

education authorities and the MCT developers prior to their use in the study. The devel-

opers agreed that the material in the exams was both grade-level appropriate and covered

by the software. The math material focuses on pre-algebra concepts, as does the software

used by the treated students.

Unfortunately, there is little student characteristic data from both countries. The only

demographic variable is gender, and student pretest scores are the only measure of prior

achievement. Gender is binary, and we assign males = 1 and females = 0. Tables 2

and 3 show the average and (standard deviation) of the pretest score and percent male by

classroom in both Chile and Mexico. Classroom 4 in school 4 in Mexico consisted exclusively

of female students. Table 4 aggregates the same data by type within each country, and

The thrust of the empirical findings does not change when the school is included. If anything, the treatment

effect is shown to be stronger when the high quality school is included.
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displays it similarly.

Achievement gaps are an important consideration for many policymakers and school

administrators. We already briefly discussed the differences in Chile and Mexico between

public and private schools. New programs and curricula that prove useful only to select

students, especially those at the top of the achievement scale, are not as likely to experience

widespread adoption because of concerns over widening the achievement gap and leaving

slower students behind. In order to investigate the differential treatment effects of the

MCT curriculum across the ability distribution, students were separated, by school, into

three separate tertiles35 depending on their pretest scores: high, middle, or low. Next, the

students in each tertile were aggregated across schools. We set up the tertile designations

separately by school because there are clear differences in initial achievement levels across

schools. We are interested in separating out the differential treatment effects on more versus

less skilled students. By design, this must consider the tertiles within the same school or else

school differences in pretest scores would also be picked up at the stage of tertile assignment;

schools with a high average pretest score would have more representation in the high tertile

sample, for example. Due to the discrete nature of the exam scores and the fact that border

scores were assigned to the lower tertile, the total observations did not end up equal across

the tertiles. In Chile (Mexico), the lowest tertile has 254 (236) total observations across

treatment and control students, the middle tertile has 220 (202), and the high tertile has

just 194 (196) observations.

2.2 MCT Software

The MCT software also logs each student’s usage of and progress through the software-

based part of the curriculum. The data logs store information regarding the total software

usage time, average hints and errors per problem, as well as the total units, sections, skills,

and problems encountered. The software also stores the percentage of the skills and sections

35Other splits were examined. The results are largely the same for quartiles and quintiles. The tertile

divisions were ultimately chosen to present here because they adequately capture the different ability levels

while maintaining sufficient sample sizes across each school-tertile designation.
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Table 2: Student Observations in Chile

School Num Type Classroom Num Obs Pretest Gender

1 Treatment 1 30 18.8 (3.5) 0.37 (0.49)

2 31 21.3 (4.9) 0.55 (0.51)

3 32 18.7 (4.3) 0.59 (0.50)

2 Treatment 1 25 21.8 (5.0) 0.64 (0.49)

2 19 17.5 (4.93) 0.42 (0.51)

3 Treatment 1 21 19.3 (5.5) 0.67 (0.48)

4 Treatment 1 34 22.8 (6.3) 0.50 (0.51)

2 31 24.0 (6.3) 0.52 (0.51)

5 Treatment 1 21 15.6 (3.9) 0.29 (0.46)

2 21 17.6 (3.9) 0.81 (0.40)

3 21 16.6 (4.6) 0.52 (0.51)

6 Treatment 1 24 21.3 (4.6) 0.63 (0.49)

7 Control 1 28 17.2 (4.3) 0.46 (0.51)

2 29 18.0 (4.2) 0.52 (0.51)

3 23 17.1 (5.1) 0.30 (0.47)

8 Control 1 25 20.9 (5.6) 0.64 (0.49)

2 23 17.7 (4.3) 0.48 (0.51)

3 25 19.0 (6.3) 0.72 (0.46)

9 Control 1 32 24.3 (5.5) 0.53 (0.51)

2 31 24.6 (5.7) 0.45 (0.51)

3 29 23.3 (5.8) 0.59 (0.50)

10 Control 1 18 18.0 (5.5) 0.61 (0.50)

2 21 20.8 (6.2) 0.67 (0.48)

11 Control 1 23 15.5 (5.2) 0.57 (0.51)

2 24 18.4 (3.5) 0.42 (0.50)

12 Control 1 27 18.6 (4.3) 0.37 (0.49)
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Table 3: Student Observations in Mexico

School Num Type Classroom Num Obs Pretest Gender

Treatment 1 40 23.3 (5.9) 0.45 (0.50)

1 Control 2 41 21.3 (6.0) 0.59 (0.49)

Control 3 37 21.7 (5.6) 0.65 (0.48)

Control 4 38 20.8 (5.8) 0.68 (0.47)

Treatment 1 41 25.0 (6.0) 0.41 (0.50)

2 Control 2 44 25.3 (5.4) 0.36 (0.49)

Control 3 39 26.4 (6.9) 0.46 (0.51)

Control 4 40 24.4 (6.1) 0.35 (0.48)

Treatment 1 36 23.6 (5.1) 0.50 (0.51)

3 Control 2 41 22.0 (5.2) 0.42 (0.50)

Control 3 39 24.9 (6.0) 0.46 (0.51)

Control 4 39 21.5 (5.1) 0.46 (0.51)

Treatment 1 39 18.1 (6.9) 0.74 (0.44)

4 Control 2 44 20.5 (6.0) 0.82 (0.39)

Control 3 37 20.7 (6.4) 0.78 (0.42)

Control 4 39 17.8 (5.6) 0 (N/A)

Table 4: Characteristics by Type - Aggregated

Country Treatment Control

Chile Observations 310 358

Pretest 19.9 (5.5) 19.8 (5.8)

Gender 0.54 (0.50) 0.52 (0.50)

Mexico Observations 156 478

Pretest 22.5 (6.5) 22.3 (6.3)

Gender 0.53 (0.50) 0.50 (0.50)
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seen by the student that were mastered. Obviously this data only exists for the treated

students since the control group did not use the software. Table 5 shows the average and

(standard deviation) of the units completed, total usage hours, skills mastered, and sections

mastered for each treatment classroom.

Table 5: MCT Process Data

Country School, Class Usage Hrs Units Sections Mas Skills Mas

1, 1 17.8 (2.8) 11.1 (2.9) 31.4 (12.0) 360.5 (141.1)

Chile 1, 2 17.9 (3.6) 12.5 (2.1) 36.8 (10.1) 428.8 (104.3)

1, 3 17.8 (3.0) 9.2 (2.8) 25.0 (10.9) 275.4 (126.3)

2, 1 8.5 (2.4) 5.9 (3.5) 18.8 (11.6) 174.5 (130.0)

2, 2 9.4 (2.8) 5.3 (3.6) 16.8 (11.2) 154.1 (125.6)

3, 1 10.3 (1.8) 8.5 (3.5) 26.1 (13.4) 259.2 (153.0)

4, 1 8.7 (2.4) 6.6 (2.8) 22.1 (10.8) 196.0 (114.4)

4, 2 8.7 (2.6) 6.8 (3.9) 22.8 (13.7) 207.3 (152.7)

5, 1 13.2 (3.5) 7.2 (2.9) 17.5 (7.5) 195.5 (99.8)

5, 2 11.5 (2.2) 6.6 (2.8) 19.6 (9.3) 189.2 (106.9)

5, 3 7.9 (2.2) 4.9 (2.9) 15.0 (10.0) 133.8 (102.2)

6, 1 18.6 (2.8) 11.1 (2.9) 31.3 (12.5) 357.6 (143.5)

All students 12.8 (5.0) 8.2 (3.9) 24.3 (12.8) 252.3 (154.2)

1, 1 7.8 (1.3) 9.0 (2.4) 27.5 (10.1) 249.5 (115.0)

Mexico 2, 1 5.8 (1.9) 6.3 (2.3) 18.2 (7.5) 136.1 (70.1)

3, 1 14.3 (3.4) 11.3 (1.6) 34.0 (8.4 ) 351.8 (103.5)

4, 1 1.3 (0.77) 2.4 (1.0) 6.2 (3.8) 37.6 (24.5)

All students 7.2 (5.0) 7.1 (3.8) 21.2 (12.9) 190.3 (144.1)

Whether measured by units completed or total hours, the students in Chilean schools 1

and 6 and Mexican school 4 spent the most time, on average, using the software. There are

obviously differences across the classrooms and schools in the amount of time their students
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spent using the software. The MCT curriculum calls for 40% of class time to be devoted

to the software. In practice, this would constitute two days of a typical school week, which

over a six month time period would mean roughly 25 hours spent in the computer lab in

lieu of traditional math lectures. Note that this standard for total MCT software usage

hours by students was not met, on average, by any classroom in any school. Students were

also encouraged to use the software during their free time and even after-school when the

lab was available. Conversations with the school administrators, which will be more fully

explained and evaluated later, confirmed that the twice per week standard for computer

use was rarely met. Students often only visited the lab once each week during class time,

and very few of them accessed the software in their own time. Some of the schools did not

have enough computers for every student, further hindering their personalized time with

the software when they were forced to share the machines. Units, sections mastered, and

skills mastered are highly correlated measures36 across students (less so for usage hours).

2.3 Schools

The differences between schools are another component of the analysis in this paper. Our

research team determined values for the treatment schools in four specific areas of interest

(basic inputs, infrastructure, implementation, and learning environment) in an attempt to

quantify the differences between them. It is valuable to examine how these school-level

variables might affect student software usage. The basic inputs variable is an attempt to

quantify all of the following: quality of students and teachers, budget issues, socio-economic

status of students, absenteeism rates, and discipline rates in the schools. The infrastructure

measure was probably the most important one in this context, and likewise the one where

with the lowest average score. Infrastructure captures internet connection quality, presence

of tech support, and the computer to student ratio. Each treatment school was expected

to have at least one computer per student in the computer labs, but that was in fact

not the case in some of the schools. Schools which did not provide enough computers

were obviously at a severe disadvantage concerning student access to the software part

36Smallest pairwise correlation between any combination is 0.93.
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of the MCT curriculum. Students were forced to rotate and take turns in the computer

lab, restricting the hours of access and amount of material covered in the math program.

Connectivity to the internet was also necessary to run the software. Implementation is a

measure of teacher and principal enthusiasm, motivation, and commitment toward the new

curriculum. Training for instructors is a necessary part of the MCT implementation, and

training session attendance and participation by teachers was incorporated into the rating.

Finally, learning environment is a measure of the frequency of MCT use, peer cooperation

among students in both the classroom and lab, and student motivation and behavior in the

lab.

Each rating was made by three different, affiliated members of the research team based

on conversations, notes, and feedback from the Chilean project manager and the teacherss

and principals in the schools. Raters were blind to the school itself in the write-ups. Each

of the four criteria was evaluated on a 1-5 scale, with 5 being the best rating. There was a

high convergence among raters.37 Table 6 shows the ratings given to each school for each

variable. It also includes a total rating which is simply the sum of the four component

pieces. School 2 in Chile and school 4 in Mexico rate particularly poorly on these measures.

School 3 in Mexico is the only school with a “perfect” rating.

2.4 Surveys

We administered surveys for nearly all students in the treatment schools.38 The students

were asked questions on a range of topics related to mathematics, computers, and the MCT

software. Their survey responses were anonymous and could only be linked to students

at the school level. The surveys requested that students indicate their perceptions in the

37All three researchers rated all ten treatment schools (six in Chile, four in Mexico) on the four character-

istics using the 5-point scale. On 31 of the 40 school-characteristic ratings, all three researchers assigned the

exact same score. The remaining 9 school-characteristic ratings which showed differences amongst the raters

never differed by more than one point by any pairwise set of raters and were resolved through discussion

and consensus in order to assign one value for them. Fleiss’ κ of 0.79 reveals substantial agreement among

raters.
38Mexican school 4 has no available survey data.

52



Table 6: School Characteristics

Country School Basic Infra Imple Learn Total

Inputs Env’t

1 3 3 5 4 15

Chile 2 2 1 3 2 8

3 3 4 4 3 14

4 5 3 5 4 17

5 3 3 5 5 16

6 5 4 5 5 19

1 5 5 4 5 19

Mexico 2 4 1 5 5 15

3 5 5 5 5 20

4 1 1 3 3 8

following areas: (1) Ease of use and clarity of the MCT software, (2) Teacher help with the

MCT, (3) Computer lab infrastructure, and (4) Effectiveness of the MCT. The anonymous

aspect of the surveys reduces concerns about biased reporting by students. The surveys

are complementary to the school characteristics discussed in the previous section. The

school variables are derived measures from conversations with the researchers and principals

involved in the project at the school level, plus overall input and perspective from the

Chilean project manager. It is a top down view of the differing school characteristics. In

contrast, the survey responses can be thought of as a bottom up view of the schools. They

are the beliefs, feelings, and perceptions of the students themselves. The students likely

have no idea how their particular school or classroom matches up against other schools

in the survey topics, but their input is quite relevant since the curriculum change applies

directly to them.

The survey questions associated with each topic area are shown below. All questions use

a scale ranging from “very low” to “very high,” with the responses agreeing with the survey
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question statement (i.e. for the first component of Ease of Use, the “very low” answer said

“very unsatisfied”).

Surveys were also administered to the teachers in the six Chilean schools which adopted

the MCT. The survey questions and responses from teachers are shown in the Appendix.

1. Ease of Use and Clarity of MCT Software

• Indicate how satisfied you are with the ease of use of the Cognitive Tutor.

• Indicate how satisfied you are with the clarity of the instructions that the Cog-

nitive Tutor offers.

2. Teacher Help with the MCT

• Indicate how satisfied you are with the help the teacher gave you to use the

Cognitive Tutor.

• Indicate to what extent your teacher helped you use the Cognitive Tutor in the

lab.

• Indicate to what extent your teacher handled the Cognitive Tutor adequately in

the math classes (i.e. he knew the contents, steps, hints, etc)

3. Infrastructure

• Indicate your level of agreement with the following statement about computers:

The computers worked adequately in the lab.

• Indicate your level of agreement with the following statement about computers:

The internet connection worked in the lab.

4. Effectiveness of the MCT

• Indicate to what extent your math learning improved with the Cognitive Tutor.

• Indicate your level of agreement with the following statement about the Cognitive

Tutor: The Cognitive Tutor is a useful resource to learn math.

54



• Indicate your level of agreement with the following statement about the Cognitive

Tutor: I would like to keep using the Cognitive Tutor in the math classes.

• Indicate your degree of comfort with this new way of learning math.

3 Research Questions

The main objective of this study is to estimate the causal impact of the Bridge to Algebra

Cognitive Tutor curriculum on Chilean and Mexican students’ pre-algebra achievement.

The design includes treatment and control groups with before and after measures of math

ability. We also investigate the process variables of the MCT itself to determine whether

the amount of use is reflected in the achievement measure. Because the MCT curriculum

requires significant changes in the classroom structure, school technological infrastructure,

and student and teacher behavior, the study incorporates measures of school characteristics

that include computer access, student background, discipline issues, teacher fidelity to train-

ing, and classroom fidelity to suggested usage of the MCT. Last, students are surveyed in

the schools using the MCT to better understand its perceived ease of use and effectiveness.

Using this framework as a guide, we address the following questions:

1. Does the MCT significantly affect math performance compared with students in a

controlled condition?

2. Do the MCT process indicators at the student level affect changes in math perfor-

mance?

3. Do school characteristics affect the process indicators in the MCT?

4. What are the student attitudes about the MCT experience?
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4 Research Model

4.1 Initial Balance Check

It is necessary to check whether the randomization process that determined which schools

would implement the MCT curriculum and which would not created balanced treatment

and control groups before evaluating results. If the groups are not equal on observable

characteristics and pretest scores, it would not only call into the randomization processes

employed but also the relevance of the results. Since the randomization was done differently

in each country, we evaluate each country separately. The only observable characteristic we

have is gender. Balance checks are run on both the proportion of male students and the

average pretest score by treatment assignment using two-sided t-tests of equivalence with

unequal variance. The comparisons are also done separately by tertile.

4.2 Treatment Effects

We follow the hierarchical linear modeling (HLM) approach advanced by Raudenbush &

Bryk (2002) and used in a similar design in Pane, et al (2010) to estimate the causal impact

of the Bridge to Algebra MCT on student math performance. We have students nested

within classrooms within schools. The treatment group is represented by the students who

used the MCT, and the control group by the students who did not. The estimation and

results for the two countries are kept separate because the unit of randomization was differ-

ent in the two settings. In Chile, entire schools were randomized into treatment and control

groups; in Mexico, randomization occurred within each school such that one classroom was

chosen for treatment and the rest were kept as controls.

Let Yijk be the posttest score for student i in classroom j in school k. Similarly, let yijk

represent the pretest score and Xijk student covariates.39 At the student level (level 1), I

model the posttest score as a function of the pretest score, covariates, classroom level (level

39Commonly, these could include race, gender, free/reduced lunch status, etc. In this study, all I have

access to is information on gender.
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2) variables (µjk for now), and an error term εijk ∼ N(0, τ21 ).

Yijk = µjk + β1yijk + β2Xijk + εijk (2)

The classroom level equation incorporates the treatment assignment. The model will

follow the experimental design from Mexico. Let type be denoted as Tjk. The treatment

classes have T = 1 and the control classes have T = 0. Let yjk represent the class average

of the pretest score. Though we are agnostic about the nature of the effect of the average

class pretest score on individual student performance on the posttest in this paper, common

arguments for its inclusion revolve around peer effects in the classroom. For ηjk ∼ N(0, τ22 ),

µjk is modeled as:

µjk = γ0 + γ1Tjk + γ2yjk + ηjk (3)

Combining Equations (2) and (3) yields:

Yijk = γ0 + γ1Tjk + γ2yjk + β1yijk + β2Xijk + εijk + ηjk (4)

Looking at Equation (4), the paramater of interest is γ1. The estimate of γ1 is the

treatment effect, in terms of standardized test scores, for the 7th grade students using the

MCT.

In Chile, the randomization occurred at the school level. A similar line of reasoning as

shown above helps derive the following empirical model for Chile, where all that changes in

the equation itself is the elimination of the j subscripts on y, T , and η. This obviously also

changes the estimation slightly.

Yijk = γ0 + γ1Tk + γ2yk + β1yijk + β2Xijk + εijk + ηk (5)
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Equations (4) and (5) are estimated across the entire sample within each country, and

then separately according to each tertile. We used the xtmixed command in Stata to

estimate the models. Specifications are run both including and not including the classroom

pretest average (yjk).

4.3 MCT Process Data

The HLM models proposed in the last section are also used, with slight modification, to

address the second research question. Here we investigate whether or not accomplishing

more of the software itself is predictive of better math test performance. The MCT process

variables can be considered “mediator variables” in the model of Baron & Kenny (1986).

The control students do not use the MCT software at all, so they are not included in this

analysis. Rather, looking at just the treated students, we explore the relationship between

software usage (in terms of units completed, total usage hours, sections mastered, and skills

mastered) and performance (as measured by posttest scores) by controlling for pretest

score, gender, and school/classroom. The approach is to estimate Equation (6) below for

Mexico, which is very similar to Equation (4) shown previously.40 The switch to λ from γ is

purely for notational convenience to further distinguish the equations. Here, the type Tijk

is dropped and MCTijk represents the specific MCT data considered. Separate regressions

are run for each of the four MCT process variables. The country’s are evaluated separately.

The paramater of interest is λ1. The estimate of λ1 is the amount by which we expect a

student’s posttest score to increase when he increases the value of the MCT variable under

consideration by one.

Yijk = λ0 + λ1MCTijk + β1yijk + β2Xijk + εijk + ηjk (6)

40The change to the estimation in Chile is obvious, and mirrors the change between Equations (4) and

(5).
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4.4 School Characteristics

We are interested in explaining the relationship between the school characteristics, MCT

process variables, and posttest scores. However, we only have ten schools containing stu-

dents using the MCT. Regression techniques with such a small sample size are not useful.

To investigate the relationship between the school characteristics and other data, our ap-

proach is quite simplistic. We average the MCT variables and posttest scores for each

school, and then check the pairwise correlations between them and each of the four school

characteristics (basic inputs, infrastructure, implementation, and learning environment).

Carnegie Learning stresses that school administrators and teachers must be on board with

this curriculum change for the MCT to be effective. In addition, there must be sufficient

computer access available for students. As discussed earlier, our conversations with the

on-location research team and individual school officials revealed varying degrees of proper

implementation across schools. We want to know whether implementation and infrastruc-

ture differences possibly help explain the large differences we see across students and across

schools in terms of completion and mastery of the Bridge to Algebra MCT and test scores.

4.5 Surveys

The survey responses are aggregated across classrooms within each school. We set up a

combination of questions that closely matches specific areas of interest in the evaluation of

the MCT, as explained earlier. Since each interest area (ease of use of tutor, teacher help

with tutor, infrastructure, and effectiveness) is composed of multiple responses, the results

we report indicate the percentage of people across all questions in an area who answer “very

high” or “high.” These survey responses are helpful since they capture student perceptions

of school infrastructure and, more importantly, the benefits of the MCT software. Surveys

were not conducted in the control schools since the questions are focused on the subject of

the MCT itself, so there is unfortunately not a comparison group for the results on student

attitudes.
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5 Results

5.1 Balanced Sample

The results on the balance check are shown in Table 7. The table displays the t-statistic

resulting from the two-sided test, with the 95% confidence interval shown in parentheses

below it. A negative t-statistic denotes that treatment students, on average, had a higher

pretest score or percentage male. Only one of the t-statistics are significantly different from

zero. There is a higher percentage of male students in treatment than in control for low

tertile group in Mexico. Overall, on both pretest scores and percentage male, the treatment

students match the control students. The randomization design effectively split our sample

into reliable experimental groups. The treated and control groups only differ by treatment

assignment.

5.2 Treatment Effects

The first outcome measure we address is whether or not the MCT is an effectice curriculum

for increasing student test scores. Tables 8 and 9 shows the average pre- and posttest scores,

plus the difference scores, by school and type in both countries. The difference score is the

posttest score minus the pretest score. If a difference score is positive, a student scored

better on the posttest than he did on the pretest. As shown by comparing both tables, the

average treatment students have greater (positive) difference scores than the average control

students. In Chile, every individual treatment school had a positive average difference score

but one and every control school had a negative average difference score. These tables

support the descriptions of Chilean public primary schools in the World Economic Forum’s

report - namely, that students are lagging behind and underperforming in math. The

average student not using the Cognitive Tutor actually scores lower on a similar test after

6 months of pre-algebra instruction. In Mexico, where the randomization was done within
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Table 7: Balance Check

Country Students Pretest Percent Male

All -0.38 -0.49

(-1.02, 0.69) (-0.10, 0.06)

Chile High Tertile 0.10 1.38

(-1.22, 1.35) (-0.04, 0.25)

Middle Tertile 0.23 -1.91

(-0.68, 0.86) (-0.25, 0.00)

Low Tertile -1.00 -0.04

(-1.05, 0.34) (-0.13, 0.12)

All -0.36 -0.51

(-1.39, 0.96) (-0.11, 0.07)

Mexico High Tertile -0.94 1.01

(-1.72, 0.61) (-0.08, 0.25)

Middle Tertile -0.99 1.70

(-1.26, 0.42) (-0.02, 0.29)

Low Tertile 0.01 -3.61

(-1.13, 1.14) (-0.40, -0.12)

t-statistic shown above

95% confidence interval in parentheses below
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each school by classroom, the average difference-in-difference score41 by school was positive

for every school.

Table 8: Test Scores for Treatment Students

Country School Pretest Posttest Difference Score

1 19.57 (4.40) 19.58 (5.84) 0.01 (5.09)

Chile 2 19.91 (5.37) 21.14 (6.19) 1.23 (5.45)

3 19.33 (5.46) 22.62 (7.24) 3.29 (5.52)

4 23.37 (6.29) 24.22 (7.62) 0.85 (5.27)

5 16.60 (4.16) 16.97 (4.50) 0.37 (4.54)

6 21.33 (4.56) 21.08 (4.22) -0.25 (5.08)

All students 19.93 (5.47) 20.56 (6.51) 0.63 (5.13)

1 23.28 (5.93) 28.33 (7.04) 5.05 (4.38)

Mexico 2 25.05 (5.97) 27.95 (6.57) 2.90 (4.89)

3 23.64 (5.13) 22.56 (6.39) -1.08 (4.76)

4 18.08 (6.88) 19.10 (7.56) 1.03 (4.36)

All students 22.53 (6.53) 24.60 (7.87) 2.06 (5.08)

Average (standard deviation)

In order to quantify this difference in performance, we turn to the results of the esti-

mations of Equations (4) and (5), shown in Table 10. Both pre- and posttest scores are

transformed into z-scores (separately by country and by pre- and posttest) with mean 0

and standard deviation 1 to make the empirical results more easily interpretable. The co-

efficient value on Type represents the increase in standard deviations of the posttest score

that treated students are predicted to gain over control students. In both Chile and Mexico,

there a positive and statistically significant treatment effect. Using the top line specification

in both countries, where all students are included in the estimation, students who use the

41In other words, the average difference score of the treated students less the average difference score of

the control students.
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Table 9: Test Scores for Control Students

Country School Pretest Posttest Difference Score

7 17.46 (4.45) 17.28 (4.07) -0.19 (4.94)

Chile 8 19.23 (5.57) 18.45 (6.63) -0.78 (5.46)

9 24.08 (5.63) 23.71 (7.11) -0.37 (5.11)

10 19.51 (6.00) 17.87 (6.36) -1.64 (6.66)

11 17.00 (4.60) 15.89 (4.13) -1.11 (4.90)

12 18.56 (4.30) 18.11 (5.57) -0.44 (5.59)

All students 19.77 (5.81) 19.11 (6.49) -0.65 (5.32)

1 21.28 (5.75) 23.69 (7.44) 2.41 (6.07)

Mexico 2 25.37 (6.15) 27.26 (6.74) 1.89 (4.14)

3 22.82 (5.59) 22.15 (6.16) -0.66 (4.46)

4 19.68 (6.10) 18.48 (6.74) -1.20 (5.46)

All students 22.31 (6.26) 22.92 (7.47) 0.60 (5.30)

Average above, standard deviation in parentheses below.
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MCT score nearly 1
5 of a standard deviation of the posttest score higher on the posttest than

their control group peers. This translates to nearly 1.2 extra problems on the 44 question

exam at the end of the school year that treatment students answer correctly, even though

both groups began the year with equivalent scores on the pretest.

Table 10: Treatment Effects

Country Students Class Pretest Student Pretest Gender Type

All 0.58 (0.03) *** 0.06 (0.05) 0.18 (0.09) **

Chile All 0.29 (0.11) *** 0.56 (0.03) *** 0.06 (0.05) 0.17 (0.08) **

High Tertile 0.88 (0.09) *** 0.05 (0.10) 0.26 (0.17)

High Tertile 0.35 (0.22) 0.82 (0.11) *** 0.03 (0.10) 0.23 (0.13) *

Middle Tertile 0.66 (0.10) *** 0.09 (0.07) 0.17 (0.10)

Middle Tertile 0.24 (0.23) 0.49 (0.18) *** 0.09 (0.07) 0.17 (0.10) *

Low Tertile 0.55 (0.09) *** 0.09 (0.07) 0.14 (0.10)

Low Tertile 0.20 (0.15) 0.47 (0.11) *** 0.08 (0.07) 0.14 (0.10)

All 0.67 (0.03) *** -0.02 (0.05) 0.19 (0.09) **

Mexico All 0.25 (0.16) 0.67 (0.03) *** -0.03 (0.05) 0.18 (0.10) *

High Tertile 0.72 (0.09) *** 0.10 (0.09) 0.19 (0.14)

High Tertile 0.32 (0.27) 0.67 (0.10) *** 0.10 (0.09) 0.18 (0.14)

Middle Tertile 0.84 (0.13) *** -0.15 (0.09) * 0.34 (0.18) *

Middle Tertile -0.01 (0.31) 0.84 (0.17) *** -0.15 (0.09) 0.34 (0.18) *

Low Tertile 0.48 (0.10) *** -0.06 (0.09) 0.09 (0.15)

Low Tertile 0.62 (0.23) *** 0.40 (0.10) *** -0.07 (0.09) 0.08 (0.13)

Estimated std errors are reported in parentheses.

Significance denoted as ***1%, **5%, *10%

Note that the coefficient estimates on StudentPretest are all positive and less than one.

This makes sense in our context. Scores between the pretest and posttest should be highly
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correlated (smarter students score high on both, weaker students score low on both), and

the coefficient being less than one represents regression to the mean on the posttest. An

additional answer correct on the pretest would be expected to raise a student’s posttest

score, but by less than a full correct answer since the extra correct answer on the pretest

could be a random guess unrelated to the underlying student ability that the tests are meant

to ascertain.

The results by tertile in Table 10 are also illuminating. The number of observations

decreases to the point of making the treatment effect in most specifiations statistically

insignificant.42 However, the point estimate on Type is positive for every specification. The

personized nature of the MCT allows students of all ability levels to improve their math

test scores.

5.3 MCT Process Data and Test Scores

As Pane et al. (2010) explain in their paper, it is difficult to disentangle the unobserved

effects of individual ability or motivation from the instructional effect of the software through

a specification like Equation (6), and hence a significant λ1 simply helps confirm that

the skills required for progression through the software are strongly related to the skills

measured by the standardized tests. We generally agree with this sentiment but would

stress that a positive finding here lends credence to the argument that the software itself

is integral to the new curriculum. At first it would seem obvious that mastering more

of the software part of the curriculum would be essential for achieving higher test scores.

Unfortunately, upon reflection this relationship is not actually that obvious. Being in the

treatment group meant an entire change in math teaching and learning for that school year.

The incorporation of computer technology in the math courses is just one aspect of the

overall shift in teaching strategy seen in the treatment classrooms, albeit the most obvious

one. Students completed more group projects and teachers were encouraged and trained

42We reach the 10% level of significance in Chile for the high and middle tertiles (with classroom pretest

included) and in Mexico for the middle tertile (both specifications).
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to act more as facilitators and coaches than as lecturers in the classroom. The software

aspect of the curriculum shift, where students are sent to the computer lab for two out of

the five class days each week, is the only part of the MCT treatment program for which we

have data. But it is quite conceivable that other aspects of the pedagogical shift caused the

treatment effect finding above, and the process of the software is not particularly integral for

the treatment students’ math achievement. In addition, the exams are constructed by the

Chilean education ministry, not the developers of the MCT software. If, for example, the

math software heavily frontloads much of the tested material but then covers non-essential

topics throughout the remaining units, then students who accomplish more of the software

program would likely not see higher exam scores than their peers who got through only the

early units. Demonstrating that MCT mastery is aligned with standardized test mastery is

a relevant finding for the efficacy of the software on its own.

The z-scores are again used for the test data in these estimations. Table 11 shows

the results of Equation (6) and its equivalent specification for Chile for each separate MCT

variable. For convenience, only λ1 is shown in the table, though the rest of the estimates can

be obtained from the authors. Each column of Table 11 comes from a different estimation,

where only the listed MCT variable (units, total hours, sections mastered, skills mastered)

is included as MCT in Equation (6). Since we do not include control students in these

regressions, we do not separate students by tertile due to concerns over sample size. The

results for both countries are basically the same. The total hours of usage is not significant

in predicting posttest scores in Mexico (and marginally significant in the negative direction

in Chile), but the coefficient estimates on number of units completed, skills mastered,

and sections mastered are all positive and significant. This aligns with the contention by

Carnegie Learning that the “mastered” variables are predictive of performance. Mastered

sections and skills encompass both student effort and student ability, while units completed

is reflective of effort put forth on the software portion of the curriculum.

The coefficients on sections and skills mastered in the regressions relate the marginal

effect on posttest scores of increasing sections or skills mastered by one unit while controlling

for school. In terms of magnitude for the software effects, consider the following. Across the
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Table 11: MCT and Test Scores

Country MCT Data

Usage Hrs Units Skills Mas Sections Mas

Chile -0.016 (0.009) * 0.064 (0.012) *** 0.002 (0.0003) *** 0.022 (0.003) ***

Mexico -0.027 (0.020) 0.080 (0.029) *** 0.002 (0.0006) *** 0.031 (0.007) ***

Estimated std errors are reported in parentheses.

Significance denoted as ***1%, **5%, *10%

310 students in Chile, the sections mastered (skills mastered, units) variable has an average

of 24.3 (252.3, 8.2) and standard deviation of 12.8 (154.2, 3.9). The regression results

show that an increase in usage of the MCT software by one standard deviation of sections

mastered (skills mastered, units) improves posttest scores by 0.28 (0.31, 0.25) standard

deviations. That is a consequential increase in achievement on the posttest. In Mexico, the

sections mastered (skills mastered, units) variable has an average of 21.2 (190.3, 7.1) and

standard deviation of 12.9 (144.1, 3.8). Our results there show that an increase in usage of

the MCT software by one standard deviation of sections mastered (skills mastered, units)

improves posttest scores by 0.40 (0.28, 0.30) standard deviations. The Bridge to Algebra

MCT curriculum, taken as a whole, is effective at improving math scores for students of

all abilities. Furthermore, the notion that students can expect to do better on the math

exams when they have accomplished more units and mastered more of the sections and

skills taught in the software is supported. The processes of the software piece of the MCT

curriculum are effective at improving math score outcomes.

5.4 School Characteristics and Software Usage

We are interested in explaining the relationship between the school characteristics and the

MCT process variables. Carnegie Learning stresses that school administrators and teachers

must be on board with this curriculum change for the MCT to be effective. In addition,
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there must be sufficient computer access available for all students. There are large differences

across schools in terms of average completion and mastery of the Bridge to Algebra MCT.

Table 12 shows the correlations between each of the four school characteristics (basic

inputs, infrastructure, implementation, and learning environment) and the average value

for the MCT data (usage hours, units completed, sections mastered, and skills mastered)

by school. It is clear from the table that infrastructure and implementation school ratings

are highly correlated with student MCT usage. Though this result is based on just ten

observations and is therefore not the strongest in this paper, we believe it has practical

importance for policy considerations. Every school was expected to have one computer per

student and reliable connectivity to the internet, but in reality this was not seen. Those

schools which experienced this ideal infrastructure possessed an environment which allowed

their students to excel, while those who adopted the MCT curriculum but did not have the

ability to properly use it saw their students lag behind. Committed teachers, principals,

and administrators (implementation) are central to realizing the effectiveness of the MCT.

This is evidenced most strongly by teacher fidelity to pre-rollout training. Students will also

master more skills using the MCT when the frequency of lab use and the conditions in the

lab (learning environment) are high. School and governments considering the adoption of

the MCT curriculum need to fully commit the time, energy, and resources to the endeavor.

Simply sending students to an inadequate computer lab to use the software every now and

then will be decidedly less effective than consistently utilizing proper facilities. The schools

which most closely followed the recommended implementation activities saw their students

complete and master more of the MCT software curriculum. In that light, the results

presented in this section speak to the possibility that the treatment effects shown earlier

are lower bounds of the true treatment effect. If all schools were able to properly take

advantage of the MCT curriculum, we have reason to believe that the treatment students

as a whole would have experienced even greater posttest scores.
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Table 12: Correlations of School Characteristics and Software Usage

Basic Inputs Infrastructure Implementation Learning Env’t

Usage Hrs 0.22 0.55 0.60 0.33

Units 0.54 0.78 0.61 0.49

Skills Mas 0.45 0.76 0.57 0.39

Sections Mas 0.61 0.80 0.58 0.44

5.5 Student Attitudes about MCT

Table 13 presents student responses on the four dimensions measured by multiple questions

per dimension. To simplify presentation, we indicate the percentage of people across ques-

tions in a dimension who feel very positive or positive. For example, 83% of the students

in Chilean school 1 asked questions about the “Ease of Use of Tutor” said they were very

satisfied or satisfied on both questions within this dimension.

Our fourth and final research question addressed student attitudes toward the MCT.

In general, students report high levels of satisfaction with the new curriculum and its

implementation. Most of the students rate the ease of use of the Tutor, teacher help with

the Tutor, and effectiveness of the Tutor highly or very highly. The process of the MCT

itself seems to lead to positive dispositions toward the technology. Infrastructure gets the

lowest ratings, which is not surprising since the schools are primarily in poorer areas. The

lower rating of infrastructure by students when compared to other survey response areas

also matches the lower values we saw for infrastructure when compared to the other school

characteristics.

The attitude results are a complementary outcome to the positive treatment effects.

Students feel the MCT helps them learn mathematics, they enjoy using it, and they find

the teacher to be supportive. As shown in the Appendix, teachers also had a positive

disposition toward the MCT curriculum.
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Table 13: Student Surveys

Country School Ease of Use Teach Help Infrastructure Effectiveness

1 83% 92% 22% 90%

Chile 2 71% 83% 66% 90%

3 87% 86% 82% 88%

4 83% 80% 55% 87%

5 89% 94% 60% 89%

6 90% 95% 84% 93%

1 86% 91% 37% 88%

Mexico 2 48% 34% 48% 52%

3 64% 85% 13% 85%

Percentage answering high/very high in aggregate

6 Conclusions and Discussion

The results of this paper add to the growing body of work that investigates technology-based

math curricula. It is the first to our knowledge that looks at the MCT curriculum in Central

and South American schools. All previous MCT studies have focused on U.S. schools. The

results presented in this paper are largely supportive of the MCT Bridge to Algebra cur-

riculum for Chilean and Mexican middle school students. Schools which expressed interest

in adopting the curriculum were randomly assigned to treatment or control groups.

Though they scored the same on the pretest, treatment students outperformed their

control group peers on the standardized exam posttest in both Chile and Mexico. The

treatment effect of the MCT curriculum is significant and positive. The overall treatment

effect shows that treated students answer an additional 1.2 questions correct on the 44

question final exam than their control group peers.

The finding on treatment effects is not driven by students in just one or two treatment

schools performing well, or conversely those in a few control schools severely dragging
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down the overall control group. In addition, the positive treatment effect exists across

the student ability distribution. Though there was generally insufficient power due to

limited observations, every regression specification that separated students by initial score

into three groups (high scorers, middle, and low) resulted in a positive treatment effect.

The interactive and personalized structure of the software part of the curriculum and the

emphasis on group-based collaborative work on math projects seems to help all students,

regardless of initial math ability.

Within treatment schools, we took advantage of the wealth of data provided by the MCT

software. This paper is among the first to employ this data set from the MCT in evaluating

student outcomes. Even the IES paper for Congress (Campuzano et al., 2009) published for

the U.S. Department of Education’s What Works Clearinghouse, widely considered the most

comprehensive report on the effect of technology use in U.S. classrooms, only incorporated

the actual time logged in (the equivalent to our “usage hours” MCT variable) from the

various softwares. This is especially relevant since the IES report generally showed a lack of

technology usage time mattering for achievement purposes, as measured by outside exams.

We would concur with that finding. But in this paper, accomplishing more of the program

is positively related to higher posttest scores even after controlling for school effects and

pretest scores. Simply spending more time logged in to the software (usage hours) is not

significantly related to posttest scores, but actually completing more of the 14 units or

mastering more of the 57 sections or 552 skills was.

We developed a process for evaluating the degree of efficacy for proper implementation

in schools, and a way to rate four different characteristics of schools that matter in the im-

plementation of the MCT. Those schools which were more prepared to handle the demands

of this new curriculum saw their students accomplish more of it. Though this finding seems

completely intuitive, we believe it is worth particular emphasis. Schools with sufficient com-

puters, reliable internet connections, and committed principals and teachers saw students

accomplish more of the software program. In turn, those students could be expected to

achieve higher scores on the exams. The adoption of the MCT curriculum requires large

investments in time and money. School administrators need to prepare their teaching staff
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and supply enough technological infrastructure to realize the educational benefits of the

investment. With the proper inputs, the processes of the MCT curriculum, including both

the software component and the in-class changes, lead to student improvements in math

abilities and enjoyment of the coursework. The take away message for schools considering

the MCT is best summed up by the admonition that if you are going to do something, do

it right.

There are some alternative explanations to the results in this paper, though we have

tried to mitigate them to the best of our ability. It is possible there is a large selection effect

occurring here, and that these findings are not broadly reflective of the results a random

school would find if they adopted the MCT. In other words, the findings are constrained to

those schools willing to participate. In large part, we do not disagree with that statement.

This is a substantial change from a traditional textbook- and lecture-based curriculum.

School administrators who are unwilling to make the effort to ensure the best possible

learning environment and computer facilities very well may not see a positive treatment

effect. This is supported by the results on school characteristics even when considering

schools who wanted to adopt the new curriculum and ended up doing just that. In addition,

this concern is often encountered in education policy papers. Due to the randomization

within the group of schools willing to participate in treatment, we believe that our results

show high internal validity. The required tradeoff in a clean experimental design often

necessitates concerns over external validity. The inclusion of both random and fixed effects

through HLM (such as in Equation (4)) is the most that can be done in this setting to show

broader applicability.

The amount of missing data was not terribly disconcerting in this study. Mexican school

4 did not return our surveys. Otherwise, we matched enrollment figures to test scores to

MCT data for a very high percentage of students. For example, in Chilean treatment

schools, our original enrollment-based target was 313 students. We ended up with two test

scores (pre and post) and MCT data for 310 of those same students. The overall rate of

missing information is similar to other education studies that actually report on the issue, if

not better. We were able to match almost every treatment student with an initial and final
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test score to his software data. We observed no students transferring from the treatment

condition to the control condition, or vice versa.

The results presented here are robust to other specifications, including just school- or

classroom-random effects models (instead of incorporating HLM, which includes fixed ef-

fects). We also estimated the treatment effect model using difference scores as the dependent

variable and excluding the independent pretest scores on the right hand side. The results

are basically the same, which is not surprising considering that we had initially balanced

samples based on pretest scores.

It is possible that these results are driven largely by teacher effects, rather than any effect

from the curriculum itself. We unfortunately have no information on the teachers other than

their names, so it is impossible to check balance between treatment and control groups on

teacher observables (such as years teaching or highest degree attained) or previous teacher-

student output (such as last year’s student standardized test scores by teacher). However,

we have no reason to believe there are large discrepancies here. In fact, in all the Mexican

schools and some of the Chilean ones, the same teacher taught all the classes within the

same school. If there are some pedagogical learning gains from incorporating the MCT

curriculum, this would result in mitigated treatment effects since the control groups would

receive some benefit, too.

The attitude data provides an additional way to think about the effectiveness of the

MCT. The reported ease of use seems consistent with the actual improvements in math

scores. The positive responses in Table 13 suggest that the students would be open to

future classroom uses of the software. Reporting positive outcomes for both test scores and

attitudes represents a more comprehensive picture of effectiveness.

There were specific research questions posed earlier in this paper. We have shown the

following:

1. The MCT improves math performance for treated students over control students.

2. All process indicators except for usage hours are significantly and positively related
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to math performance indicators. Accomplishing more of the MCT curriculum is pre-

dictive of larger posttest scores for students in treatment.

3. Better school characteristics, especially infrastructure and implementation, lead to

increases in MCT completion and mastery.

4. Students are able to understand and use the MCT on their own and receive help from

the teacher when it is needed. The students also believe that the MCT is an effective

tool for learning math at the pre-algebra level.

Our initial strategy was to see how the MCT impacted learning of mathematics. Our

road map for future research is to examine more closely the effect of the MCT conditional on

school, teacher, and student characteristics and to identify how they contribute to improving

math performance. We would also like to incorporate more details from the software, such

as hint-seeking behavior of the students, in a fashion similar to Equation (6). Finally, we

need to learn how performance in a tutor-based class impacts on math performance in

subsequent years. The IES reports led by Campuzano (2009) and Dynarski (2007) have

shown that many math achievement gains using technology-infused curricula fade after the

initial year unless the students continue using similar curricula through future grades.
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Essay 3

Student Hint-Seeking Behavior Using the Math Cognitive

Tutor
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1 Introduction

The Math Cognitive Tutor series has many possible mechanisms that combine to produce

the learning gains demonstrated by the positive effects on test score in my last chapter.

One possibility is that students using the MCT receive more problems to practice, and this

more extensive, iterated process of practice and feedback leads to larger learning gains.

Another possibility is the nature of the differentiation for which the software is purposefully

designed. Many scholars (e.g. Hattie, 2009) believe this personalization is essential to

improving student performance, and traditional classrooms with one teacher lecturing at

the exact same pace to 25 students are particularly ill-equipped to differentiate pace on a

topic-by-topic basis amongst learners. In the MCT, students receive more practice on the

skills in which they do not demonstrate proficiency while more quickly skipping through

those which they are deemed to understand. A third potential avenue for the effectiveness

of the MCT lies in its hint feature. Intelligent tutoring systems such as the MCT offer

students the opportunity to ask for a series of hints on each step of a problem. The hints

are gradually more helpful until the final hint essentially gives away the answer. This feature

of the MCT may help students quickly overcome misunderstandings on certain skills, reduce

unproductive time, and learn more efficiently (Anderson et al, 1989; McKendree, 1990). The

value of the hint feature is explored in this essay. Ultimately, the issue at hand is whether

or not the help provided to students by the Bridge to Algebra MCT in the form of hints is

actually helpful.

An ideal evaluation of the MCT hint system would follow a similar experimental design

to that seen in essay 2. All students would use the MCT. Half of them would randomly be

selected for the treatment group, and they would have access to the hint feature throughout

the evaluation. The other half in the control group would not be able to request hints. All

students would take an outside pre- and post-test, and a specification similar to Equation

(4) in essay 2 would reveal whether or not having access to the hint feature improves student

performance. For equity and other considerations, this was not possible in the Chilean and

Mexican research projects. The evaluation of the hint system can only occur in this context
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by looking retrospectively at hint usage of the students who used the MCT.

There are difficulties in evaluating the effectiveness of hints or any other help-seeking

behavior by students in this context. The first lies in defining a relevant outcome mea-

sure. What exactly does it mean in the context of the MCT to “help” a student? Does

it mean to assist them in performing correctly on the next problem, or does it entail a

lasting learning effect that can be picked up in future attempts or on an outside exam? In

essay 2, it was obvious that the outside exam scores were the relevant outcome measure,

especially since the exams themselves were forms of the national standardized exams and

we were evaluating the effectiveness of this new software-based math curriculum. But in

the context of evaluating the micro features of the hint system, it is difficult to argue that

hints requested on certain steps of problems should readily translate to performance on the

post-test. Rather, I will follow the example (while changing the methodology) of much of

the learning science literature (see, for example, Beck et al (2008), Lee et al (2008), and

Goldin, Koedinger, and Aleven (2012)) and focus on student performance on the next few

problems following a hint request.

Second, the absence of a student-specific counterfactual to a hint request and subsequent

performance can easily lead to a problem of selection bias. Students who request more hints

are more likely to lack the knowledge and skills necessary to solve the problems correctly.

Simply comparing the outcomes of “hint-takers” to peers who did not request hints would

support the notion that hints produce lower outcomes.

Other researchers have explored the effectiveness of hints in the MCT in other contexts.

The most common methodologies for evaluating the effect of hints on performance in the

learning science literature are referred to as learning decomposition and Bayesian knowledge

tracing. Learning decomposition (Beck (2006), Zhang, Mostow, and Beck (2007), and Beck

(2007)) extends the classic learning curve (described briefly in essay 2) by taking into

account the heterogeneity of different learning opportunities for a single skill.

Performance = A ∗ e−b(t1+β∗t2) (1)
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In the equation above, A measures student performance on the first trial and b the

learning rate for trial opportunities of types t1 and t2. The different types of learning oppor-

tunities (for example, factoring a number as a step in a problem involving greatest common

factors might be different from factoring a number in order to decompose a quadratic) are

allowed to have differential effects on the performance measure, but ultimately the goal of

learning decomposition is to estimate a learning curve.

Bayesian knowledge tracing (BKT) is another form of evaluating student knowledge

using MCT data. BKT assumes that student knowledge is represented by a set of bi-

nary variables denoting whether each of many skills has been mastered or not (Yudelson,

Koedinger, and Gordon (2013)) based on a binary outcome on student-problem steps of

either right or wrong. Student knowledge can increase (learn) or decrease (forget) over

time, and it is determined by performance on specific problems (with built in “guess” and

“slip” parameters denoting a correct response when a student does not know the skill and

an incorrect one when he does, respectively). Tutor interventions, including hint requests,

can teach students and hence increase actual knowledge, or simply “scaffold” short-term

performance with no requisite increase in knowledge (Beck et al (2008)). Given sufficient

student-problem observations for each skill, Bayes nets can be constructed that estimate

all of the specific parameters of the model. The most important parameter estimate for

determining the value of hints in these models denotes the probability of learning a skill

following a hint request. Beck et al (2008) estimate the effect of help being an 8% relative

improvement over no help in a reading tutor context.

In the learning science literature, other papers have explored or advanced these method-

ologies to estimate the effect of the hint system. While some papers (Aleven et al (2004),

Aleven et al (2003)) have shown that students occasionally “abuse” the hint system (usually

by clicking through hints without absorbing any of their content), most work shows evidence

that on-demand hints can positively impact learning. Aleven and Koedinger (2000) showed

that asking for help after one or two errors on a step was associated with fewer errors on

the given step and a reduction in the time needed to complete the step (as compared to

another hintless attempt at solving the problem). They also showed that lower-performing
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students have low metacognition regarding hint requests; in other words, they struggle with

knowing what they don’t know and hence request a sub-optimal number of hints. Goldin,

Koedinger, and Aleven (2012) showed that hints are more likely to be requested by less

proficient students and on steps that are more difficult. Further, success after first hints

is less likely than after second or third hints, and the more proficient the student, the less

likely it is that the student will benefit from a hint. In a setting using math tutors that

explicitly provided hints at various points, Arroyo et al (2000) showed that boys seemed to

do better with the lower hint version, their self-confidence was harmed by increased hints,

and they spent less time looking at hints than female counterparts.

In the economics of education literature, the education production function generally

regards the output of a student (test score) as being determined by implications of school

spending levels (teacher salaries, classroom size) and student demographics (race, gender,

parental influence, economic status). Hanushek’s (2003) meta-analysis showed that these

traditional inputs do not matter much for the output. In that light, more recent work

has looked at students as active decision makers whose effort choices matter for education

output. The personalized learning environments offered by MCTs are increasingly prevalent

in educational settings, and they are beginning to be evaluated by economists. Haelermans

and Ghysels (2014) showed that MCTs lead to a substantial and significant increase in math

performance growth. The authors also focused on the returns to practice time using the

tutor, revealing that increased effort on the students’ parts leads to improved performance

(this contradicts my findings in essay 2). Fryer (2010) showed that paying students to

improve test scores outright was ineffective for doing so, but paying them to read more

books was effective at raising scores. His conclusion was that input incentives can raise

test scores by increasing student effort, but that output incentives on test scores do not

increase that same effort because students are unaware of their own education production

function. In other words, they are often unable to make the link on their own that reading

more books could help improve reading test scores.

There are three different approaches in the economics of education lierature for deal-

ing with student effort. The first methodology, advanced by McKenzie and Staaf (1974),
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explained that effort is tranformed into new knowledge according to some learning rate,

determined primarily by the student’s aptitude. Basically, they posited a linear knowledge

accumulation function as written below.

FinalKnowledge = InitialKnowledge+Aptitude ∗ Effort (2)

Equation (2) is in the same spirit as the learning curve equations explored earlier, albeit

with a different functional form. Here, effort was unobservable but it was backed out by

solving the equation above using IQ scores for Aptitude and separate exam scores at the

beginning and end of an experiment for the difference in Knowledge. This model is in

the same vein but much simpler than the Bayesian knowledge tracing models used in the

learning science literature since the exam scores are considered perfect proxies for knowledge

levels (i.e. student performance is exactly equal to student knowledge, with no attendant

guess or slip parameters). Cooley (2010a, b) introduced the concept of students making

decisions regarding how much effort to put forth in the classroom, where costs depend

on peer and teacher influences and effort is unobservable to the econometrician but can be

proxied for using another measure, such as ability. Dickey and Houston (2013) and Babcock

and Betts (2009) surveyed students and teachers, respectively, to measure student effort,

and then included both ability (from SAT scores) and effort as regressors in predicting

learning. Both papers showed that effort is more important than ability in the education

production function.

However, with the explosion in the education data available from tools similar to the

MCT, effort need not be considered unobservable nor merely derivable from surveys. The

MCT has a number of variables that could be considered student effort: usage hours,

number of problems attempted, units covered, or, as this essay explores, the number of hint

requests.

1.1 Hint Request Levels

Students are able to ask for hints from the MCT system at any point while solving problems.

All hint requests have to originate from the student though; the system will not “ping” a
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student if he struggles with errors or takes too long to attempt an answer to a step in a

problem. There are three successive levels of hints offered in the MCT, and most steps of

problems offer one hint at each level. The first level is feature or interface based. It offers

no help on the underlying math skill involved, but instead directs the student toward the

area of the screen where an answer should be input. The second level is the “meat” of

the hint stage, and for some problems there can be multiple hints available at this level.

These hints are definition or example based. They state the problem-solving principle that

is applicable for the problem. As an example, if the problem step requires the student to

list the factors of 27, second level hints might include statements such as “The factors of

27 include all numbers that can multiply to 27” or “Remember that 1 is always a factor of

every number.” Finally, the third level of hint is referred to as a “bottom out hint,” and it

supplies the answer for the student.

2 Data

In Chile, 310 students used the MCT; in Mexico, 156 students used it. The MCT log

files exist at the level of the student-problem. In total, the Chilean students completed

126,004 problems (406 per student) and their Mexican counterparts completed 37,910 (243

per student). Each student-problem contains the following information from the tutor log

files: student ID, unique problem identifier, unit of the problem, section of the problem,

time to complete the problem, total number of hint requests on the problem, and total

number of errors made on the problem. The problems are ordered in the same manner they

were completed by the student, so each problem is also assigned a corresponding number

within each unit and section denoting the order in which the student completed it. The

student level data used in the previous work is also linked to the MCT log data. This

includes pre- and post-test scores from an outside examination, aggregate MCT completion

metrics (total hours spent using the tutor, units completed, skills mastered, and sections

mastered), student gender, and school and classroom assignment.

It is important to point out some limitations of the existing data set so as to make it
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clear what can and cannot be investigated. There are no “time stamps” in the log files. It

is impossible to tell, for example, if a student completed the first two problems in a given

section on a Monday and then did not log in to the system again until Friday when he

attempted the next (third) problem. The log data also views each problem as a complete

whole. As discussed in essay 2, one of the cognitive psychology foundations of the MCT is

the breakdown of problem steps into specific skills (or knowledge components) that allow

the software to ensure that students master skills, not problems, before moving forward.

This is also the foundation of the learning decomposition and BKT models discussed in the

introduction. There is no identification of the specific skills involved in each problem in

this data. The abbreviated version of the Bridge to Algebra MCT evaluated in this study

contained 552 skills across 57 sections, or about 10 skills per section. A given problem

contains multiple skills. But there is no guarantee that consecutive problems, even within

the same section, contain the same set, or even a similar subset, of skills. The hints and

errors in a given problem are also not separated by step. Since there is no finer grained detail

than the level of the problem for hints and errors, it is impossible to tell if a student, in a

problem where he requested one hint and made one error, asked for that hint immediately

following the error, immediately preceding the error, or on a step of the problem unrelated

to the one on which he made an error. Finally, the hint requests are a count of the number

of times a student clicked on the hint button. The majority of problems have three levels

of hints that gradually reveal more information to the student. In the MCT data, there is

no way of knowing which levels or how many of the levels were accessed by the student,

even by looking at the hint counter. A student who used three hints on a given problem

did not necessarily ask for all three levels of hints; instead, he could have clicked the “first

hint” button three times. Despite these limitations, the data is useful for exploring the

helpfulness of the hint feature.

Both the hints and errors per problem are heavily skewed in both countries since hints

and errors are constrained at the lower end by zero but have no upper limit. As shown in

Tables 1 and 2, the median values for both variables in both countries are very reasonable:

0 hint requests and 1 error. Tables 3 and 4 break down the lower levels of hints and
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errors, respectively, in more detail. Both tables show the number (percentage) of problems

completed in each country with the corresponding hints and errors. It is obvious that errors

are more prevalent than hints in both the Chilean and Mexican student populations. In

addition, Tables 5 and 6 show that students rarely ask for a hint on a problem without

committing at least one error. The “>0 Hints, 0 Errors” cell in both Tables Tables 5 and 6

reveal that students rarely request help via the hint feature without making an error on the

same problem (1.8% of student-problems in Chile and 0.9% in Mexico). While completing

problems, students are either requesting a hint prior to their attempt and the hint is not

providing enough learning support to allow the student to correctly answer the problem, or

they are asking for hints after making mistakes and realizing they do not understand the

problem. Students may not be asking for hints at productive times, as argued by Aleven

and Koedinger (2000), but this essay will evaluate the effect of the hint requests they do

make on improving their outcomes, as defined by a lack of errors on subsequent problems.

I am forced to use performance on subsequent problems, instead of next attempts within

a problem as some of the other hint effectiveness work does, because I do not have finer

grained data than the student-problem level and therefore I cannot discern the hint/error

sequence within a problem.

Table 1: Hints Per Problem

Chile Mexico

Mean 0.76 0.54

Std Dev 1.55 1.42

Median 0 0

75th %-ile 1 1

90th %-ile 2 2

95th %-ile 4 3
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Table 2: Errors Per Problem

Chile Mexico

Mean 3.15 2.67

Std Dev 5.30 5.51

Median 1 1

75th %-ile 4 3

90th %-ile 8 7

95th %-ile 12 10

Table 3: Hints by Problem

Chile Mexico

0 81,311 (64.5%) 28,187 (74.4%)

1 22,813 (18.1%) 5,434 (14.3%)

2 10,253 (8.1%) 2,063 (5.4%)

≥3 11,627 (9.2%) 2,226 (5.9%)

Table 4: Errors by Problem

Chile Mexico

0 37,913 (30.1%) 13,313 (35.1%)

1 25,214 (20.0%) 8,082 (21.3%)

2 15,660 (12.4%) 4,458 (11.8%)

3 11,960 (9.5%) 3,347 (8.8%)

4 8,372 (6.6%) 2,165 (5.7%)

5 5,739 (4.6%) 1,495 (3.9%)

≥6 21,146 (16.8%) 5,050 (13.3%)
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Table 5: Hints vs Errors in Chile

Errors

0 >0 Total

0 35,587 (28.2%) 45,724 (36.3%) 81,311 (64.5%)

Hints >0 2,326 (1.8%) 42,367 (33.6%) 44,693 (35.5%)

Total 37,913 (30.1%) 88,091 (69.9%)

Table 6: Hints vs Errors in Mexico

Errors

0 >0 Total

0 12,961 (34.2%) 15,226 (40.2%) 28,187 (74.4%)

Hints >0 352 (0.9%) 9,371 (24.7%) 9,723 (25.6%)

Total 13,313 (35.1%) 24,597 (64.9%)
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2.1 Within Student Comparison

Since I do not know when in the sequence of the problem a student makes an error or

requests a hint, I have to look across problems to evaluate hint effectiveness. My within-

student comparison shows the improvement a student makes over a three-problem sequence

when he requests at least one hint on the second problem. Think of a three-problem sequence

within a section for a given student that occurs at any point in the overall problem sequence

of that section. On the first and third problems, he does not request a hint. On the second

problem, he requests (at least) one hint. I am interested in the difference in performance

on the 1st and 3rd problems of the sequence. Notice that this sequence will necessarily

leave out many student-problem observations, and many sequences in which hints could

be evaluated. For example, a four-problem sequence featuring hint requests on the middle

problems 2 and 3 but no request on 1 and 4 would not be included here. If a student asks

for a hint on every question in a section, he is not included. If he never asks for a hint,

he is not included. If he asks for a hint on consecutive questions, those questions cannot

be included. The only thing I am including is the “problem 1: no hint - problem 2: hint -

problem 3: no hint” sequence on three consecutive questions.

Tables 7 and 8 show the results on three relevant outcome measures Incorrect is

the probability that the student made at least one error on the given problem, Errors is

a count of the number of errors on that problem, and Time measures the total time, in

seconds, required for the student to complete the problem. For all three measures of student

performance, smaller values are better. The data in the columns labeled “1st Problem” and

“3rd Problem” is listed as mean (standard error) and the t-value in the subsequent column

comes from the two-sample t-test with unequal variance and has the usual significance

designations (* 10%, ** 5%, *** 1%). Tables 7 and 8 support the notion that the hints

provided by the MCT are beneficial for short-term improvements in student performance.

Students were significantly less likely to make an error on the third problem in the sequence

than on the first. They also made fewer total errors and finished in less time on the third

problem.
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Table 7: Improvement from 1st to 3rd Problem in Chile

N = 5,607 1st 3rd t-value

Incorrect 0.64 (0.006) 0.62 (0.006) 2.70 ***

Errors 1.58 (0.037) 1.36 (0.028) 4.81 ***

Time 85.9 (1.9) 74.8 (1.2) 4.98 ***

Table 8: Improvement from 1st to 3rd Problem in Mexico

N = 1,641 1st 3rd t-value

Incorrect 0.68 (0.012) 0.62 (0.012) 3.38 ***

Errors 1.70 (0.056) 1.36 (0.043) 4.77 ***

Time 92.2 (2.7) 84.4 (2.6) 2.06 **

However, there are a few drawbacks to this approach. First, this does not provide a ro-

bust view of hint-seeking since a specific pattern was needed to include the student problems

as an observation. Second, as the “power law of learning” says (briefly explained in essay 2),

students should gradually improve their performance as the number of practice problems

increases. Therefore, we would expect that students improve as they move from the first

to third problem of any sequence, regardless of the presence of a hint request. Although

some of the improvements seen above can certainly be explained by the additional practice,

the median “three-problem sequence” in Tables 7 and 8 in both countries occurs during

the 6th-8th problems in a section. Across all students, the average errors per problem and

time to complete a problem are actually higher in the 8th problem than the 6th (for stu-

dents completing both), though this is most likely due to a sample selection problem itself.

Because more proficient students are able to advance in the MCT once they demonstrate

mastery of the attendant skills in a section, some of the better students do not attempt the

6th or higher problems in a given section. Tables 7 and 8, while informative, are certainly

not a complete case for the effectiveness of the hint mechanism in the Bridge to Algebra
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MCT.

3 Model

As suggested in the learning science literature, student learning curves show quick, steep

drops in many outcomes (time to complete a problem, probability of making an error,

probability of asking for a hint) as the student progresses through the first few practice

problems related to a given skill. Looking across all students, this inverse relationship is

supported in the data in both countries. Figures 1 and 2 show the rapid early decline within

sections in hint requests and errors in Chile.43 After the fourth problem in the section, the

rates of both errors and hints flatten out for a long stretch before increasing again around

the 11-12th problem due to more proficient students moving on to the next section.

Since the bulk of the action in reducing error and hint request rates occurs within the

first few problems of a section, I focus my attention on those problems exclusively. Consider

students i, section of the MCT j, and schools k. Define Y as the difference in errors between

problems 3 and 1 within a given section and Hints as the total number of hint requests

on problems 1 and 2. If students improve their performance and make fewer errors as they

progress, then Y , as defined by “problem 3 errors - problem 1 errors,” will be negative.

Using the first and third problems as the comparison in error reduction follows the same

pattern as the within-student comparison shown previously.

Yijk = β0 + β1Hintsij + β2Genderi + β3Pretesti + β4Geni ∗Hintij + µj + µk + εijk (3)

School fixed effects and section fixed effects are also included in the main specification.

The section fixed effects are meant to pick up differences in difficulty across sections since

harder sections both elicit more hints from students and cause more errors per problem.44

43The Mexico figures look largely the same but are omitted in this document. They are available from

the author upon request.
44The hint and error probabilities (per problem) within a given section are highly correlated - 0.75 in
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Figure 1: Error Rates on Problems (Chile)

The main parameter of interest in β1. It represents the marginal improvement in error

reduction from problem 1 to 3 of asking for an additional hint on problems 1 and 2 in a

section. A negative point estimate of β1 is supportive of the ability of the hint feature to

improve student performance since it means that problem 3 errors will decrease by more.

Endogeneity of the hint count could be a problem if, as suggested by other work, less apt

students request more hints. For this reason, future work in this area would be best served

by turning off the hint feature for a subset of students and looking at their early-in-the-

section outcomes compared to peers who were able to receive hints.

Two sets of student-section observations are considered in the analysis. The first includes

all of the student-sections observed in both countries. In order to control for the fact

that more capable students are able to advance through more sections (in the same given

amount of time), I want to ensure that the results of the first set of regressions are not

Chile and 0.71 in Mexico.
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Figure 2: Hint Rates on Problems (Chile)

driven by better students completing more sections and hence recording more student-

section observations. The second set of regressions includes only those sections that were

completed by at least half the students in each country, respectively.

4 Results

The results shown below are separated by country and observation set. Tables 9 and 10

show the OLS results for Chile and Mexico, respectively, using the full set of student-section

observations. The top rows of both Tables show the coefficient estimates on Hints. In all

specifications, the estimate is negative and significant, indicating that every hint that a

student requests on problems 1 and 2 in a section will further reduce the errors made on

problem 3 respective to problem 1. Based on Table 2, these effects are quite substantial.

In Chile, students averaged 3.15 errors per problem, across all student-problems completed.
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Table 9: Performance Improvement and Hint Requests in Chile

Hints -0.346*** -0.354*** -0.356*** -0.397*** -0.357***

(0.022) (0.023) (0.023) (0.026) (0.035)

Gender -0.218*** -0.213*** -0.190*** -0.064

(0.073) (0.073) (0.070) (0.084)

Pretest -0.013** -0.016** -0.032*** -0.032***

(0.006) (0.007) (0.007) (0.007)

GenHint -0.083*

(0.043)

School No No Yes Yes Yes

fixed?

Section No No No Yes Yes

fixed?

Estimated std errors are reported in parentheses.

Significance denoted as ***1%, **5%, *10%

N = 6,960

In the full specification of Equation (3), each additional hint request on problems 1 and 2

reduces the net problem 3 less problem 1 errors by 0.36 errors. The results also suggest

that male students45 benefit more from hints than their female classmates. As expected, the

parameter estimate on Pretest is negative, indicating that more proficient students with

higher pretest scores improve their error rate from problems 1 to 3 more than students with

lower scores.

The smaller subsets of observations used in the results below only include the sections

that were completed by at least half the students. The results look much the same as above

when comparing Tables 9 and 11 for Chile and Tables 10 and 12 for Mexico.

45Those who have Gender = 1.
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Table 10: Performance Improvement and Hint Requests in Mexico

Hints -0.652*** -0.660*** -0.677*** -0.632*** -0.548***

(0.041) (0.041) (0.041) (0.043) (0.053)

Gender -0.151 -0.158 -0.142 0.063

(0.103) (0.103) (0.099) (0.107)

Pretest -0.010 -0.011 -0.007 -0.009

(0.009) (0.010) (0.010) (0.010)

GenHint -0.211***

(0.078)

School No No Yes Yes Yes

fixed?

Section No No No Yes Yes

fixed?

Estimated std errors are reported in parentheses.

Significance denoted as ***1%, **5%, *10%

N = 2,955
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Table 11: Performance Improvement and Hint Requests in Chile

Hints -0.284*** -0.298*** -0.302*** -0.413*** -0.411***

(0.030) (0.030) (0.031) (0.076) (0.060)

Gender -0.097 -0.095*** -0.086*** -0.077

(0.097) (0.097) (0.061) (0.068)

Pretest -0.022** -0.027*** -0.035*** -0.035***

(0.009) (0.010) (0.011) (0.011)

GenHint -0.006

(0.049)

School No No Yes Yes Yes

fixed?

Section No No No Yes Yes

fixed?

Estimated std errors are reported in parentheses.

Significance denoted as ***1%, **5%, *10%

N = 3,827
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Table 12: Performance Improvement and Hint Requests in Mexico

Hints -0.530*** -0.520*** -0.524*** -0.536*** -0.434***

(0.064) (0.064) (0.064) (0.108) (0.123)

Gender -0.084 -0.068 -0.073 0.107

(0.130) (0.131) (0.160) (0.177)

Pretest 0.014 0.011 0.010 0.006

(0.012) (0.012) (0.014) (0.015)

GenHint -0.232***

(0.077)

School No No Yes Yes Yes

fixed?

Section No No No Yes Yes

fixed?

Estimated std errors are reported in parentheses.

Significance denoted as ***1%, **5%, *10%

N = 1,447
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5 Discussion and Conclusion

The Chilean and Mexican 7th grade students who had the opportunity to study pre-algebra

with the MCT incorporated hints into their usage of the software. In the early problems

of each section, as all students rapidly make learning gains as measured by reduced errors,

hints, and time required to solve problems, requesting a hint(s) increases those gains. The

hint feature of the software is effective at helping students reduce their errors on the early

problems.

In much of the learning curve analyses, hints and errors are considered equals - both

show a lack of mastery on the student’s part, and both suggest more testing of that specific

skill is warranted. This work used a different approach to evaluating the hint feature of the

MCT from much of the learning science literature. Instead of estimating student-specific

parameters related to their mastery of skills, and then how much the hints may have helped

that learning process, I take a much more “macro” view of the hint requests. Overall,

students reduce their errors over the first few problems when encountering the new math

material in new sections. The results in this essay show that the students who make use of

the hints can expect to reduce their errors more, regardless of the specific skills being tested

in each problem. Asking for a hint in the MCT can certainly be viewed as “effort” on the

part of the student since an active decision separate from attempting to solve the problem

steps must be made. In that case, students who put forth more early effort in sections by

asking for more hints can expect to reduce their errors more quickly early on.

In the longer term, the MCT might be better served by updating its hint system to

include an automatic hint feature. This and other work has demonstrated the overall

usefulness of the hints feature using a variety of methodologies. Aleven and Koedinger

(2000) showed that some students struggle to understand when to ask for hints. In light of

the evidence of hint effectiveness and low metacognition on help-seeking, the MCT could

improve its pedagogy by targeting hints at specific students at specific times. Based on the

results in this essay, adding an early problem in each section that students solve with hint

guidance at each step might speed up the learning process.
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