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Abstract

This dissertation contains three chapters and focuses on the optimal design of fiscal policy, both
from a theoretical and from a quantitative perspective.

In the first chapter, I address the optimal taxation of wealth in a class of dynastic overlapping-
generations economies with heterogeneous mortality risk. Working individuals are indexed by
skills which are private information. Skills not only determine earning abilities but also correlate
with survival probability, so that more productive agents on average live longer. The analysis
distinguishes between the tax treatment of two possible sources of wealth, namely, savings and
bequests, and points to the mortality gradient as a crucial determinant for optimal wealth taxation.
Specifically, due to differences in longevity: (i) savings should be marginally taxed, and (ii)
bequests should be marginally subsidized at a rate that decreases with the age of the donor. I
calibrate the model to U.S. data and quantitatively evaluate its tax implications. For the median
worker, mortality differences create a force for marginally taxing savings by up to 1.7%, and for
marginally subsidizing bequests by as much as 3.4%. These figures are robust to the value of the
societal intergenerational discount factor and generate significant welfare gains.

In the second chapter (joint with Laurence Ales and Jessie J. Wang), we analyze the optimal
taxation of top labor incomes. Top income earners are modeled as managers who are hetero-
geneous across skills and operate a span-of-control technology, as in Rosen (1982). Managers
privately observe their skill level, which increases the productivity of both effort and supervision,
thus creating a scale-of-operations effect. We characterize optimal taxes in this environment and
identify novel determinants linked to firm technology. Our main result is that to be consistent
with U.S. firm data, the optimal top income tax rate should be roughly in line with the U.S. tax
code, in contrast to previous results in the literature.

In the third chapter (joint with Martín Besfamille), we study the optimal degree of fiscal
decentralization in a federation. In our environment, regional governments are characterized by
two dimensions of state capacity; namely, administrative and fiscal. These gauge the ability to
deliver public goods and to raise tax revenues, respectively. Two regimes are compared: partial
and full decentralization. Under partial decentralization, regional governments have no tax powers
and rely on central bailouts to refinance incomplete projects. Under full decentralization, regional
governments refinance incomplete projects through capital taxes, in a context of tax competition.
We show how the optimal degree of fiscal decentralization hinges on the relative magnitudes of
each type of capacity. Specifically, for sufficiently low levels of fiscal capacity, bailing out regional
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governments is optimal regardless of the level of administrative ability. However, a combination of
low levels of administrative capacity and high levels of fiscal capacity calls for fully decentralizing
tax powers.
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Chapter 1

Wealth Taxation and Life Expectancy

1.1 introduction

This paper is motivated by two observations regarding the interaction between life expectancy,
wealth and the tax code. First, individuals’ life spans affect the composition of their own wealth
and that of their heirs: all else equal, workers with longer life expectancy tend to save more to
smooth consumption, draw down their wealth more slowly during retirement and bequeath later.1

Accordingly, the impact of wealth taxation, in the form of savings and inheritance taxes, can vary
substantially across individuals facing different mortality risk. The second observation is the well
documented fact that socioeconomic status positively correlates with life expectancy.2 In turn,
lifetime savings patterns and the timing of intergenerational transfers might be useful signals of
earning abilities and, hence, of optimal tax liability.3 How would an optimal tax system incorporate
these well established facts? In particular, how should the different sources of wealth be taxed to
account for the distinct savings patterns among the long-lived and the short-lived? What is the
optimal way to exploit the socioeconomic mortality gradient in order to achieve redistributive
objectives? Are these effects quantitatively relevant?

The goal of this paper is to provide guidance on these questions, by focusing on the optimal
design of wealth taxes in environments with uncertain life spans and heterogeneous mortality
risk. The main contributions are twofold. First, the paper distinguishes between the optimal
tax treatment of the three possible sources of household wealth; namely, taxes on earned wealth
(henceforth capital taxes), and taxes on transferred wealth via bequest and inter-vivos gifts. The
analysis points to the socioeconomic mortality gradient as a crucial determinant, primarily shaping
capital and bequest taxes. Second, I quantify the key forces behind optimal wealth taxes using
U.S. data. I find that the magnitude of the effect of the mortality gradient on optimal wealth taxes
is commensurate with the actual level of capital taxes among developed countries.

1See, e.g., De Nardi et al. (2006), De Nardi et al. (2009) and Piketty (2014), Chapter 11.
2A seminal contribution can be found in Kitagawa and Hauser (1973). Contemporaneous studies, such as Singh

and Siahpush (2006), Waldron (2007) and Pijoan-Mas and Ríos-Rull (2014), indicate that mortality differentials across
socioeconomic groups have substantially widened in recent decades.

3Following Akerlof (1978), such variables can be thought of as “tags.”

10



I consider dynastic environments in which agents live for at most two periods and are
altruistic towards their descendants. Working individuals are indexed by skills, which are private
information as in Mirrlees (1971). Crucially, skills not only determine the earning abilities of the
agents (i.e. the ability to transform effort into effective effort), but also correlate with their survival
probabilities, so that more productive individuals on average live longer. I adopt a utilitarian
normative criterion which values children’s welfare more than parents themselves do through
altruism. In this sense, the social level of altruism is larger than the private one. This is a common
specification in intergenerational models of social insurance (see Phelan (2006) and Farhi and
Werning (2007, 2010)) and the idea is that, with altruistic parents, children should be “double
counted” under any utilitarian welfare criterion which attaches separate weights to parents and
children.4 Optimal tax instruments are only restricted by informational frictions and, hence, are
non-unique. Throughout the paper, I focus on a particular tax implementation of the constrained
efficient allocation featuring nonlinear labor income taxes and linear wealth taxes whose rates
depend on labor income histories, as in Kocherlakota (2005).

The analysis begins with a two-period dynastic economy which illustrates the main forces
at work. The first period is populated by a continuum of parents. Parents work, consume and
produce a single descendant, who is born at the beginning of the second period. After their
children are born, parents are hit by a survival shock and only some of them survive to the second
period. Survivors and children only consume.

I derive three key properties for optimal wealth taxes. First, optimal marginal taxes on capital
are positive. Second, the optimal marginal bequest tax formula can be decomposed into two
negative terms: one driven by differences between private and social altruism coefficients, and one
driven by the socioeconomic mortality gradient. Hereafter, I refer to these terms as a Pigouvian
and a differential mortality term, respectively. Third, in general, different marginal tax rates should
apply to bequests and inter-vivos transfers. This normative prescription establishes a central
departure from the current U.S. federal tax code where estate and inter-vivos gifts taxes are
“unified,” in the sense that the same statutory marginal rates and (lifetime) exemption levels apply
to both types of intergenerational transfers.5

To grasp the intuition behind these results, it is useful to consider two benchmarks. A first
benchmark is the case in which mortality risk is homogeneous across the population and social
and private levels of altruism coincide. Here, optimal wealth taxes are zero and a version of the
classical Atkinson and Stiglitz (1976) result holds; that is, commodity taxation is superfluous
when the government has access to a nonlinear income tax schedule. A second benchmark
corresponds to a setting in which social altruism is higher than the private one, but there is
still no heterogeneity among life-expectancies. Under this scenario, capital taxes are again

4Hammond (1988) and Harsanyi (1995), on the other hand, advocate for excluding all “external” preferences from
the social welfare function.

5The “unification” of bequests and inter-vivos tax schedules was incorporated into the U.S. federal tax system via
the 1976 tax reform. Of course, some gaps remain. For instance, by 2014 annual gifts below $14,000 are tax-free. See
Gale et al. (2001), Chapter 1.
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zero while marginal bequests and inter-vivos taxes are negative and progressive. Essentially,
when society cares more about future generations than parents themselves, intergenerational
transfers generate a positive externality that makes it optimal to encourage such transfers via
progressive subsidies. These Pigouvian forces behind optimal taxes on intergenerational transfers
are extensively discussed in Farhi and Werning (2010). With respect to their work, a novelty of
the present analysis is the potential distinction between the tax treatment of post-mortem and
inter-vivos transfers.

In the general case, the mortality gradient affects optimal wealth taxes through two channels:
positive marginal capital taxes and a negative differential mortality term on marginal bequest
taxes. The intuition is as follows. The presence of mortality differences has effects similar to
heterogeneous tastes over contingent consumption. In a nutshell, before the survival shock hits,
high (low) ability parents prefer allocations featuring relatively high (low) levels of dynastic
consumption in the event of survival. The policy maker can thus exploit this fact to motivate
more productive types to exert effort. Specifically, the social planner distorts the contingent
consumption bundles that high types would obtain if they didn’t work at their full potential: it
provides low income dynasties with “too little” consumption in the survival state and “too much”
consumption in the death state. These distortions are implemented via positive marginal capital
taxes and through the differential mortality term on marginal bequest taxes.

The next step in the analysis is to evaluate the quantitative relevance of the normative
prescriptions discussed previously in a calibrated version of the model. The numerical simulations
permit an exploration of dimensions of the model which are hard to characterize analytically.

To lay the groundwork for the quantitative analysis, the two-period version of the model
is extended to a dynastic overlapping generations economy with heterogeneous mortality risk.
The new environment addresses an important caveat of the two-period framework, since that
model ignores the effect of wealth taxes on work incentives of the children.6 The economy lasts
for an infinite number of periods and it is populated by overlapping generations of agents who
live for at most two periods. When young, agents work, consume and produce a descendant
who is born in the following period. Old agents (those who survive to the second period) only
consume. At the beginning of each period, young agents draw a productivity shock which is
private information. At the end of each period, young agents draw a publicly observable survival
shock which determines whether they live for an additional period. Both productivity and survival
shocks are independently and identically distributed across dynasties and time. The economy
features no physical capital accumulation, which is a recurrent assumption in general equilibrium
models of social insurance following the original treatment of Atkeson and Lucas (1992).7 To solve
the model I extend the method developed by Farhi and Werning (2007) to an environment with

6The issue is particularly relevant when it comes to inheritance tax design, given that heirs expecting a bequest
might have less incentives to work. This hypothesis, also known as “Carnegie’s conjecture,” is empirically confirmed
by Holtz-Eakin et al. (1993).

7For examples in the context of infinite horizon Mirrleesian economies, see Albanesi and Sleet (2006) and Farhi and
Werning (2006). As discussed in the body of the paper, the absence of capital affects the levels but not the shape of
optimal wealth taxes.
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uncertain life spans, heterogeneous mortality risk, and a continuum of skill types. I focus on the
properties of optimal wealth taxes at a steady state, which is guaranteed to exist as long as the
level of social altruism is greater than the private one. The analytical characterization of the model
proves that the main normative prescriptions of the two-period economy extend to the infinite
horizon environment at a steady state.

A crucial object for the calibration of the model is the probability of survival across skill
types. While a number of previous studies have correlated survival probabilities to observable
socioeconomic characteristics (such as income or education), to the best of my knowledge few
have estimated this correlation with unobservable skills.8 I calibrate this object to U.S. data by
exploiting the relationship between mortality outcomes and permanent income in the Health and
Retirement Study, a biennial panel survey of individuals over 50 years old. The methodology relies
on techniques from the survival analysis literature. I find evidence of significant heterogeneity in
life expectancies across skills. For example, individuals of 50 years old at the top 1% of the ability
distribution are expected to live almost 8.5 years more than individuals at the bottom 1%.

Using this estimate, I quantify the effect of mortality heterogeneity on optimal wealth taxes.
The major findings are three. First, using plausible values of the coefficient of social altruism I
find that, for the median worker, mortality differences create a force for marginally taxing capital
between 1.5% and 1.7% and marginally subsidizing bequests between 3.4% and 2.9% on average.
Second, the effect of mortality differences on optimal wealth taxes is fairly irresponsive to the
level of societal altruism and, hence, to the normative criterion employed. In particular, when
increasing the social level of altruism by 25%, capital wedges and the differential mortality term
on bequest wedges change between 0.1 and 0.2 percentage points on average. In contrast, overall
distortions on bequests and inter-vivos transfers vary by a factor of 2. Third, all else equal, certain
distortions vary substantially with the current survival state of the dynasty. Average bequest taxes,
for example, can change by as much as 20 percentage points depending on whether old agents in
the dynasty are alive or not. This finding suggests that partial tax reforms based on conditioning
taxes on survival histories are possibly powerful.

Finally, I evaluate the potential welfare gains from tying optimal wealth taxes to mortality
differentials. An ideal upper bound for such gains is one where non-zero wealth taxation is only
justified on the grounds of mortality differentials. This would require shutting down Pigouvian
forces by equalizing social and private levels of altruism, thus posing a serious technical problem
in the infinite horizon version of the model: in that case, the well known “immiseration” result in
dynamic contracting frameworks is obtained and a non-degenerate steady state fails to exist.9 For
this reason, I compute gains in the two-period version of the model. I find that welfare gains vary
between 0.015% and 0.020% of aggregate consumption, for a reasonable range of values of risk
aversion and labor supply elasticities. These welfare gains are small but not negligible. In fact,
these estimates turn out to be much larger than in previous studies which quantify the gains from

8One exception is the contemporaneous work of Hosseini and Shourideh (2014).
9For details, refer to Atkeson and Lucas (1992) and Farhi and Werning (2007).
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using optimal nonlinear capital taxes, also in two-period settings (see below).

related literature

This paper contributes to a recent literature on optimal nonlinear wealth taxation with private
information initiated by Kocherlakota (2005) and Albanesi and Sleet (2006). Unlike my paper, this
literature either fails to distinguish among the the source of wealth being taxed, thus focusing
on the design of a broad based wealth tax schedule, or centers attention on bequest taxation.
One exception can be found in Shourideh (2012) who studies the determinants of optimal wealth
taxation in the presence of capital income risk and discriminates between capital income from
controlled businesses, outside the business and bequests. Regarding bequest taxation, Farhi and
Werning (2010) study optimal estate taxation in a dynastic framework that explicitly weights
welfare of future generations. They conclude that optimal marginal estate taxes should be negative
and progressive and show that this result is robust to a number of extensions. With respect to this
work, my paper incorporates uncertain life spans and heterogeneous mortality risk. These are
important ingredients for analyzing inheritance taxes, given that post-mortem transfers necessarily
embed an accidental component. In addition, this paper provides a quantitative analysis of tax
policy.

Farhi and Werning (2013a) analyze optimal estate taxation under altruism heterogeneity and
find that optimal estate taxes can be positive depending on the redistributive objectives of the policy
maker. A similar result is obtained by Piketty and Saez (2013) who evaluate optimal inheritance
taxation using linear or two-bracket tax structures, in environments in which heterogeneity come
from labor income and inheritance. In both of these frameworks, the positive bequest taxation
result is underpinned by two features: a particular source of heterogeneity which is not earning
abilities, and a special normative criteria that departs from the utilitarian metric. Unlike these
works, agents in this paper are only indexed by earning abilities (which are perfectly correlated
with survival probabilities) and the social welfare function is always utilitarian.

Given that heterogeneous mortality risk is isomorphic to heterogenous preferences, this paper
is also related to Golosov et al. (2013) who quantitatively evaluate the case for tying nonlinear
capital taxation to savings preferences in a two-period framework.10 A relevant difference with
their work is that while they find negligible welfare gains from using optimal capital taxes (in
the order of 0.00002% of aggregate consumption), I obtain gains that can be up to three orders of
magnitude larger.

Finally, this paper adds to the literature on the policy implications of differential mortality.
My work is particularly related to the contemporaneous paper of Hosseini and Shourideh (2014),
who analyze the effect of mortality differentials on optimal income tax design in a Mirrleesian
framework. A notable difference with this paper, is that the authors focus on the optimal insurance
arrangement of a single cohort in a context without bequest motives. Other papers in this area
have been primarily devoted to studying whether the mortality gradient may negatively impact

10Saez (2002) also justifies non-zero capital taxation based on heterogeneous discount rates across earning abilities.
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the progressivity of the social security benefit system (see, e.g., Garret (1995), Panis and Lillard
(1995) and Brown (2000)).11 To the best of my knowledge, the link between differential mortality
and wealth taxation has so far been unexplored.

The remainder of the paper is organized as follows. Section 1.2 presents the two-period model
and discusses the key determinants of wealth taxation arising from differences in mortality
risk. Section 1.3 introduces the infinite horizon environment used for quantification. Section 1.4
discusses the calibration and Section 1.5 presents the quantitative results. Section 2.9 concludes.
All proofs are contained in the Appendix.

1.2 two -period model

In this section I characterize the optimal tax system in a two-period framework. Optimal taxes are
recovered from the solution to a mechanism design problem where agents report their types to a
social planner and receive allocations as a function of such reports. This is a standard practice in
the dynamic public finance literature.12

1.2.1 environment

Consider an economy that lasts for two periods indexed by t = {1, 2} and which is populated
by a continuum of dynasties. In the first period, the economy is populated by a unit measure
of young parents, each identified as the head of her corresponding dynasty. Each young parent
works, consumes and produces a single descendant or child. Children are born at the beginning of
t = 2 and only consume. After their children are born, young parents are hit by a survival shock
and only some of them survive to period t = 2. Survivors, henceforth old parents, only consume.
Parents are altruistic to their children, but not vice versa.

Dynasties are indexed by their young parent’s skill, θ, which is drawn at the beginning of t = 1
from a known distribution F with support Θ =

[
θ, θ̄
]
. Skills have two roles. First, skills determine

the ability with which young parents transform effort n1 into effective effort y1 according to the
linear technology y1 = θ · n1. Second, skills affect the probability that the initial young survive to
the next period. Specifically, I define the probability of survival to period t = 2 by P : Θ→ [0, 1]
and make the following assumption:

Assumption 1. P′ exists and it is strictly positive.

By Assumption 1 parents face heterogeneous longevity risk and more productive individuals
on average live longer. This specification captures the well established fact that socioeconomic
status (here indexed by θ) positively correlates with life expectancy. The empirical validity of
Assumption 1 is confirmed in Section 1.4.

11In the words of Milton Friedman: “Persons in high income classes have a higher life expectancy, and so will tend
to receive benefits for a longer period of time.” (Friedman (1972), page 35).

12See, e.g., Golosov et al. (2007).
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Preferences of the head of a dynasty with skill θ are represented by the expected utility
function

U({c, y1}; θ) = u(cy
1)− h

(y1

θ

)
+ P(θ)δ

(
u(co

2) + βu(cy
2)
)
+ (1− P(θ))δβu(c̃y

2),

where c ≡ (cy
1, co

2, cy
2, c̃y

2) ∈ R4
+, cy

1 is the consumption of the young parent, co
2 is the consumption

of the old parent, and c̃y
2 and cy

2 denote, respectively, the consumption of the child if the parent
dies or survives the second period. β > 0 is the altruism coefficient, or intergenerational discount
factor, while δ ∈ (0, 1) is the intertemporal discount factor. It is assumed that u′, −u′′, h′ and h′′

exist and are positive, u′(0) = ∞ and u′(∞) = h′(0) = 0.
An allocation in this economy is defined as a mapping {c, y1} where c : Θ → R4

+ and
y1 : Θ → [0, ȳ] with 0 < ȳ < ∞; i.e. an allocation specifies (contingent) consumption for each
member of the dynasty and effective labor as a function of the productivity of young parents.

By Assumption 1 it follows that for any allocation {c, y1}

∂

∂θ

(
∂U({c, y1}; θ)/∂ci

2

∂U({c, y1}; θ)/∂c̃y
2

)
> 0, for i = o, y. (1.1)

Verbally, high (low) types relatively prefer allocations where the dynasty consumes more in the
survival (death) state. The logic is that, given their mortality types, dynasties enjoy allocations
with higher consumption in their most likely state of nature.

I assume that goods can be transferred between periods using a linear savings technology with
gross rate of return R > 0. Young parents have initial endowments of the consumption good in
the amount W1. An allocation is said to be resource feasible if it satisfies the sequential resource
constraints ∫ [

cy
1(θ)− y1(θ)

]
dF(θ) + K2 ≤W1, (1.2)

and ∫ [
P(θ)

(
co

2(θ) + cy
2(θ)

)
+ (1− P(θ))c̃y

2(θ)
]
dF(θ) ≤ RK2, (1.3)

where K2 is aggregate capital.
Equations (1.2) and (1.3) reduce to the intertemporal resource constraint:

∫ [
cy

1(θ)− y1(θ) +
1
R

P(θ)
(

co
2(θ) + cy

2(θ)
)
+

1
R
(1− P(θ))c̃y

2(θ)

]
dF(θ) ≤W1. (1.4)

Effective effort and consumption allocations are observable, while productivity realizations θ and
effort n1 are private information to the dynasties, as in Mirrlees (1971). For an allocation to be
implementable, agents have to be induced to report their types truthfully. This requires

U({c(θ), y1(θ)}; θ) ≥ U({c(θ′), y1(θ
′)}; θ), ∀θ, θ′, (1.5)
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where U({c(θ′), y1(θ
′)}; θ) denotes the expected utility of a dynasty of type θ who reports θ′. Any

allocation that satisfies (2.5) is said to be incentive compatible.
Social welfare is evaluated according to the social welfare function

SWF =
∫ [

u(cy
1(θ))− h

(
y1(θ)

θ

)
+ P(θ)δ

(
u(co

2(θ)) + β̂u(cy
2(θ))

)
+ (1− P(θ))δβ̂u(c̃y

2(θ))

]
dF(θ), (1.6)

where β̂ ≥ β denotes the level of social altruism.
Assuming β̂ ≥ β implies that society cares about descendants at least as much as parents do.

This assumption implicitly reflects that parents and children are included as separate entities into
the social welfare function, so that children are “double counted” given that parents are altruistic.
In the special case that β̂ = β, social welfare is identified with that of the initial dynast.

Constrained efficient allocations maximize (1.6) subject to the intertemporal resource constraint
(1.4) and the incentive compatibility constraints (2.5). This problem, however, is intractable due
to the double infinity of incentive compatibility constraints embedded in (2.5). Hence, in what
follows I work with a relaxed planning problem by applying a first-order approach, where the
original set of incentive compatibility constraints (requiring that truth telling be a global maximum
for each type) is replaced by local first order conditions which ensure that truth telling is a local
maximum for each type.

To simplify notation, let

w2(θ) ≡ u(co
2(θ)) + βu(cy

2(θ)) and w̃2(θ) ≡ βu(c̃2(θ)) (1.7)

denote the continuation utilities contingent on survival and death of the parent, respectively.
The relaxed version of the planning problem is

max
{c,y1}

SWF (1.8)

subject to

V(θ) = u(cy
1(θ))− h

(
y1(θ)

θ

)
+ P(θ)δw2(θ) + (1− P(θ))δw̃2(θ), ∀θ, (1.9)

V ′(θ) = h′
(

y1(θ)

θ

)
y1(θ)

θ2 + δP′(θ) (w2(θ)− w̃2(θ)) , ∀θ, (1.10)

and the intertemporal resource constraint (1.4), with w2 and w̃2 defined by (1.7).
The following Lemma provides a set of sufficient conditions which guarantee that solutions

to the relaxed planning problem are incentive compatible, and hence are also solutions to the
original problem where (1.9) and (1.10) are replaced by (2.5).
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Lemma 1. Let {c, y1} be a solution to the relaxed planning problem (1.8), and suppose that

dy1(θ)

dθ
≥ 0,

dcy
1(θ)

dθ
≥ 0,

dw2(θ)

dθ
≥ 0, and

dw̃2(θ)

dθ
≤ 0, (1.11)

where w2 and w̃2 are defined by (1.7). Then {c, y1} is incentive compatible, i.e. satisfies (2.5).

Proof. See Appendix 1.7.1.

As is standard in the literature, the monotonicity conditions in (1.11) are assumed to hold and are
verified ex-post (by means of numerical simulations).13

1.2.2 wedges

At any given allocation, it is possible to define three distortions: a capital wedge, τk, a bequest
wedge, τb, and an inter-vivos transfers wedge, τi. These are given by

(1− τk(θ))δRu′(co
2(θ)) ≡ u′(cy

1(θ)), (1.12)

(1− τb(θ))δRβu′(c̃y
2(θ)) ≡ u′(cy

1(θ)), (1.13)

and
(1− τi(θ))βu′(cy

2(θ)) ≡ u′(co
2(θ)). (1.14)

Capital, bequest, and inter-vivos wedges can be thought of as implicit marginal wealth taxes on
earned wealth through savings, transferred wealth at death, and transferred wealth between the
living, respectively. Hence these wedges distort the three possible sources of wealth accumula-
tion.14

While the focus of this paper is on τk, τb, and τi, one can also define the labor wedge, τn, as

1− τn(θ) ≡
h′
(

y1(θ)
θ

)
θu′(cy

1(θ))
. (1.15)

Nonzero distortions are caused either by binding incentive compatibility constraints or by differ-
ences between societal and private intergenerational discount factors.

1.2.3 tax implementation

In this section I describe a tax implementation of the social optimum. This establishes the
connection between the wedges defined in the previous section and the properties of an optimal
tax system.

13Recent examples of this approach in the new dynamic public finance literature include Farhi and Werning (2013b),
Golosov et al. (2013) or Kapička (2013).

14Clearly, there are other ways of expressing wealth distortions. The standard alternative in the dynamic public
finance literature is to define an “ex-ante” savings distortion which does not depend on future states of nature. See,
e.g., Golosov et al. (2006).
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The implementation features a nonlinear labor income tax schedule and linear wealth taxes
whose rates depend on the head of the dynasty’s level of effective labor, as in Kocherlakota (2005).
Specifically, wealth tax functions are given by tw

2 : [0, ȳ]→ R for w = {k, b, i}, where tk
2 is a linear

tax of personal wealth, and tb
2 and ti

2 are linear bequests and inter-vivos taxes, respectively. Under
this decentralization a dynasty of type θ solves the following problem:

max
{c,y1,k2,g2}

u(cy
1)− h

(y1

θ

)
+ P(θ)δ

(
u(co

2) + βu(cy
2)
)
+ (1− P(θ))δβu(c̃y

2) (1.16)

subject to

cy
1 + k2 = y1 − T1(y1) + W1, (1.17)

co
2 + g2 = Rk2(1− tk

2(y1)) + SS2(y1), (1.18)

cy
2 = g2(1− ti

2(y1)), (1.19)

c̃y
2 = Rk2(1− tb

2(y1)) + S̃S2(y1), (1.20)

where T1 : [0, ȳ]→ R is a nonlinear income tax schedule, SS2 : [0, ȳ]→ R and S̃S2 : [0, ȳ]→ R are
government transfers received at t = 2 if the head of the dynasty survives or dies, respectively,
and g2 ≥ 0 denotes the level of inter-vivos gifts.15’16

I start by defining a competitive equilibrium with taxes in this economy.

Definition 1. A competitive equilibrium with taxes is an allocation for consumption and effective effort
{c(θ), y1(θ)}θ∈Θ, a sequence of capital and inter-vivos gifts {k2(θ), g2(θ)}θ∈Θ and a tax system Φ ≡
{T1, tk

2, tb
2, ti

2, SS2, S̃S2} such that

1. Taking Φ as given, for each θ, {c(θ), y1(θ), k2(θ), g2(θ)} solves the problem of the θ-dynasty (1.16).

2. The government’s budget constraint is balanced in every period, i.e.∫
T1(y1(θ))dF(θ) = 0,

and

∫ [
P(θ)

(
Rk2(θ)tk

2(y1(θ)) + g2(θ)ti
2(y1(θ))− SS2(y1(θ))

)
+ (1− P(θ))

(
Rk2(θ)tb

2(y1(θ))− S̃S2(y1(θ))
)]

dF(θ) = 0.

15Note that tb
2 can be interpreted as either an estate or an inheritance tax. In reality, there is a difference. An estate

tax is based on the value of the property owned by the deceased regardless of the identity of the beneficiary. In
contrast, an inheritance tax applies to heirs and might be a function of several characteristics of the recipient such as
her relationship with the donor, her income, etc. In this two-period model, however, there is no such distinction given
that there is a single beneficiary per dynasty and tb

2 only depends on the parent’s level of effective labor. With the
exception of the U.S. and the U.K., among developed countries inheritance taxes are much more common than estate
taxes at the federal level. See Cremer and Pestieau (2006).

16Transfers SS2 and S̃S2 can be thought of as representing two features of a Social Security system, namely, the
retirement and survivors benefit programmes. A similar interpretation can be found in Shourideh and Troshkin (2012)
and Golosov et al. (2013).
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3. The intertemporal resource constraint (1.4) holds, so that the goods market clears.

Note that the government has no revenue requirements. This assumption is without loss of
generality.

I say that an allocation {c, y1} is implemented by the tax system Φ ≡ {T1, tk
2, tb

2, ti
2, SS2, S̃S2} if

there is a sequence {k2(θ), g2(θ)}θ∈Θ such that {c, y1, k2, g2} and Φ is a competitive equilibrium
with taxes. The next proposition provides the implementation result.

Proposition 1. Consider an optimal allocation {c∗, y∗1} that solves (1.8) and satisfies (1.11). Then {c∗, y∗1}
can be implemented by a tax system {T∗1 , tk∗

2 , tb∗
2 , ti∗

2 , SS∗2 , S̃S∗2} such that

tw∗
2 (y∗1(θ)) = τw∗(θ), (1.21)

for w = {k, b, i}, where for all θ, {τw∗(θ)}w=k,b,i are the wedges defined in (1.12)-(1.14) evaluated at
{c∗(θ), y∗1(θ)}.

Proof. See Appendix 1.7.1.

The following section analyzes the properties of optimal marginal wealth taxes. Given the
equivalence between marginal taxes and wedges in (1.21), for the rest of the analysis I center the
discussion around wealth wedges, which simplifies notation. Moreover, I occasionally alternate
between the use of “wedge” and “marginal tax” throughout the exposition.

1.2.4 a benchmark : homogeneous mortality risk

Before presenting optimal wedge formulas in this environment, I discuss the case where mortality
risk is homogeneous across the population; that is, when Assumption 1 does not hold. This is a
useful benchmark as it isolates the effect of uncertain life spans on the optimal tax system.

Proposition 2 characterizes optimal wealth wedges in this framework. The proof is omitted,
given that this case is nested by Proposition 3 below. In what follows, {τw∗(θ)}w=k,b,i denote the
wedges defined in (1.12)-(1.14) evaluated at a given solution to the relaxed planning problem (1.8).

Proposition 2. Suppose that for all θ, P(θ) = P̄ for some constant P̄ ∈ (0, 1). Let {c∗, y∗1} denote a
solution to the relaxed planning problem (1.8). Then for all θ, optimal wealth wedges satisfy

τk∗(θ) = 0, and τb∗(θ) = τi∗(θ) = −
(

β̂

β
− 1

)
u′(cy∗

1 (θ))

λ
≤ 0,

where λ is the Lagrange multiplier on the intertemporal resource constraint (1.4).

Proposition 2 immediately implies that when mortality risk is homogeneous across the population
and β̂ = β, optimal wealth wedges are zero. In this case, a version of the classical Atkinson and
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Stiglitz (1976) result holds and wealth taxes are superfluous: the optimum can be implemented by
relying only on a nonlinear income tax schedule.

A gap between β̂ and β has two effects of τb∗ and τi∗. First, it creates a force for marginally
subsidizing both post-mortem and inter-vivos transfers to descendants. The idea is that when
β̂ > β society cares more about descendants than parents themselves, which makes it optimal to
encourage intergenerational transfers. Second, any difference between intergenerational discount
factors renders tax schedules on bequests and inter-vivos transfers progressive, in the sense that
marginal taxes are increasing in θ. This property immediately follows from the concavity of the
utility functions and the fact that consumption allocations are increasing in θ under (1.11).

Both of these effects are discussed in detail in Farhi and Werning (2010). The main departure
from their model is that the authors assume that agents live for one period. Accordingly, in their
framework, inter-vivos transfers are precluded by construction and bequests are purely intentional.
An environment with uncertain life spans, on the other hand, not only allows for intergenerational
transfers between the living, but also incorporates an essential difference between inter-vivos and
post-mortem transfers; namely, that bequests are partly accidental while inter-vivos transfers are
purely intentional.

However, absent variations in mortality risk, the basic results of Farhi and Werning (2010)
apply to both bequests and inter-vivos transfers under this richer framework. Essentially, in the
absence of differential mortality, bequest and inter-vivos gifts should be taxed “uniformly,” in the
sense that either type of transfer should be subject to the same progressive marginal tax schedules.
This normative prescription has its counterpart in the U.S. federal tax code, where the same
marginal rates and (lifetime) exemption levels apply to either bequests and inter-vivos transfers.

The intuition for merging inter-vivos and bequests taxes into a single schedule is the following.
Under homogeneous mortality, the planner subsidizes transfers to younger generations only as
long as the act of giving generates a positive externality. But the magnitude of the externality is
related to the difference between β̂− β and not to the state of nature (death or survival) in which
transfers take place. Hence, when mortality risk is uniform across dynasties, the same subsidies
should apply for wealth passed on at death or while alive. Put differently, separating bequests
from inter-vivos gifts taxes neither serves a corrective role, nor facilitates incentive provision. In
the next subsection I show that this result critically hinges on the assumption that mortality risk is
homogeneous across the population.

1.2.5 heterogeneous mortality risk

The following Proposition characterizes optimal wealth distortions in the presence of a positive
mortality gradient.

Proposition 3. Suppose {c∗, y∗1} solves the relaxed planning problem and satisfies (1.11). Then for all θ,
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optimal wealth wedges satisfy

τk∗(θ) =
µ(θ)

f (θ)
P′(θ)
P(θ)

u′(cy∗
1 (θ))

λ
, (1.22)

τb∗(θ) = −
(

β̂

β
− 1

)
u′(cy∗

1 (θ))

λ
− µ(θ)

f (θ)
P′(θ)

1− P(θ)
u′(cy∗

1 (θ))

λ
, (1.23)

τi∗(θ) = −
(

β̂

β
− 1

)
δRu′(co∗

2 (θ))

λ
, (1.24)

where λ > 0 is the Lagrange multiplier on the intertemporal resource constraint (1.4) and µ(θ) ≥ 0 is the
costate associated with (1.10) satisfying µ(θ) = µ(θ̄) = 0.

Proof. See Appendix 1.7.1.

The wedge formulas in Proposition 3 reveal that differential mortality directly impacts optimal
capital and bequest taxes. These two channels are evident by the presence of the costate µ(θ) in
the optimal capital tax formula (1.22) and in the second term on the formula for bequest taxes
(1.23). In essence, these terms reveal that the social planner can relax incentive constraints through
the effective use of wealth taxes.

Note that the Pigouvian forces identified previously, which emerge from β̂ ≥ β, are still present
in the case of heterogenous mortality risk. However, while inter-vivos taxes only respond to such
forces, optimal marginal bequest taxes can now be decomposed into a Pigouvian term (reacting to
β̂− β) and a differential mortality term (the rightmost term on (1.23)). Accordingly, the shapes of
inter-vivos and bequest taxes will not typically coincide. This implies that these tax schedules
should no longer be unified, as they were in the absence of heterogenous mortality risk. In
particular, note that when β̂ = β optimal policy prescribes zero marginal taxes on inter-vivos gifts
but negative marginal taxes on bequests.17

To better understand the impact of mortality gaps on optimal capital and bequest taxes,
suppose that β̂ = β, so that wealth taxation is only justified on the grounds of mortality differentials
and τk∗(θ) ≥ 0 ≥ τb∗(θ). Intuitively, differential mortality makes more productive types relatively
prefer allocations where dynastic consumption is high under parental survival (see equation (1.1)).
The planner exploits this fact to motivate more productive types to exert effort. In particular,
relative to the full information benchmark, the planner allocates “too little” consumption to the
dynasties in the survival state and “too much” consumption in the death state. Such distortions
are implemented by combining positive marginal capital taxes with negative marginal bequest
taxes. Hence, potential deviators get relatively large after-tax returns in their less likely state of

17When β̂ > β, it is hard to determine the relative magnitudes of bequest and inter-vivos wedges analytically. In
subsequent sections I analyze this issue quantitatively.
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nature (death) and relatively low returns in the most likely state (survival), which relaxes incentive
constraints.18

1.3 infinite horizon

This section introduces the infinite horizon version of the model, laying the groundwork for the
quantitative analysis of subsequent sections. Unlike in the two-period version of the model, in
this environment children work in every period. Hence, this richer formulation incorporates the
effect of wealth taxes on work incentives of younger generations.

1.3.1 environment

Consider an overlapping generations economy that lasts for T = ∞ periods indexed by t ∈ N.
Agents face uncertain life spans and live for at most two periods. When young, agents work,
consume and produce a single descendant who is born in the following period. Old agents, i.e.
those who survive to the second period of their lives, only consume. A unit measure of initial old
individuals is alive at t = 1. Individuals are altruistic towards their descendants, so that the model
allows for a dynastic interpretation where each initial old corresponds to the head of a dynasty.

Agents are subject to two types of idiosyncratic shocks: productivity and survival shocks. At
the beginning period t, young agents draw a productivity shock θt from a distribution F with
support Θ =

[
θ, θ̄
]

and density f . Similarly, at the end of period t, young agents draw a survival
shock st ∈ {0, 1} with probability π(st). For any agent born at t− 1, st = 1 if such an agent
survives to t and st = 0 otherwise. Both productivity and survival shocks are i.i.d. across dynasties
and time. I denote t-histories of productivity and survival shocks by θt ≡ (θ1, θ2, ..., θt) ∈ Θt and
st ≡ (1, s2, ..., st) ∈ {0, 1}t.19 Productivity realizations are private information to the agents, but
survival shocks are publicly observable.

Dynasties are identified by their initial discounted expected utility entitlements w1 ∈ W1

which are distributed according to the distribution Ψ1 with density ψ1. Let yt ∈ [0, ȳ] denote the
level of effective effort of the young at t, and let cy

t ≥ 0 and co
t ≥ 0 denote consumption of the

young and the old in period t, respectively. An allocation of consumption and effective effort is
defined by the sequence {c, y} ≡ {cy

t , co
t , yt}∞

t=1 where20

cy
t :W1 ×Θt × {0, 1}t → Rt

+, co
t :W1 ×Θt × {0, 1}t → Rt

+, yt :W1 ×Θt × {0, 1}t → [0, ȳ].

As usual, productivity shocks determine the ability of the young agents at time t to transform effort

18It is straightforward to show that the implicit average marginal tax that any downward deviator would face
out-of-the-equilibrium-path is larger than if he reported truthfully. Specifically, define τE(θ′; θ) ≡ P(θ)τk∗(θ′) + (1−
P(θ))τb∗(θ′) as the dynasty’s average wealth distortion for any type θ reporting θ′. Using (1.22) and (1.23) it it follows
that for θ′ ≤ θ τE(θ; θ) = 0 while τE(θ′; θ) ≥ 0.

19Without loss of generality, I assume that s1 = 1 so that the initial old are alive when the economy starts.
20Note that co

t is measurable with respect to θt. Hence, it is assumed that the old learn the realization of the current
young’s skill when making their choices.
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into effective effort using the linear technology yt(w1, θt, st) = θtnt(w1, θt, st), where nt is effort
at time t. In addition, productivity shocks impact the probability that young agents survive to
the next period. Specifically, let π(st|θt−1) denote the conditional probability of drawing survival
history st given skill shock realization θt−1. I assume that only own productivity realizations affect
the probability of survival of the agents, so that π(st|θt−1) = π(st|θt−1). Hence, I can write

π(st|θt−1) = π(s1)π(s2|θ1)...π(st|θt−1),

with

π(st|θt−1) =

P(θt−1), st = 1,

1− P(θt−1), st = 0,

where P : Θ→ [0, 1] denotes the probability of survival as a function of the skill realization. Like
in the two-period model, I assume that P′ exists and it is strictly positive.

Preferences of a w1-dynasty over the allocation {c, y} can be represented by the expected utility
function

U({c, y}; w1) =
∞

∑
t=1

∑
st

∫
Θt

(βδ)t−1π(st|θt−1)

[
I(st = 1)u(co

t (w1, θt, st))

+ β

(
u(cy

t (w1, θt, st))− h
(

yt(w1, θt, st)

θt

)) ]
f t(θt)dθt. (1.25)

where I(st = 1) is an indicator function which equals one when st = 1, f t(θt) ≡ f (θ1) f (θ2)... f (θt)

denotes the density of θt, β > 0, δ ∈ (0, 1) and βδ < 1. I assume that u′, −u′′, h′ and h′′ exist and
are positive, u′(0) = ∞ and u′(∞) = h′(0) = 0.

An allocation {c, y} is said to be resource feasible if for all t ∈N

∫
W1×Θt

∑
st

π(st|θt−1)
[
I(st = 1)co

t (w1, θt, st)

+ cy
t (w1, θt, st)− yt(w1, θt, st)

]
f t(θt)ψ1(w1)dθtdw1 + H = 0, (1.26)

where H ≥ 0 is a constant level of exogenous government purchases.
Note that there is no physical capital in this economy. This is a common assumption among

infinite horizon models of social insurance in general equilibrium, following Atkeson and Lucas
(1992).21 The absence of capital considerably simplifies the analysis but does not affect the shape
of optimal wealth wedges.22

Given that that productivity shocks are privately observed, any optimal mechanism should
induce agents to report skill realizations truthfully. Define a reporting strategy σ ≡ {σt}∞

t=0, where

21In particular, Farhi and Werning (2006) also adopt this assumption in a dynastic Mirrlees model with one-period
lived agents.

22On the other hand, the levels of optimal wedges are potentially affected by the absence of physical capital. See
below.
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σt : Θt → Θ. An allocation is then said to be incentive compatible if, for all w1 ∈ W1, θt ∈ Θt, σt ∈ Θt

U({c, y}; w1) ≥
∞

∑
t=1

∑
st

∫
Θt

(βδ)t−1π(st|θt−1)
[
I(st = 1)u(co

t (w1, σt, st))

+ β

(
u(cy

t (w1, σt, st))− h
(

yt(w1, σt, st)

θt

)) ]
f t(θt)dθt. (1.27)

An allocation is said to be feasible if it satisfies (1.26), (1.27) and delivers utility w1 to the dynasties
with initial entitlement w1, i.e.

U({c, y}; w1) = w1. (1.28)

The social planner ranks allocations according to the social welfare function

SWF =
∫
W1

∞

∑
t=1

∑
st

∫
Θt

(β̂δ)t−1π(st|θt−1)
[
I(st = 1)u(co

t (w1, θt, st))

+ β̂

(
u(cy

t (w1, θt, st))− h
(

yt(w1, θt, st)

θt

)) ]
f t(θt)ψ1(w1)dθtdw1, (1.29)

where β̂ ∈ (β, 1
δ ) is the coefficient of social altruism.

Constrained efficient allocations solve the dynamic mechanism design problem:

max
{c,y}

SWF (1.30)

subject to (1.26), (1.27) and (1.28).

1.3.2 a relaxed planning problem

As shown by Atkeson and Lucas (1992), the planning problem in (1.30) has a recursive structure.
At any period t, the state variable of this problem corresponds to the cross-sectional distribution
of utility entitlements Ψt, say. Consequently, the solution to the planning problem defines a
mapping Ω and a law of motion Ψt+1 = Ω(Ψt). A steady state in this environment is defined as
a distribution of continuation utility entitlements Ψ∗ satisfying Ψ∗ = Ω(Ψ∗). The existence of
a non-degenerate steady state distribution hinges on β̂ > β. When β̂ = β, on the other hand,
long-run inequality is unbounded and the classical “immiseration” result of dynamic contracting
frameworks holds.23

Working with the distribution of utilities as a state variable poses some obvious challenges, as
Ψt is an infinite dimensional object. In what follows I take an alternative route by focusing on a
relaxed version of the original planning problem. Crucially, the solution to the relaxed problem
coincides with the original one at a steady state, but the former admits a recursive formulation

23While I do not provide a proof showing that a steady state exists, my numerical simulations indicate that this is
the case (see Appendix 1.7.3). Farhi and Werning (2007) formally prove that the existence of a steady state is guaranteed
under β̂ > β in a dynastic environment with one-period lived agents.

25



using a one-dimensional state variable. This approach essentially extends the method developed
by Farhi and Werning (2007) to an environment with uncertain life spans, heterogeneous mortality
risk and a continuum of skill types.

The relaxed version of the planning problem is obtained by replacing the original sequence of
resource constraints in (1.26) by a single intertemporal resource constraint:

∞

∑
t=1

qt−1
∫

W1×Θt

∑
st

π(st|θt−1)
[
I(st = 1)co

t (w1, θt, st)

+ cy
t (w1, θt, st)− yt(w1, θt, st)

]
f t(θt)ψ1(w1)dθtdw1 = −H

∞

∑
t=1

qt−1, (1.31)

for some intertemporal price q > 0.
The original set of resource constraints implies (1.26), while the converse is true at a steady

state. The relaxed planning problem can be written as

max
{c,y,λ̂}

∫
W1

L(w1)ψ(w1)dw1, (1.32)

subject to (1.27) and (1.28), where

L(w1) ≡
∞

∑
t=1

∑
st

∫
Θt

π(st|θt−1)
(

β̂δ
)t−1

{
I(st = 1)u(co

t (w1, θt, st))

+ β̂
(

u(cy
t (w1, θt, st))− h

(
yt(w1, θt, st)

θt

))
− λ̂

(
q

β̂δ

)t−1 [
I(st = 1)co

t (w1, θt, st) + cy
t (w1, θt, st)− yt(w1, θt, st)

]}
f t(θt)dθt. (1.33)

where λ̂ > 0 is the multiplier on the intertemporal resource constraint (1.31).
Given w1 and λ̂, define a component planning problem by

max
{c,y}

L(w1) (1.34)

subject to (1.27) and (1.28).
The advantage of working with the relaxed planning problem is that it allows for a simple

recursive formulation at steady states, along the lines of Spear and Srivastava (1987). Specifically,
first note that a steady state requires q = β̂δ; otherwise aggregate dynastic consumption would
not be constant across periods. Using this fact and applying a first-order approach to the incentive
compatibility constraints (1.27), the component planning problem at a steady state can be written
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recursively as:

J(w, s) = max
{c,y,w1,w0}

∫
θ

{
I(s = 1)u(co(θ)) + β̂

(
u(cy(θ))− h

(
y(θ)

θ

))
− λ̂

[
I(s = 1)co(θ) + cy(θ)− y(θ)

]
+ β̂δ ∑

s′
π(s′|θ)J(ws′(θ), s′)

}
f (θ)dθ (1.35)

subject to

V(θ) = I(s = 1)u(co(θ)) + β

(
u(cy(θ))− h

(
y(θ)

θ

))
+ βδ ∑

s′
π(s′|θ)ws′(θ), (1.36)

V ′(θ) = βh′
(

y(θ)
θ

)
y(θ)
θ2 + βδ ∑

s′

∂π(s′|θ)
∂θ

ws′(θ), (1.37)

w =
∫
θ

V(θ) f (θ)dθ, (1.38)

where ws′ denotes the continuation utility contingent on the future survival state being s′ ∈ {0, 1}.
Just like in the two-period model, solutions to (1.35) satisfy the original set of incentive

compatibility constraints (1.27) under certain monotonocity conditions on the optimal allocations.
The next Lemma establishes this result. (The proof is omitted as it analogous to its counterpart in
the two-period model in Lemma 1.) Monotonicity conditions are verified ex-post in the numerical
simulations.

Lemma 2. Suppose that for all (w, s) the solution to (1.35) satisfies:

dy(θ)
dθ

≥ 0,
dcy(θ)

dθ
≥ 0,

dco(θ)

dθ
≥ 0,

dw(θ)

dθ
≥ 0, and

dw̃(θ)

dθ
≤ 0. (1.39)

Then the allocation {c, y} generated by the policy functions of (1.35) is incentive compatible, i.e. it satisfies
(1.27).

1.3.3 optimal wealth taxes

As in the two-period version of the model, I focus on a tax implementation which features a
nonlinear labor income tax schedule and linear wealth taxes which depend on effective effort
histories.

Under this decentralization w1-dynasties face the following sequence of budget constraints for
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all (t, st, θt):

cy
t (w1, θt, st) + kt+1(w1, θt, st) ≤ yt(w1, θt, st)

+ (1− I(st = 1))Rtkt(w1, θt−1, st−1)(1− tb
t (w1, yt, st))

+ I(st = 1)gt(w1, θt, st)(1− ti
t(w1, yt, st))− Tt(w1, yt, st),

(1.40)

co
t (w1, θt, (st−1, 1)) + gt(w1, θt, (st−1, 1)) ≤ Rtkt(w1, θt−1, st−1)(1− tk

t (w1, yt, (st−1, 1)))

+ SSt(w1, yt, (st−1, 1)), (1.41)

where tb
t , ti

t, and tk
t are linear taxes on inheritances, inter-vivos transfers, and capital returns,

respectively, Tt is a nonlinear labor income tax schedule, SSt are government transfers received at
old age (which can be interpreted as social security benefits), gt denotes the level of inter-vivos
gifts, Rt is the pre-tax gross interest rate and kt+1 is the level of savings at t. Note that taxes and
government transfers are functions of effective labor histories yt ≡ (y1, y2, ..., yt) instead of skill
shock histories θt (I expand on this issue below).

Definition 2. A competitive equilibrium with taxes in the infinite horizon economy is an allocation for
consumption and effective effort {cy

t (w1, θt, st), co
t (w1, θt, st), yt(w1, θt, st)}, a sequence of savings and inter-

vivos gifts {kt(w1, θt, st), gt(w1, θt, st)}, a tax system {tb
t (w1, θt, st), ti

t(w1, θt, st), tk
t (w1, θt, st), Tt(w1, θt, st)},

a sequence of social security benefits {SSt(w1, θt, st)}, and a sequence of pre-tax interest rates {Rt} such
that:

1. The allocation for consumption, effective effort, capital, and inter-vivos gifts maximize utility (1.25)
subject to the budget constraints (1.40) and (1.41).

2. The government’s budget constraint is balanced in every period.

3. The sequence of resource constraints in (1.26) holds, so that the goods market clears.

The next assumption is required to establish the tax implementation result. For now on, starred
allocations and wedges correspond to the optimal ones.

Assumption 2. Let Dt(w1, st) ≡
{

yt : ∃θt such that yr = y∗r (w1, θr, sr), r = 1, ..., t
}

. Then for all j =
y, o, there exists functions ĉj

t :W1 × [0, ȳ]t × St → R+ such that

ĉj
t(w1, yt, st) = cj∗

t (w1, θt, st)

for all (w1, st) and yt ∈ Dt(w1, st).

In words, the set Dt(w1, st) defines the effective labor histories yt such that there is some agent
that is allocated yt at the optimum when his type is (w1, θt, st). Assumption 2 says that optimal
consumption allocations can be written in terms of effective labor histories instead of skill
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realizations. As it is shown next, by this property taxes can be written in terms of effective labor
allocations, which are observable. The result follows Kocherlakota (2005) closely.

Proposition 4. Let {c∗, y∗} be an optimal allocation that solves (1.30) and satisfies Assumption 2. Then
there exists a tax system {tb

t (w1, yt, st), ti
t(w1, yt, st), tk

t (w1, yt, st), Tt(w1, yt, st)} and a sequence of social
security benefits {SSt(w1, yt, st)} such that {c∗, y∗} can be implemented as a competitive equilibrium with
taxes.

Proof. See Appendix 1.7.1.

As shown in Appendix 1.7.1, optimal wealth taxes under this implementation are given by

1− ti
t(w1, yt, st) =

u′(ĉo
t (w1, yt, st))

βu′(ĉy
t (w1, yt, st))

, (1.42)

1− tk
t (w1, yt, (st−1, 1)) =

u′(ĉy
t−1(w1, yt−1, st−1))

Rtδu′(ĉo
t (w1, (yt−1, yt), (st−1, 1)))

, (1.43)

1− tb
t (w1, yt, (st−1, 0)) =

u′(ĉy
t−1(w1, yt−1, st−1))

Rtβδu′(ĉy
t (w1, (yt−1, yt), (st−1, 0)))

, (1.44)

for all (w1, st) and yt ∈ Dt(w1, st).

wealth taxation at the steady state

Given that there is no capital in this economy, the sequence of pre-tax rates {Rt} is undetermined.
Hence, the tax formulas above imply that the level of optimal capital and bequest taxes cannot be
uniquely pinned down. To make progress I follow Farhi and Werning (2006) and use the interest
rate that would hold at a steady state in an economy with capital.24 That is, I set

Rt =
1

β̂δ
(1.45)

for all t.
In what follows I analyze the properties of optimal wealth taxes at a steady state under (1.45).

The main conclusion of the analysis is that the key properties of wealth taxes obtained in the
two-period model extend to the current framework. To simplify notation, I focus on steady state
wedges which are written in terms of skills rather than effective labor. This is without loss of
generality as the optimal marginal wealth taxes obtained earlier map exactly to the newly defined
wedges at the optimum.

I summarize intertemporal bequest and capital distortions by means of ex-ante wedges. Specif-
ically, for each (θ, w, s) and for any allocation define the ex-ante bequest and capital wedges

24Farhi and Werning (2006) make an analogous assumption in a dynastic environment with one-period lived agents.
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as

1− τ̄b(θ, w, s) ≡ β̂

β
u′(cy(θ, w, s))

∫
θ′

1
u′(cy(θ′, w0(θ, w, s), 0))

dF(θ′), (1.46)

and
1− τ̄k(θ, w, s) ≡ β̂u′(cy(θ, w, s))

∫
θ′

1
u′(co(θ′, w1(θ, w, s), 1))

dF(θ′), (1.47)

respectively.25

For each (θ, w, s), steady state inter-vivos wedges are naturally defined by

1− τi(θ, w, 1) ≡ u′(co(θ, w, 1))
βu′(cy(θ, w, 1))

. (1.48)

Now I establish the main result of the section.

Proposition 5. For each (w, s), at any solution to the relaxed planning problem (1.32) satisfying (1.39)
optimal wealth wedges satisfy

τ̄k∗(θ, w, s) = β
µ(θ, w, s)

f (θ)
P′(θ)
P(θ)

u′(cy∗(θ, w, s))
λ̂

, (1.49)

τ̄b∗(θ, w, s) = −β̂

(
β̂

β
− 1

)
u′(cy∗(θ, w, s))

λ̂
− β

µ(θ, w, s)
f (θ)

P′(θ)
1− P(θ)

u′(cy∗(θ, w, s))
λ̂

, (1.50)

τi∗(θ, w, 1) = −
(

β̂

β
− 1

)
u′(co∗(θ, w, 1))

λ̂
, (1.51)

where µ(θ, w, s) ≥ 0 is the costate associated with (1.37).

Proof. See Appendix 1.7.1.

Proposition 5 shows that the key properties of wealth wedges derived in the simpler two-period
version of the model also apply to the infinite horizon environment (compare to Proposition 3). In
particular, marginal bequest taxes can be decomposed into a Pigouvian and a differential mortality
term, ex-ante marginal capital taxes are positive and marginal taxes on inter-vivos transfers are
negative and progressive.

There are a few notable differences with the two-period model. First, optimal taxes vary
with the current survival state s.26 Second, in this environment, bequest and inter-vivos taxes
are not unified for two reasons. The first one is heterogeneity in mortality risk. This feature
creates differences in the slopes of the wedges, as in the two-period version. But differently from

25At any time t, the ex-ante wedge τ̄b(θt, wt, st) corresponds to the expected marginal bequest tax paid by a dynasty
of type (θt, wt, st) at t + 1. A similar interpretation holds for τ̄k(θt, wt, st).

26In Section 1.5 I show that such variation is quantitatively relevant.
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the two-period model, average capital and inter-vivos taxes do not typically coincide even in
the absence of heterogeneity in life expectancies. This follows from the presence of future skill
uncertainty.

1.4 calibration

1.4.1 preliminaries

I assume that individuals have constant relative risk aversion (CRRA) preferences over consump-
tion and isoelastic disutility on effort so that

u(c) =

 c1−γ

1−γ , if γ > 0, γ 6= 1,

log(c), if γ = 1,
(1.52)

where γ is the coefficient of relative risk aversion, and

h(l) =
l1+ 1

ε

1 + 1
ε

, (1.53)

where ε is the Frisch elasticity of labor supply.
While in the model mortality heterogeneity is only tied to the ability of the agents, for

calibration purposes it will be convenient to model mortality risk as generally as possible. Hence,
I assume that mortality risk is indexed by ν ∈ R+ which represents each individual’s “frailty”
and summarizes all sources of mortality risk other that age.

I use a mixed proportional hazard (MPH) model for mortality risk, along the lines of Vaupel
et al. (1979). Specifically, the mortality hazard rate of an individual with frailty type ν at time t is
given by

ηt(ν) = νηt, (1.54)

where ηt is the baseline mortality hazard rate at t.
As it is common practice in duration analysis, I parameterize the baseline hazard rate to make

progress with the estimation of the model.27 Following Einav et al. (2010), I assume that the date
of death follows a Gompertz distribution with shape parameter φ. This is equivalent to imposing
that the baseline hazard rate is given by

ηt = exp(φ · t), (1.55)

Finally, I assume that θ and ν are jointly log-normally distributed:28

27See Wooldridge (2002), Ch. 20. As an exception, in Hosseini (2014) mortality heterogeneity is identified by using
data on subjective survival probabilities.

28Log-normally distributed skills is a standard assumption in the literature if one does not focus on the top of the
income distribution (see Saez (2001) and Mankiw et al. (2009)). This specification is justified here given that data from
the Health and Retirement Study does not include very rich individuals.
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(
log(θ)
log(ν)

)
∼ N

([
µθ

µν

]
,

[
σ2

θ ρσθσν

ρσθσν σ2
ν

])
(1.56)

As discussed next, the correlation between θ and ν is a crucial input for the calibration of P(θ).

1.4.2 probability of survival across skills

The probability of survival across skill types is the main empirical object of interest in the
analysis. A number of studies have correlated survival probabilities to observable socioeconomic
characteristics, such as education, income or wealth. However, estimating this correlation across
unobservable earning abilities is more rare.29

I calibrate the probability of survival across skills in two steps: (i) I parameterize this function
based on the correlation between frailty and skills in (1.56), and (ii) I calibrate such correlation by
targeting the relationship between mortality outcomes and income in U.S. data. This subsection
deals with (i). Step (ii) is relegated to the following subsections.

Under (1.54) and (1.55) the probability of survival to age t from birth for a frailty type ν is
given by30

P̃t(ν) = exp
(

ν

φ
(1− exp(φt))

)
. (1.57)

Now define
Pt(θ) ≡ P̃t(ν̄(θ)), with ν̄(θ) ≡ exp (E [log(ν)| log(θ)]) .

Note that log(ν̄(θ)) is the conditional mean of log(ν) given log(θ). Using (1.57) and the distribu-
tional assumption (1.56), Pt(θ) can be written as

Pt(θ) = P̃t

(
exp

(
µν + ρσν/σθ(log(θ)− µθ)

))
. (1.58)

The deterministic function Pt(θ) corresponds to the probability of survival across skill types used
to solve the planning problem.

1.4.3 parameter calibration

Table 1.1 shows the values of the model parameters in the benchmark calibration. A set of
parameters is chosen based on previous studies. Within this group, I set the annual intertemporal
discount factor to 0.96, the risk aversion coefficient to 1 and the Frisch elasticity to 0.5 following
Chetty et al. (2011). Each period in the model comprises 25 years. The distribution of skills is taken

29One exception is the study of Hosseini and Shourideh (2014) who work with discrete types.
30See Appendix 1.7.2 for details.
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from Mankiw et al. (2009), who proxy ability using hourly wages in the 2007 Current Population
Survey (CPS) rotating March sample.

The rest of the parameters are either estimated or calibrated to match certain features of the
data. Such procedures are described in the following subsections. The main data source is the
Health and Retirement Study (HRS), which is a panel survey is administered by the Institute for
Social Research at the University of Michigan. This survey interviews individuals over 50 years
old and their spouses on a biennial basis. It provides detailed information on income, assets, and
mortality which makes it particularly suitable for calibrating the probability of survival across
earning abilities.

Table 1.1: Calibration.

Parameter Symbol Value Source

Period length T 25 years

Risk aversion γ 1

Annual subjective discount factor δ
1
T 0.96

Frisch elasticity ε 0.50 Chetty et al. (2011)

Mean of log(θ) µθ 2.76 Mankiw et al. (2009)

Std. dev. of log(θ) σθ 0.56 Mankiw et al. (2009)

Mean of log(ν) µν −5.42 Estimation

Std. dev. of log(ν) σν 1.13 Estimation

Gompertz shape parameter φ 0.09 Estimation

Correlation between log(θ) and log(ν) ρ −0.14 Calibration

Altruism coefficient β 1.34 Calibration

mortality heterogeneity

To estimate µν, σν, and φ I follow a standard methodology in survival analysis which uses realized
mortality outcomes of a given cohort of individuals. The approach is particularly close to the one
in Einav et al. (2010) who estimate analogous parameters for the U.K. based on restricted annuity
data.

Mortality data in HRS for individual i can summarized by mi = (si, ti, di), where si is the age
when individual i entered the sample, ti is the age when the individual exited and di ∈ {0, 1}
indicates whether the individual exited because of death (di = 1) or censoring (di = 0). The ages
of entry and exit are reported in days, so I treat mortality as a continuous process. Given this
information and denoting by a the actual date of death, the likelihood of observing mi is

Pr(mi|ν, φ) = Pr (a = ti|t > si, ν, φ)di Pr (a ≥ ti|t > si, ν, φ)1−di , (1.59)
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or

Pr(mi|ν, φ) =

(
−∂Pti(ν, φ)/∂t

Psi(ν, φ)

)di
(

Pti(ν, φ)

Psi(ν, φ)

)1−di

, (1.60)

where ∂Pti(ν, φ)/∂t = −ν exp
(

φt + ν
φ (1− exp(φt))

)
is the Gompertz density.

The log-likelihood is

L
(

φ, µν, σν|(mi)
N
i=1

)
=

N

∑
i=1

log
(∫

Pr(mi|ν, φ)g(ν|µν, σν)dν

)
. (1.61)

I use mortality outcomes of households who responded to the first wave of the HRS survey in
1992, which contains individuals born between 1931-1941. I restrict my benchmark sample to
male respondents between 50-64 years old in 1992. I only keep respondents who were alive and
responded to the first wave and follow these individuals throughout the last wave (2010) until they
either die or exit due to right-censoring. The total number of observations is 3,481 respondents, of
which 1,315 died within the observed period.

Table 1.2 presents the results of the estimation under three different samples. The first row
corresponds to the benchmark sample described previously. The second and third rows show
the results when the sample is modified by increasing the maximum possible age to 84 years
old and by including females, respectively. As expected, the mean frailty increases when older
individuals are included. Besides, older respondents put a downward pressure on the degree
of mortality heterogeneity. Such result is in line with the conclusions of Hurd et al. (2001), who
find evidence that mortality differentials diminish with age.31 Finally, by including females mean
frailty decreases but the estimated degree of heterogeneity increases with respect to the benchmark
estimates. This is consistent with the well documented fact that women on average live longer
than men do.

correlation between mortality and skills

I calibrate ρ, the correlation between log(θ) and log(ν), by matching the relationship between
mortality and permanent income in HRS data. Details follow.

I center attention on mortality rates for male retirees between 65-75 years old across waves
1998 and 2000. The focus on retirees is justified on two grounds. First, the majority of individuals
who die in a given wave were previously retired. Second, HRS provides detailed information on
retirement income which can be used to stratify the population into permanent income categories
(see below). I use mortality outcomes between waves 1998-2000 only because it maximizes the
number of deaths across waves given my sample restrictions.

For each respondent, permanent income is measured as the average of current non-asset
retirement income over waves 1998 and 2000, as long as the individual is alive. Current non-
asset income is the sum of income from Social Security retirement benefits, employer pensions,

31Their estimation is based on mortality outcomes between waves 1 and 2 of the Asset and Health Dynamics among
the Oldest-Old (AHEAD) study, a sub-sample of households in HRS born in 1923 or earlier.
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Table 1.2: Mortality Parameter Estimates.

Estimates

Sample µν σν φ No. of Obs. % of Deaths

50-64 males -5.416 1.133 0.088 3,481 37.78

(0.391) (0.278) (0.016)

50-84 males -5.266 0.930 0.085 3,790 40.18

(0.276) (0.226) (0.011)

50-64 males and females -6.099 1.416 0.104 7,211 31.34

(0.217) (0.100) (0.008)

Notes: The three samples are drawn from the initial HRS survey in 1992. The first row corre-
sponds to the benchmark sample. Ages are measured at the beginning of the first wave. “% of
Deaths” denotes the fraction of individuals who died within each sample between waves 1 and
10. Standard errors are reported in parentheses.

annuities, veteran’s benefits, welfare, and food stamps. My measure of permanent income is
similar to the one in De Nardi et al. (2010), which is motivated by the fact that Social Security
and pension benefits are typically increasing functions of labor income before retirement. I define
permanent income quartiles separately for singles and couples using sample weights provided by
HRS. The sample consists of 2,989 respondents, of which 450 died between waves.32

The first column of Table 1.3 shows the two-year weighted mortality rates profiles across
permanent income quartiles in the data. I calibrate ρ to match those moments to its simulated
counterparts.33 In a nutshell, the artificial data is generated by simulating the life spans of a large
number of individuals indexed by wage-age pairs. The second column of the table reports the
moments generated by the calibrated value of ρ which is -0.14. Appendix 1.7.2 provides additional
details.

32Individuals with zero or missing values for permanent income are dropped.
33Hosseini (2014) applies a similar method to estimate the relationship between earnings and mortality.
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Table 1.3: Two-year Mortality Rates: Model Vs. Data

Income Quartile Data Model

Lowest .137 .132

2 .077 .098

3 .059 .088

Highest .056 .049

Notes: “Data” shows weighted mortality
rates between waves 1998 and 2000 in
HRS for retirees between 65-75 years old.
“Model” corresponds to the moments gen-
erated by the numerical simulations.

Figure 1.1 illustrates some properties of the average life expectancies implied by the calibrated
probability of survival Pt(θ) using (1.58).34 As a measure of out-of-sample fit, panel (a) compares
life expectancies across ages in the model to those in the 2009 period life table for U.S. males.35 I
plot life expectancies for individuals over 50 years old, which corresponds to the age group in the
HRS survey. It is worth noting that the model fits the data very closely along this dimension, in
particular for individuals younger than 80.

Panel (b) plots the differences in average life expectancies between certain top and bottom
percentiles in the model. Notice that individuals of 50 years old at the top 1% of the ability
distribution are expected to live almost 8.5 years more than individuals at the bottom 1%, which
provides evidence of substantial mortality differences across skills. It is useful to compare these
numbers to previous studies. Waldron (2007), for example, estimates that the difference in life
expectancies at 65 for male social security-covered workers between the top and bottom halves of
the income distribution is around 1.9 years for the period 1999-2000.36 The counterpart in this
model is around 2.04 years.

coefficient of altruism

While many studies have tested whether altruistic bequest motives are present in the data, to
the best of my knowledge few provide an estimate of the altruism coefficient when the null
hypothesis holds.37 One exception can be found in the work of Abel and Warshawsky (1988), who
calibrate the altruism coefficient to be consistent with a steady state in a deterministic economy
without taxes. I calibrate β by applying their methodology in this framework. Specifically, it

34The average expectation of life at age t is given by et ≡
∫

Θ

∫ ∞
t

Ps(θ)
Pt(θ)

dsdθ.
35See http://www.cdc.gov.
36She uses the Social Security Administration’s Continuous Work History Sample. This is a much larger sample

than the one used in this paper, but it is not publicly available.
37Two examples in the first group of studies are Altonji et al. (1997) or Abel and Kotlikoff (1994).
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Figure 1.1: Average Life Expectancies across Ages. Panel (a) compares average
life expectancies in the model to those in the 2009 period life tables for U.S.
males. Panel (b) plots the differences in average life expectancies between top
and bottom 1%, 10% and 50% of the skill distribution predicted by the model.

is straightforward to show that a steady state in a deterministic economy without taxes is only
consistent with β = (δR)−1. Using the calibrated value of δ in Table 1.1 and an annual interest
rate of 3%, this formula yields β = 1.33.38

This methodology is admittedly rough. However, a similar value for β can be obtained by
applying an alternative calibration strategy that relies on consumption data.39 Specifically, consider
the decentralized version of the infinite horizon economy presented in Section 1.3.3. Assuming
that taxes on inter-vivos transfers are zero, one gets the intergenerational Euler equation:

u′(co
t (w1, θt, st)) = βu′(cy

t (w1, θt, st)),

for all t and for all (w1, θt, st).
Using the CRRA preferences in (1.52), this expression can be rearranged as

β =

(
Cy

t
Co

t

)γ

, (1.62)

where Cj
t ≡ E

[
cj

t(w1, θt, st)
]

for j = y, o, and the expectation is taken over (w1, θt, st).
For a given value of γ, equation (1.62) can be used to recover the coefficient of altruism β

38Recall that the frequency in the model is 25 years.
39Just as in Abel and Warshawsky (1988), this method assumes that intergenerational altruism is present in the

data. This is a strong assumption, as the evidence for altruism is inconclusive: Tomes (1981) and Becker and Tomes
(1986), for instance, present evidence in support of the altruism hypothesis, while Altonji et al. (1992) reject some of the
empirical implications of the altruistic framework.
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using cross-sectional consumption data of different cohorts. I use data from the Consumption
Expenditure Survey (CEX), which provides comprehensive measures of consumption for a repre-
sentative cross section of households in the US on a quarterly basis. I focus on the measure of total
consumption elaborated by Krueger and Perri (2006).40 Young households are identified as those
with working heads between 25 and 54 years old receiving positive labor income. The old include
all households with retired heads over 65 years old. Each household in CEX is interviewed for a
maximum of four times and I measure yearly consumption as the sum of the quarterly measures
of consumption reported in each of these interviews. Figures are expressed in adult equivalent
units in 1982-1984 constant dollars using CPI.41 The total number of observations is 37,789, of
which 32,834 are young households.
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Figure 1.2: Consumption Data. The consumption measure corresponds to the
one elaborated by Krueger and Perri (2006) using CEX data. Figures expressed
in adult equivalent units in 1982-1984 constant dollars using CPI.

Figure 1.2 shows the average consumption measure across different cohorts between 1990-2003.
Clearly, consumption of the young is significantly larger than for the old. Also, the ratio between
these measures seems to follow a stationary process throughout the observed period. Table 1.4
reports the corresponding estimates of β consistent with (1.62). These are obtained by taking time
series averages for different values of risk aversion.

As anticipated, the values of β calibrated in this fashion are fairly close to the 1.33 figure in
the benchmark calibration, especially for low values of risk aversion.

40This measure of consumption includes nondurables, services and imputed values for large durables (such as
housing and vehicles). For details refer to Krueger and Perri (2006).

41All data is weighted using CEX population weights. I exclude rural households, households who haven’t
completed four consecutive interviews, and observations corresponding to young households with negative after-tax
labor income or those who report positive labor income but zero hours worked.
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Table 1.4: Calibration of β using CEX Consumption Data.

γ = 1 γ = 1.5 γ = 2

β estimate 1.30 1.48 1.69

Notes: “β estimates” corresponds to time se-
ries averages of the coefficient of altruism
implied by equation (1.62) using the annual
consumption measure described in the text
between 1990-2003.

1.5 quantitative results

Constrained optimal allocations are computed numerically as follows. First, I solve the component
planning problem (1.35) by value function iteration over a grid of (w, s) for a given shadow price
λ̂. The value function is interpolated using Chebyshev polynomials. The skill distribution is
truncated at an hourly wage of 60 dollars, which roughly corresponds to the 99th percentile of
the wage distribution.42 Given the solution of the component planning problem, I approximate a
steady state distribution of continuation utility entitlements via Monte Carlo simulation. Finally, I
iterate on the shadow price λ̂ until the resource constraint (1.26) holds at the steady state. Optimal
wedges at the steady state are interpolated using splines. Additional details on this numerical
procedure are contained in Appendix 1.7.3. I solve the model for two values of the coefficient of
social altruism β̂; namely, 1.5 and 2. According to (1.45), these choices would yield annual interest
rates of around 2.5% and 1.3% in an economy with capital, respectively.

To summarize the degree of distortion along the dimensions (θ, s), in what follows I center the
discussion around steady state average wedges. More precisely, for any given wedge τ(θ, w, s) I
define the steady state average wedge as τA(θ, s) ≡

∫
τ(θ, w, s)dΨ∗(w), where Ψ∗ is the approx-

imated steady state distribution. Table 1.5 reports optimal average distortions on the median
worker at a steady state for the two values of β̂, including the (ex-ante) differential mortality term
on bequest wedges.

Recall that mortality differences primarily shape the optimal tax code via capital taxes and
the differential mortality term on bequest taxes. The former ranges between 1.4% and 1.7%
and the latter between -3.4% and -2.9%. Notably, these magnitudes do not change much with
β̂. In particular, when increasing the social level of altruism by 25% capital wedges and the
mortality term on bequest wedges only change by 0.1-0.2 percentage points. This suggest that the
quantitative effect of mortality differences on optimal tax rates is quite robust to the normative
criterion at hand. For comparison, overall bequest distortions and inter-vivos wedges change by
a factor of 2 as β̂ moves from 1.5 to 2. Also note that under both configurations marginal labor
income tax rates are fairly in line with those in developed countries.

42Recall that the focus of the analysis is not on the tax properties at the top of the skill distribution. Under this
calibration, the median worker earns around 18 dollars per hour.
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Table 1.5: Average Distortions on Median Worker.

s = 1 s = 0

β̂ = 1.5 β̂ = 2.0 β̂ = 1.5 β̂ = 2.0

Capital (ex-ante) 1.7% 1.6% 1.5% 1.4%

Bequest (ex-ante) -35.6% -71.8% -23.5% -46.6%

Mortality Term -3.4% -3.2% -2.9% -2.9%

Inter-vivos -40.0% -89.8% - -

Labor 30.2% 28.9% 26.0% 25.3%

Notes: The average wedge τA(θ, s) associated to a given wedge
τ(θ, w, s) is defined as τA(θ, s) ≡

∫
τ(θ, w, s)dΨ∗(w), where Ψ∗ is the

approximated steady state distribution.

An interesting lesson from the simulations is that optimal distortions can vary substantially
with the current survival state of the dyansty s. In particular, the average distortions on capital,
bequests and labor are all larger in absolute value when s = 1. The phenomenon can be explained
by the fact that these are all distortions on young agents, whose relative Pareto weights falls when
old agents are alive. This finding suggest that partial reforms based on tying the tax code to
survival histories can potentially yield significant welfare gains.

Figures 1.3 and 1.4 display average distortions over the entire range of the skill distribution.43

Two important lessons previously mentioned regarding the median worker also apply to the entire
skill set. First, mortality-driven distortions (the capital wedge and differential mortality term on
bequest wedges) are rather insensitive to the value of β̂ while overall bequest and inter-vivos
distortions embedding Pigouvian forces vary substantially. Second, optimal taxes can change
considerably with the current survival state of the dynasty.

Regarding the shapes of taxes on intergenerational transfers, Figure 1.4 reveals that the degree
of progressivity of inter-vivos and bequest taxes changes at the high and low ends of the skill
distribution: marginal inter-vivos (bequest) taxes are more progressive at the bottom (top). This
is just a reflection of the U-shaped pattern of the differential mortality term affecting optimal
bequest wedges.

43The top individual always faces zero marginal distortions due to right truncation. A common practice in public
finance is to append a Pareto tail at the top of the distribution, in which case non-zero marginal wedges are obtained
asymptotically (see, e.g., Diamond and Saez (2011)).
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Figure 1.3: Expected Distortions for Median w at the Steady State.

1.5.1 welfare analysis

In this subsection I evaluate the potential gains from tagging mortality differences across earning
abilities using wealth taxes. An ideal upper bound for this exercise would be the case in which
optimal wealth taxes only respond to the mortality gradient. As the previous analysis shows, this
would correspond to a scenario where societal and private levels of altruism coincide, so that all
Pigouvian drivers behind optimal taxes are shut down. This configuration encounters a serious
problem, though, in the infinite horizon version of the model, as in that case no steady state exists
and the standard “immiseration” result holds (refer to section 1.3.2).

To circumvent this problem, I compute welfare gains in the two-period version of the model.
These are shown in Table 1.6 for different values of Frisch elasticities and risk aversion. For the
computation, I set β̂ = β and compare welfare achieved at the full optimum and at a planning
problem with two additional constraints requiring that bequest and capital wedges be zero. I

41



20 40 60 80 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

θ - Percentile

 

 

Low β̂

High β̂

(a) Bequest Wedge, s = 1.

20 40 60 80 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

θ - Percentile

(b) Bequest Wedge, s = 0.

20 40 60 80 100

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

θ - Percentile

 

 

Low β̂

High β̂

(c) Inter-vivos Wedge.

Figure 1.4: Expected Distortions for Median w at the Steady State.
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assume an annual interest rate of 3%. The gains correspond to the factor by which consumption
of all agents in all histories has to increase in the framework without bequest and capital taxes to
yield the same level of welfare than in the full optimum.

Gains range between 0.015% and 0.020% of aggregate consumption, or between 1.5 and 2
billion dollars.44 The values are small, but not negligible. To put these numbers in perspective,
Golosov et al. (2013) evaluate welfare gains from using optimal capital taxes on the grounds
of heterogeneous savings tastes, also in a two-period model. Their findings, however, point to
negligible gains in the order of 0.00002% of aggregate consumption.

Table 1.6: Welfare Gains (in % of consumption)

γ = 1 γ = 1.5 γ = 3

ε = 0.50 0.015 0.017 0.018

ε = 0.75 0.018 0.020 0.020

Notes: Welfare gains are computed in the two-
period version of the model. ε is the Frisch
elasticity of labor supply and γ is the coeffi-
cient of relative risk aversion.

1.6 conclusion

Economists in the 80s initiated a profound debate around the motives behind wealth accumulation
and on the relative magnitudes of the three sources of wealth, i.e. earned, inherited, and coming
from inter-vivos transfers.45 On this “savings puzzle” Laurence Kotlikoff said:

“The answer to the savings puzzle has many policy implications; certain tax structures
are much more conducive to some types of savings than others...” (Kotlikoff (1988),
page 41)

This paper studies the optimal design of such “tax structures.” It distinguishes between the
optimal tax treatment of the three possible sources of wealth, and points to the socioeconomic
mortality gradient as a crucial determinant both from a theoretical and from a quantitative angle.

The analysis admits a number of extensions. First, mortality risk was assumed to be exoge-
nous, while in reality human and health capital shape life expectancy and interact with the tax
code. Another natural step is to adapt the current framework to optimal social security design.
Finally, this study recommends tying the tax system to parental survival as an optimal policy, so
quantitatively evaluating partial reforms based on this feature looks like a promising route.

44Aggregate consumption in the U.S. economy is in the order of 10,000 billion dollars.
45See the exchange between Kotlikoff and Summers (1981) and Modigliani (1988). More recently, the debate was

revived by Piketty (2014).
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1.7 appendix

1.7.1 proofs

proof of lemma 1

Let M(θ′; θ) ≡ u(cy
1(θ
′))− h

(
y1(θ

′)
θ

)
+ δP(θ)w2(θ′) + δ(1− P(θ))w̃2(θ′). Incentive compatibility

requires that for all θ ∈ Θ M(θ′; θ) attain a global maximum at θ′ = θ. First note that at a local
maximum one must have M1(θ; θ) = 0 and M11(θ; θ) ≤ 0. Using the definition of M, the first
order condition can be written as

u′(cy
1(θ))

dcy
1(θ)

dθ′
− h′

(
y1(θ)

θ

)
1
θ

dy1(θ)

dθ′
+ δP(θ)

dw2(θ)

dθ′
+ δ(1− P(θ))

dw̃2(θ)

dθ′
= 0. (1.63)

Differentiating the first order condition M1(θ; θ) = 0 with respect to θ gives M11(θ; θ) =

−M12(θ; θ). Hence, the second order condition for local maxima at the θ′ = θ is equivalent
to M12(θ; θ) ≥ 0, or

dy1(θ)

dθ

1
θ2

[
h′
(

y1(θ)

θ

)
+ h′′

(
y1(θ)

θ

)
y1(θ)

θ

]
+ δP′(θ)

(
dw2(θ)

dθ′
− dw̃2(θ)

dθ′

)
≥ 0. (1.64)

Clearly, (1.11) implies (1.64). Therefore, (1.11) and the local incentive constraints (1.9) and (1.10)
guarantee that θ′ = θ is a local maximum of M(θ′; θ). I now show that the same holds for global
maxima.

Evaluating (1.63) at θ′ gives

u′(cy
1(θ
′))

dcy
1(θ
′)

dθ′
= h′

(
y1(θ

′)

θ′

)
1
θ′

dy1(θ
′)

dθ′
− δP(θ′)

dw2(θ′)

dθ′
− δ(1− P(θ′))

dw̃2(θ′)

dθ′
.

Using this expression and the definition of M(θ′; θ) it follows that

M1(θ
′; θ) =

dy1(θ
′)

dθ′

[
h′
(

y1(θ
′)

θ′

)
1
θ′
− h′

(
y1(θ

′)

θ

)
1
θ

]
+ δ

[
(P(θ)− P(θ′))

(
dw2(θ′)

dθ′
− dw̃2(θ′)

dθ′

)]
.

(1.65)
Now take any θ′ < θ. By (1.11) the terms in square brackets in (1.65) so M1(θ

′; θ) ≥ 0. Analogously,
for any θ′ such that θ′ > θ one has that M1(θ

′; θ) ≤ 0. Hence, since M1(θ; θ) = 0 I obtain

sign
(

M1(θ
′; θ)

)
= sign

(
θ − θ′

)
,

which implies that a global maximum is attained at θ′ = θ. Q.E.D
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proof of proposition 1

Let Y∗1 ≡ {y1 ∈ [0, ȳ1] : ∃θ such that y1 = y∗1(θ)}. The set Y∗1 contains the optimal allocations of
effective labor. I start by establishing a preliminary result.

Lemma 3. Suppose (1.11) holds. Then there exists increasing functions

ĉy
1 : Y∗1 → R+, ˆ̃cy

2 : Y∗1 → R+, ĉj
2 : Y∗1 → R+,

such that for all θ

ĉy
1(y
∗
1(θ)) = cy∗

1 (θ), ˆ̃cy
2(y
∗
1(θ)) = c̃y∗

2 (θ), ĉj
2(y
∗
1(θ)) = cj∗

2 (θ),

for j = o, y.

Proof. The existence of the function ĉy
1 follows directly from (1.11). The remaining functions exist because

at the optimum consumption allocations are increasing functions of each other for all types (this follows by
rearranging the first order conditions of (1.8); see (1.74)-(1.77) in Appendix 1.7.1).

Lemma 3 allows me to write optimal taxes in terms of observable effective effort rather than skills.
Now define wealth taxes by

1− tk∗
2 (y1) =


u′(ĉy

1(y1))
δRu′(ĉo

2(y1))
, if y1 ∈ Y∗1 ,

0, otherwise,
(1.66)

1− tb∗
2 (y1) =


u′(ĉy

1(y1))

δRβu′( ˆ̃cy
2(y1))

, if y1 ∈ Y∗1 ,

0, otherwise,
(1.67)

1− ti∗
2 (y1) =


u′(ĉo

2(y1))

βu′(ĉy
2(y1))

, if y1 ∈ Y∗1 ,

0, otherwise.
(1.68)

Note that for y1 ∈ Y∗1 , tw∗
2 (y1(θ)) = τw∗(θ) with w = {k, b, i}, where {τw∗(θ)}w=k,b,i are the

wedges defined in (1.12)-(1.14) evaluated at the optimal allocation.
Next I define income taxes and transfers in the optimal system. Before doing so, it is worth

noting that these quantities can only be pinned down for a given prescribed plan for savings
and inter-vivos gifts. Put differently, the levels of savings, gifts, income taxes and transfers are
undetermined in the decentralization. This follows by applying a standard Ricardian equivalence
argument. In my notion of implementation, I consider the case in which savings and inter-vivos
transfers are constant across types, but many other choices would work. So suppose that all
agents are induced to save the per capita amount K2 and make inter-vivos gifts in the amount G2.
Then define the income tax T1 and transfers SS2 and S̃S2 as
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T∗1 (y1) =

y1 + W1 − ĉy
1(y1)− K2, if y1 ∈ Y∗1 ,

+∞, otherwise,
(1.69)

SS∗2(y1) =

ĉo
2(y1) + G2 − RK2(1− tk∗

2 (y1)), if y1 ∈ Y∗1 ,

−∞, otherwise,
(1.70)

S̃S∗2(y1) =

 ˆ̃cy
2(y1)− RK2(1− tb∗

2 (y1)), if y1 ∈ Y∗1 ,

−∞, otherwise,
(1.71)

Consider the subproblem of a θ-dynasty consisting on choosing consumption allocations for
a given level of effective effort y1. The solution to this problem is characterized by the Euler
equations

u′(cy
1(θ)) = δR

[
P(θ)u′(co

2(θ))(1− tk∗
2 (y1)) + (1− P(θ))βu′(c̃y

2(θ))(1− tb∗
2 (y1))

]
, (1.72)

and
u′(co

2(θ)) = βu′(cy
2(θ))(1− ti∗

2 (y1)), (1.73)

together with the budget constraints (1.17)-(1.20).
These conditions are satisfied at {ĉy

1(y1), ĉo
2(y1), ĉy

2(y1), ˆ̃cy
2(y1), K2, G2} for all y1 ∈ Y∗1 , given the

taxes and transfers defined in (1.66)-(1.71). Note that agents would never choose y1 /∈ Y∗1 due to
large penalties.

Finally, consider the subproblem of choosing y1 given the optimal choices of consumption
previously characterized. To complete the proof, I need to show that each θ-type chooses y∗1(θ).
But this simply follows because the optimal allocation is incentive compatible and by applying
the definition of the consumption functions in Lemma 3. The goods market clears given that the
optimal allocation is resource feasible. Q.E.D.
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proof of proposition 3

After integrating by parts, the Lagrangian to the planner’s problem (1.8) can be written as

L =
∫ [

u(cy
1(θ))− h

(
y1(θ)

θ

)
+ P(θ)δ

(
u(co

2(θ)) + β̂u(cy
2(θ))

)
+ (1− P(θ))δβ̂u(c̃y

2(θ))
]
dF(θ)

+ λ
∫ [

y1(θ)− cy
1(θ)−

P(θ)
R

(
co

2(θ) + cy
2(θ)

)
− 1− P(θ)

R
c̃y

2(θ)
]
dF(θ)

+
∫

γ
[
u(cy

1(θ))− h
(

y1(θ)

θ

)
+ P(θ)δ

(
u(co

2(θ)) + βu(cy
2(θ))

)
+ (1− P(θ))δβu(c̃y

2(θ))− V(θ)
]
dθ

+
∫ [

µ′V(θ) + µ
(

h′
(

y1(θ)

θ

)
y1(θ)

θ2 + P′(θ)δ
(
u(co

2(θ)) + βu(cy
2(θ))− βu(c̃y

2(θ))
) )]

dθ.

For each θ, first order conditions for consumption allocations are

u′(cy
1(θ))( f (θ) + γ(θ)) = λ f (θ), (1.74)

u′(co
2(θ))

(
P(θ)δ f (θ) + γP(θ)δ− µ(θ)P′(θ)δ

)
= λ

P(θ)
R

f (θ). (1.75)

u′(cy
2(θ))

(
P(θ)δβ̂ f (θ) + γP(θ)δβ− µ(θ)P′(θ)δβ

)
= λ

P(θ)
R

f (θ), (1.76)

u′(c̃y
2(θ))

(
δ(1− P(θ))β̂ f (θ) + γ(1− P(θ))δβ + µ(θ)P′(θ)δβ

)
= λ

1− P(θ)
R

f (θ). (1.77)

Rearranging (1.74) and (1.75) and applying the definition of τk gives (1.22). The expressions for
bequest and inter-vivos wedges follow, respectively, from combining (1.74)-(1.77) and (1.75)-(1.76)
and using the corresponding definitions of the wedges.

To show that λ > 0 and µ(θ) ≥ 0, first note that the first order condition with respect to the
state V(θ) gives

µ′(θ) = −γ(θ). (1.78)

Combining (1.74) and (1.78) gives

µ′(θ) = f (θ)− λ
1

u′(cy
1(θ))

f (θ). (1.79)

Integrating over
[
θ, θ̄
]

gives
1
λ
=
∫ 1

u′(cy
1(θ
′))

f (θ′)dθ′. (1.80)

Equation (1.80) and Inada conditions imply that λ > 0.
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Integrating (1.79) between
[
θ, θ̄
]

yields

µ(θ)

λ
=

θ̄∫
θ

1
u′(cy

1(θ
′)

f (θ′)dθ′ − (1− F(θ))
∫ 1

u′(cy
1(θ
′))

f (θ′)dθ′. (1.81)

Under (1.11), the right hand side of (1.81) is positive, so that µ(θ) ≥ 0 as well. Q.E.D.

proof of proposition 4

The implementation proof is very similar to the one in Kocherlakota (2005) and it uses many of
the insights of the two-period version of the model. Hence, here I only provide a sketch.

For each (w1, st), define wealth taxes by

1− ti
t(w1, yt, st) =


u′(ĉo

t (w1,yt,st))

βu′(ĉy
t (w1,yt,st))

, if yt ∈ Dt(w1, st),

0, otherwise,
(1.82)

1− tk
t (w1, yt, (st−1, 1)) =


u′(ĉy

t−1(w1,yt−1,st−1))

Rtδu′(ĉo
t (w1,(yt−1,yt),(st−1,1))) , if yt ∈ Dt(w1, st),

0, otherwise,
(1.83)

1− tb
t (w1, yt, (st−1, 0)) =


u′(ĉy

t−1(w1,yt−1,st−1)

Rtβδu′(ĉy
t (w1,(yt−1,yt),(st−1,0)))

, if yt ∈ Dt(w1, st),

0, otherwise,
(1.84)

In this implementation agents are induced to accumulate zero capital and leave an arbitrary
amount of gifts. Labor income taxes and social security transfers are chosen so that budget
constraints hold with equality when yt ∈ Dt(w1, st) and impose large penalties otherwise.

The tax choices work because the agent’s consumption Euler equations are satisfied for all
(w1, st) and any yt ∈ Dt(w1, st). Incentive compatibility ensures that agents choose the effective
labor allocation intended for them by the planner. Markets clear under the optimal allocation by
construction. Q.E.D.
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proof of proposition 5

The Lagrangian to the relaxed planning problem in (1.35) is

L =
∫ {

I(s = 1)u(co(θ)) + β̂

(
u(cy(θ))− h

(
y(θ)

θ

))
− λ̂

[
I(s = 1)co(θ) + cy(θ)− y(θ)

]
+ β̂δP(θ)J(w1(θ), 1) + β̂δ(1− P(θ))J(w0(θ), 0)

}
dF(θ)

+ φ
[
w−

∫ {
I(s = 1)u(co(θ)) + β

(
u(cy(θ))− h

(
y(θ)

θ

))
+ βδP(θ)w1(θ) + βδ(1− P(θ))w0(θ)

}
dF(θ)

]
+
∫

γ(θ)
[
I(s = 1)u(co(θ)) + β

(
u(cy(θ))− h

(
y(θ)

θ

))
+ βδP(θ)w1(θ) + βδ(1− P(θ))w0(θ)− V(θ)

]
dθ

−
∫ {

µ′(θ)V(θ) + µ(θ)β
[

h′
(

y(θ)
θ

)
y(θ)
θ2 + δP′(θ)

(
w1(θ)− w0(θ)

) ]}
dθ.

First order conditions include:

(
I(s = 1)u′(co(θ))− λ̂I(s = 1)

)
f (θ)− φI(s = 1)u′(co(θ)) f (θ) + γ(θ)I(s = 1)u′(co(θ)) = 0,

(1.85)

(
β̂u′(cy(θ))− λ̂

)
f (θ)− φβu′(cy(θ)) f (θ) + γ(θ)βu′(cy(θ)) = 0, (1.86)

β̂P(θ)J1(w1(θ), 1) f (θ)− φβP(θ) f (θ) + γ(θ)βP(θ)− µ(θ)βP′(θ) = 0, (1.87)

β̂(1− P(θ))J1(w0(θ), 0) f (θ)− φβ(1− P(θ)) f (θ) + γ(θ)β(1− P(θ)) + µ(θ)βP′(θ) = 0, (1.88)

and
− γ(θ)− µ′(θ) = 0. (1.89)

At s = 1 (1.85) and (1.86) give

u′(co(θ))

βu′(cy(θ))
=

β̂ f (θ)− φ f (θ) + γ(θ)

f (θ)− φ f (θ) + γ(θ)
.

Using the definition of τi into the previous expression yields

τi(θ) = −
(

β̂

β
− 1

)
f (θ)

f (θ)− φ f (θ) + γ(θ)
.

Applying (1.85) into the right hand side gives (1.51).
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To obtain the expression for the ex-ante bequest wedge, first note that (1.88) can be written as

J1(w0(θ), 0) f (θ) = φ
β

β̂
f (θ)− γ(θ)

β

β̂
− µ(θ)

β

β̂

P′(θ)
1− P(θ)

. (1.90)

Also, by equation (1.86) (
1− λ̂

β̂

)
f (θ) = φ

β

β̂
f (θ)− γ(θ)

β

β̂
,

so combining with (1.90) gives

J1(w0(θ), 0) =

(
1− λ̂

û′(cy(θ))

)
− µ(θ)

f (θ)
β

β̂

P′(θ)
1− P(θ)

. (1.91)

Now note that equation (1.86) can be rearranged as

φ =
β̂

β
− λ̂

β

∫ 1
u′(cy(θ))

f (θ)dθ, (1.92)

where I used that
∫

γ(θ)dθ = 0, which follows from (1.89) and µ(θ) = µ(θ̄) = 0.
Using the envelope condition

J1(w, s) = φ (1.93)

into the left hand side of (1.92) gives

J1(w0(θ), 0) =
β̂

β
− λ̂

β

∫
θ′

1
u′(cy(θ′, w0(θ), 0))

dF(θ′). (1.94)

The expression for the optimal ex-ante bequest wedge follows by equating (1.91) and (1.94) and
applying the definition of τ̄b.

The derivation of the optimal ex-ante capital tax is very similar. Equations (1.87) and (1.86)
can be rearranged as

β̂

β
J1(w1(θ), 1) f (θ) =

β̂

β

(
1− λ̂

β̂u′(cy(θ))

)
f (θ) + µ(θ)

P′(θ)
P(θ)

. (1.95)

Equation (1.85) and
∫

γ(θ)dθ = 0 produces

φ = 1− λ̂
∫ 1

u′(co(θ))dF(θ)
.

Applying the envelope condition (1.93):

J1(w1(θ), 1) = 1− λ̂
∫
θ′

1
u′(co(w1(θ), 1, θ′))

dF(θ′). (1.96)
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Combining (1.95) and (1.96) and applying the definition of τ̄k gives (1.49). Q.E.D.

1.7.2 additional details on the estimation

derivation of the probability of survival P̃t (ν )

This section describes the derivation of the probability of survival P̃t(ν) in equation (1.57). Suppose
time is continuous. Let Λt(ν) be the cumulative mortality hazard for an individual of type ν, so
that

Λt(ν) =

t∫
0

ηs(ν)ds = νΛt,

where Λt ≡
∫ t

0 ηsds is the cumulative mortality hazard for the standard individual.
Under (1.54) and (1.55) it is straightforward to show that

Λt =
1
φ
(exp(φt)− 1)

Equation (1.57) follows by using the previous expression and that Λt(ν) = − d log P̃t(ν,φ)
dt .

calibration of ρ

To calibrate ρ, I first divide the wage distribution into quartiles. Following Mankiw et al. (2009) I
set the maximum possible wage to $500.51, but the calibrated value of ρ is not sensitive to this
upper bound. I assume that permanent (pre-tax) income is monotonic in hourly wages. This
assumption implies that the ranking of individuals across skills is the same as the ranking across
permanent income. As a consequence, individuals who belong to a certain quartile of the wage
distribution also belong to the corresponding quartile of the permanent income distribution.46

Within each quartile, I uniformly draw Nq = 1, 000 individuals, where each individual corresponds
to a wage-age pair. For each individual, I then draw a mortality type ν from the log-normal pdf
f (log(ν)| log(θ)) over a grid of values for ρ. Then I simulate their life spans using the probability
of survival Pt estimated previously. I repeat this procedure Ns = 100 times and compute two-year
mortality rates by taking averages across simulations. The calibrated value of ρ minimizes the
distance between these simulated moments and its counterparts in the data. Figure 1.5 shows the
distance between data and simulated moments over a grid of values for ρ.

1.7.3 computational appendix

The component planning problem is solved numerically in Matlab. The optimal control problem
embedded in each step of the value function iteration algorithm is solved using GPOPS-ii software.

46This claim can be easily verified as follows. Let H denote the cumulative distribution function of permanent
income y(θ). If y′(θ) > 0, then H(y(θ)) = F(θ). Hence, there is a one-to-one correspondence between the quartiles of
the skill distribution and the quartiles of the permanent income distribution.
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Figure 1.6 plots the computed value functions at the solution for the case with β̂ = 1.5; the other
scenario is similar. Note that value functions have a single peak. This property is shown formally
in Farhi and Werning (2007) in an environment with one-period lived agents.

To approximate the steady state distribution, I start from an arbitrary value of (w, s) and
simulate the model for 10,000 periods. For this step, I interpolate policy functions using thin-plate
splines. Figure 1.7 shows the histograms for the simulated time-series along with a fitted Kernel
distribution, after dropping the first 500 observations. Notably, there is no mass on neither the
upper nor on the lower bounds, so that Ψ∗ does not depend on these arbitrary values of the grid.
Also, note that the mode occurs around the peaks of the value functions.
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Figure 1.6: Value Functions J(w, s).
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Chapter 2

Taxing Atlas: Using Firm Data to Derive
Optimal Income Tax Rates

joint with Laurence Ales and Jessie J. Wang

2.1 introduction

Income taxation of top income earners is a controversial and recurrent topic in the tax policy
debate.1 However, the large literature in public finance is far from reaching a consensus on what
the top tax rate should be. The range of proposed tax rates for top income earners is surprisingly
large, ranging from 0% (much lower than the current rate) to 80% (much higher than the current
rate).2 This lack of consensus is in part attributed to the lack of agreement on the magnitude
of behavioral tax responses of workers and on the prevalence of highly talented individuals in
the population. The main result of this paper is that even with fairly inelastic workers, optimal
marginal tax rates for high income earners are in line, if not slightly lower, with what we see in
the US today.3

In this paper, we model top income earners as managers.4 Managers are heterogeneous in their
skill level, and they operate a span of control technology similar to Rosen (1982). In addition they
exert effort, which combined with hired labor, generates output. The usual approach in public
finance is to have skills as a productivity parameter for hours worked: more skilled individuals

1This is partially due to heightened concerns over the increasing inequality of the income distribution. Indeed the
share of income going to the top 1% increased from 9% in 1970 to 23.5% in 2007 (Diamond and Saez (2011)). From
Piketty and Saez (2003), the top 1% accounted for 59.8% of average growth in income compared to just 9% of average
growth accounted for by the bottom 90% over this period.

2 ? and Sadka (1976) prescribe a zero marginal tax rate at the top. Using different assumptions on the skill
distribution, Saez (2001), or Diamond (1998) call for for asymptotic top rates as high as 80%. See Diamond and Saez
(2011) for a recent survey.

3Saez et al. (2012) report a top 1% marginal rate of approximately 42.5% for 2009. In the Current Population Survey
in the same period we find top marginal income tax rates of 33.5% for federal and 5% for state.

4 Using tax return data ?, document that executives, managers, supervisors account for about 40% of the top 0.1%
of income earners in recent years. The number grows to 60% including managers and professionals in the financial
sector.
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can transform hours worked into output at a higher rate. In our environment we maintain
this labor productivity channel; however, the skill of the manager will now also determine its
managerial ability. This ability will affect the overall productivity of the firm, creating a scale-of-
operations effect (see Mayer (1960)). We assume a positive relationship between labor productivity
and managerial ability. Modeling skills in this fashion has three important implications. First,
more productive managers operate larger firms and receive larger levels of (before-tax) income.
In addition, as originally shown by Rosen (1982), the scale-of-operations effect implies that
managerial compensation grows at a faster rate than managerial skills. Thus, the distribution
of income becomes more positively skewed relative to the distribution of skills. Third, wages
of managers (and workers) are endogenous; in particular, they depend on the amount of effort
exercised by managers. This is important since any tax aimed at top income earners will impact
indirectly their pre-tax wages.

Following the Mirrleesian tradition, we assume that full redistribution is hindered by infor-
mational frictions. We consider the case in which the effort and skill level of the manager are
private information. On the other hand, firm size and firm output are observable to the policy
maker. We characterize the constrained efficient allocation and show that it can be decentralized
as a competitive equilibrium with taxes on income and firm size.

Our first result concerns firm size distortions. We provide a formula highlighting how in
general the planner will forgo efficiency in the allocation of labor in order to relax incentive
constraints and hence reduce informational rents of the managers. We also highlight that these
firm level distortions will not always arise. In our benchmark, featuring a positive scale-of-
operations effect and an elasticity of substitution between hired labor and managerial effort
different than one, they will. We then provide a formula for optimal taxes. This formula will link
marginal taxes to primitives of the environment. As in Saez (2001) the formula links marginal
rates to the assumed distribution of skills, redistributive motives of the policy maker, and elasticity
of labor supply of the manager. In addition, the span of control production function will introduce
three novel terms. The first term arises from the fact that the skills and effort of the manager enter
asymmetrically into the production function. Given this, the social planner weights the overall
impact of the behavioral response of the manager on marginal taxes by how sensitive output is
to changes in effort versus changes in skill. The second and third terms arise from the fact that
changes in managerial effort impact the marginal product of effort and the marginal product
of skills. Hence, the behavioral response of the manager will be dampened by how much his
informational rents and wages are impacted by his change in effort.

In order to quantify the effect of the scale-of-operations effect, in turn, to provide an answer
to our motivating question on what should taxes be, we need to calibrate the model. There are
two items that are important for optimal taxes for which the literature provides little guidance.
The first one is the magnitude of the scale-of-operations effect: the importance of managerial
ability in determining the overall productivity of the firm. The second term is the distribution of
skills. To identify both of these objects we follow the key insights from Rosen (1982). In particular,
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we expand his result (adding elastic labor) showing how the scale-of-operations effect can be
backed out from the data with knowledge of the elasticity of firm size (in terms of employment)
to firm sales and the elasticity of managerial compensation to firm sales. We determine both of
these elasticities using Compustat data. The last term concerns the distribution of skills. The
usual approach is to invert the distribution of income to uncover the distribution of skills. We
take a similar route. However, our environment generates a very nonlinear relationship between
skills and income and between skills and firm size. This implies that as the skill of the manager
increases by 1%, firm size and managerial income will increase substantially more than that (in
a standard Mirrleesian environment, keeping effort fixed, income would increase by only 1%).
Given this, using the distribution of firm size to invert the distribution of skills will imply that the
tail of the skill distribution is substantially smaller. Assuming a Pareto distribution our estimate
on the tail parameter is an order of magnitude larger than what has been previously identified in
the literature. As the tail of the distribution of skills gets thinner, taxes at the top decrease.

With the model calibrated, we then move to compute optimal marginal taxes at the top. Our
benchmark calculation finds an optimal top tax rate of 32.4%. To get a sense of this magnitude, it
is illustrative to compare it with what one would obtain without a scale-of-operations effect. In
this last case, the optimal rate would be equal to 65.4%. When compared to data (see footnote 3)
our estimates indicate that optimal rates are in the same range, if not slightly lower, than what the
current tax code prescribes.

To summarize, this paper makes three contributions. First, we provide normative grounds
for why (and when) it is optimal to distort firm sizes in order to reduce informational rents of
managers. Second, we compute optimal taxes in a span of control environment as in Rosen (1982)
showing that the current US rates are roughly in line with the optimal rates. Third, we illustrate
how the determinants of such a tax formula can be calibrated using readily available firm level
data as opposed to confidential income data coming from social security or tax return records.

related literature

This paper touches on two large literatures: the first one concerns managerial compensation and
the second one deals with the taxation of managerial income.

The works of Lucas (1978) and Rosen (1982) provide early frameworks where the compensation
of the CEO (the owner of the span of control technology) can be analyzed together with the size
of the firm. In these models the manager chooses the factors of production to be purchased from
the market. Gabaix and Landier (2008), on the other hand, consider a model where the size of the
firm is fixed, and the most productive managers are being assigned to the largest firms. What is
key in all of these models (for the purpose of optimal taxation) is that they introduce a nonlinear
mapping between compensation and skill of the manager. In particular compensation is more
skewed than skill. Our contribution with respect this literature is twofold. First, we model the
intensive margin of managerial effort (this is a necessary step in order to think about income
taxation). Second, we provide a novel calibration strategy that relies on micro evidence from the
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firm side (Compustat) and from the household side (Current Population Survey).
The literature on optimal taxation of top income earners is vast.5 Methodologically, our

contribution with respect to this literature is that our environment is one in which compensation
of the agent (the manager in our case) is endogenous. This is a departure from the classical
taxation environment where wages are fixed exogenously. A few exceptions to this assumption
are discussed in Stiglitz (1982) where workers of different types interact within an aggregate
production function, hence influencing each other wages. In more recent work, Slavík and Yazıcı
(2014) focus on the endogenous accumulation of heterogenous forms of capital that interact
differently with agents of heterogenous skills. Ales et al. (2014) focus on an assignment problem
of workers with heterogenous talents to tasks with heterogenous complexity.

Our approach in this paper is to map top income earners to managers.6 Given this, Rothschild
and Scheuer (2013) and in particular Scheuer (2014) are the papers more related to ours. They
consider an environment where agents are characterized by a multidimensional skill/taste vector
and decide whether to be a worker or a manager. In the spirit of Stiglitz (1982), a key channel that
impacts optimal taxes is the spillover effect between wages of workers and wages of managers.
Relative to these papers our emphasis is more quantitative. However there are key differences in
the environment that shape optimal taxation. The most important is the role of managerial skill.
In our environment, as in these papers, managerial skill impacts how productive the manager is
at transforming hours in effective effort that enters in the production function. Differently from
the above, though, skill also affects the overall productivity the production function. This in turn
increases productivity of the entire firm. We will show that as this second component disappears
then optimal taxes revert to the Mirrleesian benchmark as in Scheuer (2014) or Saez (2001). Finally
Piketty et al. (2014) consider a model of CEO taxation where, beyond the behavioral labor supply
response, the CEO can extract surplus by imposing a negative externality on workers raising his
own compensation above his marginal product. In this case, this last channel provides upward
pressure on marginal tax rates as the taxes try to correct for this negative CEO externality. In our
paper the approach is more in line with the empirical evidence in Kaplan and Rauh (2013) where
managers are characterized as having a positive externality on workers rather than a negative one.

The remainder of the paper is organized as follows. In Section 2.2 we describe the environment.
In Section 2.3 we characterize Pareto optimality. In Section 2.4 we look at the decentralization of
the optimum and derive the optimal tax rate formula. In Section 2.5 we show our identification
strategy and calibrate the model. In Section 2.6 we discuss the quantitative results. Section 2.7
looks at additional robustness calculations. Section 2.9 concludes.

5For a review refer to Mankiw et al. (2009) or Diamond and Saez (2011).
6The environment in this paper is be static. For dynamic models that consider the modeling and taxation of

entrepreneurial wealth, refer to Quadrini (2000), Cagetti and Nardi (2006), Albanesi (2011) or Shourideh (2012). For
a review on the new dynamic public finance approach to optimal dynamic taxation refer to Golosov et al. (2007) or
Kocherlakota (2010).

65



2.2 environment

The economy is static and it is populated by a unit measure of workers and a unit measure of
managers. There is a single consumption good. Managers have quasi-linear preferences over
consumption c and effort n which is represented by the utility function:

U(c, n) = c− v(n),

where v : R+ → R and is twice continuously differentiable with positive derivatives. Workers
have preference over consumption and supply labor inelastically. Without loss of generality,
we normalize the disutility from effort of the worker to zero and the amount of effective effort
supplied to one. Consumption of the worker is denoted by cw ∈ R+.

Managers are heterogeneous with respect to a productivity parameter θ ∈ Θ with Θ =
[
θ, θ
]
⊂

R+ \ 0. Managerial type, θ, is distributed according to the cumulative distribution function
F : Θ → [0, 1] with density function f : Θ → R+. Following Rosen (1982) and Lucas (1978),
managers operate a span of control technology. Specifically, managers of type θ hire labor L(θ)
(supplied by workers) and exert managerial effort n(θ) to produce final output y(θ) according to:

y
(
n(θ), L(θ), θ

)
= θγH (θn (θ) , L (θ)) , (2.1)

where γ > 0, H : R+ ×R+ → R+ is strictly increasing in both arguments and features continuous
derivatives. We assume that H satisfies constant returns to scale.

Managerial skills enter the production function (2.1) in two ways. First, θ is managerial effort-
augmenting (since it multiplies n(θ) within H). Second, θ is total-factor-productivity improving
(since γ > 0). In what follows, we refer to γ as the scale-of-operations effect as in Mayer (1960).7

This formulation is in line with the one in Rosen (1982) where managers’ actions naturally affect
the productivity of all workers under their supervision (irrespective of their number). Our
technological specification is more general to that in Rosen (1982) given that we also incorporate
managerial effort n as an intensive margin. We assume that managerial allocations c(θ), y(θ) and
L(θ) are observable, while θ, n(θ) and θ · n(θ) are private information of each agent.

An allocation in this economy is defined as (cw, c, y, L) where: cw ∈ R+, c : Θ → R+,
L : Θ→ R+, y : Θ→ [0, ȳ], and 0 < ȳ < ∞. An allocation is feasible if:

cw +
∫
Θ

c(θ)dF(θ) ≤
∫
Θ

y(θ)dF(θ), (2.2)

and ∫
Θ

L(θ)dF(θ) ≤ 1. (2.3)

7There is also a large literature connecting the skill of manager and the productivity and size of a firm. See, for
example, Bartelsman and Doms (2000) and references therein.
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Social welfare is evaluated according to the social welfare function

SWF = Ψ(cw) +
∫
Θ

Ψ (c(θ)− v(n(y(θ), L(θ), θ))) dF(θ),

where Ψ : R→ R is an increasing, differentiable and concave function which summarizes social
preferences for redistribution across types. In particular, we will refer to Ψ′ (c(θ)− v(n(y(θ), L(θ), θ)))

as the social marginal welfare weight on θ-managers.

2.3 pareto optimality

In this section, we characterize Pareto optimal allocations using a direct mechanism where
managers report their types θ to a social planner and are assigned an allocation for consumption
c(θ), output y(θ) and labor L(θ) accordingly. Define n(y(θ′), L(θ′), θ) as the level of effort exerted
by a manager of type θ who mimics a manager of type θ′. In this case, manager θ will be assigned
L(θ′) workers and will be required to produce y(θ′) output. An allocation is incentive-compatible
when truthful revelation is optimal for all managers, that is:

c(θ)− v(n(y(θ), L(θ), θ)) ≥ c(θ′)− v(n(y(θ′), L(θ′), θ)), ∀ θ, θ′ ∈ Θ. (2.4)

Pareto optimal allocations solve the following social planner’s problem:

max
cw,{c(θ),y(θ),L(θ)}θ∈Θ

Ψ(cw) +
∫
Θ

Ψ (c(θ)− v(n(y(θ), L(θ), θ))) dF(θ), (PO)

s.t. (2.2), (2.3) and (2.4).

The social planner’s problem (PO) is intractable due to the double infinity of incentive compatibility
constraints embedded in (2.4). In this paper we will work with a relaxed version of the planner
problem by applying the first order approach: we replace the original set of constraints (2.4) with
local first order conditions. The validity of the first order approach can be verified ex-post using
simulations.8

Let n(y, L, θ) be the effort required by a manager of type θ to generate output y when the
number of hired workers is L. Denote by ny, nL and nθ , the first derivatives of n with respect to
its first, second and third arguments (with similar notation for its second derivatives). Define
n(θ) ≡ n(y(θ), L(θ), θ) and U(θ) ≡ c(θ)− v(n(θ)) for all θ. The relaxed version of the planner’s
problem is:

max
cw,{U(y(θ),L(θ)}θ∈Θ

Ψ(cw) +
∫
Θ

Ψ (U(θ)) dF(θ), (PO-FOC)

s.t. U′(θ) = −v′(n(y(θ), L(θ), θ))nθ(y(θ), L(θ), θ), ∀θ, (2.5)

8This approach is fairly standard in the dynamic public finance literature. See ?, ?, or Farhi and Werning (2013b).
See also Pavan et al. (2014).
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∫
Θ

[y(θ)− cw −U(θ)− v(n(y(θ), L(θ), θ))] dF(θ) = 0, (2.6)

∫
Θ

L(θ)dF(θ) = 1. (2.7)

The next proposition provides a sufficient condition which guarantees that the first order condition
(2.5) implies the incentive compatible condition in (2.4). In that case, since it is trivial to show that
(2.2) and (2.3) hold with equality, any solution to (PO-FOC) will also be a solution to (PO).

Proposition 6. Suppose that for all θ ∈ Θ the following holds

v′′(n(θ))
v′(n(θ))2 c′(θ) +

nθy(θ)

nθ(θ)
y′(θ) +

nθL(θ)

nθ(θ)
L′(θ) ≥ 0. (2.8)

Then (2.5) implies (2.4).

Proof. See Appendix 2.10.1.

Relative to the benchmark Mirrleesian environment the sufficient condition in (2.8) also imposes a
condition for the allocation of L. The condition will hold, for example, as long as c, y and L are
increasing in θ and nθL is small enough.9 From here onwards we assume that (2.8) holds.

Before presenting the decentralization and showing the properties of the optimal tax system we
discuss the incentive constraint (2.5) further. The standard Mirrleesian environment features the
following relationship between output, type and effort: y(θ) = θ · n(θ). In this case effort required
by θ to generate output y is n(y, θ) = y/θ. So that the term nθ appearing in the right hand side of
(2.5) is given by nθ(y, θ) = −y/θ2 = −n(θ)/θ. In this case, the incentive constraint only depends
on the level of effort and does not depend separately on either output or employment. Instead,
our environment features a (potential) nonlinear relationship between between output, type, and
effort. Also, it features an additional input to production: L. We next provide additional insights
on the incentive constraint for this case. Let h(x) = H(x, 1) for all x ≥ 0. Since H is constant
return to scale we have that by definition y = θγ · L · h

(
θn(y,L,θ)

L

)
, so that n(y, L, θ) = h−1 ( y

θL

) L
θ .

In this case we have

nθ(y, L, θ) = −h−1
( y

θγL

) L
θ2 −

L
θ

1
h′
(
h−1

( y
θγ L

)) y
L

γ

θγ+1 ,

which simplifies to

nθ(y, L, θ) = −n(θ)
θ
− γ

θ2
H(θn, L)
h′
(

θn
L

) . (2.9)

The first term in (2.9) is the same term appearing in the Mirrleesian environment discussed above.
Indeed, in the case in which γ = 0 it is the only term appearing. Hence, a modification of the

9It is straightforward to verify that nθ , nθy ≤ 0 and nθL ≥ 0.
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benchmark Mirrleesian environment featuring a nonlinear production function featuring L with
γ = 0, would leave the incentive constraint unchanged. The second term in (2.9) is novel in this
environment. A notable feature is that in general nθ and hence the right hand side of the incentive
constraint (2.5) depends explicitly on the allocation of labor L. This implies that a particular choice
of L will have the effect of tightening or relaxing the incentive constraint. This of course at the
cost of production efficiency. The distorted choice of L in the sections below will be implemented
with a nonlinear tax on firm size (identified with the size of its labor force).

The ability of the planner to affect incentives by changing L will depend on the particular
functional form H. Suppose that H is Cobb-Douglas so that: y = θγ(θ · n)αL1−α for some 0 < α < 1.
We have:

nθ(y, L, θ) = −n(θ)
θ
− γ

θ2
(θ · n)αL1−α

α(θ · n)α−1L1−α
= −n(θ)

θ
(1 + γ/α),

so that in this case also nθ assumes the same form as the standard Mirrleesian case. Below
we will show that the two cases discussed with nθ independent of L will provide similar tax
recommendation as the standard Mirrleesian case. We will instead focus on the a more general
CES formulation for H. This production function differently than the Cobb-Douglas case will
feature nθ depending directly on L and will introduce a motive for the planner to distort the
allocation of labor.

2.4 optimal taxation

To characterize optimal income taxes in our framework we introduce a decentralization that relies
on nonlinear taxes on firm size (TL) and nonlinear taxes on income (T). We then determine
properties of these tax function that will implement the allocation originating from (PO-FOC).

In the decentralized environment managers of type θ solve the following problem taking
wages and tax rates as given:

U(θ) = max
c,y,L

c− v(n(y, L, θ)) (MP)

s.t. c ≤ y− wL− TL(wL)− T(y− wL− TL(wL)), (2.10)

where w ∈ R+ is the real wage, T : R+ → R is a nonlinear income tax and TL : R+ → R is a
nonlinear tax on firm size.10 Since workers in our environment supply labor inelastically their
problem is characterized by a simple budget constraint cw = w− φ, where φ is a transfer to the
worker. We can now define a competitive equilibrium for our environment.

Definition 3. For a given level of government consumption G, a tax distorted competitive equilibrium is
an allocation {c, y, L}, a wage w, and a tax system {T, TL, φ} such that:

1. Taking as given {w, T, TL} each θ-manager solves (MP);

10As we will show next, the optimum features firm size distortions which translates into T′L 6= 0. This explains the
necessity of such fiscal instrument for our implementation.
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2. Worker’s budget constraint holds: cw = w− φ;

3. Goods and labor markets clear: equations (2.6) and (2.7) hold;

4. Government’s budget constraint is balanced:∫
[T (y(θ)− wL(θ)− TL(wL(θ))) + TL(wL(θ))] dF(θ) = G. (2.11)

By applying a version of the taxation principle we can rewrite the planner’s problem as one in
which tax functions are chosen directly, subject to the constraint that they induce a competitive
equilibrium (see Guesnerie (1981)). Imposing G = 0, the resulting problem is:11

max
cw,{T(·),TL(·)}θ∈Θ

Ψ(cw) +
∫
Θ

Ψ (U(θ)) dF(θ), (DEC)

s.t. (2.11),

cw = w− φ, (2.12)∫
L(θ)dF(θ) = 1, (2.13)

U(θ) solves (MP), ∀ θ ∈ Θ. (2.14)

In what follows, we analyze optimal taxes in our framework.

2.4.1 firm size taxation

We begin by looking at the distortions on firm size implied by the constrained efficient allocation.
Such distortions provide a normative rationale for firm size taxation in the decentralization.
Assuming differentiability of T and TL, first order conditions from the manager’s problem (MP)
give:

w(1 + T′L(wL(θ))) = yL(θn(θ), L(θ), θ), (2.15)

where yL is the marginal product of the worker.12

Equation (2.15) shows that if T′L(L(θ)) 6= 0 for some θ, the worker’s marginal product will not
be equalized across firms, implying the break down of the well known Diamond and Mirrlees
(1971) productive efficiency result. The reason behind the willingness of the planner to distort
labor allocations lies in the ability of relaxing incentive constraints by affecting L(θ). To see this
point, let n(θ, θ′) be the effort of a manager of type θ misreporting being type θ′. Since firm output
y(·) and employment L(·) are observable, n(θ, θ′) must satisfy the following relationship:

(θ′)γH(θ′ · n(θ′), L(θ′)) = θγH(θ · n(θ, θ′), L(θ′)),

11Assuming G = 0 is without loss of generality for our analytical results.
12Here we use that yL = −nL/ny, which simply follows from the implicit function theorem.
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and since H is homogenous of degree one, we have that

n(θ, θ′) = h−1
((

θ′

θ

)γ

h
(

θ′n(θ′)
L(θ′)

))
· L(θ′)

θ
, (2.16)

which shows that, in general, the level of L(θ′) impacts n(θ, θ′) and hence the benefit of a deviation
from θ to θ′.

Remark 1. There are two important examples in which n(θ, θ′) is independent of L(θ′). The first
case is when the scale-of-operations effect is shut down, i.e. γ = 0. In this case, n(θ, θ′) = θ′

θ n(θ′)
and our environment collapses to the standard Mirrleesian model. A second example emerges when
H is Cobb-Douglas. In particular, if H(θ · n(θ), L(θ)) = (θn(θ))αL(θ)1−α, from (2.16) we obtain

n(θ, θ′) =
(

θ′

θ

) γ+α
α n(θ′).

The next proposition provides a formula for optimal firm sizes distortions and gives conditions
under which it is optimal not to distort firm level employment.

Proposition 7. Let {y(θ), n(θ), L(θ)}θ∈Θ be a solution of (PO-FOC) and let T∗L be a solution to (DEC).
Then:

1. Optimal marginal firm size distortions satisfy:

T′∗L (wL(θ)) = −λl

λr

[
1 +

µ(θ)v′(n(θ)) nθL
λl − f (θ)

µ(θ)v′(n(θ)) nθy
λr − f (θ)

]
, (2.17)

where µ(θ) is the multiplier on the incentive constraint (2.5) and λl and λr are the multipliers on
(2.7) and (2.6), respectively.

2. If there is a differentiable f : R+ → R+ such that nθ = f (n(θ)) for all θ ∈ Θ, then T′∗L (wL(θ)) = 0
for all θ ∈ Θ.

Proof. See Appendix 2.10.2.

Part 1 of Proposition 7 illustrates how in general a binding incentive constraint (with multiplier
µ(θ)) generates nonzero firm level distortions. Part 2 provides sufficient conditions for distortions
to disappear. Following the discussion at the end of Section 2.3 it is immediate that this condition
is satisfied in the case in which γ = 0 or in the case with H(·, ·) is Cobb-Douglas.13

2.4.2 income taxation

We now move to income taxation. For the rest of the analysis, we make the following assumption
on preferences:

13Scheuer (2014) considers an environment similar to ours with two important differences. First, the firm level
production function features γ = 0. Second, workers and managers are heterogeneous in two dimensions. He considers
two cases: one in which the government can tax workers and managers differently, and one in which it cannot. This
second case features firm level distortions, but it is not due to the presence of L in the incentive constraint but from the
presence of an additional no-discrimination constraint absent in our environment.
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Assumption 3. The disutility for effort is iso-elastic: v(n) = n1+ 1
ε /(1+ 1

ε ), where ε is the Frisch elasticity
of labor supply.

Assuming differentiability of T′, first order conditions from the manager’s problem (MP) are:

1− T′(π(θ)) = v′(n(y(θ), L(θ), θ))ny(y(θ), L(θ), θ), (2.18)

where π(θ) ≡ y(θ) − wL(θ) − TL(L(θ)) corresponds managerial income of type θ. The next
proposition characterizes the optimal marginal income tax rates. To simplify notation let n(θ) ≡
n(y(θ), L(θ), θ) and y(θ) ≡ y(n(θ), L(θ), θ) with similar notation for the derivatives yn, yθ , ynn and
ynθ .

Proposition 8. Let {y(θ), n(θ), L(θ)}θ∈Θ be a solution of (PO-FOC). Let {T′, T∗L , w} be a solution to
(DEC). We have that for all θ:

T′(π∗(θ))
1− T′(π∗(θ))

=
1− F(θ)

θ f (θ)
·
(

1− D(θ)

D(θ)

)
· A(θ) ·

(
1
ε
+ B(θ)

)
(2.19)

where
A(θ) ≡ yθ(θ)

yn(θ)

θ

n(θ)
, B(θ) ≡

[
yθn(θ)

yθ(θ)
− ynn(θ)

yn(θ)

]
n(θ),

and

D(θ) ≡ 1
1− F(θ)

∞∫
θ

Ψ′ (U∗(θ)) dF(θ),

where π∗(θ) ≡ y(θ)− wL(θ)− T∗L(L(θ)).

Proof. See Appendix 2.10.2.

Equation (2.19) reveals the main forces behind optimal marginal income taxes in our framework.
The first two terms are well known and are present in the seminal contribution of Saez (2001)
expressing the optimal taxation results of ?. The first term refers to the effect of shape of the skill
distribution on marginal tax rates. In particular, high marginal taxes at θ are attractive as the
mass of managers above θ, (1− F(θ)), is large; but the resulting distortion is proportional to the
mass of individuals at θ and to their productivity level, explaining the negative dependence on
θ f (θ). The second term summarizes the impact on marginal taxes of the redistributive tastes of
the government, which are embedded into D(θ).

The remaining term in (2.19), A(θ) (1/ε + B(θ)), represents the impact on taxes arising from
the behavioral response of managers. The term 1/ε represents the standard labor response of
agents to changes in after tax wages. Clearly, a high elasticity (embodied in a high value of ε) will
translate into a large response of agents to taxation (it is easy to see that A(θ) > 0), and hence
will lower the optimal marginal tax rates. This term and this logic is present in the environment
analyzed in Saez (2001). The novelty in our environment is the presence of the terms summarized
by A(θ) and B(θ). These terms embody the interaction between skills and managerial effort
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through the span of control technology described in the previous section. We discuss each of these
terms in turn.

The term A(θ) is the ratio of two elasticities: the output elasticity of skill over the output
elasticity of effort. When A(θ) is less than one, output is more responsive to a one percent change
effort than to a one percent difference in skills. Lower is the value of A(θ) lower will be marginal
tax rates. This is because any changes in the behavioral responses of manager θ will have a
relatively large impact on the output generated by θ. At the opposite end, a high value for A(θ)

will imply that the marginal contribution of the manager of type θ to output arises more from
his type than from his own effort. In this case, since output is relatively unaffected by changes in
effort, high taxes will be warranted.

The term B(θ) is the difference between the elasticity of the marginal product of θ with respect
to managerial effort: yθn(θ)/yθ(θ) minus the elasticity of the marginal product of n also with
respect to managerial effort: ynn(θ)/yn(θ). To understand this term is helpful to think about the
incentives of a manager in the decentralized environment considered. Let’s consider the first term
yθn(θ)/yθ(θ). As this elasticity grows, the larger is the impact on the marginal value of managerial
skill to changes in the manager’s effort. A large value of this elasticity dissuades the manager
to reduce his effort. Given this, marginal taxes induce a smaller behavioral effect and higher
marginal tax rates are warranted. Finally, a large absolute value of the elasticity −ynn(θ)yn(θ)

(recall that ynn < 0) implies that given changes to effort there will be large changes in the marginal
product. This implies that as effort decreases, the marginal product of labor increases so that the
distortionary effect of marginal taxes are dampened. This effect, as the previous one, will be a
force for higher marginal taxes.

It is illustrative to compare optimal taxes prescribed by (2.19) to a known benchmark. In ?, the
technology is given by y = θ · n so that A(θ) = B(θ) = 1. In this case we obtain the classical tax
formula from Diamond (1998) or Saez (2001):

T′(π∗(θ))
1− T′(π∗(θ))

=
1− F(θ)

θ f (θ)

(
1− D(θ)

D(θ)

)(
1
ε
+ 1
)

. (MDS)

As the following proposition shows the Mirrlees-Diamond-Saez optimal tax formula (MDS)
generalizes to any environment where skills are only effort-augmenting (for example in the case
in which γ = 0 in our environment):

Corollary 1. Suppose that managers operate a technology without the scale-of-operations effect (γ = 0)
so that y(θ) = H(θ · n(θ), L(θ)). Then if (2.8) is satisfied, at any Pareto optimum T′(π∗(θ)) satisfies
(MDS).

Proof. See Appendix 2.10.2

To lay the groundwork for our quantitative analysis we make the following parametric assumption
on the production function:
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Assumption 4. The production function has constant elasticity of substitution:

y
(
n(θ), L(θ), θ

)
= θγ [β(θn(θ))ρ + (1− β)L(θ)ρ]

1
ρ ,

where ρ ∈ [−∞, 1] and the elasticity of substitution between θn(θ) and L(θ) is given by σ = 1
1−ρ ∈ [0, ∞].

The following corollary characterizes optimal income taxes under Assumption 4.

Corollary 2. Suppose Assumption 4 holds and that (2.8) is satisfied. Then at any Pareto optimum,
T′(π∗(θ)) satisfies

T′(π∗(θ))
1− T′(π∗(θ))

=
1− F(θ)

θ f (θ)

(
1− D(θ)

D(θ)

)(
1
ε
+ 1 +

γ

1− κ∗(θ)

(
1
ε
+ 1− ρκ∗(θ)

))
, (2.20)

where κ∗(θ) ≡ y∗L(θ)L∗(θ)/y∗(θ) is the share of labor costs to total sales for managers of type θ.

Proof. See Appendix 2.10.2.

In the limit, the tax formula in (2.20) can be simplified further assuming the following:

Assumption 5.

(a) The skill distribution has a right Pareto tail with parameter 1
a > 0:

lim
θ→∞

1− F(θ)
θ f (θ)

=
1
a

.

(b) There is zero marginal social weight at the top: limθ→∞ D(θ) = 0.

Taking limits on (2.20) and using Assumption 5 we get an expression for the optimal marginal tax
rate at the top.

Corollary 3. Suppose Assumption 4 and 5 hold and that (2.42) is satisfied. Then at any Pareto optimum
the marginal tax at the top T′(π∗(∞)) satisfies:

T′(π∗(∞)) =
1

1 + a
[

1
ε + 1 + γ

1−k(∞)

( 1
ε + 1− ρk(∞)

)]−1 . (2.21)

Equation (2.21) will be the key equation we will take to the data in the next section. In Section
2.10.6 we compare the above tax formula with the benchmark case analyzed in Saez (2001). In
that section we also emphasize the key role that firm level distortion play for the derivation of our
optimal tax formula.

2.5 identification and calibration

The tax formula in (2.21) provides insights on the forces that shape top marginal tax rates. Our
next goal is to quantify these forces. In this section we describe how to estimate the parameters
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required to evaluate equation (2.21). These include: the elasticity of labor supply ε; the degree
of substitutability between the two types of labor inputs ρ; the Pareto tail parameter for skill
distribution a, and the scale-of-operations parameter γ. The first two will be taken from the
literature, while the last two will be backed out directly from the data.

There is a vast literature estimating the elasticity of labor supply.14 We follow the guidelines in
Chetty et al. (2011) and set ε equal to 0.5 for our benchmark calculation. When computing taxes
we will also show the effect of a wide range of labor elasticities.

In the production function the elasticity of substitution between worker’s effort and managerial
effort is given by σ. Although there is a large literature documenting the impact of managerial
and executive quality on firm output, there is little evidence on how managerial choices such
as effort substitute with hired factors of production such as the number of workers. A possible
strategy to identify σ is to use the aggregate behavior of wages over time. For example Katz and
Murphy (1992) in an aggregate production function estimate an elasticity of substitution between
skilled and unskilled worker equal to 1.4 (see also Acemoğlu and Autor (2011)). Replicating their
approach, partitioning the population in workers in managerial positions or not, we arrive at an
estimate of the elasticity of substitution between workers and managers approximately equal to
4 (see Section 2.7.1 for details about the data). However this approach fails to recognize which
workers are assigned to which manager. In our benchmark we set ρ = 0.8, implying σ = 1

1−ρ = 5.
In Section 2.5.2 we will demonstrate how the assumption of γ > 0 implies a restriction on σ being
strictly greater than one.15 Finally in Section 2.6 we also perform robustness for alternative values
of σ.

We next develop equilibrium restrictions that link the value of γ to observables. Using these
restrictions we determine the value of γ to firm level observable moments. Finally in Section 2.5.3
we estimate the value for a.

2.5.1 firm level elasticities

In this section we follow Rosen (1982) and derive an equilibrium restriction that relates γ to
observables. Relative to the environment specified in Rosen (1982) we include income taxation
and an elastic margin for effort.16 As in Section 2.3 we can write

y(θ) = θγ · L(θ) · h
(

θn(θ)
L(θ)

)
, (2.22)

where h
(

θn
L

)
≡ H

(
θn
L , 1

)
, so that h′ > 0 and h′′ < 0.

Consider a competitive equilibrium where the manager faces a linear tax τ on her income,

14For prime age males MaCurdy (1981) and Altonji (1986) estimate an elasticity between 0 to 0.54. Saez (2003) using
the NBER tax panel from 1979 to 1981, estimates a labor elasticity of 0.25. Similar ranges are estimated by Blundell
et al. (2012) and French (2005). Chetty et al. (2011) find values equal to 0.5 on the intensive margin and 0.25 on the
extensive margin. In the macro literature King and Rebelo (1999) and Prescott (2004) find values between 2 to 4.

15In particular we argue that in order to be compatible with firm level data, we have to impose σ > 3.
16In this Section we are implicitly assuming that there are no distortions in data that might affect firm size.
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pays wage w to each unit of labor input L, and gets a fraction χ ∈ (0, 1] of total profits.17 The
special case χ = 1 implies that there is no separation between ownership and control, which is the
case considered in Rosen (1982). We can write the θ-manager’s problem as:

max
{L,n,π}

(1− τ)χπ − v (n) (2.23)

s.t. π =

[
θγLh

(
θn
L

)
− wL

]
.

The first order conditions with respect to L and n in (2.23) are given by:

θγ

[
h
(

θn
L

)
− θn

L
h′
(

θn
L

)]
= w, (2.24)

and
(1− τ)χθγ+1h′

(
θn
L

)
= v′ (n) . (2.25)

Equations (2.24) and (2.25) together imply the following Lemma. Here we relate the behavior
of observables such as labor size, output and profits grow as skill of the manager grows. It is
worthwhile observing that as long as the share of ownership is constant across θ then the level of
ownership (χ) does not impact these growth rates hence it will not bias our estimation strategy.

Lemma 4. Let {L(θ), n(θ), π(θ)} solve the θ-manager’s problem in (2.23). Then the following relation-
ships hold:

d ln L(θ)
d ln θ

= 1 +
γσ

1− κ(θ)
+ ε

(
1 +

γ

1− κ(θ)

)
, (2.26)

d ln y(θ)
d ln θ

= 1 + γ + ε

(
1 +

γ

1− κ(θ)

)
+

κ(θ)

1− κ(θ)
γσ, (2.27)

d ln π(θ)

d ln θ
=

(
1 +

γ

1− κ(θ)

)
(1 + ε). (2.28)

where κ(θ) ≡ wL(θ)/y(θ).

Proof. See Appendix 2.10.3.

Lemma 4 reveals some key properties of the scale-of-operations effect that are present in our
environment. Equation (2.26) and (2.27) show that since γ > 0, the elasticity of firm size (in terms
of employment L) and sales (in terms of total output γ) with respect to θ are greater than one.
This implies that given a distribution of types the respective distribution of firm size and firm
sales will be more skewed. The same observation holds for equation (2.28) relating profits for the
manager versus his skill θ. It is easy to see that in the case with inelastic labor ε = 0 then the
above three equation map to equations (14)–(16) in Rosen (1982).

17The assumption of managers being subject to a constant marginal tax rate is motivated by the progressivity of the
US income tax system together with managers, in general, being located at the top of the income distribution.
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The estimation of a will be based on equation (2.26) (and on equation (2.28) in the robustness
section). The estimation of γ instead relies on equations (2.26) and (2.27). With these equations
we can relate the value of γ to: d ln π(θ)

d ln y(θ) the elasticity of manager compensation to firm output; and

the elasticity of firm size with respect to sales d ln L(θ)
d ln y(θ) which will be determined from the data. To

this end we will use the following Corollary which is simply derived from Lemma 4.

Corollary 4. For any solution of the θ-manager’s problem in (2.23) the following relationships hold:

d ln L(θ)
d ln y(θ)

=
(1− κ(θ))(1 + ε) + γ(σ + ε)

(1− κ(θ))(1 + γ + ε) + γ(κ(θ)σ + ε)
, (2.29)

d ln π(θ)

d ln y(θ)
=

(1− κ(θ) + γ) (1 + ε)

(1− κ(θ))(1 + γ + ε) + γ(κ(θ)σ + ε)
. (2.30)

From (2.29) and (2.30) we obtain

1− κ(θ) =
1− d ln L(θ)

d ln y(θ)
d ln π(θ)
d ln y(θ) −

d ln L(θ)
d ln y(θ)

, (2.31)

rearranging equation (2.29), we have:

γ =

(
1− d ln L(θ)

d ln y(θ)

)
(1− κ(θ))(1 + ε)

d ln L(θ)
d ln y(θ) (1− κ(θ) + κ(θ)σ + ε)− (σ + ε)

. (2.32)

Substituting (2.31) into equation (2.32), we obtain an expression for γ as a function of firm-level
elasticities, and parameters σ and ε.

Proposition 9. For any solution of the θ-manager’s problem in (2.23) the following relationship holds:

γ =
1− d ln L(θ)

d ln y(θ)
d ln L(θ)
d ln y(θ) −

d ln π(θ)
d ln y(θ)

σ+ε
1+ε

. (2.33)

Equation (2.33) in Proposition 9 form the basis for the estimation of γ. To evaluate γ, from (2.32)
we require the elasticity of firm size with respect to sales d ln L(θ)/d ln y(θ) and the elasticity of
managerial compensation with respect to firm size d ln π(θ)/d ln y(θ).18

2.5.2 estimating γ

We begin with estimating the elasticity of firm size with respect to sales. We proxy the firm
workforce with the number of non managerial employees. Our model of the firm does not feature
hierarchies: a single manager controls a single firm. A direct application to data would then imply

18From equation (2.33) it is clear that given data on firm elasticities, not all parameter combinations of (σ, ε) will
give a positive value for γ. In Figure 2.2 we show the admissible values of σ and ε that, given the estimated elasticities,
are consistent with a positive value of γ.
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that the number of non managerial employees is equal to total employment minus one. However
when considering larger firms is natural to think that multiple top executives are responsible for
the operations of a firm. In this case we need to consider the number of top executives. So that for
firm i at time t we consider the following relationship:

ln(Salesi,t) ≈ α0 + α1 ln
(

Employeesi,t −Number of top executivesi,t

)
,

If the number of top executives is a constant fraction of the total number of employees, then
looking at the total number of employees as the sole dependent variable will provide a unbiased
estimate of α1. In our environment the span of control is increasing with managerial skill. In
this sense in our environment the single manager is associated, as his skill increases, to a larger
firm. Given this we consider a fixed number of top executives across all firms. For large firms
the assumption on the exact number for top executives will have small effect on the elasticity
estimates. This can be seen easily rearranging the above. We have

ln(Salesi,t) ≈ α0 + α1 ln
(

Employeesi,t

)
+ α1 ln

(
1− Number of top executives

Employeesi,t

)
≈

≈ α0 + α1 ln
(

Employeesi,t

)
.

We look at data from publicly traded firms in Compustat. The sample is constructed at an annual
frequency from 2000 to 2012. The sample is comprised of US publicly traded firms. Data of firm
sales is taken from Gross Sales in the Income Statement; data on the total number of employees
is taken from the Employees item. Nominal variables are deflated using the CPI for all urban
consumers, all goods. For our sample selection we drop firms that report negative or zero sales
and firm with duplicate CUSIP for a given year. For every year we rank all remaining firms by
size. In our benchmark calculation we consider firms above (and including) the median size.
This is done to ensure that the exact number specified for top executive has little effect on the
estimates. As a benchmark we assume that the number of top executives is 20. In Figure 2.1 we
also report estimates changing the number of top executives from 1 to 50. Also in the Figure is the
comparison between our benchmark estimation and the case where firms below the median size
are included as well. We create division dummies based on Standard Industrial Classification (SIC)
as defined by the Occupational Safety & Health Administration.19 In our benchmark specification
we then consider the following linear relationship:

ln yt(θi) = α0 + α1 ln Lt(θi) +
10

∑
j=1

α3,jDivj + ε i,t. (2.34)

19Division refer to industry groupings. The 10 divisions considered are: Agriculture, Forestry and Fishing; Mining;
Construction; Manufacturing; Transportation , Communications, Electric, Gas and Sanitary Services; Wholesale Trade;
Retail Trade; Finance, Insurance and Real Estate; Services; Public administration.
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where ln yt(θi) is the log of firm sales; ln Lt(θi) is the log of firm size measure (total number of
employees−20) and Divj are the dummy variables for each division. We estimate a value of
d ln y
d ln L = .951 (0.002), where with d ln y

d ln L we denote the average value of d ln y(θ)
d ln L(θ) in our sample. The

estimated elasticity is consistent with the making-do-with-less effect which implies a coefficient
smaller than one as in Lazear et al. (2013).
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Figure 2.1: Estimates of d ln y
d ln L by number of top executives. “Benchmark” refers

to estimates of (2.34) using firms above the median size, “All Sample” refers
to estimates including firms below the median .

In Table 2.1 we report details about our benchmark estimation and additional robustness
checks. Column (1) displays the benchmark. Columns (2)− (4) look at the impact of extending
the time period and the effect of either industry or year dummies. Columns (5)− (6) look at
the effect of changing the decile of firm size included. We observe that our estimate, with either
slightly larger or smaller estimates, is robust to changes in specification.

We next move to estimate the average elasticity of manager compensation to firm output:
d ln π
d ln y . Starting from Roberts (1956), there is a vast literature estimating the empirical elasticity
of managerial compensation with respect to firm size in the cross-section.20 The literature has
highlighted an empiric al regularity usually denoted as “Roberts’s Law,” which states that on
average managerial compensation is proportional to a power of 1/3 on the own firm size (which
could be measured by total firm value, firm sales, etc.). In particular, Gabaix and Landier (2008)
estimate that the elasticity of managerial compensation with respect to sales is 0.21 and the
elasticity of managerial compensation with respect to firm value is estimated to be equal to 0.34,
close to the Roberts’s Law.21 In our benchmark calculation we set d ln π

d ln y = 0.34. In Section 2.7.1 we

20Also refer to Lewellen and Huntsman (1970), Baker et al. (1988), and Frydman and Saks (2010).
21Gabaix and Landier (2008) use ExecuComp data from 1992 to 2004 and select for each year the 1000 highest paid

CEOs, using the total compensation variable TDC1 at year t which include salary, bonus, restricted stock granted
and Black-Scholes value of stock-option granted. Then they regress the log of total compensation of the CEO in year
t on the log of the firm’s size proxies in year t− 1, controlling for year and industry fixed effects. Similarly, using
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Table 2.1: Estimating the Elasticity of Firm Size With Respect to Sales

ln(Sales)

(1) (2) (3) (4) (5) (6)

ln( Workers ) 0.951 0.933 0.956 0.968 0.912 0.972

[0.002] [0.003] [0.001] [0.001] [.0008] [0.004]

Year dummy Yes Yes

Division dummy Yes Yes Yes Yes Yes

All time period Yes Yes Yes

Deciles Included ≥ 5 ≥ 5 ≥ 5 ≥ 5 All ≥ 8

Observations 50,267 50,267 171,044 171,044 265,764 25,131

R2 0.77 0.71 0.79 0.80 0.84 0.69

Notes: Estimates of α1 in (2.34). Column (1) displays benchmark calculation using Compustat data (2000-
2012). “Year dummy” denotes the inclusion or not of yearly dummies. “Division dummy” highlights the
inclusion or not in (2.34) of dummies based on Standard Industrial Classification (SIC) from Occupational
Safety & Health Administration. “All time period” denotes the usage of the entire dataset up to 1950.
“Decile Included” denote the sample of firms by size included in the estimation of α1. We report standard
errors in square parentheses.

present an alternative calibration strategy that instead does not require computing d ln π
d ln y but will

rely on aggregate data on the relative compensation share of managers versus workers.
We can now determine γ using equation (2.32) in Proposition 9. we get:

γ =
1− 1

0.951
1

0.951 − 0.34× 0.5+5
0.5+1

= 0.30.

Given the estimated elasticity we can recover an approximate value for the average κ. From (2.31),
we get an average value of κ̂ = 0.93. This value of κ implies that on average the top management
team share 7% of the total firm sales.

Given our assumption of γ > 0, the value of d ln π
d ln y found in the literature imposes a strong

restriction on the possible values of σ. This can be seen in equation (2.30). Suppose we impose
that d ln π

d ln y < 1 in this case we have γκ < γκσ, since κ > 0 we then have σ > 1. This implies
that a positive value of γ excludes the case of a Cobb-Douglas production function (σ = 1), an
observation originally made in Rosen (1982). As mentioned earlier the formula for γ in equation
(2.33) does not return a positive value of γ for all values of ε and σ. Given the estimated firm level
elasticities, Figure 2.2 displays as a shaded region the permissible pairs of (ε, σ).

manufacturing firms in CompuStat (1994-2010), Alder (2012) finds the elasticity of CEOs with respect to employee size
is 0.318 controlling for industry fixed effects.

80



0.5 1 1.5 2

3

4

5

6

7

8

ε

σ

Figure 2.2: Admissible Region For (ε, σ).

2.5.3 estimating a

The fact that managerial skills θ are unobservable makes the estimation of the the Pareto parameter
a potentially challenging. This subsection shows how to recover the shape of the tail of the
skill distribution using stylized facts on the distribution of firm sizes observed in data. Given
Assumption 5 concerning the distribution of θ we have that given a realization {θ1, . . . , θN} of
managerial types the maximum likelihood estimate of a satisfies:22

1
â
=

1
N

N

∑
i=1

(
ln(θi)− ln(θ)

)
, (2.35)

where θ is the minimum possible value of θ.
In our model the size distribution of firms reflects the skill distribution of managers. As a

consequence, we can recover the estimate of a based on the observed distribution of L(θ). It is
well documented that the distribution of firm size exhibits a Pareto distribution with tail index
close to one.23 If we let aL denote the tail parameter of the Pareto distribution of firm size, the
analogue to (2.35) yields

1
âL

=
1
N

N

∑
i=1

(
ln L(θi)− ln(L(θ))

)
. (2.36)

From equation (2.26) in Lemma 4 we have that

ln L(θ)− ln L(θ) =
(

1 +
γσ

1− κ̂
+ ε

(
1 +

γ

1− κ̂

))
(ln(θ)− ln(θ)) ,

22See, e.g., Malik (1970).
23See, among others, Simon and Bonini (1958), Ijiri and Simon (1964)
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where we proxied κ(θ) with κ̂. Substituting in (2.35) we get

1
â
=

1
1 + γσ

1−κ̂ + ε
(
1 + γ

1−κ̂

) 1
N

N

∑
i=1

(
ln L(θi)− ln L(θ)

)
. (2.37)

Assuming that regularity conditions necessary for consistency of maximum likelihood estimates
hold, (2.37) and (2.36) give the following result:

Proposition 10. For any solution of the θ-manager’s problem in (2.23) the following relationship holds:

a =

(
1 +

γσ

1− κ
+ ε

(
1 +

γ

1− κ

))
︸ ︷︷ ︸

d ln L
d ln θ

×aL, (2.38)

From the above relationship we can recover a using information on aL and our benchmark values
for the rest of the parameters. Taking the estimate of the tail parameter of firm size from Axtell
(2001), we set aL = 1.06. Using this into equation (2.38) we get a = 26.13.

The above analysis linking the distribution of skills to the distribution of talent is an application
of the lessons learned in Lucas (1978) and in Rosen (1982).24 The implications of this identification
step cannot be understated. Indeed, we see that the distribution of skills is significantly less
skewed than the distribution of firm size (also refer to Section 2.7.2 looking at the distribution
of income). Not recognizing this relationship between skills and observables could lead in over-
estimating the thickness of the right tail of the skill distribution. In Saez (2001), for example, since
wages are exogenously given, skills are identified via the distribution of income which leads to
estimating a distribution of skills with tail parameter around 2. Looking back at our tax formula
in equation (2.21) the inverse relationship between the optimal top tax rate and the tail parameter
is clear. Hence, a low estimate of this parameter will mechanically lead to recommending high
top tax rates. We come back to this point in Section 2.10.6.

To conclude this section, Table 2.2 summarizes the parameter calibration of the benchmark model.

We next compute the value for optimal taxes a the top.

2.6 optimal top income tax rates

Substituting the parameters of the benchmark calibration from Table 2.2 into our top tax formula
(2.21), we obtain that the optimal tax rate implied by our environment:

T′(π∗(∞)) =
1

1 + a
[ 1

ε + 1 + γ
1−κ

( 1
ε + 1− ρκ

)]−1 = .324.

24Lucas (1978) focuses on the distribution of firm size, while Rosen (1982) focuses on the distribution of income.
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Table 2.2: Benchmark Parameter Calibration.

Parameter Symbol Value

Frisch Elasticity ε 0.5

Degree of substitutability of inputs ρ 0.8

Elasticity of firm size w.r.t. sales d ln L(θ)
d ln y(θ) 1.051

Elasticity of executive compensation w.r.t. sales d ln π(θ)
d ln y(θ) 0.34

Scale-of-operations effect γ 0.30

Share of labor costs to total sales κ 0.93

Inverse of Pareto tail parameter of θ a 26.13

Notes: ε and ρ are imposed exogenously. The elasticities are estimated from
data following Section 2.5.2. γ, κ and a are respectively computed by (2.33),
(2.31) and (2.38).

It is useful to benchmark the above result with two values. We begin with what we observe
in data. We look at the March edition of the CPS from 2000 to 2010, and for every individual
we compute federal and state taxes of labor income using the NBER TAXSIM calculator.25 For
the top 99th percentile we find an effective marginal federal tax rate of 33.5% and an effective
marginal state tax rate of 5%. Saez et al. (2012) report a top 1% marginal rate of approximately
50% post 2000. With these bounds in mind our benchmark prescribes a lower tax rate than what
we currently see in data. The prescription relies crucially on the estimated value of γ. To see this
it is instructive to compare the result with the case in which γ = 0.26. In this case aγ=0 = 1.59 and
the corresponding tax rate is almost double our benchmark at 65.4%. In Section 2.7 we look at
how top tax rate are affected by a and κ. We next proceed and study the effect of the elasticity
of labor supply (ε) and the degree of substitutability across inputs (σ). In 2.3, as expected, we
observe that tax rates are decreasing in ε (see also Figure 2.3(a)). When looking at changes of the
elasticity of substitution between effort of the manager and of the worker we see that marginal
taxes rates are increasing in σ. This is also more clearly displayed in Figure 2.3(b) where marginal
taxes are displayed over a wider range of σ consistent with a positive value of γ as displayed in
the shaded region of Figure 2.2. When changing values of either ε and σ given equation (2.33)
and (2.38) we re-compute the values for γ and a. Table 2.3 displays the re-estimated values, also
displayed are the values of marginal taxes when γ = 0. Compared to our benchmark marginal
taxes are higher. However, the difference between the two (in relative terms) is decreasing as the
manager labor supply becomes more inelastic.

25We drop individuals with negative income and labor income below $100. Also dropped are individuals for which
labor income is less than 60% of total income or more than 120% of total income. Tax rates are computed using the
NBER TAXSIM calculator version 9.2. Rates reported are apply to the head of household inclusive of transfer received.
Refer to Ales et al. (2014) for further details.

26In Section 2.10.6 we will show how the case with γ = 0 collapses our environment to the one studied in Saez
(2001).
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Table 2.3: Top Tax Rates.

ε = 0.25 ε = 0.50 ε = 0.75

σ 4.9 5.2 4.9 5.2 4.9 5.2

T′ (%) 51.8% 51.9% 32.3% 32.6% 21.7% 22.1%

γ 0.16 0.13 0.35 0.24 2.09 0.63

a 13.5 11.7 29.3 21.8 176.5 57.3

T′γ=0 (%) 79.1% 79.1% 65.4% 65.4% 55.7% 55.7%

aγ=0 1.3 1.3 1.6 1.6 1.8 1.8

Notes: T′ denotes optimal tax rate as imputed by (2.21). γ and a are
respectively computed by (2.33) and (2.38). T′γ=0 denote the optimal
tax rates with the exogenous constraint of γ = 0.

2.7 robustness

In this section we revisit our optimal tax result by pursuing different quantitative strategies. In
Section 2.7.1 we use information on the share of labor cost to total sales as opposed to the behavior
of managerial compensation to sales. In Section 2.7.2 we determine the distribution of skills using
the distribution of income rather than the distribution of firm sizes.

2.7.1 optimal taxes using κ from data

Our goal is to determine κ not via equation (2.31) as we have done in the previous section but
instead estimating it directly from data. We use the Current Population Survey (CPS) administered
by the US Census Bureau and the US Bureau of Labor Statistics. We look at years 1976 to 2012. We
keep individuals between ages 25 to 65 and drop individuals not in the labor force or currently
unemployed (for additional details on data and description of the sample refer to Ales et al.
(2014)). We divide the population in two groups those whose occupation is describe as being:
Executive, Administrative, and Managerial Occupations and those who are not (see Appendix 2.10.5
for additional details). For each group we compute total compensation. We then estimate κ as
the total compensation of individuals not described as managers or individuals described as
managers. Averaging over all years we get an average value of κ = .812. Next we back out γ using
equation (2.32).

γ =

(
1− d ln L(θ)

d ln y(θ)

)
(1− κ)(1 + ε)

d ln L(θ)
d ln y(θ) (1− κ + κσ + ε)− (σ + ε)

= 0.029. (2.39)

The implied value for a is equal to 2.48. Finally going back to our tax formula in (2.21) we get
T̄′ = 57.5%.27

27Previous version of this draft used the NBER-CES Manufacturing Industry Database. With this data we estimated
a value of κ = 0.64 with a confidence interval of (0.580, 0.702). This lower value of κ is due to the fact that the dataset
consider as managerial workers a large class of workers. From Berman et al. (1994) these workers include “those
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Figure 2.3: Comparative Statics of Optimal Top Tax Rates.

2.7.2 estimating a from the income distribution

In Subsection 2.5.3 we estimated a using the distribution of firm sizes. In this section we proceed
similarly but we focus instead on the distribution of incomes. From equation (2.28) in Lemma 4
we have that

ln π(θ) =

(
1 +

γ

1− κ(θ)

)
(1 + ε) ln θ.

As before, approximating k(θ) = κ̂ and substituting in (2.35) we get

1
a
=

1(
1 + γ

1−κ̂

)
(1 + ε)

1
N

N

∑
i=1

ln π(θi).

Assume that in the data income is distributed according to a Pareto distribution with tail parameter
ay. We then have 1

ay
= 1

N ∑N
i=1 ln π(θi). Substituting in the above we have:

a =

(
1 +

γ

1− κ̂

)
(1 + ε)ay. (2.40)

Taking ay = 2 from Saez (2001) with the above estimates of κ and γ we get a = 15.62. In this case
the top tax rate is equal to 44.4%.

engaged in supervision (above the working foreman level), installation and servicing of own product, sales, delivery,
professional, technological, administrative etc.”
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2.8 optimal firm size taxation

As emphasized in Section 2.4.1, typically the marginal product of labor is not equalized across firms
at the optimum. This feature is necessary for incentive provision and, in our decentralization,
translates into nonzero marginal taxes on firm size (see equation (2.15)). In this section we
characterize optimal taxes on firm size in a calibrated example.

Unlike in previous sections where we focused on taxation at the top, here we compute firm
size taxes over the entire skill distribution in order to study progressivity. Our calibration is as
follows. The parameter controlling the right tail of the skill distribution is set to a = 26.13 as
in our benchmark calibration. We assume that the skill distribution is Pareto-Lognormal28 with
θ ∼ PlN(ζ, ι2, a), and following Mankiw et al. (2009) we set ζ = 2.76 and ι = 0.56. The values for
the parameters ε, ρ, and γ are taken from Table 2.2. To calibrate β (the share parameter on the
production function), we use the definition of κ which implies:

κ(θ) =
MPL(θ)L(θ)

y(θ)
=

1

1 + β
1−β

( nθ
L

)ρ .

From NBER-CES Manufacturing Industry Database, the average team size defined by the number
of production worker per non-production worker is estimated to be 3.58. Using this number to
proxy

( nθ
L

)−1
, the equation above and our benchmark value of κ = 0.93 implies β = 0.17. Finally,

the social welfare function is such that Ψ(U) = U1/2.
Table 2.4 reports optimal marginal firm size taxes across firm size percentiles in our calibrated

model. Two facts stand out. First, computed firm distortions are positive and economically
significant. For the median firm, for example, these distortions raise the marginal labor cost by
1.75% above the wage. Second, the marginal tax on labor use is progressive in the range of firm
sizes reported. In particular, T′L increases by 30% between the 25th percentile and the top, where it
asymptotes at around 2%.

It is useful to benchmark the aforementioned prescriptions against actual firm size distortions
in the data. As for the shape of such wedges, our model model generates progressive firm
distortions, which is a property that is ubiquitous across countries.29 When comparing levels, on
the other hand, one faces a significant obstacle: in the real world, policies distorting firm sizes
include a variety of labor regulations which cannot be easily summarized into a “tax equivalent”
measure as in our model.30 However, a recent study by ? circumvents this problem by structurally
estimating the tax equivalent of French labor regulations, which affect firms with more than 50
employees. Using a Lucas (1978) span of control model, the authors find that such labor legislation
increase the cost of labor by around 1.3% of the wage, which is in the same ballpark as the

28That is, θ
d
=θ1θ2, where θ1 ∼ LN(ζ, ι2) and θ2 ∼ P(a).

29See, e.g., ?.
30Regulations on large firms range from penalties for not offering health insurance to their employees in the US, to

rehiring unfairly dismissed workers in Italy. Other types of policies aim to promote smaller firms.
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numbers in Table 2.4. From this perspective, our model can potentially rationalize both the shape
and levels of existing firm size distortions in the data.

Table 2.4: Optimal Marginal Tax on Firm Size.

Firm Size Percentile

25th 50th 75th 90th 99th

T′L(wL) 1.54% 1.75% 1.91% 2.01% 2.02%

2.9 conclusion

The title of this paper is a reference to the thought provoking novel of Rand (1957).31 In this
dystopian novel what we would call “top income earners” reduce their labor effort in response to
high taxes. In the novel, this action is described as having dramatic and long lasting effects for the
economy. In this paper, we quantify such effects. Top income earners are modeled as managers
whose effort and skill contribute–together with hired labor–to generate output. Our key finding
is that tax rates should be substantially lower than what previous literature with unbounded
distribution has found. On the other hand, current US marginal tax rate are close to what the
normative benchmark prescribes. This result is robust to a large range of parameter specifications.

Methodologically, this paper highlights how to consider firm level data to determine key
parameters relevant for income taxation. The logical next step involve taking a close look at the
impact of managers on production. Two extensions come to mind: the first one is to determine the
impact of a hierarchical organizations rather than a single manager technology for optimal taxes.
The second extension is to consider the case in which managerial ability and labor productivity
are drawn independently rather than being jointly determined by a unique skill parameter.

31The excellent survey of Slemrod (2000) also features a similar title.
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2.10 appendix

2.10.1 proof of proposition 6

Define M(θ′, θ) ≡ c(θ′)− v(n(y(θ′), L(θ′), θ)). Incentive compatibility (2.4) requires that for all
θ ∈ Θ, M(θ′, θ) attain a global maximum at θ′ = θ. We start by characterizing local maxima of
M(θ′, θ) at θ′ = θ using the following Lemma.

Lemma 5. Let M(θ′, θ) ≡ c(θ′)− v(n(θ′, θ)) where n(θ′, θ) ≡ n(y(θ′), L(θ′), θ). A local maximum of
M(θ′, θ) at θ′ = θ is attained if and only if for all θ ∈ Θ:

c′(θ)− v′(n(θ))
[
ny(θ)y′(θ) + nL(θ)L′(θ)

]
= 0, (2.41)

and

y′(θ)
[
v′′(n(θ))ny(θ)nθ(θ) + v′(n(θ))nθy(θ)

]
+

+L′(θ)
[
v′′(n(θ))nL(θ)nθ(θ) + v′(n(θ))nθL(θ)

]
≤ 0. (2.42)

where n(θ, θ) = n(θ) and ni(θ, θ) = ni(θ) for i = y, L, θ, yθ, Lθ.

Proof. The first order condition for θ′ = θ to be a local maximum of M(θ′, θ) is M1(θ, θ) = 0.32

This is equivalent to (2.41). Differentiating the first order condition M1(θ, θ) = 0 with respect to
θ gives M11(θ) + M12(θ) = 0. Hence, the second order condition M11(θ) ≤ 0 can be written as
−M12(θ) ≤ 0, which gives (2.42).

We now go back to the proof of Proposition 6. The proof follows standard arguments.

Proof. We want to show that if (2.41) and (2.42) hold, then M1(θ
′, θ) has the sign of (θ − θ′). This

implies that M(θ′, θ) attains a global maximum at θ′ = θ so that (2.4) holds. First note that

M1(θ
′, θ) = c′(θ′)− v′(n(θ′, θ))

[
ny(θ

′, θ)y′(θ′) + nL(θ
′, θ)L′(θ′)

]
. (2.43)

We also have that (2.41) evaluated at θ′ gives

c′(θ′) = v′(n(θ′))
[
ny(θ

′)y′(θ′) + nL(θ
′)L′(θ′)

]
. (2.44)

Using (2.44) into (2.43) gives
M1(θ

′, θ) = J(θ′, θ′)− J(θ′, θ), (2.45)

where J(θ′, θ) ≡ v′(n(θ′, θ))
[
ny(θ′, θ)y′(θ′) + nL(θ

′, θ)L′(θ′)
]
. Differentiating with respect to the

second argument:

J2(θ
′, θ′) = y′(θ′)

[
v′′(n(θ′))ny(θ

′)nθ(θ
′) + v′(n(θ′))nθy(θ

′)
]
+

32The subscript i = 1, 2 denote derivative with respect to respectively the first or second argument
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L′(θ′)
[
v′′(n(θ′))nL(θ

′)nθ(θ
′) + v′(n(θ′))nθL(θ

′)
]

;

From (2.42) we have that J2(θ′, θ′) ≤ 0. Then (2.45) implies that M1(θ
′, θ) ≥ 0 if and only if θ′ ≤ θ.

Finally (2.8) is obtained by combining (2.41) and (2.42). This completes the proof.

2.10.2 proofs of section 2.4

We compute Pareto optimal allocation by solving the optimal control problem (PO-FOC) where
y(θ) and L(θ) are the controls and U(θ) is the state variable. After integrating by parts, the
Lagrangian to the planner’s problem is (suppressing dependencies with respect to θ, y and L):

L = Ψ(cw) +
∫

Ψ(U)dF−
∫
[µ′U − µv′(n)nθ ]dθ + λr

∫
[y− cw −U − v(n)]dF− λl

∫
[L− 1]dF,

where λr is the multiplier on (2.6), λl is the multiplier on (2.7) and µ(θ) is the costate on (2.5) that
also satisfies the boundary conditions µ(θ) = limθ→θ µ(θ) = 0. It is straightforward to show that
all of these multipliers are positive.

Optimality conditions with respect to the controls y, L are, respectively,

λr(1− v′(n)ny) f + µ(v′′(n)nynθ + v′nθy) = 0, (2.46)

−λl f − λrv′(n)nL f + µ(v′′(n)nLnθ + v′nθL) = 0 (2.47)

and the costate equation is
µ′ = (Ψ′(U)− λr) f . (2.48)

proof of proposition 7

Let (y, L, θ) be such that n(y, L, θ) = n̄, where n̄ is a given level of effort. By applying the implicit
function theorem we have that

yL = −nL/ny. (2.49)

Rearranging the first order conditions (2.46) and (2.47) we get

ny[λ
rv′ f − µv′′nθ ] = λr f + µv′nθy,

and
nL[λ

rv′ f − µv′′nθ ] = −λl f + µv′nθL,

so that

yL = −nL

ny
=

λl f − µv′nθL

λr f + µv′nθy
. (2.50)

Using (2.15), (2.50) and substituting the expression for w = λl/λr we derive equation (2.17).
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To prove Part 2, suppose that nθ = f (n) for all θ. It follows that for all θ

nθL

nθy
=

nL

ny
. (2.51)

Rearranging (2.50) and substituting (2.51) we get

−nθL

nθy
λr = λl ,

so simplifying and substituting (2.51) we get −nL/ny = λl/λr, so that T′L = 0.

proof of proposition 8

Integrating (2.48) between θ and θ and using the transversality condition we get

µ(θ) =

θ∫
θ

(
λr −Ψ′(U(θ))

)
f (θ)dθ. (2.52)

Evaluating (2.52) at θ gives

λr =
∫
Θ

Ψ′(U(θ)) f (θ)dθ. (2.53)

Let D(θ) ≡ 1
1−F(θ)

∫ ∞
θ Ψ′ (U(θ)) dF(θ) so that D(θ) = λr. Substituting into (2.52) we obtain

µ(θ) = (1− F(θ)) (D(θ)− D(θ)) , (2.54)

from (2.46)

−µnyv′
[

v′′

v′
nθ +

nθy

ny

]
= λr[1− v′(n)ny] f ,

substitute (2.54)

(1− F(θ)) (D(θ)− D(θ)) nyv′
[
−v′′

v′
nθ −

nθy

ny

]
= λr[1− v′(n)ny] f .

By Assumption 3 and (2.53) we get

(1− F(θ))
θ f (θ)

(
1− D(θ)

D(θ)

) [
−1

ε

nθ

n
θ −

nθy

ny
θ

]
=

[1− v′(n)ny]

v′(n)ny
,

so using (2.18) yields

T′

1− T′
=

1− F(θ)
θ f (θ)

(
1− D(θ)

D(θ)

) [
−1

ε

nθ

n
θ −

nθy

ny
θ

]
. (2.55)
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Next we write the partial derivatives of n in (2.55) in terms of partial derivatives of y. Let (n, L, θ)

be such that y(n, L, θ) = ȳ, where ȳ is a given level of output. The implicit function theorem gives

nL = −yL

yn
, (2.56)

and
nθ = −

yθ

yn
. (2.57)

Combining (2.49) and (2.56) gives ny(y, L, θ) = 1/yn(n(y, L, θ), L, θ). By differentiating both sides
with respect to θ we have nθy = − ynnnθ+ynθ

y2
n

, which implies

−
nθy

ny
θ =

(
ynn

yn
n
)(nθ

n
θ
)
+

ynθ

yn
θ. (2.58)

Substituting (2.57) and (2.58) into (2.55) gives the result.

proof of corollary 1

Under this technology, it is straightforward to verify that

yθ

yn
· θ

n
= 1,

ynn

yn
n =

H11

H1
θn,

ynθ

yn
θ =

H11

H1
θn + 1.

Substituting the above in (2.19) yields (MDS).

proof of corollary 2

Denote with g(θ) = θγ. Given Assumption 4 we have

n(y, L, θ) =

[
1
β

(
y

θg(θ)

)ρ

− 1− β

β

(
L
θ

)ρ] 1
ρ

. (2.59)

Taking derivatives from (2.59) we obtain

nθ(y, L, θ) =

(
−1

θ

) [
1
β

(
y

θg(θ)

)ρ

− 1− β

β

(
L
θ

)ρ] 1
ρ−1 [ 1

β

(
y

θg(θ)

)ρ

(1 + γ)− 1− β

β

(
L
θ

)ρ]
,

using the above and (2.59) we get

nθ(y, L, θ)

n(y, L, θ)
= −1

θ

(
y

g(θ)

)ρ
(1 + γ)− (1− β)Lρ(

y
g(θ)

)ρ
− (1− β)Lρ

. (2.60)

Also

ny(y, L, θ) =

[
1
β

(
y

θg(θ)

)ρ

− 1− β

β

(
L
θ

)ρ] 1
ρ−1 1

βy

(
y

θg(θ)

)ρ

, (2.61)
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nθy(y, L, θ) =

(
−1− ρ

θ

)
1

βy

(
y

θg(θ)

)ρ [ 1
β

(
y

θg(θ)

)ρ

− 1− β

β

(
L
θ

)ρ] 1
ρ−2

×

[
1
β

(
y

θg(θ)

)ρ

(1 + γ)− 1− β

β

(
L
θ

)ρ]
− ρ

θ

[
1
β

(
y

θg(θ)

)ρ

− 1− β

β

(
L
θ

)ρ] 1
ρ−1 1

βy

(
y

θg(θ)

)ρ

(1 + γ).

The two above imply:

nθy(y, L, θ)

ny(y, L, θ)
= −1

θ

(1− ρ)

(
y

g(θ)

)ρ
(1 + γ)− (1− β)Lρ(

y
g(θ)

)ρ
− (1− β)Lρ

+ ρ(1 + γ)

 . (2.62)

By Assumption 4 we have (
y(θ)
g(θ)

)ρ

= β(θn)ρ + (1− β)Lρ.

Then (
y

g(θ)

)ρ
(1 + γ)− (1− β)Lρ(

y
g(θ)

)ρ
− (1− β)Lρ

= 1 + γ

(
1 +

1− β

β

(
L

θn

)ρ)
(2.63)

Also, Assumption 4 implies:
κ(θ)

1− κ(θ)
=

1− β

β

(
L

θn

)ρ

, (2.64)

where κ(θ) ≡ yL(θ)L(θ)/y(θ) denotes the share of labor costs to total sales for manager θ. Using
(2.64) in (2.63) gives (

y
g(θ)

)ρ
(1 + γ)− (1− β)Lρ(

y
g(θ)

)ρ
− (1− β)Lρ

= 1 + γ

(
1 +

κ(θ)

1− κ(θ)

)
. (2.65)

Using (2.60), (2.62) and (2.65) into (2.55) gives the result.

2.10.3 proofs of section 2.5

proof of lemma 4

We start by establishing a the following result (henceforth we suppress the arguments of h, h′, h′′):

Claim 1.
1
σ
= −

(
θn
L

)
h′′

h′
1
κ

. (2.66)

Proof. From the definition of κ we can write

1− κ =
θn
L

h′

h
. (2.67)
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Let f (θn, L) = Lh (θn/L). Define the elasticity of substitution between θn and L as

σ ≡ − d ln (L/θn)
d ln ( f2/ f1)

.

By definition of f we have f1 = h′ and f2 = h− θn
L h′ which implies f2

f1
= h

h′ −
θn
L . Therefore

1
σ
= −d ln ( f2/ f1)

d ln (L/θn)
= −

(
h
h′
− θn

L

)−1 L
θn

d
(

h
h′ −

θn
L

)
d (L/θn)

.

Differentiating and re-arranging, we get:

1
σ
= −

(
θn
L

)
h′′

h′

(
1− θn

L
h′

h

)−1

.

Substituting (2.67) in the above we obtain the result.

We now move to the proof of Lemma 4. As notation let g = θγ and g′ = γθγ−1.

Proof. Differentiating (2.24) and (2.25) we get

d ln L
d ln θ

− d ln n
d ln θ

= 1− θ
g′

g

(
L

θn

)2 1
h′′

(
h− θn

L
h′
)

, (2.68)

nθ

L
gh′′

d ln L
d ln θ

+

[
n
θ

v′′

(1− τ)χ
− θn

L
gh′′
]

d ln n
d ln θ

= g′θh′ + gh′ + gh′′
nθ

L
. (2.69)

Combining (2.68) and (2.69),

n
θ

v′′

(1− τ)χ

d ln n
d ln θ

+
nθ

L
gh′′

(
1 +

γσ

1− κ

)
= g′θh′ + gh′ + gh′′

nθ

L
,

where we applied (2.66), (2.67) and the definition of γ on the last term. Further rearranging (2.66)
and (2.67) gives

v′′

(1− τ)χ

n
θ

d ln n
d ln θ

= gh′
(

1 +
γ

1− κ

)
. (2.70)

From the first order condition (2.25) we have

d ln n
d ln θ

= ε

(
1 +

γ

1− κ

)
, (2.71)

where we used that v′
v′′n = ε. Plugging (2.71) into (2.68),

d ln L
d ln θ

= ε

(
1 +

γ

1− κ

)
+ 1− γ

(
L

θn

)2 1
h′′

(
h− θn

L
h′
)

.
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Then applying (2.66) and (2.67) and rearranging gives (2.26).
Now we obtain equation (2.27). From (2.22) we have

d ln y
d ln θ

=
d ln g (θ)

d ln θ
+

d ln L
d ln θ

+
d ln h

(
θn
L

)
d ln θ

= γ +
d ln L
d ln θ

+
θn
L

h′

h

(
1 +

d ln n
d ln θ

− d ln L
d ln θ

)
.

Substituting (2.67) in the above gives

d ln y
d ln θ

= γ + κ
d ln L
d ln θ

+ (1− κ)

(
1 +

d ln n
d ln θ

)
.

So using (2.26) and (2.71) into the above expression gives (2.27). Finally, we derive equation (2.28).
Profits are given by

π(θ) = y(θ)− wL(θ).

Then
d ln π(θ)

d ln θ
=

d ln y(θ)
d ln θ

y(θ)
π(θ)

− w
L(θ)
π(θ)

L(θ)
π(θ)

,

or
d ln π(θ)

d ln θ
=

d ln y(θ)
d ln θ

1
1− κ(θ)

− w
L(θ)
π(θ)

κ(θ)

1− κ(θ)
, (2.72)

where κ = wL/y. Substituting (2.26) and (2.27) into (2.72) and rearranging gives (2.28).

2.10.4 firm distortions and tax elasticities

In this section we show that if the are no firm level distortions then a wage rate exist for the
effective effort of the manager and the income elasticity of the after tax rate equals the Frish
elasticity of labor supply.

We first show that at the optimum is possible to write the income of managers of type θ as
π(θ) = ω(θ)n where ω(θ, w) is the wage of managers of type θ exercising effort n. The first
order condition with respect to L is: θγHL(θn, L) = w. Since HL is a homogeneous of degree zero
function we have θγHL(θn/L, 1) = w so that θn

L = H−1
L
( w

θγ , 1
)

. This relationship implies that for a
given θ and w the relationship between θn and L is linear. Define m(θ, w) = 1/H−1

L
( w

θγ , 1
)
. So that

L = m(θ, w)θn. Substituting in the expression for profits we have: π(θ, n) = θγH(θn, m(θ, w)θn)−
m(θ, w)wθn. Since H is homogeneous of degree one we have:

π(θ, n) =
[
θγ+1H(1, m(θ, w))− wm(θ, w)θ

]
n = ω(θ, w)n.

We can now write the problem of the manager as:

max c(θ)− v(n(θ)) s.t. c(θ) = (1− τ)ω(θ, w)n.
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First order conditions of the above problem can be written as n(θ) = (v′)−1[(1− τ)ω(θ, w)], so
that:

∂n
∂(1− τ)

=
1

v′′(n(θ))
·ω(θ, w) =

v′(n(θ))
v′′(n(θ))

· 1
(1− τ)

, (2.73)

where the second inequality follows from the first order condition. Substituting (2.73):

e ≡ ∂ log ω(θ, w)n
∂ log(1− τ)

=
∂n(θ)

∂(1− τ)
· 1− τ

n(θ)
= ε

This analysis would not apply in the case of a firm being subject to distortionary taxes or if the
size of the firm where to be fixed L.

2.10.5 occupations used from cps

In CPS we identify as a manager individuals for which their 1990 occupation code is within the
“Executive, Administrative, and Managerial Occupations”. In detail:33

Table 2.5: Occupational Codes Used For Managerial Designation

Occupation code Description

003 Legislators

004 Chief executives and public administrators

007 Financial managers

008 Human resources and labor relations managers

013 Managers and specialists in marketing, advertising, and public relations

014 Managers in education and related fields

015 Managers of medicine and health occupations

016 Postmasters and mail superintendents

017 Managers of food-serving and lodging establishments

018 Managers of properties and real estate

019 Funeral directors

021 Managers of service organizations

022 Managers and administrators

2.10.6 relationship with Saez (2001)

In Section 2.6 we compare our benchmark taxation result with the case in which γ = 0 thus
removing any span of control feature from the environment. We will next show that setting γ = 0
collapses our environment to the one in Saez (2001). To see this consider equation (2.21) and,
using (2.40), substitute a the tail parameter for the distribution of types with ay the tail parameter

33Data is taken from: Miriam King, Steven Ruggles, J. Trent Alexander, Sarah Flood, Katie Genadek, Matthew B.
Schroeder, Brandon Trampe, and Rebecca Vick. Integrated Public Use Microdata Series, Current Population Survey:
Version 3.0. [Machine-readable database]. Minneapolis: University of Minnesota, 2010.
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for the distribution of income. We get:

T′ =
1

1 + ay
(
1 + γ

1−κ

)
ε
[
1 + γ

1−κ

(
1− ρκε

1+ε

)]−1 . (2.74)

It is immediate that in the case with no scale-of-operations effect (γ = 0) or in the the Cobb-
Douglas case (ρ = 0) then we get T′ = 1/(1 + ayε) as in Saez (2001) and Diamond and Saez
(2011).

Equation (2.74) allows us to understand further the forces present in this environment com-
pared to the benchmark case of Saez. As discussed in Diamond and Saez (2011) marginal taxes at
the top can be understood looking at the distribution of types (a) and the income elasticity of the
after tax rate e ≡ ∂ log π(θ)

∂ log(1−τ)
. In equation (2.40) we see how the presence of the scale-of-operations

effect creates a wedge between the distribution of income and the distribution of managerial type.
This is a force for lower taxes (since it points towards a higher value of a). At the same time firm
level distortions that emerge with the scale-of-operations effect (as long as ρ 6= 0) generate a lower
response of income to taxes.34 This is a force for higher taxes. In the two cases discussed above,
these two forces cancel each other perfectly. This is, however, not true in general as our computed
example has demonstrated.

Remark 2. The benchmark environment we have taken to the data will feature a lower income elasticity of
the after tax rate than the one documented in the data (see, for example Saez et al. (2012) and Piketty et al.
(2014)). However this elasticity, in our environment, is endogenous to policy. Firm level distortions having
a particular strong effect. Indeed (as we show in Appendix 2.10.4) absent firm size distortions, as we think
is the case in US data, the value of this elasticity will be given by the Frisch elasticity of labor supply. Hence
in this case the value of “e”generated by the model would be consistent with the one estimated in data.

34In Appendix 2.10.4 we show that absent firm level distortions the income elasticity of the after tax rate equals the
Frish elasticity of labor supply.
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Chapter 3

Regional State Capacity and the Optimal
Degree of Fiscal Decentralization

joint with Martín Besfamille

3.1 introduction

In many developed and developing countries, it is common that tax and expenditure assignments
to subnational or regional governments be unbalanced. In particular, regional governments
are often in charge of delivering local public services, but cannot raise the required revenues
to finance these expenditures.1 These so called “vertical fiscal imbalances” should either be
covered by centrally provided transfers,2 or just bypassed by decentralizing tax powers to regional
governments.

The first alternative is widely used in practice and gives rise to an institutional setting defined
as partial decentralization.3 As shown by Wildasin (1997) and Goodspeed (2002), under this scenario
regional governments may face “soft budget constraints,”4 which can create negative externalities
across regions and induce excessive spending or borrowing.5 To cope with this problem, a vast
literature in public finance has put forward different institutional mechanisms so that regional
governments face “hard budget constraints.”6 One mechanism that has attracted significant

1Eyraud and Lusinyan (2013) report that across OECD countries, the average share of subnational government
expenditure not financed through own revenues was 40 percent between 1995 and 2005. In Belgium and Mexico these
shares climb to 60 and 83 percent, respectively. Corbacho et al. (2013) document that vertical fiscal imbalances in Latin
America are the highest among developing nations.

2See Boadway and Shah (2007).
3This term has been coined by Brueckner (2009).
4According to Kornai et al. (2004), “A budget-constrained organization faces a hard budget constraint as long as it does

not receive support from other organizations to cover its deficit and is obliged to reduce or cease its activity if the deficit persists.
The soft budget constraint phenomenon occurs if one or more supporting organizations are ready to cover all or part of the deficit”
(page 1097).

5Among others, Pettersson-Lidbom (2010) confirms this theoretical result by estimating that between 1979 and 1992,
Swedish local governments increased their debt by more than 20 percent when they expected to receive future bailouts.

6See, among others, Rodden et al. (2003), Oates (2005) and Weingast (2009).
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attention is the complete decentralization of tax powers to subnational governments. In a seminal
contribution, Qian and Roland (1998) argue that such a system of full decentralization gives rise to
tax competition, which in turn raises the perceived marginal costs of public funds at the regional
level. But while this regime boosts fiscal discipline, hard budget constraints may also lead to
underprovison of local projects, as argued by Besfamille and Lockwood (2008).

The goal of this paper is to provide a novel framework for comparing partial and full decen-
tralization from a normative perspective. Our central departure relative to previous analyzes is
to model local governments as being indexed by their level of state capacity, defined by Besley
and Persson (2010) as the “state’s ability to implement a range of policies.” This institutional
ingredient is of central importance for the study of the optimal degree of fiscal decentralization.
In fact, a number of descriptive reviews of decentralization reforms (e.g., Bird (1995), Litvack
et al. (1998)) and recent quantitative evaluations of such processes (e.g., Loayza et al. (2014))
argue that the benefits accruing from a decentralized form of government crucially hinge on these
abilities. Or, more generally, Prud’homme (1995) and Bardhan and Mookherjee (2006), state that
models formalizing pro-decentralization arguments usually ignore key institutional features of
local governments.

We consider an environment in which regional governments decide whether or not to provide
a discrete, local public good or project. The initial cost of the project is covered by the regional
government’s financial resources. If the project is initiated, it is carried out by regional bureau-
cracies, and there is a probability that the project is finished in due time and generates a social
benefit greater than the initial cost. With the complementary probability, the project is delayed
and needs a second round of financing to be completed. In this case, it generates a social benefit
to the region, but lower than when the project is carried out on time. In the partially decentralized
regime, no regional government has tax powers to refinance its incomplete project but the central
government can bail out regions. Bailouts are financed via a uniform national tax on local capital,
which is imperfectly mobile. Under full decentralization, on the other hand, regional governments
have to refinance incomplete projects through a tax on capital invested in their jurisdiction, in a
context of tax competition. Equilibrium outcomes under partial and full decentralization can be
inefficient, as these regimes can generate overprovision or underprovision of projects, respectively.

Crucially, we make a distinction between two dimensions of local state capacity; namely,
administrative and fiscal. The former measures the ability of subnational governments to produce
and deliver public goods and services, and it is proxied by the probability that a project is finished
on time. The latter gauges the capacity to raise revenues through local taxes, which is modeled as
the fraction of the potential tax base that end up as fiscal revenues of the subnational governments.
The model is symmetric: all regional governments have the same level of state capacity, and
all costs and benefits are identical across regions. However, outcomes can be different ex post
depending on the length of the projects.

The main results are the following. First, when the level of regional fiscal capacity that prevails
in the federation is sufficiently low, partial decentralization dominates. Intuitively, refinancing
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incomplete projects under full decentralization is too costly, regardless of the level of regional
administrative capacity. Second, and more interestingly, we show that full decentralization
dominates when combining high levels of fiscal capacity with low levels of administrative capacity.
Essentially, although many projects remain incomplete, distortionary refinancing under full
decentralization is unlikely. Thus, expected distortions under full decentralization are lower than
under partial decentralization. This finding contradicts the views of certain policy proposals
suggesting that high levels of administrative capacity are necessary for successful decentralization
reforms (see, e.g., Bird (1995)), and it is illustrated using international data in the body of the
paper.

We then undertake a comparative statics analysis. We show that when the regional capital stock
increases, full decentralization dominates more frequently. Conversely, partial decentralization
dominates more often when the highest possible benefit of the project rises. In addition, we show
that when the number of regions increases, partial decentralization dominates in a parameter area
where full decentralization was initially the optimal regime, and vice versa. Finally, we evaluate
the robustness of our results by developing an extension that incorporates distortionary national
taxation.

The layout of the remainder of the paper is as follows. Section 3.2 presents the model, and
Section 3.3 describes the efficient benchmark. In Section 3.4 we analyze partial decentralization
outcomes. Section 3.5 studies the equilibrium under full decentralization. Section 3.6 contains
the normative comparison between partial and full decentralization, comparative statics and
robustness results. Section 3.7 discusses the related literature. Section 3.8 concludes. The main
proofs are contained in the Appendix. Additional proofs and derivations are relegated to the
Online Appendix.

3.2 the model

3.2.1 preliminaries

The economy lasts for three periods t = {1, 2, 3} and is composed of L ≥ 2 regions. Each region
` ∈ {1, ..., L} has a continuum of measure 1 of risk-neutral, immobile residents, each of whom has
an endowment κ of capital. In the last period, each resident derives utility from consumption of a
numéraire good, produced in every region by competitive firms that operate a constant returns
technology. Capital is the only input and units are chosen so that one unit of capital produces one
unit of output. Following Persson and Tabellini (1992), we assume that capital is mobile between
regions, but at a cost. Specifically, a resident of a region that invests f units of capital in other
region(s) incurs a mobility cost f 2/2. As we explain below, residents may also benefit from a
discrete local public good, or project.

There are two levels of government: central and regional. Throughout the paper, we assume
that both levels of government are benevolent and choose policies so as to maximize the sum of
utilities of their residents. For simplicity, there is no discounting of future payoffs.
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3.2.2 timing

The order of events is as follows. At t = 1, a political body (e.g., a Congress) chooses between
partial (PD) and full decentralization (FD). These institutional regimes rule all fiscal interactions
between the central and regional governments, in a way specified below.

At the beginning of t = 2, Nature draws the cost c of the projects according to a strictly positive
probability density function h(c) on [0, b]. Based on this cost, regional governments choose whether
or not to initiate a project in their region. This decision is denoted by i` ∈ {I, NI}, where I (NI)
stands for initiation (not initiation). Regional governments have just enough resources to fund the
initial investment c.

If initiated, a project is carried out by the regional bureaucracy. With an exogenous probability
π ∈ [0, 1], a project generates a social benefit B > 0 for all residents of the region at the end of the
current period.7 With probability (1− π), the project remains incomplete and yields no benefit
during this period.8 Projects’ realizations are the result of independent draws from the probability
distribution (π, 1− π), and are observable.

At t = 3, central or regional governments, depending on the institutional regime in place,
decide whether to shut down or continue incomplete projects. In the last case, a project requires
an additional input of c of the consumption good to be completed.

Under partial decentralization, the central government decides on refinancing incomplete
projects, through a uniform tax τ on capital, collected by the national tax authority.9 Under full
decentralization, each regional government decides whether to refinance its incomplete project,
using a per unit tax on capital invested in its region, at a rate τ`.

After taxes are set, capital owners invest in the region(s) with the highest net return(s), central
or regional governments raise their taxes, production takes place, and private consumption (net
of mobility costs) occurs. When the project is completed, it generates a social benefit b for all
residents of the region. We assume that b < B.10

In our environment, the federation is characterized by two dimensions of state capacity:
administrative and fiscal.11 The former measures the ability of regional bureaucracies to carry out
projects in due time, and it is encapsulated by the probability π.12 The latter gauges the capacity to
collect local taxes. This dimension is modeled by assuming that local governments can only collect

7To focus on the trade off between soft and hard budget constraints, we rule out spillovers across regions.
8Delays in local public works are prevalent both in developed and developing countries. See Guccio et al. (2014).
9Uniformity captures the idea that, for (non-modeled) constitutional reasons, the central government can neither

set different tax rates contingent on which regional government asked for additional funds, nor make side-payments to
any specific regional government. In the US, for example, federal taxes are required to be uniform across states by the
“Uniformity Clause” (US Constitution, Article 1, Section 8, Clause 1).

10The difference between B and b reflects that some extra costs arise during the project’s delay. For example, an
incomplete park may affect pedestrian movement.

11See Hanson and Sigman (2013). Mann (1984) provides a general definition of state capacity as the infrastructural
power of the state to enforce policy within its territory. Snyder (2001) and Ziblatt (2008) apply this concept to regional
governments.

12Patil et al. (2013) document that public projects’ delays in Indian states are mainly caused by administrative
problems that arise during the land acquisition process.

107



a fraction θ ∈ [0, 1] of their potential tax base, where θ measures the level of fiscal capacity.13

We summarize the timing in Figure 3.1. Terminal nodes represent the benefit of the project.
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Refinancing
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π

initiated

Project
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Figure 3.1: Timing.

3.2.3 discussion

Some features of the model deserve further comments. First, to focus on bailouts under partial
decentralization, we assume that, under this institutional regime the central government does not
intervene in a region to avoid its project’s delay. Therefore, we do not need to incorporate into
the model considerations of administrative capacity at the central level. In addition, regarding its
fiscal capacity, we assume in the base model that the central government is fully efficient in this
dimension. We relax this assumption in Section 3.6.3.

Second, we consider a discrete, regional public project instead of a continuous public good,
as is common in most of the literature on tax competition.14 Indivisibility fixes the type of
competition between regions. As in Wildasin (1988), regions compete first in refinancing decisions,
and then taxes are set accordingly in a context of imperfect capital mobility.15 Moreover, this
assumption combined with our specification of administrative competence is a simple way to
analyze, via refinancing decisions, the interaction between levels of regional state capacity and
different intergovernmental fiscal arrangements.

Third, regional governments and projects in the model are ex ante and interim identical. More

13Arbetman-Rabinowitz et al. (2012) use a similar concept. Besley and Persson (2010), on the other hand, define
fiscal capacity as an upper bound on the tax rate that a government can charge.

14To the best of our knowledge, the unique contribution to the local public finance literature that deals with discrete
projects is Cremer et al. (1997).

15Akai and Sato (2008) and Köthenbürger (2011) also analyze models with this timing, but they consider income or
wage taxation instead.
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precisely, all regional governments share the same exogenous levels of state capacity π and θ.
Concerning projects, ex ante (i.e., in period 1) they are all characterized by the same configuration
of exogenous social benefits b and B, and by the same probability density function h(c). Interim
(i.e., at the beginning of period 2), the cost c is realized and applies for all projects in all regions.
But projects’ outcomes can be different ex post. Indeed, at the end of period 2, some regions that
have initially invested end up with complete projects, while others face incomplete ones.16

Also, in our model, regions do not have access to credit markets to refinance their incomplete
projects. If regions can issue debt, they ultimately have to raise taxes to pay back their obligations.
Hence, one can view our model as a convenient short cut capturing this feature of local public
finances.

Finally, we assume that c ≤ b. When c > b, under both institutional regimes incomplete
projects are shut down. Therefore, we consider a parameter configuration of the model that
isolates the case where the institutional comparison between partial and full decentralization is
relevant.

3.3 first best

In this section we analyze a benchmark for efficiency. Consider a social planner who makes all
decisions, but cannot anticipate whether a project will be completed at the end of t = 2 (i.e., he
has to carry out projects through the regional bureaucracies). We solve his decision problem
backwards.

First, the refinancing decision in any region is independent of the planner’s choice in any other
region. This is because individual utilities are linear in income and the planner maximizes the
sum of utilities. Thus, in any region, continuing an incomplete project is always optimal because
c ≤ b.

Moving back to the initial investment decision, the planner faces another separable problem
between regions. Knowing the cost c, he initiates projects provided their expected benefit is higher
than their expected cost (which includes a possible second round of financing). Let

c∗(π) ≡ πB + (1− π)b
2− π

denote the cost that makes the net expected regional welfare from initiating a project equal to
zero. If c ≤ c∗(π), initial investment is efficient in any region `; otherwise, not investing is the
optimal decision.

For a given configuration of parameters (b, B), efficient investment decisions are depicted
in Figure 3.2. A point in the (π, c) plane represents a project that costs c in a region with
administrative capacity π.

16An important feature of the model is risk neutrality. If individuals were risk averse, this could imply an insurance
rationale for bailouts under partial decentralization.
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When 0 ≤ π ≤ π∗ ≡ b/B, we have that 0 < c∗(π) ≤ b. Therefore, there exists a non-empty
area NI∗, delimited by the thick curve c∗(π), where it is optimal not to initiate projects. Below
this curve, in the area I∗, it is efficient to undertake all projects. Ceteris paribus, as π increases
the projects’ net expected benefit increases. Thus c∗(π) increases as well. When π∗ < π ≤ 1,
c∗(π) > b: all projects are efficiently initiated.

3.4 partial decentralization

This section studies the partially decentralized regime. Given that c ≤ b, under this regime
incomplete projects are always refinanced by the central government using a uniform tax on
capital. This implies that project initiation decisions of any given region may ultimately impact
welfare of others, thus giving rise to a simultaneous game between regions in the second period
(i.e., when the initial investment decision is made).

Region `’s expected welfare at the beginning of the second period is given by

EWPD
` (i`, im) = κ(1− τe) + 1I{i`=I}[πB + (1− π)b− c], (3.1)

where im is the profile of investment decisions chosen by regions m 6= `, 1I{i`=I} is equal to 1 if
region ` has initiated the project and to 0 otherwise, and τe is the expected tax.

The expected tax τe is obtained as follows. At the end of the second period, all projects’
outcomes are realized. Let ω be a profile of outcomes, and denote by B(ω) the number of
completed projects in this particular realization of outcomes. For any profile ω, the central
government mechanically sets a tax τω to cover, at the beginning of the third period, the cost of
refinancing ∑` 1I{i`=I} −B(ω) incomplete projects. As this tax is uniform and exporting capital
is costly, every household will invest in its own region. This implies that the tax base is Lκ,

110



and taxation is non distortionary. Hence, under the profile ω, the central government’s budget
constraint is

τω.Lκ =

[
∑
`

1I{i`=I} −B(ω)

]
c.

Therefore, when deciding on initial investment before the outcome of projects are realized, each
region faces the expected tax τe ≡ E , which satisfies

τe.Lκ =

[
∑
`

1I{i`=I}(1− π)

]
c, (3.2)

where the term in square brackets gives the expected number of bailouts. Substituting (3.2) into
(3.1) and rearranging, we obtain

EWPD
` (i`, im) = κ + 1I{i`=I}

[
πB + (1− π)

(
b− c

L

)
− c
]
− ∑

m 6=`

1I{im=I}(1− π)
c
L
· (3.3)

By inspection of (3.3), the effect of i` on EWPD
` (captured by the term in square brackets) is

independent of im. So, we can analyze the choice of i` just for a representative region `.
Notice that each region only pays 1/L of the cost of refinancing its incomplete project, as this

cost is shared through national taxation. Therefore, the central government’s budget constraint
generates a common-pool fiscal externality: any resident of ` is negatively affected by the possibility
of an incomplete project in a region m 6= `. Let

cPD(π) ≡ L[πB + (1− π)b]
L + 1− π

be the cost that makes the net expected regional welfare from initiating the project under partial
decentralization equal to zero. The next proposition completely characterizes regional project
initiation decisions under this institutional regime.

Proposition 1 Consider the project initiation game under partial decentralization. Symmetric equilibria
are as follows. If c ≤ cPD(π), initial investment takes place in all regions. Otherwise, no region invests
in equilibrium.

In the Appendix we show that cPD(π) > c∗(π). Hence, we can establish the form of the
inefficiencies that emerge under this institutional regime as follows.

Corollary 1 Under partial decentralization, initial investments may occur in equilibrium when it is
inefficient to do so.

Inefficiencies involve over investment. This kind of inefficiency, driven by the common-pool fiscal
externality, is well known (See Wildasin (1997) and Goodspeed (2002)). The following figure
depicts equilibrium outcomes that emerge under partial decentralization.
Analogous to the first best, when 0 ≤ π < πPD

1 ≡ b
L(B−b)+b , there exists a non-empty area (NIPD)

where projects are efficiently not initiated in any region, and another one (IPD) where all projects
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are initiated. In the white area, regional decisions are optimal and so, in equilibrium, each region
is expected to contribute an amount equal to the cost of refinancing by itself its incomplete project.
Thus, interim expected welfare in each region coincides with the first best level. In the shaded
area, when c ∈ [c∗(π), cPD(π)], the inefficient investment decision is adopted in equilibrium by
all regions. When πPD

1 ≤ π ≤ πPD
2 ≡ b/B, c∗(π) ≤ b ≤ cPD(π), which implies that all projects

are initiated in equilibrium. Projects in the shaded area are inefficiently initiated. Finally, when
πPD

2 < π ≤ 1, inefficient investments cannot emerge because the model is biased towards project
initiation. Under these parameter conditions, partial decentralization replicates the first best
outcome.

3.5 full decentralization

In this section we analyze the fully decentralized regime. In this case, a three-stage simultaneous
game between regions emerges. First, regional governments take the initial investment decision.
Second, the continuation decision is made. Finally, refinancing is achieved by levying taxes on
capital employed in the region, in a context of tax competition.

But before solving the game backwards, it is convenient to describe how capital reacts to
different tax rates. Given a profile of tax rates ø = {τ1, ..., τL} set by all regions, a household
resident in region ` decides where to invest its capital endowment. Let f`m denote the amount of
capital that this household invests in a region m 6= `, and let M̃ be the set of regions m̃ 6= ` that
have chosen the minimum tax rate τ̃` = min{τm}m 6=`. The following proposition characterizes the
household’s investment decision.

Proposition 2 If τ` ≥ τ̃`, ∑m̃∈M̃ f`m̃ = τ` − τ̃` ≥ 0. Otherwise, f`m̃ = 0.

As a household in region ` seeks to maximize net returns from its investments, its portfolio
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decision only depends upon the comparison between τ` and τ̃`, and not between τ` and the whole
profile of tax rates chosen by regions m 6= `. As expected, a household in region ` invests “abroad”
in a region m̃ ∈ M̃ provided τ` > τ̃`. When only one region sets the minimum tax rate τ̃`, it
attracts all capital that leaves region `. But if two or more regions choose the same tax rate τ̃`, the
value of the capital outflow f`m̃ that goes to each of these regions is undetermined. The intuition
behind the expression in the proposition is straightforward, as capital leaves region ` until the
marginal tax savings equal the marginal mobility cost. As expected, this flow increases with the
difference τ` − τ̃`.

When the regional tax rate τ` is lower or equal than τ̃`, there is no capital outflow from region
` and its residents invest all their endowment “at home.” Moreover, in this case, region ` receives
capital inflows from other regions. But this does not benefit directly its residents because returns
from these investments are consumed abroad, by residents in regions m 6= `, m̃. Despite this fact,
in the next section we show that these capital inflows have an important role in the determination
of the equilibrium tax rates.

3.5.1 equilibrium in tax rates

In the remainder of the section, we solve the game between regions backwards. We start with the
last stage, where regional governments set tax rates to refinance incomplete projects.

To obtain the equilibrium tax rates, in the Appendix we derive region `’s reaction function
τ` (τm), where τm denotes the profile of tax rates chosen by regions m 6= `. We have previously
discussed that, depending upon the whole profile of tax rates, capital may leave or enter region
` from other regions. Despite these different possibilities, region `’s after-tax consumption
monotonically decreases with τ`, and so does regional welfare. Hence, for any profile τm, the tax
rate chosen in region ` should be the lowest tax rate that enables the regional government to raise
c.

The reaction function τ` (τm) is built around the value c/θκ, which is the tax rate that a
regional government would choose in autarky. When the profile τm is such that τm < c/θκ for all
m, region `’s optimal response is to tax strictly above the minimum tax τ̃`. Despite the fact that
this decision will trigger a capital outflow, this is the only way to ensure the project’s refinancing.
When all tax rates τm are set equal to c/θκ, region `’s optimal response is to replicate this level.
Due to the way we model imperfect capital mobility, the tax collection’s elasticity with respect to
τ` is lower than one. This combined with the fact that region ` needs to collect enough revenues
to refinance its incomplete project, makes tax undercutting not a profitable deviation. Finally,
when the profile of tax rates is such that τ̃` > c/θκ or τ̃` = c/θκ but at least one region n 6= ` has
chosen a tax rate τn > c/θκ, region `’s optimal response is to tax strictly below τ̃`. This decision
generates an inflow of capital that allows the government to raise sufficient revenues to pursue its
incomplete project, thus moderating the tax burden on its residents.

Another important feature of region `’s reaction function is that it is non-continuous. Despite
this fact, we can still characterize the Nash equilibria of this subgame as follows.
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Proposition 3 When all regions have decided to refinance their incomplete project, the unique symmetric
Nash equilibrium in pure strategies is such that τ̂` = c/θκ. When there is at least one region that does
not refinance, then all regions that refinance set

τ̂` (0) ≡
1
2

[
κ −

√
κ2 − (4c/θ)

]
.

Consider the tax competition subgame that emerges when all regions have decided to refinance
their incomplete project. The equilibrium tax rate τ̂` increases with the cost of the project c.
Moreover, as in equilibrium nobody invests abroad, regions tax their own capital endowment
without bearing any deadweight loss due to its mobility. Thus, the higher this endowment, the
lower the equilibrium tax rate. Similarly, the higher the fiscal capacity θ, the lower the equilibrium
tax τ̂`. In this case, region `’s welfare (net of the initial cost c) is WFD

` = κ + b− c
θ in equilibrium.

When θ < 1, imperfect fiscal capacity implies that regions do not pay only the technical cost of
completing the project c, but a higher, effective refinancing cost c/θ. The difference between these
values corresponds to the cost of tax collection.

The proposition also shows that, when at least one region does not refinance (in which case it
does not need to tax its population), region ` has to set the tax rate τ̂` (0) to pursue its ongoing
project. Thus, asymmetric taxation emerges as a possible equilibrium, as in Bucovetsky (1991)
and Wilson (1991).17 The tax rate τ̂` (0) also decreases with the capital endowment κ and the
fiscal capacity θ. With this tax rate, the resulting capital outflow is ∑m̃∈M̃ f`m̃ = τ̂` (0) and the
equilibrium regional welfare (net of the initial cost c) is

WFD
` = (κ −∑m̃∈M̃ f`m̃) (1− τ̂`(0)) + ∑m̃∈M̃ f`m̃ − 1

2

(
∑m̃∈M̃ f`m̃

)2
+ b

= κ + b− T(c, θ),

where

T(c, θ) =
c
θ
+

[τ̂` (0)]2

2

measures the total refinancing cost, which comprises the effective refinancing cost c/θ, plus the
deadweight loss [τ̂` (0)]2/2 of financing the continuation of the project through a distortionary tax.
This distortion is due to mobility costs incurred by owners of capital seeking to avoid taxation in
region `. Therefore, distortionary taxation only emerges in some final nodes of the tax competition
subgame, when at least one region does not refinance. More importantly, the likelihood of these
final nodes depends upon the level of regional administrative capacity π.

17The main difference with their result is that variations in tax rates across regions are not originated from an ex
ante regional asymmetry, but rather from the possibility that some regions may end up with incomplete projects ex
post.
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3.5.2 refinancing

At the beginning of the second stage, the strategy for region ` is r` ∈ {R, NR}, where R (NR)
denotes “refinancing” (“not refinancing”). Conditional on i = (i1, ..., iL), and given rm, the profile
of refinancing decisions chosen by regions m 6= `, region `’s welfare is

WFD
` (r` = R, rm, i) = κ + 1I`{I,inc}{[b− 1Im

{I,inc,R}
c
θ
− (1− 1Im

{I,inc,R})T(c, θ)]− c},

and
WFD

` (r` = NR, rm, i) = κ − 1I`{I,inc}c

where 1I`{I,inc} is equal to 1 if region ` initiated a project that has remained incomplete at t = 2,
and to 0 otherwise, and 1Im

{I,inc,R} is equal to 1 if all regions m 6= ` initiated their project, have not
completed it in due time but decided to refinance them in t = 3, and to 0 otherwise.

The following proposition characterizes the Nash equilibria of this subgame.

Proposition 4 Let c1 denote the value of c that makes the total refinancing cost T(c, θ) equal to the benefit
b, and c2 > c1 the value of c that makes the effective refinancing cost c/θ equal to the benefit b. When
all regions face an incomplete project, they refinance them in equilibrium provided c ≤ c2. Otherwise, no
region refinances. When there is at least one region that does not need refinancing, region ` refinances its
incomplete project provided c ≤ c1.

In the Appendix we show that c ≤ c1 (c ≤ c2) implies T(c, θ) ≤ b (c/θ ≤ b). When all regions
failed to complete their project in due time, the Nash equilibria of this refinancing subgame
depend upon the cost c. When c < c1, refinancing is a dominant strategy. But when c1 ≤ c ≤ c2, a
standard coordination game emerges, with two Nash equilibria. The first one is trivial: despite
the fact that c ≥ c1, when all regions decide to refinance, these strategies form a Nash equilibrium
because, as there will be no capital flows (and thus no deadweight loss due to distortionary
taxation), only the fact that c/θ ≤ b matters. But if at least one region has decided not to refinance,
the other regions also shut down their project because c ≥ c1. In this case, these regions face an
endogenous hard budget constraint due to other regions’ decisions, as in Qian and Roland (1998).
We focus on the Nash equilibrium in which all regions refinance because it is strong (Aumann
(1959)) and coalition-proof (Bernheim et al. (1987)). Finally, when c2 ≤ c, not refinancing is a
dominant strategy. Regions face again an endogenous hard budget constraint, but this time as a
consequence of their imperfect regional fiscal capacity. As c ≤ b, this outcome is inefficient.

In all other subgames, when there is at least one region that does not need refinancing because
it executed its project in due time, region ` refinances its incomplete project provided c ≤ c1. If
c > c1, the total cost from refinancing is higher than the benefit b, pushing region ` to shutdown
its incomplete project. Once more, this is an inefficient outcome.
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3.5.3 project initiation

Anticipating refinancing equilibria, regional governments simultaneously adopt the project ini-
tiation decision. The next proposition characterizes the Nash equilibria of the investment stage
under this regime.

Proposition 5 Consider the project initiation game under full decentralization. Let cFD
R (π), cFD

NAR(π) and
cFD

NR(π) be the costs that make the net expected regional welfare equal to zero (i) when incomplete projects
are refinanced regardless of the continuation decisions of other regions, (ii) when incomplete projects are re-
financed only if all other regions do so, and (iii) when incomplete projects are never refinanced, respectively.
There exists thresholds πFD

1 , πFD
2 and πFD

3 such that the symmetric Nash equilibria are as follows:

1. When 0 ≤ π ≤ πFD
1 , initial investment takes place in all regions provided c ≤ cFD

R (π). Otherwise,
no region invests in equilibrium.

2. When πFD
1 < π ≤ πFD

2 , initial investment takes place in all regions provided c ≤ cFD
NAR(π).

Otherwise, no region invests in equilibrium.

3. When πFD
2 < π ≤ πFD

3 , initial investment takes place in all regions provided c ≤ cFD
NR(π).

Otherwise, no region invests in equilibrium.

4. When πFD
3 < π ≤ 1, initial investment takes place in all regions.

In the Appendix we characterize the probability thresholds πFD
1 , πFD

2 and πFD
3 , and we show that

cost thresholds cFD
R (π), cFD

NAR(π) and cFD
NR(π) are lower than c∗(π). Hence, we can establish the

types of inefficiencies that emerge under this institutional regime, as follows.

Corollary 2 Under full decentralization, equilibrium outcomes can be inefficient for three reasons: (i)
initial investments do not take place in equilibrium when it is efficient to do so, (ii) initial investments
take place in equilibrium and are efficient, but incomplete projects are not refinanced when it is efficient
to do so, or (iii) initial investments take place in equilibrium and are efficient, but incomplete projects are
refinanced using distortionary capital taxes.

The following figure depicts equilibrium outcomes that emerge under full decentralization.
In the non-empty area NIFD, delimited from below by the thick curves representing the cost
thresholds cFD

R (π), cFD
NAR(π) and cFD

NR(π), projects are not initiated. In the complementary area,
denoted by IFD, all projects are initiated.

When c ∈ [c∗(π), b], efficient decisions are adopted. In all other areas, either the projects’ initi-
ation and continuation decisions are distorted or the region refinances bearing deadweight losses.
When 0 ≤ π ≤ πFD

1 , two different types of inefficiency emerge. First, in the darker area when
c ∈ [0, cFD

R (π)], initiation and continuation decisions are optimal, but refinancing is done bearing
deadweight losses generated by imperfect regional fiscal capacity or distortionary capital taxation.
Second, as cFD

R (π) < c∗(π), the condition for project initiation is stricter with full decentralization
than for the social planner. Therefore, in the shaded area when c ∈ [cFD

R (π), c∗(π)], investments
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are not initiated in equilibrium, despite the fact that they are efficient. Underinvestment is due to
i) distortionary refinancing, when c ∈ [cFD

R (π), c1], and ii) endogenous hard budget constraints,
when c ∈ [c1, c∗(π)].18

When πFD
1 < π ≤ πFD

2 , a new type of inefficiency emerges. In the dashed area, projects are
initiated but only refinanced when all regions do so. Again, there is underinvestment when
c ∈ [cFD

NAR(π), c∗(π)], but only due to endogenous hard budget constraints.
As πFD

2 < π ≤ πFD
3 , the last type of inefficiency emerges. In the dotted area projects are

initiated but never refinanced. There is still a shaded area where, because of endogenous hard
budget constraints, projects are not initiated.19

Finally, when π ≥ πFD
3 , the model is biased towards project initiation. Incomplete projects are

either refinanced in a distortionary way, shut down in some terminal nodes of the tax competition
subgame, or never finished.

3.6 optimal institutional regime

3.6.1 main results

In the initial period, there is an institutional choice between partial and full decentralization. At
this stage, the Congress observes projects’ benefits b, B, the regional capital endowment κ and state
capacities (π, θ), and knows that the cost c is distributed according to a strictly positive probability

18The former is the analogue of the Zodrow and Mieszkowski’s (1986) result, while the latter has been analyzed
by Besfamille and Lockwood (2008), in a setting where an exogenous hard budget constraint is imposed to regional
governments.

19Figure 3.4 depicts full decentralization outcomes when θ < 1. If θ = 1, c2 = b and πFD
2 = πFD

3 : the area where
projects are never refinanced vanishes.
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density function h(c) on [0, b]. The Congress chooses the optimal regime by maximizing

EW IR =

b∫
0

EW IR
` h(c)dc,

where EW IR is the expected welfare of a representative region, under the institutional regime
IR ∈ {PD, FD}.20

The main goal of this paper is to evaluate how the regime choice is affected by the level of
regional state capacity. We first characterize the relationship between EW IR and the pair (π, θ).
Taking into account equilibrium decisions and outcomes, we show that EWFD is a continuous,
everywhere differentiable, increasing, convex function of the administrative capacity π. Moreover,
it also increases with the fiscal capacity θ. Therefore, under full decentralization, an increase in
either π or θ increases EWFD, as suggested by the decentralization literature.21 But this assertion
does not necessarily imply that full decentralization dominates for high levels of state capacity.
The reason is that EWPD is a continuous, increasing, convex function of the administrative capacity
π.22 Hence, the comparison between both regimes is not a priori evident.

To make progress, we introduce the following assumption which ensures that the intersection
between EWFD and EWPD is unique.

Assumption A:

1. The cost c is distributed uniformly on [0, b].

2. The benefit b satisfies B/2 ≤ b < B.

3. The number of regions L satisfies L ≤ L ≤ L.23

The following proposition characterizes the optimal choice between partial and full decentraliza-
tion.

Proposition 6 Suppose Assumption A holds and let θ0 ≡ 2L/(1+ L2) be the regional fiscal capacity that
makes EWPD equal to EWFD when π = 0. Then,

1. When θ < θ0, partial decentralization dominates for all values of π.

2. When θ ≥ θ0, there exists a unique threshold π̂(θ) such that, when π ≤ π̂(θ), full decentralization
dominates. Otherwise, partial decentralization dominates.

3. When π = 1, both regimes are efficient.

20In a one-shot version of the model, the Congress could wait until the realization of the cost to choose the optimal
interim regime. But in a repeated version of the model, it seems realistic to assume that changing the institutional
regime after each realization of c would be too costly, which justifies our focus on the optimal ex-ante regime.

21See, among others, Bird (1995), Litvack et al. (1998) and Loayza et al. (2014).
22See the Online Appendix.
23The definitions of L and L are given in the Appendix.
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Figure 3.5 illustrates this result. Each point in the (θ, π) plane represents the regional state capacity
that prevails in the federation. In the Appendix, we show that π̂(θ) increases with θ.24
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Figure 5: Partial vs. full decentralization
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Figure 3.5: Partial Vs. Full Decentralization.

When regional fiscal capacity satisfies θ < θ0, refinancing incomplete projects under full decentral-
ization is too costly. Therefore, regardless of the level of regional administrative capacity, partial
decentralization dominates.

As expected, full decentralization may dominate when the regional fiscal capacity is relatively
high. But interestingly, this occurs for relatively low levels of the regional administrative capacity,
i.e., when π ≤ π̂(θ). The intuition for this result is the following. Under full decentralization,
tax distortions emerge if at least one region does not need refinancing. But when π is low,
the likelihood of this event is also low. Thus, distortions under full decentralization cost less
than inefficient investments made under partial decentralization, where investments need to be
refinanced with a relatively high probability. On the other hand, when π is relatively high, the
expected welfare cost of inefficiently initiated projects under partial decentralization is low (or
even zero) because it is very likely that they will be completed at the end of t = 2.

When π is above b/B, the model is biased towards project initiation and under partial
decentralization, outcomes are efficient. On the other hand, under full decentralization, the
likelihood of facing capital mobility costs or shutting down the project is still positive. Thus, partial

24When Assumption A does not hold, the model becomes analytically untractable and thus unicity of π̂(θ) cannot
be ensured. In order to verify whether our results would hold under parameter configurations of the model that do not
satisfy those conditions, we have simulated the model and replicated Figure 3.5. All simulations confirmed the results
presented in Proposition 6, and are available upon request.
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decentralization dominates. But if π increases further and converges to one, the likelihood and
welfare cost of full decentralization’s distortions decrease, attenuating partial decentralization’s
dominance. In the limit, when π is equal to one, both regimes yield optimal outcomes.

These results clarify how the level of regional state capacity prevalent in a federation affects
the trade-off between partial and full decentralization. On the one hand, our results confirm
that a high level of fiscal capacity is a necessary condition for full decentralization to be the
optimal institutional regime. But, we also caution against the position held by some authors
suggesting that high levels of regional state capacity are necessary for successful decentralization
reforms. First, our model shows that high levels of regional administrative or fiscal capacity do
not always imply that full decentralization should dominate. Second, it is still plausible that full
decentralization dominates even for low levels of administrative capacity.

3.6.2 comparative statics

In this subsection we analyze how changes in the key parameters of the model affect the compari-
son between partial and full decentralization.25

Change in the capital endowment κ. Figure 3.6(a) shows that an increase in κ favors full
decentralization, in the sense that this regime dominates in a larger area of the plane (θ, π). The
intuition of this result hinges on two facts. First, the cost of distortions generated under partial
decentralization do not depend upon the value of κ. Second, an increase in the regional stock of
capital increases expected welfare under full decentralization, because as the tax τ̂` (0) decreases
with κ, and so does the mobility cost of capital.

Change in the project’s benefit B. Figure 3.6(b) shows that an increase in B always favors partial
decentralization. The reason is that when B increases, the welfare loss due to overinvestment under
partial decentralization increases less than the corresponding welfare loss due to underinvestment
under full decentralization.

Change in the number of regions L. Figure 3.6(c) shows that an increase in L has two effects.
On the one hand, for relatively high levels of the regional fiscal capacity, partial decentralization
dominates in an area where full decentralization used to be the optimal regime, and vice versa for
low levels of regional administrative capacity. The intuition for this result hinges on the relative
costs of an increase in L. On the one hand, the common-pool fiscal externality under partial
decentralization gets larger, and thus more projects are inefficiently initiated. On the other hand,
under full decentralization, the likelihood that a given region has to bear deadweight losses due
to capital mobility or to its project’s shutdown increases as well. When the administrative capacity
π is relatively low, the cost of the latter is lower; the opposite holds for relatively high values of π.

25Proofs corresponding to this section are contained in the Online Appendix.
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Figure 3.6: Comparative Statics.
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3.6.3 an extension : distortionary national taxation

So far, the tax set by the central government to bail out regions under partial decentralization was
non distortionary. This is arguably a strong assumption: typically national taxes also generate
deadweight losses, so assuming non-distortionary national taxation underestimates the cost of
the common-pool fiscal externality. To address this issue, in this section we model distortions
in national taxation by assuming that the cost of bailing out an incomplete project under partial
decentralization is c + λ, where 0 < λ < b.26 Although this change does not affect the fully
decentralized regime, outcomes in the other regime are modified as shown by the following
figure.27
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Figure 3.7: Partial Decentralization under Distortionary National Taxation.

As expected, the central government refinances fewer projects than before. Indeed, only when
c ≤ b− λ < b, incomplete projects are bailed out; otherwise, the central government faces an
endogenous hard budget constraint. When 0 ≤ π ≤ πPD,λ

1 ≡ πPD
1 − λL

L(B−b)+b , despite the fact that
the central government bails out all projects with costs lower than b− λ, only those for which

c ≤ cPD,λ(π) ≡ cPD(π)− (1− π)λ

L + 1− π

are initiated and refinanced. Otherwise, projects are not undertaken because refinancing them
is too costly. Projects falling within the shaded area are inefficiently initiated. But note that
these are necessarily fewer than in the case in which national taxation is non distortionary

26This assumption is a shortcut that captures, among other things, cost differences in complying with central and
regional tax systems. As stressed by Slemrod and Venkatesh (2002), these differences are substantial: nearly 70% of
their compliance spending was devoted by firms to federal government’s compliance, whereas almost 25% was spent
on regional and local compliance. If, for the sake of simplicity, we normalize regional compliance costs to zero, λ
measures the cost difference in complying with the central government.

27Proofs corresponding to this section are contained in the Online Appendix.
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because cPD,λ(π) < cPD(π). As π increases, the cost interval where these inefficient projects are
initiated when the central government refinances vanishes. Thus, when the central government
does not bail out regions, no project is undertaken in equilibrium, as shown when πPD,λ

1 <

π ≤ πPD,λ
2 ≡ πPD

2 − λ
B . Note that, for π ∈ [γ, πPD,λ

2 ] we have cPD,λ(π) < c∗(π). This implies
the opposite type of distortion: in the shaded area, regions inefficiently underinvest. Then, as
πPD,λ

2 ≤ π ≤ πPD,λ
3 ≡ b/B, all projects that would be refinanced are initiated. But this does not

hold for projects where c > b− λ. These projects are undertaken provided c ≤ πB; otherwise they
are not initiated, and again there is inefficient underinvestment in the shaded area. Finally, when
πPD,λ

3 ≤ π ≤ 1, all projects are initiated, despite the fact that some with high cost would not be
refinanced if they remain incomplete in the second period.

The following proposition compares this regime with full decentralization.

Proposition 7 When the value of the deadweight loss λ increases, full decentralization dominates in a
larger area of the plane (θ, π).

Clearly, increasing λ favors full decentralization. Although expected, the intuition of this
result should not be based on the mere assertion that by increasing the cost of bailouts, expected
welfare under partial decentralization should automatically decrease. In fact, when λ increases,
this institutional regime does generate more costly bailouts than before, inefficient project’s
shutdown and underinvestment. But when the administrative capacity is relatively low, a higher
λ also reduces the size of the cost interval where projects are inefficiently initiated. Despite these
countervailing impacts, we can show that the negative effects mentioned previously dominate,
and thus expected welfare under this regime decreases with the deadweight loss λ.

3.6.4 illustration using international data

Our model is normative and admittedly stylized. However, it is still interesting to compare our
results to how fiscal decentralization varies with state capacity in the data.

To conduct such comparison we merge three data sets containing information for various
developed and developing countries at an annual frequency. In the first place, we proxy fiscal
capacity using the “Political Extraction Index” elaborated by Arbetman-Rabinowitz et al. (2012).
The index essentially estimates the actual to the potential share of taxes to GDP.28 Second, we
summarize administrative capacity using the “Government Effectiveness Index” estimated by the
World Bank.29 30 Finally, we capture the degree of fiscal decentralization in each country based
on each country’s fiscal gap, i.e. the share of subnational revenues not covered by subnational tax
revenues. This time we use the database compiled by Gadenne and Singhal (2014), originally
taken from the Government Finance Statistics of the International Monetary Found.

28The data is available from http://thedata.harvard.edu/dvn/dv/rpc.
29See http://info.worldbank.org/governance/wgi/index.aspx#home.
30The latter statistics have already been used to measure fiscal and administrative capacities, respectively, in previous

studies. See Hanson and Sigman (2013) for a survey.
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Our resulting dataset covers 45 countries and twelve years in the 1996-2010 period.31 We
average each country’s measures of fiscal capacity, administrative capacity, and fiscal gap across
time. A country is classified as “less” (“more”) decentralized, if its fiscal gap is below (above) the
median across countries. Figure 3.8 summarizes the data, where dashed lines depict the median
level of state capacity in each dimension.32

Figure 8: State capacity and decentralization in international data
Figure 3.8: State Capacity and Decentralization in International Data.

Two observations stand out from Figure 3.6(a). First, on the north of the graph there is no clear
pattern of fiscal decentralization. This fact resembles the normative prescription in our model,
according to which federations should be indifferent between partial and full decentralization
for very high levels of administrative capacity. Second, on the southeastern region the majority
of countries exhibit high degrees of decentralization. The counterpart in our model is evident,
given that full decentralization dominates when administrative capacity low and fiscal capacity is
sufficiently high.

3.7 related literature

This paper is related to various strands of the literature. First, other contributions have analyzed
the trade-off between partial and full decentralization. Brueckner (2009) presents a Tiebout-type
model, where local governments exert effort to reduce the cost of a local public good, private
developers build houses and heterogeneous consumers decide on their location. Under partial

31Specifically, we have observations for the years 1996, 1998, 2000, 2002 and 2003 to 2010. We only keep countries
with data for at least ten years.

32Data of state capacity is national, rather than regional. However, given that our model has symmetric regions, we
can assimilate regional state capacities as being the level of state ability that prevails in the federation.
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decentralization, the federal government taxes the population and transfers the tax collection to
jurisdictions, on an equally per capita basis. Then, local governments choose the level of effort
and local public good provision, and finally Tiebout sorting occurs. Under full decentralization,
the unique difference is that each local government sets a non-distortionary property tax to cover
the public good’s cost. Brueckner (2009) finds that full decentralization always dominates, because
the uniformity of the transfer under partial decentralization generates less variety of local public
goods, and thus a worse preference matching. Partial decentralization can be optimal, provided
local governments are of a Leviathan type. Here, we do not find a complete regime dominance,
even if regional governments are benevolent. Peralta (2011) compares both regimes, focusing on
accountability issues at the local level. She presents a political economy model, with benevolent
and self-interested, rent-seeking local politicians, who tax their jurisdiction and provide local
public goods, in a context of double asymmetric information because voters observe neither the
politician’s type nor the local public good’s cost. Two equilibria emerge: a pooling equilibrium,
when the rent-seeker politician mimics a benevolent one; and a separating equilibrium, when
he extracts rents, and thus he is replaced in the following election. Peralta (2011) shows that
partial decentralization improves politician’s selection (i.e., voting out rent-seekers) whereas full
decentralization fosters discipline (i.e., giving incentives to rent seekers to behave as benevolents).
This last regime dominates when the proportion of rent seekers is low. Other authors have adopted
different definitions of partial decentralization. Janeba and Wilson (2011) and Hatfield and Padró i
Miquel (2012) define partial decentralization when a subset of public goods are exclusively funded
and provided by local governments. These authors find that devolving some public goods to local
authorities is always optimal. Janeba and Wilson (2011) trade-off inefficient provision decided by a
minimum winning coalition at the central level against distortionary taxation and low public good
provision in a context of capital tax competition under full decentralization. In a voting model,
Hatfield and Padró i Miquel (2012) obtain that devolution serves as a commitment device against
excessive capital taxation chosen when individuals vote on the central provision of public goods.
Joanis (2014) defines partial decentralization as “shared responsibility”, an institutional regime
where both the central and the regional government participate in the funding of a given public
good. In his model, central and local, rent-seeking, politicians simultaneously decide how much
fiscal resources invest in the provision of this public good. Despite their preferences for rents, they
also invest in such provision because their aim is to manipulate their reelection probability, in a
context of weak accountability, where the electorate is unable to assess the contribution of each
level of government to the public good provision. Partial decentralization obtains, balancing loses
in productive complementarities between both levels of government and the lack of accountability
at the local level. The main differences between our paper and these contributions hinges on the
fact that we study a different trade-off between partial and full decentralization, namely inefficient
bailouts and projects overprovision vs. capital tax competition and projects underprovision.
Moreover, these articles do not incorporate regional state capacity into the analysis, and thus they
do not consider it as a relevant factor affecting the trade-off.
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The paper is also related to an important set of contributions that analyze the pros and cons of
different types of regional budget constraints in federations. On the one hand, the optimality of
hard budget constraints has been studied by Qian and Roland (1998) and Inman (2003); whereas
the possibility that they may be inefficient has been raised by Besfamille and Lockwood (2008).
The main differences between Besfamille and Lockwood (2008) and this paper are the following.
First, they do not describe the institutional regime that hardens regional government’s budget
constraints; they simply assume that the federal government is able to impose, exogenously and
at no cost, a hard budget constraint to local governments. Here, we analyze full decentralization
as the institutional regime that hardens regional governments’ budget constraint. Second, the
authors compare, from a normative point of view, soft and hard budget constraints at the interim
stage (in other words, project by project) whereas we take an ex ante perspective, more suited
to an institutional comparison. Finally, they do not consider how different levels of regional
administrative capacity affect the trade-off between partial and full decentralization, which is one
of our main concerns. On the other hand, Wildasin (1997), Goodspeed (2002), Akai and Sato (2008)
and Crivelli and Staal (2013) describe how bailouts in federations distort, via a common-pool
fiscal externality, decisions at the regional level. Silva and Caplan (1997), Caplan et al. (2000) and
Köthenbürger (2004) claim that, under some conditions, a regime with decentralized leadership,
where the central government sets intergovernmental transfers after regional governments have
adopted their own policy, may give a more efficient outcome than a regime with hard budget
constraints. This result relies on a second best argument, and thus needs some pre-existing
distortion in the form of public goods or tax spillovers to hold. Finally, Sanguinetti and Tommasi
(2004) analyze the trade off between hard and soft budget constraints in the “rules vs. discretion”
tradition. In their model, regions derive utility from the consumption of a private good and a
national public good. Each region is endowed with an exogenous random level of output. The
federal government has an exogenous level of resources to finance the national public good and
to set transfers to the regions. Two regimes are considered. In the first, the federal government
commits ex ante to a transfer to each region which cannot be conditioned on the income shock
(possibly because of incomplete information), and thus offers no insurance. In the second, the
federal government fully accommodates to the requests for transfers that each region makes. This
regime has the advantage of offering full insurance, but at the cost of a common pool problem
where the national public good is underprovided. The authors find the conditions for which
either one of the regimes dominate.

Finally, the paper is related to a recent literature that studies empirically how, in contexts of
decentralized regimes, local state capacity impacts public outcomes. Steiner (2010) measures local
governments’ capacity using an index of resources available to local governments, and another
one that captures the level of technical and administrative capacity of district governments. She
finds evidence that both household consumption and school enrollment are positively related with
the level of capacity of district governments. Loayza et al. (2014) evaluate how budget size and
allocation process, local capacity, local needs, and political economy considerations (four factors
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that are usually considered important features that affect the effectiveness of decentralization
reforms) affect municipal budget execution rate in Peru. The authors find that budget size and local
capacity are the statistically most important constraints that explain municipal budget execution
rates. Bandyopadhyay and Green (2012) show that higher percentage of residents from centralized
ethnic groups imply higher development indicators at the local level in Uganda. Finally, Acemoglu
et al. (2014) study the impact of municipal state capacity on public goods provision in Colombia.
An important feature of their paper is the consideration of spillovers: when a municipality
invests in its state capacity, it also generates positive effects on neighboring municipalities. They
empirically confirm that state capacity decisions are indeed strategic between municipalities, and
with large effects on local prosperity. All these papers take the intergovernmental institutional
setting as given, and thus do not analyze different regimes, as we do.

3.8 conclusion

This paper presents a model featuring a central government and regional authorities. The
latter are characterized their levels of administrative and fiscal capacities. We analyze two fiscal
regimes. Under partial decentralization, regional governments rely on central bailouts to refinance
previously started projects. Hence, regions face soft budget constraints and can overinvest in local
public projects. Under full decentralization, regional governments cannot rely on central bailouts
and face hard budget constraints. In this scenario, capital tax competition increases the marginal
cost of public funds and regional governments may underinvest.

The main goal of the paper is to conduct a normative comparison between these regimes and
determine how different levels of regional state capacity affect this comparison. As expected,
when the regional fiscal capacity is low, partial decentralization dominates. But contrary to the
common wisdom, we find that full decentralization may be optimal even when the regional
administrative capacity is low.

An interesting route for further research is to incorporate ex ante asymmetries between regions
(either in capital endowments or in state capacities). This would yield a more suitable framework
to deliver quantitative assessments, and would be an essential feature to endogenize regional state
capacity formation under different fiscal regimes.

3.9 appendix

3.9.1 proof of proposition 1

The government of region ` anticipates that its net expected welfare from investing in the project
is

κ + 1I{i`=I}

[
πB + (1− π)

(
b− c

L

)
− c
]
− ∑

m 6=`

1I{im=I}(1− π)
c
L

, (3.4)
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whereas its net expected welfare from not investing is

κ − ∑
m 6=`

1I{im=I}(1− π)
c
L
·

So, for any region `, initiating the project is a dominant strategy if

c ≤ cPD(π) ≡ L[πB + (1− π)b]
L + 1− π

·

Since
cPD(π)− c∗(π) =

(L− 1)(1− π)[πB + (1− π)b]
(L + 1− π)(2− π)

,

it follows that cPD(π) > c∗(π). Moreover, we can show that ∂
∂π cPD(π) = L L(B−b)+B

(L+1−p)2 > 0 and that

cPD = b when π = b
L(B−b)+b ·

3.9.2 proof of proposition 2

Given a profile of tax rates ø = {τ1, ..., τL}, a household resident in region ` decides where to
invest its capital endowment by solving the following problem:

max
h`,{ f`m}m 6=`

h` (1− τ`) + ∑
m 6=`

f`m (1− τm)−
1
2
( ∑

m 6=`

f`m)
2

subject to its portfolio constraint
h` + ∑

m 6=`

f`m = κ

and (L− 1) non-negativity constraints

f`m ≥ 0 ∀m 6= `,

where h` is capital invested in region `, and f`m is capital invested in region m 6= `. Denote by
λ`m the multipliers associated with the non-negativity constraints. Using the portfolio constraint
to replace h` in the maximand of the household’s problem, we obtain the first-order conditions for
f`m and the complementary slackness conditions

τ` − τm + λ`m = ∑
m 6=`

f`m

λ`m f`m = 0 λ`m ≥ 0 ∀m 6= `.

The proof of the proposition uses the following two lemmas.

Lemma 1 Assume that there are two regions m, n 6= `, with τm > τn. Then f`m = 0.
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Proof. Subtracting m’s first-order condition from n’s first-order condition, we obtain

τm − τn + λ`n = λ`m.

As τm > τn and λ`n ≥ 0, λ`m > 0. Hence, by the corresponding complementary slackness
condition, f`m = 0.

Let M̃ be the set of regions m̃ 6= ` that have chosen the minimum tax rate τ̃` = min{τm}m 6=`.
Then, as an immediate consequence of Lemma 1, for all regions m 6= `, m̃, f`m = 0. Hence, tax
rates τm become redundant; from now on, pertinent comparisons should be done only between τ`

and τ̃`.

Lemma 2 Assume that τ` ≥ τ̃`. If m̃ ∈ M̃ then λ`m̃ = 0.

Proof. We consider two cases: (i) Card{M̃} = 1, (ii) Card{M̃} ≥ 2.
(i) First, assume that Card{M̃} = 1 and consider the first-order condition

τ` − τ̃` + λ`m̃ = f`m̃. (3.5)

If τ` > τ̃`, as λ`m̃ ≥ 0, then f`m̃ > 0. Thus, by the complementary slackness condition, λ`m̃ = 0. If
τ` = τ̃`, (3.5) becomes

λ`m̃ = f`m̃.

If λ`m̃ > 0, then f`m̃ > 0, which implies that λ`m̃ = 0, which is a contradiction. Hence λ`m̃ = 0.

(ii) Now assume that Card{M̃} ≥ 2. First-order conditions that characterize flows f`m̃ are

τ` − τ̃` + λ`m̃ = ∑
m̃∈M̃

f`m̃.

In order to satisfy these first-order conditions, all multipliers λ`m̃ should have the same value.
If they were all strictly positive, then all outflows f`m̃ should be equal to 0, implying that

∑m̃∈M̃ f`m̃ = 0. But, as τ` ≥ τ̃`, all first-order conditions would yield a contradiction. Hence, all
multipliers are zero.

Therefore, from any first-order condition that characterizes a flow to a region m̃ ∈ M̃, we
obtain

∑
m̃∈M̃

f`m̃ = τ` − τ̃`· (3.6)

3.9.3 proof of proposition 3

To obtain the equilibrium tax rates, first we derive region `’s reaction function.33

33Due to specific features of this model, we cannot apply Wildasin’s (1988) methodology to derive the equilibrium
tax rates.
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scenario 1: all regions have decided to refinance their incomplete

project

Denote by τm the profile of tax rates chosen by regions m 6= `. For any profile τm, we need to
consider three cases.

1. If the regional government of ` plans to set its tax rate strictly above τ̃`, there will be capital
outflows to regions m̃ ∈ M̃. Hence, the regional welfare would be

WFD
` = (κ − ∑

m̃∈M̃

f`m̃) (1− τ`) + ∑
m̃∈M̃

f`m̃ (1− τ̃`)−
1
2
( ∑

m̃∈M̃

f`m̃)
2 + b.

By the Envelope Theorem, ∂WFD
` /∂τ` = −(κ −∑m̃∈M̃ f`m̃) < 0. So the regional government

of ` should set the lowest tax rate that satisfies its budget constraint

θτ`(κ − ∑
m̃∈M̃

f`m̃) = c. (3.7)

Using (3.6), the smallest root of (3.7) is given by

τ` =
1
2

[
κ + τ̃` −

√
(κ + τ̃`)

2 − 4c
θ

]
. (3.8)

Throughout the paper, we assume that κ is so large so that this square root always exists
(see footnote 34).

2. If the regional government of ` plans to set its tax rate strictly below τ̃`, there will be no
capital outflows to regions m 6= `. Thus, regional welfare would be

WFD
` = κ (1− τ`) + b.

Again, by the Envelope Theorem, ∂WFD
` /∂τ` = −κ < 0. So, regional government of ` should

choose the lowest tax rate that satisfies its budget constraint

θτ`(κ + ∑
m 6=`

fm`) = c, (3.9)

where

∑
m 6=`

fm` = ∑
m 6=`

τm − (L− 1)τ` (3.10)

represents all capital inflows that leave regions m 6= `, and enter region `. Rearranging
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terms, the smallest root of (3.9) is given by

τ` =
1
2

 1
L− 1

(
κ + ∑

m 6=`

τm

)
−

√√√√√κ + ∑
m 6=`

τm

L− 1

2

− 4c
θ(L− 1)

 . (3.11)

3. If the regional government of ` plans to replicate τ̃`, there will be capital outflows from
regions m /∈ M̃ to regions m̃ ∈ M̃. Since ` ∈ M̃, the regional welfare of ` would be

WFD
` = κ (1− τ̃`) + 1I{ETC≥c}b,

where
ETC = θτ̃`(κ + σ` ∑

m/∈M̃
∑

m̃∈M̃

fmm̃),

is the effective tax collection, and σ`, 0 < σ` < 1, represents the fraction of all capital outflows
that leave regions m /∈ M̃ and move to region `.

Now, in order to completely characterize the reaction function τ` (τm), we need to identify profiles
of tax rates τm for which τ`, τ` and τ̃` are region `’s best responses.

First suppose that, facing a profile of tax rates τm, region ` wishes to set τ`. It is straightforward
to show that, for any change in one particular tax rate τm, m 6= ` that does not modify τ̃`,

∂τ`

∂τm
< 0.

Therefore, given τ̃`, the highest tax rate τ` < τ̃` is set when all regions m 6= ` have chosen τm = τ̃`.
Denote by τ`(τ̃`) this tax rate, which is given by

τ`(τ̃`) =
1
2

 κ

L− 1
+ τ̃` −

√(
κ

L− 1
+ τ̃`

)2

− 4c
θ(L− 1)

 .

We can show that
∂τ`(τ̃`)

∂τ̃`
< 0

and
lim

τ̃`↓c/θκ
τ`(τ̃`) = c/θκ.

If τ̃` ≤ c/θκ, τ`(τ̃`) ≥ τ̃`, contradicting the definition of τ`(τ̃`) as the highest tax rate that region `

can set strictly below τ̃`. Therefore, if τ̃` < c/θκ, the government in region ` cannot set a tax rate
strictly less than τ̃` while, at the same time, satisfying its budget constraint. A similar argument
applies if the regional government wishes to set τ` = τ̃` < c/θκ. If this were the case, the effective
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tax collection would be

ETC = θτ̃`

(
κ + σ` ∑

m/∈M̃
∑

m̃∈M̃

fmm̃

)
.

Consider the most favorable case for region `: if σ` = 1 and (L− 2) regions have set a tax rate
equal to one, region ` receives the largest capital flow. Under this circumstance,

ETC <
c
κ
(κ + (L− 2)(1− τ̃`)) ' c

because τ` < c/θκ and κ is assumed to be very large. Hence, when τ̃` < c/θκ, the regional
government of ` can only set a tax rate higher than τ̃` to cover the refinancing cost.

Now consider that, facing a profile of tax rates τm, region ` wishes to set τ` > τ̃`. It is
straightforward to show that

lim
τ̃`→0

τ` =
1
2

[
κ −

√
κ2 − 4c

θ

]
≡ τ`(0) > 0,

∂τ`

∂τ̃`
< 0 ,

∂2τ`

∂τ̃`2 > 0

and
lim

τ̃`↑c/θκ
τ` = c/θκ.

If τ̃` ≥ c/θκ, τ`(τ̃`) ≤ τ̃`, which again contradicts the definition of τ` as the lowest tax rate that
region ` can set strictly above τ̃`. Hence, if τ̃` > c/θκ, the government in region ` cannot set
a tax higher than τ̃` while, at the same time, satisfying its budget constraint. If the regional
government sets τ` = τ̃` > c/θκ, there will be no outflows f`m. Thus, region `’s welfare will
amount to WFD

` = κ − c. But this region will receive a capital inflow σ` ∑m/∈M̃ ∑m̃∈M̃ fmm̃, and so
its tax collection will be

θ
c

θκ
(κ + σ` ∑

m/∈M̃
∑

m̃∈M̃

fmm̃) > c.

Therefore, there will be room for a decrease in τ`. Indeed, region ` can set its tax rate τ` < c/θκ,
satisfying its budget constraint and increasing its welfare (with respect to the choice of τ` = τ̃` >

c/θκ).
Two more cases remain to be analyzed. First, consider a profile of tax rates τm such that

τ̃` = c/θκ but when at least one region n 6= ` has set τn > c/θκ. By a similar argument than
before, region ` can set its tax rate τ` < c/θκ, satisfying its budget constraint and increasing its
welfare (with respect to the choice of τ` = τ̃` = c/θκ.

Finally, when all regions m 6= ` have set the same tax rate τm = c/θκ, we have already shown
that region ` cannot tax strictly above or below c/θκ. Hence, the optimal response is to set
τ` = c/θκ.
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Region `’s reaction function is thus characterized as follows:

τ` (τm) =



1
2

[
κ + τ̃` −

√
(κ + τ̃`)

2 − 4c
θ

]
if τm < c/θκ ∀m 6= `

c/θκ if τm = c/θκ ∀m 6= `

1
2

 κ+ ∑
m 6=`

τm

L−1 −

√√√√( κ+ ∑
m 6=`

τm

L−1

)2

− 4c
θ(L−1)

 if τm > c/θκ ∀m 6= ` or

τm = c/θκand ∃n 6= ` : τn > c/θκ.

(3.12)

Region `’s reaction function is non-continuous. When τ̃` converges to c/θκ from below, τ` (τm)

converges to this limit from above. But when the distribution of taxes is such that τ̃` = c/θκ but
at least one region n 6= ` has set τn > c/θκ, the optimal response is to set τ` (τm) < c/θκ.

Clearly, τ̂1 = .... = τ̂L = c/θκ is a Nash equilibrium of this subgame because it is a fixed point
of the best response correspondence. To prove uniqueness, we proceed in two steps. First, by
simple inspection of (3.12), it is immediate that an asymmetric choice of taxes cannot be a Nash
equilibrium. Second, there cannot be another symmetric equilibrium. Assume the contrary: let
τ̂′` = τ̂′m and, without any loss of generality,

τ̂′` = τ̂′m =
c

θκ
+ ε, (3.13)

with ε 6= 0 be another symmetric equilibrium. By substituting (3.13) into (3.12), we obtain a
contradiction.

scenario 2: at least one region has decided not to refinance

In this case, to refinance its incomplete project the regional government of ` has to set the tax rate
τ̂`(0). This tax rate is obtained replacing τ̃` by 0 in the definition of τ`.34

3.9.4 proof of proposition 4

First, we prove the existence of c1 and c2. When there is at least one region that does not need
refinancing, the total cost from completing a project in any region T(c, θ) is a strictly increasing
and convex function of c, that satisfies

lim
c→0

T(c, θ) = 0 and lim
c→b

T(c, θ) =
b
θ
+

[
lim
c→b

τ̂`(0)
]2

2
> b.

Hence, by Bolzano’s Theorem, there exists a threshold 0 < c1 < b such that, when c ≤ c1,
b− T(c, θ) ≥ 0. Also, as c/θ > c, there exists a threshold c2 such that c2/θ = b. Moreover, as

34A sufficient condition for the existence of the square roots in (3.8) and (3.11), and to ensure that τ̂` < 1 is
κ ≥ max{2

√
b/θ, b/θ, (L− 1)4c/θ}.

133



c/θ < T(c, θ), c1 < c2.

Now consider the first case, when all regions face an incomplete project. When 0 ≤ c ≤ c1,

WFD
` (r` = R, rm, i) = κ + b− c/θ − c ≥WFD

` (r` = NR, rm, i) = κ − c.

Here refinancing is a dominant strategy.
When c1 < c ≤ c2,

WFD
` (r` = R, rm = R, i) = κ + b− c/θ − c ≥WFD

` (r` = NR, rm = R, i) = κ − c ∀m 6= `

but

WFD
` (r` = R, rm = NR, i) = κ + b− T(c, θ)− c ≤WFD

` (r` = NR, rm = NR, i) = κ − c ∀m 6= `.

These payoffs define a coordination (sub)game between regions, with two Nash equilibria. In the
first equilibrium all regions refinance, while in the second one no region refinances.

In fact, we prove that the equilibrium where all regions refinance is both the strong (Aumann,
1959) and the coalition-proof Nash equilibrium (Bernheim et al., 1987), as follows.

1. As both equilibria are Nash equilibria, no region can do better by unilaterally changing its
equilibrium strategy. Then consider L−regions coalitions, with 1 < L < L. If the other
regions refinance (not refinance), the L regions do not want to deviate because b− c/θ ≥ 0
(b− T(c, θ) < 0). Finally, consider the L-regions coalition. If all regions refinance, they do
not want to deviate since b− c/θ ≥ 0. But, when no region refinances, they all wish to
deviate because the first Nash equilibrium is Pareto optimal. Hence, the unique equilibrium
that is strong is the first one.

2. Again, as both equilibria are Nash equilibria, no region can do better by unilaterally changing
its equilibrium strategy. Then consider L−regions coalitions, with 1 < L < L. If the other
regions refinance, the coalition of L regions can jointly decide not to refinance. Although
this deviation is self-enforcing, it is not worthy because b− c/θ ≥ 0. But if the other regions
do not refinance, the unique available deviation to the coalition is to refinance. However
this deviation is not self-enforcing because b− T(c, θ) < 0. Finally, consider the L-regions
coalition. If all regions refinance, they can jointly decide to not refinance. Although this
deviation is self-enforcing, it is not worthy because b − c/θ ≥ 0. But when no region
refinances, they all wish to deviate because the first Nash equilibrium is Pareto optimal.
Hence, the unique coalition-proof Nash equilibrium is the first one.

Therefore, when c1 < c ≤ c2, we choose the equilibrium where all regions refinance as the Nash
equilibrium of this subgame.
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Finally, when c2 < c ≤ b,

WFD
` (r` = R, rm, i) = κ + b− c/θ − c ≤WFD

` (r` = NR, rm, i) = κ − c.

So not refinancing is a dominant strategy.

The proof of the second part of the proposition is immediate, and thus omitted.

3.9.5 proof of proposition 5

First, we proceed to evaluate net expected regional welfares under different parameter conditions.
If c ≤ c1, region `’s net expected welfare is:

EWFD
` (i` = I, im = I) = κ − c + πB + (1− π)L[b− c

θ ]

−(1− π)(1− (1− π)L−1)[b− T(c, θ)] if im = I ∀m 6= `

EWFD
` (i` = I, im = NI) = κ − c + πB + (1− π)[b− T(c, θ)] if ∃m 6= ` : im = NI`

EWFD
` (i` = NI, im) = κ ∀im ∈ {I, NI}

If c1 < c ≤ c2, region `’s net expected welfare is:

EWFD
` (i` = I, im = NI) = κ − c + πB + (1− π)L[b− c

θ ] if im = I ∀m 6= `

EWFD
` (i` = I, im = NI) = κ − c + πB if ∃m 6= ` : im = NI`

EWFD
` (i` = NI, im) = κ ∀im ∈ {I, NI}

When c2 < c ≤ b, region `’s net expected welfare is:

EWFD
` (i` = I, im) = κ − c + πB ∀im ∈ {I, NI}

EWFD
` (i` = NI, im) = κ ∀im ∈ {I, NI}

In order to characterize the Nash equilibria, we need to evaluate these different levels of
regional welfare. We proceed as follows. First, define ∆∗(c) ≡ (1− π)[B− (b− c)]. ∆∗(c) is an
increasing, linear function of c that satisfies

lim
c→0

∆∗(c) = ∆∗(0) ≡ (1− π)[B− b] and lim
c→b

∆∗(c) = ∆∗(b) ≡ (1− π)B.

Then, when c ≤ c1, we can show that:
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1. EWFD
` (i` = I, im = I) ≥ EWFD

` (i` = NI, im)⇔ ∆FD
R (c) ≤ B− c, where

∆FD
R (c) ≡ (1− π)

[
B− (1− π)L−1

(
b− c

θ

)
− (1− (1− π)L−1)(b− T(c, θ))

]
is a continuous, increasing, convex function of c that satisfies

lim
c→0

∆FD
R (c) ≡ ∆FD

R (0) = (1− π)[B− b] = ∆∗(0) , ∆FD
R (c) > ∆∗(c)

and
lim
c→c1

∆FD
R (c) = ∆FD

R (c1) ≡ (1− π)
[

B− (1− π)L−1
(

b− c1

θ

)]
< ∆∗(b).

2. EWFD
` (i` = I, im = NI) ≥ EWFD

` (i` = NI, im)⇔ ∆′(c) ≤ B− c, where

∆′(c) ≡ (1− π)[B− (b− T(c, θ))]

is another continuous, increasing, convex function of c that satisfies

lim
c→0

∆′(c) = (1− π)[B− b] = ∆∗(0) , ∆′(c) > ∆FD
R (c) > ∆∗(c)

and
lim
c→c1

∆′(c) = ∆′(c1) ≡ (1− π)B = ∆∗(b).

When c1 < c ≤ c2, we can also show that:

1. EWFD
` (i` = I, im = I) ≥ EWFD

` (i` = NI, im)⇔ ∆FD
NAR(c) ≤ B− c, where

∆FD
NAR(c) ≡ (1− π)

[
B− (1− π)L−1

(
b− c

θ

)]
is a continuous, increasing, linear function of c that satisfies

lim
c→c1

∆FD
NAR(c) = ∆FD

R (c1) , ∆FD
NAR(c) > ∆∗(c)

and
lim
c→c2

∆FD
NAR(c) = ∆FD

NAR(c2) ≡ (1− π)B = ∆∗(b).

2. EWFD
` (i` = I, im = NI) ≥ EWFD

` (i` = NI, im)⇔ ∆′′(c) ≤ B− c, where

∆′′(c) ≡ (1− π)B

satisfies
∆′′(c) = ∆FD

NAR(c2) = ∆′(c1) = ∆∗(b).

When c2 < c ≤ b, we show that EWFD
` (i` = I, im) ≥ EWFD

` (i` = NI, im) ⇔ ∆FD
NR(c) ≤ B − c,
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where
∆FD

NR(c) ≡ (1− π)B = ∆′′(c).

The functions ∆∗(c), ∆FD
R (c), ∆′(c), ∆FD

NAR(c) and ∆FD
NR(c) are (weakly) increasing in c, while

B− c decreases with c. Therefore, at some point, these five functions intersect B− c. Next, we
first characterize these intersections as cost thresholds and divide the cost range [0, b] in sub-
intervals, according to these thresholds. Then we find the Nash equilibria in each corresponding
sub-interval.

1. 0 ≤ π ≤ πFD
1

Let πFD
1 be implicitly defined by ∆FD

R (c1) = B − c1. As ∆′(c) ≥ ∆FD
R (c) ≥ ∆∗(c), the

intersection between ∆′(c) and B − c defines a threshold c′(π) ≤ c∗(π), whereas the
intersection between ∆FD

R (c) and B − c defines another threshold cFD
R (π) that satisfies

c′(π) ≤ cFD
R (π) ≤ c∗(π). The Nash equilibria are the following:35

(a) When 0 ≤ c ≤ c′(π), ∆FD
R (c) ≤ ∆′(c) ≤ B− c, which implies that

EWFD
` (i` = I, im = I) ≥ EWFD

` (i` = NI, im)

and
EWFD

` (i` = I, im = NI) ≥ EWFD
` (i` = NI, im).

Hence all regions initiate their project and, if it remains incomplete at the end of t = 2,
they refinance it in t = 3.

(b) When c′(π) < c ≤ cFD
R (π), ∆FD

R (c) ≤ B− c < ∆′(c), which implies that

EWFD
` (i` = I, im = I) ≥ EWFD

` (i` = NI, im)

but
EWFD

` (i` = I, im = NI) ≤ EWFD
` (i` = NI, im).

Two Nash equilibria emerge: i) all regions initiate their project and, if it remains
incomplete at the end of t = 2, they refinance it in t = 3, or ii) no region invests. We
choose the first equilibrium as it is strong and coalition-proof.

(c) When cFD
R < c, B− c < ∆FD

R (c) < ∆′(c), which implies that

EWFD
` (i` = I, im = I) ≤ EWFD

` (i` = NI, im)

and
EWFD

` (i` = I, im = NI) ≤ EWFD
` (i` = NI, im).

Hence, no region initiates a project.

35We only present the complete proof for this case. The remaining cases are analogous.
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2. πFD
1 < π ≤ πFD

2

Let πFD
2 ≡ c1/B and cFD

NAR(π) ≤ c∗(π) be defined by the intersection between ∆FD
NAR(c) and

B− c. The Nash equilibria are the following:

(a) When 0 ≤ c ≤ c1, all regions initiate their project and, if it remains incomplete at the
end of t = 2, they refinance it in t = 3.

(b) When c1 < c ≤ cFD
NAR(π), all regions initiate their project and, if it remains incomplete

at the end of t = 2, they refinance it in t = 3, provided all other regions do the same.

(c) When cFD
NAR(π) < c ≤ b, no region initiates a project.

3. πFD
2 < π ≤ πFD

3 ≡ b/B

Let cFD
NR(π) ≡ πB ≤ c∗(π) be defined by the intersection between ∆FD

NR(c) and B− c. The
Nash equilibria are the following:

(a) When 0 ≤ c ≤ c1, all regions initiate their project and, if it remains incomplete at the
end of t = 2, they refinance it in t = 3.

(b) When c1 < c ≤ c2, all regions initiate their project and, if it remains incomplete at the
end of t = 2, they refinance it in t = 3, provided all other regions do the same.

(c) When c2 < c ≤ cFD
NR(π), all regions initiate their project but, if it remains incomplete at

the end of t = 2, they do not refinance it.

(d) When cFD
NR(π) < c ≤ b, no region initiates a project.

4. πFD
3 < π ≤ 1

The Nash equilibria are the following:

(a) When 0 ≤ c ≤ c1, all regions initiate their project and, if it remains incomplete at the
end of t = 2, they refinance it in t = 3.

(b) When c1 < c ≤ c2, all regions initiate their project and, if it remains incomplete at the
end of t = 2, they refinance it in t = 3, provided all other regions do the same.

(c) When c2 < c ≤ b, all regions initiate their project but, if it remains incomplete at the
end of t = 2, they do not refinance it.

3.9.6 proof of proposition 6

The proof of this proposition uses the expected welfare expressions derived in the Online Ap-
pendix.
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welfare analysis when π adopts extreme values

We consider two cases: (i) π = 0, (ii) b/B ≤ π ≤ 1.

(i) π = 0

When π = 0, c∗(0) = b/2, cPD(0) = Lb
L+1 and cFD

R (0) = θb
1+θ . Hence, expected welfare under each

regime is

EWPD(π) = κ +
bL

(1 + L)2 and EWFD(0, θ) = κ +
θb

2(1 + θ)
·

When θ ≥ θ0, EWFD ≥ EWPD. Otherwise, partial decentralization dominates.
Last, we analyze the value of ∂EWFD(π,θ)

∂π

∣∣∣
π=0

as a function of the fiscal capacity θ. For any pair

(b, θ), we can always find a real number β and write κ = β
√

4b
1+θ . Computing the abovementioned

derivative, we obtain

− θL[−12bB(1 + θ) + 8(L− 1)βb2(β2 − 1)
3
2 + b2(9− 12β2 + 8β4 + 12θ + L(−8β4 + 2β2 − 3))]
12(1 + θ)2 .

The value of L that makes this expression equal to zero is

L̃(θ) = 1 +
3[4B(1 + θ)− 2b(1 + 2θ)]

b[−8β4 + 12β2 + 8β(β2 − 1)
3
2 − 3]

≥ 1.

The fraction’s denominator converges fast to zero, i.e., for values of β below 1. But recall that in
footnote 29 we have imposed κ to be sufficiently large; so β should be in fact a real number much
larger than 1. Thus, L̃(θ) turns out to be a big number. Moreover, L̃(θ) increases with θ. Hence, if
L ≤ L̄ ≡ L̃(0)

∂EWFD(π, θ)

∂π

∣∣∣∣
π=0
≥ 0, ∀θ ∈ [0, 1]

and it increases with θ. As we prove in the Online Appendix that EWFD(π, θ) is convex, we can
conclude that EWFD(π, θ) is an increasing function of the administrative capacity π.

(ii) πPD
2 = πFD

3 = b/B ≤ π ≤ 1

When b/B ≤ π < 1, partial decentralization replicates the first best outcomes, whereas full
decentralization’s outcomes are distorted. Hence, partial decentralization dominates. But if we
compute

∂

∂π

[
EWFD(π, θ)−EWPD(π)

]
and we take the limit when π converges to one, we obtain

lim
π→1

∂

∂π

[
EWFD(π, θ)−EWPD(π)

]
=

1
b

 b∫
0

[b− c]dc−
c1∫

0

[b− T(c, θ)]dc

 .
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As c1 < b and T(c, θ) > c, this limit is strictly positive. So, when π converges to 1, the full
decentralization expected welfare converges, from below, to the first best level. When π = 1,

EWPD(1) = EWFD(π, θ) = κ + B− b
2

.

welfare comparison when θ ∈ [θ ∗ , 1 ]

First, assume that θ = 1. When π = 0,

EWFD(0, 1) =
bL
4

,

and when π = πPD
1 ,

EWPD(πPD
1 ) =

bL(2B− b)
2[BL− b(L− 1)]

·

If L ≥ L ≡ 3 + B
B−b , EWFD(0, 1) ≥ EWPD(πPD

1 ). Hence, EWFD(π, θ) lies everywhere above
EWPD(π) when π ∈ [0, πPD

1 ] because the former is an increasing function of π. Therefore, as
EWFD(π, θ) must converge to EWPD(π) from below when π converges to one, EWFD(π, θ) has
to cross EWPD(π) in its linear part, from above. Denote by π̂(1) the administrative capacity
level that corresponds to this intersection.36 In fact, π̂(1) is unique. If this were not the case,
EWFD(π, θ) would cross again EWPD(π), from below. But, if such second intersection occurs, by
convexity, EWFD(π, θ) could not converge to EWPD(π) at π = 1.

When θ decreases, EWFD(π, θ) decreases as well, while EWPD(π) remains constant. By conti-
nuity, we know that there exists θ∗, a value of the regional fiscal capacity such that EWFD(π, θ∗)

lies above EWPD(π) everywhere when π ∈ [0, πPD
1 ]. Hence, when θ ∈ [θ∗, 1], EWFD(π, θ) inter-

sects EWPD(π) in its linear part. Using the same geometrical argument as before, we know that
both expected welfares cross only once, at π̂(θ). Applying the Implicit Function Theorem, we
show that

∂π̂(θ)

∂θ
= − ∂EWFD(π̂(θ), θ)/∂θ

∂EWFD(π̂(θ), θ)/∂π − ∂EWPD(π̂(θ))/∂θ
> 0

because, at π̂(θ), EWFD(π, θ) crosses EWPD(π) from above. Thus, π̂(θ) increases with θ.
When θ < θ∗, we cannot a priori ensure that EWFD(π, θ) crosses EWPD(π) only once. The

goal of the following paragraphs is to prove that this is indeed the case.

welfare comparison when θ ≤ θ0

When θ = θ0,
∂EWPD(π)

∂π

∣∣∣∣
π=0

=
L[4(L + 1)B + (L2 − 5L− 2)b]

2(L + 1)3 > 0

36As partial decentralization dominates when π ≥ πPD
2 , πPD

1 ≤ π̂(1) < πPD
2 .
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because L2 − 5L− 2 > −8.25 and L ≥ L ≥ 3. Also

∂EWFD(π, θ)

∂π

∣∣∣∣
π=0

=
1
b

∫ θ0b
1+θ0

0

[
B− b + L

c
θ0

+ (1− L)T(c, θ0)

]
dc

<
1
b

{∫ θ0b
1+θ0

0
[B− b]dc +

∫ θ0b
1+θ0

0
T(c, θ0)dc

}

<
1
b

∫ θ0b
1+θ0

0
[B− b]dc +

θ0b
2(1 + θ0)

=
(2B− b)L
(1 + L)2 ,

because T(c, θ0) ≤ b. Hence,(
∂EWPD(π)

∂π
− ∂EWFD(π, θ0)

∂π

)∣∣∣∣
π=0

>
bL2(L− 3)
2(L + 1)3 > 0.

Next, we prove that, when π ∈ [0, πPD
1 ], EWPD(π) > EWFD(π, θ0). To do so, we first find an

upper-bound for the expected welfare under full decentralization. If πPD
1 ≥ πFD

2 ,

EWFD(πPD
1 , θ0) = κ +

1
b

{∫ cFD
NR(π)

0

[
πPD

1 B− c
]

dc +
∫ c2

0

[(
1− πPD

1

)L
(

b− c
θ0

)]
dc

+
∫ c1

0

[(
1− πPD

1

)(
1−

(
1− πPD

1

)L−1
)
(b− T(c, θ0))

]
dc
}

where cFD
NR = πPD

1 B and c2 = θ0b. So

EWFD(πPD
1 , θ0) = κ +

bB2

2[b + L(B− b)]2
+

bL(1− b
b+L(B−b) )

L

1 + L2

+
1
b

∫ c1

0

[(
1− πPD

1

)(
1−

(
1− πPD

1

)L−1
)
(b− T(c, θ0))

]
dc

< κ +
bB2

2[b + L(B− b)]2
+

bL(1− b
b+L(B−b) )

L

1 + L2

+
1
b

∫ c1

0

[(
1− πPD

1

)(
1−

(
1− πPD

1

)L−1
)(

b− c
θ0

)]
dc

= κ +
bB2

2[b + L(B− b)]2
+

bL
(

1− b
b+L(B−b)

)
1 + L2 ≡ A.

If πPD
1 < πFD

2 ,

EWFD(πPD
1 , θ0) = κ +

1
b

{∫ cFD
NAR(π)

0

[
πPD

1 B− c +
(

1− πPD
1

)L
(

b− c
θ0

)]
dc
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+
∫ c1

0

[(
1− πPD

1

)(
1−

(
1− πPD

1

)L−1
)
(b− T(c, θ0))

]
dc
}

< κ +
1
b

{∫ c2

0

[
πPD

1 B− c +
(

1− πPD
1

)L
(

b− c
θ0

)]
dc

∫ c1

0

[(
1− πPD

1

)(
1−

(
1− πPD

1

)L−1
)
(b− T(c, θ0))

]
dc
}

< A.

Hence A is one upper bound for EWFD(πPD
1 , θ0). Now, define

Γθ0(π
PD
1 ) ≡ EWPD(0) + ∂EWPD(π)

∂π

∣∣∣
π=0

.πPD
1 = κ − bL[bL(L + 5)− 2B(L + 1)(L + 2)]

2(1 + L)3[BL + b(L− 1)]
·

Finally, we evaluate

Γθ0(π
PD
1 )− A = H(b, B, L) ≡ 1

2 b

[
−B2

[b+L(B−b)]2 −
L[bL(L+5)−2B(L+1)(L+2)]

(1+L)3[BL+b(L−1)] −
2L
(

1− b
b+L(B−b)

)
1+L2

]
·

As L ≥ L, we can write L = 2 + n + B
B−b , for n ≥ 1. The solution to the equation H(b, B, L) = 0

in B can be expressed in the form B = α(n).b. Although it is not possible to obtain a close form
expression for α(n), the following figure depicts the curve α(n), when n ∈ {1, ..., 100}.

0 20 40 60 80 100

n0

20

40

60

80

100

n

Figure 9: The curve (n) 
Figure 3.9: The Function α(n).

As α(1) = 2.6817 and B/2 < b, H(b, B, L) > 0 for any n ∈ {1, ..., 100}.37 Therefore, we conclude
that EWFD(πPD

1 , θ0) < Γ0(πPD
1 ).

These results enable us to assert that, when π ∈ [0, πPD
1 ], EWFD(π, θ0) lies below Γθ0(π), a

straight line that takes the values EWPD(0) and Γθ0(π
PD
1 ) when π = 0 and πPD

1 , respectively.
In fact, Γθ0(π) is the tangent line to EWPD(π, ) at π = 0. Hence, as EWPD(π) is convex,
EWFD(π, θ0) < EWPD(π) everywhere on π ∈ [0, πPD

1 ]. We depict this result in Figure 3.10.
Moreover, when π ∈ (πPD

1 , 1], EWFD(π, θ0) cannot cross EWPD(π). If this were the case, the
former curve would intersect the latter from below, in its linear part. But then, by convexity, it

37This result also holds for n > 100.
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0

PD

1

𝔼𝑊𝐹𝐷 𝜋, 𝜃0

𝔼𝑊𝑃𝐷(𝜋)

Γ𝜃0(𝜋)𝔼𝑊𝐹𝐷(𝜋1
𝑃𝐷, 𝜃0)

Γ𝜃0(𝜋1
𝑃𝐷)

Figure 10: Expected welfare when 𝜃 = 𝜃0 and 𝜋 ∈ [0, 𝜋1
𝑃𝐷]

Figure 3.10: Expected Welfare when θ = θ0 and π ∈ [0, πPD
1 ].

could not converge towards EWPD(π) from below at π = 1.
Hence, when θ = θ0, EWFD(π, θ0) < EWPD(π), except at π = 0 when they coincide. Therefore,

as EWFD(π, θ) increases with θ, EWFD(π, θ) < EWPD(π) for all values of π whenever θ ≤ θ0.

welfare comparison when θ ∈ [θ0 , θ ∗ ]

We will prove, using a series of geometrical arguments, that when θ ∈ [θ0, θ∗], EWFD(π, θ)

intersects EWPD(π) exactly once.
Assume that we can find θ = θ0 + ε such that

EWFD(0, θ0 + ε) > EWPD(0) and EWFD(πPD
1 , θ0 + ε) < Γθ0(π

PD
1 ) < EWPD(πPD

1 ).

Clearly, EWFD(π, θ0 + ε) intersects the line Γθ0(π) once, from above. Hence, as EWFD(π, θ0 + ε)

and EWPD(π) are both convex in π, the former has to cross the latter only once, from above. This
argument can be replicated until θ = θ1 > θ0, which is implicitly defined by

EWFD(πPD
1 , θ1) = Γθ0(π

PD
1 ).

When θ = θ1, there can be two possibilities. When π converges to πPD
1 , either (i) EWFD(π, θ1)

converges to Γθ0(π
PD
1 ) from below, in which case the previous intersection argument applies, or

(ii) this convergence is from above. This means that

∂EWFD(π, θ1)

∂π

∣∣∣∣
π=πPD

1

< slope Γθ0(π).

Hence, EWFD(π, θ1) has to cross EWPD(π) from above, only once. So, for any θ ∈ [θ0, θ1],
EWFD(π, θ) intersects EWPD(π) exactly once.

Now, let’s define Γθ1(π), a new line that has the same slope than Γθ0(π) and is characterized
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by Γθ1(0) = EWFD(0, θ1). By construction, Γθ1(π
PD
1 ) > EWFD(πPD

1 , θ1). Now assume that we can
find θ = θ1 + ε′ such that EWFD(0, θ1 + ε′) > Γθ1(0) and EWFD(πPD

1 , θ1 + ε′) < Γθ1(π
PD
1 ). Clearly,

EWFD(π, θ1 + ε′) crosses Γθ1(π) only once, from above. Hence, as EWFD(π, θ1 + ε) and EWPD(π)

are both convex in π, the former has to cross the latter only once, from above. This argument can
be replicated until θ = θ2 > θ1, which is implicitly defined by

EWFD(πPD
1 , θ2) = Γθ1(π

PD
1 ).

Now construct an increasing sequence θn, ∀n ≥ 0 defined by

EWFD(0, θn+1) > Γθn(0),

and
EWFD(πPD

1 , θn+1) = Γθn(π
PD
1 ).

This sequence can behave in two different ways: either there exists N ∈N such that, for all n ≥ N,
θn ≥ θ∗; or θn < θ∗ for all n ∈N. In the first case, the previous geometric arguments apply, and
thus we can assert that EWFD(π, θ) crosses EWPD(π) only once, from above, when π ∈ [0, πPD

1 ].
Let’s prove that the second case can be ruled out. Assume that θn < θ∗ for all n ∈N. As the

sequence θn is increasing and bounded (by θ = 1), it must converge. Denote this limit by θ. As
the functions that define the sequence are continuous, they also converge towards EWFD(π, θ)

and Γθ(π). These limit functions have to satisfy

EWFD(0, θ) = Γθ(0),

and
EWFD(πPD

1 , θ) = Γθ(π
PD
1 ).

Define θ = θ + ε. Clearly, as EWFD(π, θ) increases with θ, EWFD(0, θ) > Γθ(0). But if this were
the case, we can construct Γ

θ
(π) > Γθ(π), which is a contradiction. Hence, the sequence θn does

not converge to a value θ < θ∗.
We conclude that, when θ ∈ [θ0, θ∗], EWFD(π, θ) intersects EWPD(π) exactly once, from above,

at π̂(θ). Applying the Implicit Function Theorem, we can show that ∂π̂(θ)/∂θ > 0.
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