
Carnegie Mellon University
Tepper School of Business

Doctoral Dissertation

Essays on Postoptimality, Lift-and-Project,
and Scheduling

Thiago Serra
April, 2018

Submitted to the Tepper School of Business in Partial Fulfillment of the Requirements for the

Degree of Doctor in Operations Research

Dissertation Committee:

John N. Hooker (chair)

Egon Balas

Willem-Jan van Hoeve

Andrea Lodi

Abstract

This thesis offers methodological and computational contributions to integer and mixed-integer

linear programming. The first area is postoptimality, in which we explore how decision diagrams can

be used to compactly store and query near-optimal solutions. Our contribution is on characterizing

a particular form of decision diagram relaxation, the sound decision diagram, where solutions worse

than a given threshold are tolerated in order to obtain smaller decision diagrams. We introduce an

operation that we denote as “sound reduction” that, if applied a sufficient number of times, leads

to one among the sound decision diagrams of minimum size. The second area is lift-and-project,

in which we explore alternative formulations of the cut generating linear program (CGLP) as well

as the equivalence between lift-and-project cuts and intersection cuts. Our first contribution is

the introduction of a new formulation, the reverse polar CGLP, where the conventional roles of

the objective function and of the normalization constraint are switched. We show that cuts from

CGLP optima always define supporting hyperplanes of the disjunctive hull and that, if the objective

function minimizes the slack of the cut for a point in the interior of the disjunctive hull, then the

resulting cut is a combination of facet-defining cuts separating a given fractional solution. Our

second contribution in this area is a method to identify irregular lift-and-project cuts, which are

cuts from non-split disjunctions that are not equivalent to intersection cuts from any basis of the

linear relaxation. Based on the CGLP formulation, we present a mixed-integer formulation that

determines if such an equivalence exists and we report computational results on several instances

where many cuts from elementary t-branch disjunctions are not equivalent to cuts from t rows of

the simplex tableau. The last area is an emergent scheduling application, in which we study a

last-mile passenger transportation service using autonomous vehicles. Our contribution consists

of an approach to solve this optimization problem within the required time frame. We show that

a convenient restriction of this problem has optimal solutions with a certain structure, propose

heuristics that preserve such structure for warm-starting a mixed-integer formulation, and report

a significant improvement as a result.

2

Acknowledgements

I would like to thank Professors John Hooker and Egon Balas for sharing with me their research

questions and academic experience as well as for offering invaluable feedback and opportunities

throughout my time in the doctoral program. Likewise, I am grateful to Professors Willem-Jan van

Hoeve and Andrea Lodi for agreeing to participate in the committee and, more importantly, for their

interest and resourceful advice on particular projects as well as on academia in general. I am also

grateful to Professors Yoshiko Wakabayashi, Arnaldo Vieira Moura, and Cláudio Leonardo Lucchesi

for their guidance during my studies in Brazil and for their recommendation to join Carnegie Mellon.

I have been very fortunate to work with and learn from so many inspiring scholars.

The work in this thesis and in other projects that I have participated while in the program

has also benefited from the kind collaboration or advice from Doctors Gérard Cornuéjols, R. Ravi,

François Margot, Fatma Kilinç-Karzan, Michael Perregaard, Pierre Bonami, Selvaprabu Nadarajah,

David Bergman, André Augusto Ciré, Arvind Raghunathan, and Srikumar Ramalingam.

This has been a journey shared very closely with two colleagues in the program, Christian Tjan-

draatmadja and Aleksandr Kazachkov, to whom I am grateful for the collaborations, discussions,

and insights on cutting planes, decision diagrams, and deep learning. I would like to thank many

other colleagues, past and present, including Yang Jiao, Tarek Elgindy, Siddharth Singh, Wenting

Yu, Diana Kotenko, Stelios Despotakis, Jeremy Karp, Sercan Yildiz, Negar Soheili, Vince Slaugh,

Xin Wang, Leela Nageswaran, Joris Kinable, Gerdus Benade, Dabeen Lee, Nam Ho-Nguyen, Ryo

Kimura, Amin Hosseininasab, Arash Haddadan, Neda Mirzaeian, Franco Berbeglia, Mehmet Ay-

demir, Bo Yang, Ziye Tang, and Danial Davarnia. I am also grateful for the amazing support from

Lawrence Rapp and Laila Lee as well as from Professors Michael Trick, Alan Scheller-Wolf, and

Nicola Secomandi.

I would like to thank my parents, Ana Maria and Joaquim Benedito, and my sister Ana Caroline

for the affection, dedication, and encouragement that brought me here.

Ultimately, I would like to thank my daughter Isabel, my son Leonardo, and my wife Sabrina

for giving me the best years of my life. They have offered me reason for happiness every day and

hour, no matter how hard things were at times, and I cannot imagine how I would have made it

without their companionship, love, and support. This thesis is dedicated to them.

3

Contents

Abstract 2

Introduction 6

1 Compressing Sound Decision Diagrams of Integer Linear Programs 9

1.1 Introduction . 9

1.2 Related Work . 12

1.3 Decision Diagrams for Discrete Optimization Problems 13

1.4 Sound Decision Diagrams . 14

1.5 Sound Reduction . 17

1.6 Two-Sided Soundness . 21

1.7 Sound Diagrams for Bounded Integer Linear Programs 22

1.8 Algorithm for Sound Reduction . 25

1.9 Postoptimality Analysis . 27

1.10 Computational Experiments . 30

1.11 Conclusion . 32

2 Reverse Polar Normalization of Lift-and-Project Cuts 35

2.1 Introduction . 35

2.1.1 Contribution . 37

2.1.2 Organization . 38

2.2 The Reverse Polar Reformulation . 38

2.3 Equivalent and Related Work . 41

2.3.1 Equivalent Formulations . 41

2.3.2 Duality . 43

2.3.3 Supporting Hyperplane Methods . 43

2.4 Cut Generation from the Simplex Tableau . 44

2.5 Computational Experiments . 49

2.6 Conclusion . 50

4

3 Checking the Regularity of Lift-and-Project Cuts 55

3.1 Introduction . 55

3.2 Preliminaries . 57

3.3 Regularity of CGLP Solutions . 59

3.4 Regularity of Cuts from CGLP Solutions . 60

3.5 Numerical Procedure . 62

3.6 Computational Experiments . 63

3.7 Discussion . 69

3.8 Conclusion . 70

4 The Integrated Last-Mile Transportation Problem 72

4.1 Introduction . 72

4.2 Related Work . 74

4.2.1 Last-Mile Transportation Problem . 74

4.2.2 Personal Rapid Transit . 74

4.2.3 Demand Responsive Transit . 74

4.2.4 Vehicle Routing & Dial-a-Ride Problems . 75

4.3 Problem Formulation . 75

4.4 Theoretical Results . 77

4.5 Algorithm . 80

4.5.1 Sorting the Passengers . 80

4.5.2 Grouping the Passengers . 81

4.5.3 Optimal Scheduling of the Groups . 81

4.5.4 Lower Bounds . 83

4.5.5 Break-and-Shift Local Search . 85

4.6 Experiments . 86

4.7 Conclusions and Future Work . 90

Conclusion 91

5

Introduction

“ The History of every major Galactic

Civilization tends to pass through three

distinct and recognizable phases, those of

Survival, Inquiry and Sophistication,

otherwise known as the How, Why, and

Where phases. For instance, the first phase

is characterized by the question ‘How can

we eat?’ the second by the question ‘Why

do we eat?’ and the third by the question

‘Where shall we have lunch?’ ”

Douglas Adams, The Restaurant at the

End of the Universe

Mathematical optimization has progressed considerably in the past decades. Problems that were

once challenging are now solved reasonably fast thanks to better hardware and algorithms. For

the problems that became easy, we may now think of possibilities beyond finding a single optimal

solution and even use these problems to better understand the solving methods. For the problems

that remained hard, it is sometimes possible to exploit structural properties to tackle familes of

instances. We explore these different frontiers in this thesis, from performing postoptimality analysis

on near-optimal solutions of integer programs to determining the regularity of lift-and-project cuts

and to characterizing optimal solutions of a scheduling problem for warm-starting.

Postoptimality It is often useful in practice to explore near-optimal solutions of an integer

programming problem, whereas the structure of a decision diagram facilitates rapid processing of a

wide range of queries about the near-optimal solution space. Decision diagrams are rooted directed

acyclic graphs mapping a Boolean function having finite domains with labeled paths towards true

or false terminal nodes [Lee, 1959, Akers, 1978]. They can be efficiently minimized for a given

order of variables by unifying nodes [Bryant, 1986b]. Decision diagrams have found varied uses

in optimization [Bergman et al., 2016a], from supporting constraint propagation [Andersen et al.,

2007a] to replacing the branching tree and deriving upper and lower bounds to some combinatorial

6

problems [Bergman et al., 2016b]. They can describe solutions of optimization problems with finite

and discrete domains, in which case arcs are labeled according to assignments of decision variables,

weighted according to their impact in the objective function, and optimal solutions correspond to

root-terminal paths minimizing or maximizing the sum of arc weights.

In Chapter 1, we show how all solutions within a given tolerance of the optimal value can

be efficiently compressed in a weighted decision diagram. To obtain a more compact diagram, we

exploit the property that such diagrams may become paradoxically smaller when they contain more

solutions. In particular, we characterize sound decision diagrams, which innocuously admit some

solutions that are worse than near-optimal. We describe a simple “sound reduction” operation

that, when applied repeatedly in any order, yields a smallest possible sound diagram for a given

problem instance. We find that sound reduction yields a structure that is typically far smaller than

a tree that represents the same set of near-optimal solutions.

Lift-and-Project Lift-and-project cuts can be obtained by defining an elegant optimization

problem over the space of valid inequalities for a given disjunction, the Cut Generating Linear

Program (CGLP) [Balas et al., 1993]. A CGLP has two main ingredients: (i) an objective func-

tion, which invariably maximizes the violation with respect to a fractional solution x̄; and (ii) a

normalization constraint, which limits the scale in which cuts are represented. In the case of a

split disjunction, Balas and Perregaard [2003] have shown that there is a correspondence between

lift-and-project cuts obtained from basic solutions of the CGLP and intersection cuts from basic

solutions of the linear relaxation, feasible or not, and thus also to Gomory fractional cuts [Gomory,

1958]. More recently, Balas and Kis [2016] have shown that such correspondence may also hold for

some lift-and-project cuts from arbitrary disjunctions.

In Chapter 2, we propose the Reverse Polar CGLP (RP-CGLP), which switches the roles con-

ventionally played by objective and normalization: violation with respect to x̄ is fixed to a positive

constant, whereas we minimize the slack for a point p that cannot be separated by the valid inequal-

ities. Cuts from RP-CGLP optima define supporting hyperplanes of the immediate closure. When

that closure is full-dimensional, the face defined by the cut lays on facets first intersected by a ray

from x̄ to p, all of which corresponding to cutting planes from RP-CGLP optima if p is an interior

point. In fact, these are the cuts minimizing a ratio between the slack for p and the violation for

x̄, and we show that the same ratio in minimized by other proposed reformulations. Among those,

RP-CGLP has the advantage that its feasible set does not depend on p, hence making it easier to

generate other cuts for x̄ by just changing p. We show how this formulation can be implemented

on the tableau of the linear relaxation and report some computational results.

In Chapter 3, we explore the extent to which the equivalence between intersection cuts and

lift-and-project cuts remains valid in the case of non-split disjunctions, in which case the lift-

and-project cuts are denoted regular. First, we state a result that simplifies the verification of

regularity for basic CGLP solutions from Balas and Kis [2016] and show that it can also be used

7

with CGLP solutions that are not basic. Second, we introduce and prove the validity of a mixed-

integer formulation that checks whether there is a regular CGLP solution for a given cut. Third,

we describe a numerical procedure based on such formulation that verifies if a lift-and-project cut

is regular or not. Finally, we present and analyze computational results on the regularity of cuts

from not-split disjunctions for several instances.

Scheduling Last-mile transportation refers to any service that moves passengers from a hub of

mass transportation, such as air, boat, bus, or train, to destinations, such as a home or an office.

In Chapter 4, we introduce the problem of scheduling passengers jointly on both services, with

passengers sharing a car, van, or autonomous pod of limited capacity for the last-mile service.

Passenger itineraries are determined so as to minimize total transit time for all passengers, with

each passenger arriving at the her destination within a specified time window. The transit time

includes the time spent traveling through both services and, possibly, waiting time for transferring

between the services. We provide an integer linear programming formulation for this problem.

Since this problem is NP-hard and instances of practical size are often difficult to solve, we study

a restricted version where mass transportation trips are uniform, all passengers have time windows

of a common size, and vehicles in the last-mile service visit one destination per trip. We prove

that there is an optimal solution that sorts and groups passengers by their deadlines and, based

on this result, we propose a constructive grouping heuristic and local search operators to generate

high-quality solutions. The resulting groups are optimally scheduled in a few seconds using another

integer formulation for the subproblem. Numerical results indicate that the solutions obtained by

this heuristic are often close to optimal and that warm-starting an integer programming solver with

such solutions decreases the overall computational times significantly.

8

Chapter 1

Compressing Sound Decision

Diagrams of Integer Linear Programs

This chapter is based on the manuscript “Compact Representation of Near-Optimal Integer Pro-

gramming Solutions” [Serra and Hooker, 2017], which is currently under review.

1.1 Introduction

An integer programming model contains a wealth of information about the phenomenon it repre-

sents. An optimal solution of the model, or even a set of optimal solutions, captures only a small

portion of this information. In many applications, it is useful to probe the model more deeply to ex-

plore alternative solutions, particularly solutions that are suboptimal as measured by the objective

function but attractive for other reasons.

For example, in a recent study [Camm, 2014] an integer programming (IP) model was formulated

to relocate distribution centers across Europe. In the absence of reliable estimates for fixed costs,

the client opted for a suboptimal solution that relocated one rather than three distribution centers

for only a 0.4% increase over the optimal cost. One may also wish to know which decisions are

invariant across all near-optimal solutions. This was a key question in a nature reserve planning

study [Arthur et al., 1997] that sought to identify areas that are critical to protect native species. In

addition, there are applications that require the solution of minor variations of a problem. In some

combinatorial auctions [Goetzendorff et al., 2015], for example, a winners determination problem

is first solved to maximize the sum of winning bids, and then re-solved with each winner removed

by fixing certain variables to zero.

In general, one may wish to know which solutions are optimal or near-optimal when certain

variables are fixed to desired values, or which values a given variable can take without sacrificing

near-optimality. One may also wish to determine how much a cost coefficient can be perturbed

without changing the optimal cost more than a certain amount.

9

(a)

x1 tr..
.............

.............
.............

.............
.............

...........x2 t.............
.............
.............

t...
.............

.............
.............

.............
.......x3 t..

t..
t..t t t

(b)

tr.. 4
.............

.............
.............

.............
.............

...........t.............
.............

.............
.............

.............
.........

t..
3

.............
...........
..
.........
....
........
.....
......

t..2 t
t

(c)

tr..4

.............
.............
.............

.............t..3

.............
.............
.............

.............t..2 t
t

Figure 1.1: (a) Branching tree for near-optimal solutions of (1.1). (b) Reduced weighted decision
diagram representing the same solutions. (c) Sound decision diagram for (1.1).

These questions can be answered if the space of near-optimal solutions is compactly represented

in a transparent data structure; that is, a data structure that can be efficiently queried to find near-

optimal (or optimal) solutions that satisfy desired properties. In fact, the task of solving an IP

model can be more generally conceived as the process of transforming an opaque data structure

to a transparent data structure. The constraint set and objective function comprise an opaque

structure that defines the problem but does not make good solutions apparent. A conventional

solver transforms the problem statement into a very simple transparent structure: an explicit list

of one or more optimal solutions. The ideal would be to derive a more general data structure that

compactly but transparently represents the space of near-optimal solutions and how they relate to

each other.

We propose a weighted decision diagram for this purpose. Binary and multivalued decision

diagrams have long been used for circuit design, formal verification, and other purposes [Akers,

1978, Bryant, 1986a, Hu, 1996, Lee, 1959, Wegener, 2000], but they can also compactly represent

solutions of a discrete optimization problem [Andersen et al., 2007a, Bergman et al., 2016b, Hadžić

and Hooker, 2006b, Hoda et al., 2010]. A weighted decision diagram represents the objective function

values as well. Such a diagram can be built to represent only near-optimal solutions, and it can can

be easily queried for solutions that satisfy desired properties. This is because solutions correspond

straightforwardly to paths in the diagram, and their objective function values to the length of the

paths.

A simple example illustrates the idea. The IP problem

minimize 4x1 + 3x2 + 2x3

subject to x1 + x3 ≥ 1, x2 + x3 ≥ 1, x1 + x2 + x3 ≤ 2

x1, x2, x3 ∈ {0, 1}
(1.1)

has optimal value 2. The branching tree of Fig. 1.1(a) represents the three feasible solutions that

have a value within 4 of the optimum, namely (x1, x2, x3) = (1, 0, 1), (0, 1, 1), (0, 0, 1). A dashed

arc represents setting xj = 0, and a solid arc represents setting xj = 1. Figure 1.1(b) is a decision

10

diagram that represents the same solutions. The solid arcs are assigned weights (lengths) equal

to the corresponding objective function coefficients, while the dashed arcs have length zero. Each

path from the root r to the terminus t represents a feasible solution with cost at most 6, where

the cost of the solution is the length of the path. The decision diagram is reduced, meaning that

it is the smallest diagram that represents this set of solutions. It is well known that, for a given

ordering of the variables, there is a unique reduced diagram representing a given set of solutions

[Bryant, 1986a].

Although reduced decision diagrams tend to provide a much more compact representation than

a branching tree, they can nonetheless grow rapidly. To address this issue, we take advantage of the

fact that modifying a diagram to represent a larger solution set can, paradoxically, result in a smaller

diagram. We adopt the concept of a sound decision diagram, introduced by Hadžić and Hooker

[2007], which is a diagram that represents all near-optimal solutions along with some spurious

solutions whose objective function values are worse than near-optimal. The spurious solutions may

be feasible or infeasible. By judiciously admitting spurious solutions into the diagram, one can

significantly reduce its size while maintaining soundness of the near-optimal solution set.

In particular, we show that a certain sound reduction operation, which replaces a pair of nodes

with a single node, yields a smaller sound diagram. Our main theoretical result is that repeated

application of sound reduction operations, in any order, results in a smallest possible sound diagram

for a given problem and variable ordering. It is smallest in the sense that it has a minimum number

of arcs and a minimum number of nodes. We call such a diagram sound reduced. A problem may

have multiple sound-reduced diagrams, but they all have the same minimum size.

Sound diagrams have several advantages for postoptimality analysis. Aside from their smaller

size, they allow for easy extraction of near-optimal solutions. One need only to enumerate paths

in the diagram while discarding those that represent spurious solutions, which are easily identified

by the fact that their values are too far from the optimum. In order to infer that solutions are

spurious while constructing and when querying such diagrams, the optimal value is first obtained

by solving the problem with a conventional solver.

For example, Fig. 1.1(c) illustrates a sound diagram for problem (1.1). It represents the three

solutions within 4 of the optimal value, plus a spurious solution (x1, x2, x3) = (1, 1, 1) that is

discarded because its value is greater than 6. This solution happens to be infeasible, but it is not

necessary to check feasibility, which is time-consuming. It is only necessary to compute the path

length.

A further advantage of sound diagrams is that the presence of spurious solutions has no effect

whatever on the implementation or complexity of many types of postoptimality analysis. It is

enough that the diagram represent all near-optimal solutions.

We begin below with a review of related work, followed by four sections that develop the

underlying theory of sound diagrams. Section 1.3 introduces some basic concepts and properties

11

of decision diagrams. Section 1.4 develops the idea of soundness and shows that it is a useful

concept only when suboptimal (as well as optimal) solutions are represented. Section 1.5 proves

the main result that sound reduction yields a sound diagram of minimum size. It also shows

by counterexample that there need not be a unique sound-reduced diagram for a given problem.

Section 1.6 explains why it is not practical to admit superoptimal solutions into sound diagrams,

even though this may result in smaller diagrams.

The remaining sections apply the theory of sound diagrams to integer programming. Section 1.7

presents an algorithm that constructs a sound diagram for a given integer programming problem,

assuming that the optimal value has been obtained by solving the problem with a conventional

solver. Section 1.8 shows how to introduce sound reduction into the algorithm, thereby obtaining

a smallest possible sound diagram for the problem. Section 1.9 then describes several types of

postoptimality analysis that can efficiently be performed on a sound diagram. Section 1.10 reports

computational tests that measure how compactly sound diagrams can represent near-optimal solu-

tions, and the time required to compute the diagrams. Based on instances from MIPLIB, it is found

that decision diagrams represent near-optimal solutions much more compactly than a branching

tree, and that in most instances, sound reduction substantially reduces the size of the diagrams.

The chapter concludes with a summary and agenda for future research.

1.2 Related Work

To our knowledge, no previous study addresses the issue of how to represent near-optimal solutions

of IP problems in a compact and transparent fashion. A few papers have proposed methods

for generating multiple solutions. Scatter search is used in Glover et al. [2000] to generate a

set of diverse optimal and near-optimal solutions of mixed integer programming (MIP) problems.

However, since it is a heuristic method, it does not obtain an exhaustive set of solutions for any

given optimality tolerance. Diverse solutions of an MIP problem have also been obtained by solving

a sequence of MIP models, beginning with the given problem, in which each seeks a solution

different from the previous ones. This approach is investigated in Greistorfer et al. [2008], where

it is compared with solving a much larger model that obtains multiple solutions simultaneously.

However, neither method is scalable, as there may be a very large number of near-optimal solutions.

The “one-tree” method in Danna et al. [2007] generates a collection of optimal or near-optimal

solutions of a mixed-integer programming problem by extending a branching tree that is used to

solve the problem. While possible, the collection is not intended to be exhaustive, and there is

no indication of how to represent the collection compactly or query more easily. A “branch-and-

count” method is presented in Achterberg et al. [2008] for generating all feasible solutions of an

IP problem, based on the identification of “unrestricted subtrees” of the branching tree. These

are subtrees in which all values of the unfixed variables are feasible. We use a similar device as

part of our mechanism for constructing sound decision diagrams. However, we focus on compact

12

representation of near-optimal solutions.

The commercial solver CPLEX has offered a “solution pool” feature since version 11.0 [IBM

Support, 2010] that relies on the one-tree method. The solution pool has been supported by the the

GAMS modeling system since version 22.6 [GAMS Support Wiki, 2013]. By contrast, postoptimal-

ity software based on decision diagrams operates apart from the solution method, requiring only

the optimal value from the solver. It also differs by generating an exhaustive set of near-optimal

solutions and organizing them in a decision diagram that is convenient for postoptimality analysis.

Integer programming sensitivity analysis has been investigated for some time, as for example

in Dawande and Hooker [2000], Gamrath et al. [2015], Geoffrion and Nauss [1977], Holm and Klein

[1984], Kilinç-Karzan et al. [2009], Schrage and Wolsey [1985], Van Hoesel and Wagelmans [1999].

Sound decision diagrams can be used to analyze sensitivity to perturbations in objective coefficients,

because these appear as arc lengths in the diagram, and we show how to do so. However, our main

interest here is in probing the near-optimal solution set that results from the original problem data.

Decision diagrams were first proposed for IP postoptimality analysis in Hadžić and Hooker

[2006a], and the concept of a sound diagram was introduced in Hadžić and Hooker [2007]. The

present chapter extends this work in several ways. It proves several properties of sound diagrams,

introduces the sound reduction operation, and proves that sound reduction yields a sound diagram

of minimum size. It also presents algorithms for generating sound-reduced diagrams for IP problems

and conducting postoptimality analysis on these diagrams, as well as reporting computational tests

on the representational efficiency of the diagrams.

1.3 Decision Diagrams for Discrete Optimization Problems

For our purposes, we associate a decision diagram with a discrete optimization problem of the form

min{f(x) | x ∈ S} (P)

where S ⊆ S1× . . .× Sn and each variable domain Sj is finite. A decision diagram associated with

(P) is a multigraph D = (U,A, `) with the following properties:

• The node set U is partitioned U = U1 ∪ · · · ∪Un+1, where U1 = {r} and Un+1 = {t}. We say

r is the root node, t the terminal node, and Uj is layer j of D for each j.

• The arc set A is partitioned A = A1 ∪ · · · ∪ An, where each arc in Aj connects a node in Uj

with a node in Uj+1, for j = 1, . . . , n.

• Each arc a ∈ Aj has a label `(a) ∈ Sj for j = 1, . . . , n, representing a value assigned to variable

xj . The arcs leaving a given node must have distinct labels.

13

The labels on each path p of D from r to t represent an assignment to x, which we denote x(p).

We let Sol(D) denote the set of solutions represented by the r–t paths. We say that D exactly

represents S when Sol(D) = S.

A weighted decision diagram associated with (P) is a multigraph D(U,A, `, w) that satisfies the

above properties, plus the following:

• Each arc a ∈ A has a weight w(a), such that
∑
a∈p

w(a) = f(x(p)) for any r–t path p of D. Thus

the total weight w(p) of an r–t path p is the objective function value of the corresponding

solution.

A weighted decision diagram associated with problem (P) exactly represents (P) when Sol(D) = S.

In this case, the optimal value z∗ of (P) is the weight of any minimum-weight r–t path of D, and

the optimal solutions of (P) are those corresponding to minimum-weight r–t paths. From here out,

we will refer to a weighted decision diagram simply as a decision diagram, and to a diagram without

weights as an unweighted decision diagram.

An unweighted decision diagram D is reduced when redundancy is removed. To make this

precise, let a suffix of u ∈ Uj be any assignment to xj , . . . , xn represented by a u–t path in D, and

let Suf(u) be the set of suffixes of u. Then D is reduced when Suf(u) 6= Suf(v) for all u, v ∈ Uj
with u 6= v and all j = 1, . . . , n. As noted earlier, for any fixed variable ordering, there is a

unique reduced unweighted decision diagram that exactly represents a given feasible set S, and this

diagram is the smallest one that exactly represents S [Bryant, 1986a].

Given a path π from a node in layer j to a node in layer k, it will be convenient to denote by

x(π) the assignment to (xj , . . . , xk−1) indicated by the labels on path π. We also let xi(π) denote

the the assignment to xi in particular, and we let w(π) denote the weight of π. A summary of

notation used throughout the chapter can be found in Table 1.1.

The following simple property of decision diagrams will be useful.

Lemma 1.1. Given any pair of distinct nodes u, v in layer j of a decision diagram, let π be an

r–u path and ρ an r–v path. Then x(π) 6= x(ρ).

Proof. If x(π) = x(ρ), then in particular x1(π) = x1(ρ). This implies that π and ρ lead from r to

the same node u in U2, since distinct arcs leaving r must have distinct labels. Arguing inductively,

π and ρ lead from the same node in Uk to the same node in Uk+1 for k = 1, . . . , j − 1. This implies

that u = v, contrary to hypothesis. �

1.4 Sound Decision Diagrams

We are interested in constructing decision diagrams that represent near-optimal solutions of (P).

Let x be a ∆-optimal solution of (P) when x ∈ S and f(x) ≤ z∗ + ∆, for ∆ ≥ 0. We denote by

14

Table 1.1: List of symbols.

r root node of a decision diagram
t terminal node of a decision diagram
Uj set of nodes in layer j of a diagram
Aj set of arcs connecting nodes in Uj with nodes in Uj+1

`(a) label of arc a, representing value of xj if a ∈ Aj
w(a) weight (cost, length) of arc a
x(p) assignment to x represented by r–t path p
w(p) weight of r–t path p
x(π) assignment to xj , . . . , xk−1 represented by u–v path π (u ∈ Uj , v ∈ Uk)
xi(π) assignment to xi represented by π, where j ≤ i < k
w(π) weight of path π
w(u, u′) weight of minimum-weight path from node u to node u′

Sol(D) set of solutions represented by r–t paths in diagram D
z∗ optimal value of problem (P)
P(∆) problem of finding ∆-optimal solutions of (P)
S(∆) set of ∆-optimal solutions of (P)
ILP(∆) problem of finding ∆-optimal solutions of (ILP)
Pre(u) set of prefixes of node u
Suf(u) set of suffixes of node u
Suf∆(u) set of ∆-suffices of node u of a diagram D; i.e., set of suffixes of u

that are part of some ∆-optimal solution represented by D
lhs.u left-hand-side state at node u
LCDSj [u, v] weight of least-cost differing suffix when reducing u into v
W maximum width of (number of nodes in) layers of a diagram
Smax size of largest variable domain

S(∆) is the set of ∆-optimal solutions of (P), so that S(0) is the set of optimal solutions. We let

P(∆) denote the the problem of finding ∆-optimal solutions of (P).

We say that D exactly represents P(∆) when Sol(D) = S(∆). Since such a decision diagram

can be quite large, we wish to identify smaller diagrams that approximately represent P(∆). We

therefore study decision diagrams that are sound for P(∆), which represent a superset of S(∆).

Specifically, D is sound when

S(∆) = Sol(D) ∩ {x ∈ S1 × · · · × Sn | f(x) ≤ z∗ + ∆}

Thus a sound diagram can represent, in addition to ∆-optimal solutions, feasible and infeasible

solutions that are worse than ∆-optimal. We refer to these as spurious solutions. A proper sound

diagram represents a proper superset of the ∆-optimal solutions and therefore represents some

spurious solutions.

15

We prefer a sound diagram D that is minimal for P(∆), meaning that every node of D, and

every arc of D, lies on some r–t path that represents a solution in S(∆). If a sound diagram is

not minimal, nodes and/or arcs can be removed without destroying soundness. Since their removal

does not enlarge the set represented by the diagram, we obtain a smaller diagram that is an equally

accurate approximation of S(∆).

It is easy to check whether a node or arc can be removed while preserving soundness. For any

two nodes u, u′ in different layers of D, let w(u, u′) be the weight of a minimum-weight path from

u to u′ (infinite if there is no path). Then node u can be removed if and only if

w(r, u) + w(u, t) > z∗ + ∆

An arc a connecting u ∈ Uj with u′ ∈ Uj+1 can be removed if and only if

w(r, u) + w(a) + w(u′, t) > z∗ + ∆ (1.2)

Interestingly, a proper sound diagram for P(0) is never minimal. This implies that there is no

point in considering sound diagrams to represent the set of optimal solutions. They are useful only

for representing sets of near-optimal solutions.

Theorem 1.2. No proper sound decision diagram is minimal for P(0).

Proof. Suppose to the contrary that diagram D is a minimal for P(0) and contains a suboptimal

r–t path p. For any given node u in p, let π(u) be the portion of p from r to u. Select a node u∗ in

p that maximizes the number of arcs in π(u∗) subject to the condition that π(u∗) is part of some

optimal (minimum-weight) r–t path in D (Fig. 1.2). We note that u∗ 6∈ Un+1, since otherwise p

would be an optimal r–t path. Thus p contains an arc a from u∗ to some node u′. Furthermore,

u∗ 6∈ U1 since otherwise arc a would prevent D from being minimal. Now since D is minimal, arc

a belongs to some optimal r–t path, which we may suppose consists of π′, a, and σ′. Hence, π(u∗)

and π′ are both optimal r–u∗ paths, and thus the r–t path consisting of π(u′) and σ′ is also optimal.

This implies that π(u′), which contains one more arc than π(u∗), is part of an optimal r–t path,

contrary to the definition of u∗. �

The following property of sound diagrams is easily verified.

Lemma 1.3. If a decision diagram D is sound for P(∆), then D is sound for P(δ) for any δ ∈ [0,∆].

Thus the set of sound decision diagrams of P(∆) is a subset of that of P(δ) for any δ ∈ [0,∆].

Corollary 1.4. The size of a smallest sound diagram for P(∆), as measured by the number of arcs

or the number of nodes, is monotone nondecreasing in ∆.

16

π(u∗) π ′

a

σ ′

tr...

...tu∗..t u′..t
t

Figure 1.2: Illustration of the proof of Theorem 1.2.

1.5 Sound Reduction

Sound reduction is a tool for reducing the size of a given sound diagram, generally at the cost

of increasing the number of spurious solutions it represents. Given distinct nodes u, v ∈ Uj for

1 < j ≤ n, we can sound-reduce u into v when diverting to v the arcs coming into u, and deleting u

from the diagram, removes no ∆-optimal solutions and adds only spurious solutions. Thus sound

reduction removes at least one node without destroying soundness. In fact, we will see that repeated

sound reduction yields the smallest sound diagram for a given ∆.

Let a ∆-suffix of node u ∈ Uj be any suffix in Suf(u) that is part of a ∆-optimal solution, and

let Suf∆(u) be the set of ∆ suffixes of u. Also let a prefix of u be any assignment to (x1, . . . , xj−1)

represented by an r–u path, and let Pre(u) be the set of prefixes of u. Then u can be sound-reduced

into v if:

Suf∆(u) ⊆ Suf(v) (1.3)

w(π) + w(σ) > z∗ + ∆ when x(π) ∈ Pre(u) and x(σ) ∈ Suf(v) \ Suf(u) (1.4)

Sound reduction is accomplished as follows. For every arc a from some node q ∈ Uj−1 to u, remove

a and create an arc from q to v with label `(a) and weight w(a). Then remove u and any successor

of u that is disconnected from r. That is, remove u and any successor u′ of u for which all r–u′

paths in D contain u.

Condition (1.3) ensures that any ∆-optimal solution whose r–t path passes through u remains in

the diagram after sound reduction, with the same cost. Condition (1.4) ensures that only spurious

solutions are added to the diagram. So we have,

17

Theorem 1.5. Sound reduction preserves soundness.

Figure 1.3 illustrates sound reduction. Figure 1.3(a) is a reduced diagram that is sound for a

problem P(∆) with z∗ = 2 and ∆ = 6. Dashed arcs have label 0 and weight 0, and solid arcs have

label 1 and weights as shown. Figure 1.3(b) shows the result of sound-reducing node u1 into node v1.

Condition (1.3) is satisfied because Suf∆(u1) = {(1, 1, 0, 0)} ⊆ {(1, 1, 0, 0), (1, 1, 0, 1)} = Suf(v1).

Condition (1.4) is satisfied because Pre(u1) = {(1, 1)}, Suf(v1) \ Suf(u1) = {(1, 1, 0, 1)}, and the

solution (x1, . . . , x6) = (1, 1, 1, 1, 0, 1) has cost 9 > z∗ + ∆. We could have also reduced u2 into v2,

u3 into v3, or u3 into q.

A sound diagram for P(∆) is sound-reduced if no further sound reductions are possible. We can

show that a minimal sound-reduced diagram is the smallest diagram that is sound for P(∆). For

example, the diagram in Fig. 1.3(b) is sound-reduced, and it is in fact the smallest sound diagram

for P(∆) with ∆ = 6. Establishing this result requires two lemmas.

Lemma 1.6. Given a sound-reduced diagram D for P(∆), any two distinct nodes u, v ∈ Uj of D

satisfy Suf∆(u) 6= Suf∆(v).

Proof. Suppose to the contrary that Suf∆(u) = Suf∆(v), and assume without loss of generality

that w(r, u) ≥ w(r, v). We will show that u can be sound-reduced into v, contrary to hypothesis.

Condition (1.3) for sound reduction is obviously satisfied. Also condition (1.4) is satisfied, because

if x(π) ∈ Pre(u) and x(σ) ∈ Suf(v) \ Suf(u), then x(σ) 6∈ Suf∆(u), and therefore x(σ) 6∈ Suf∆(v).

This implies w(r, v) + w(σ) > z∗ + ∆. But w(π) + w(σ) ≥ w(r, u) + w(σ) ≥ w(r, v) + w(σ), and

(1.4) follows. �

Lemma 1.7. Let D be a minimal sound-reduced diagram for P(∆). For any node u in layer j of

D, and any other diagram D′ with the same variable ordering that is sound for P(∆), there is a

(a)

x1 tr.............
.............

.............
.............

.............
...........

..

4

x2 t.. 1

t... 1
.............

.............
.............

.............
.......x3 t.. 1

tu1..

1

t v1..

1
x4 t.............

.............

.............

tu2..

1

t v2..

1
x5 tq

2
...

.............
.............

.............
.............

tu3.............
.............
.............

t v3.............
.............
.............x6 t.............

.............

.............

t
2

..

...
.............

.............
........

t
t

(b)

tr.............
.............

.............
.............

.............
...........

..

4t.. 1 1
t...
.............
.............
.............

.............t.. 1

t v1..

1t.............
.............
.............

t v2..

1tq
2

...

.............
.............

.............
.............

t v3.............
.............
.............t.............

.............

.............

t
2

..

...
.............

.............
........

t
t

Figure 1.3: Reduced (a) and sound-reduced (b) decision diagrams for z∗ = 2 and ∆ = 6.

18

D

tr..
π

π̄

...

..

ρ

tu ..

τ

t v..

τ̄

σ̄

...t
t

’

D′

tr

π ′

...

ρ ′

...tu′

τ ′

..

..

σ ′ σ̄ ′

..t
t

Figure 1.4: Illustration of the proof of Lemma 1.7.

node u′ in layer j of D′ with Suf∆(u) = Suf∆(u′).

Proof. Suppose to the contrary that there is a node u in layer j of D, and some sound diagram D′

in which layer j contains no node with the same ∆-suffixes as u. We will show that D must then

contain a node v into which u can be sound-reduced, contrary to hypothesis.

Let π be a minimum-weight r–u path in D. Since D is minimal, node u belongs to some path

that represents a ∆-optimal solution. So since π is a minimum-weight r–u path, x(π) is the prefix

of some ∆-optimal solution. Thus since D′ is sound for P(∆), layer j of D′ must contain a node

u′ and an r–u′ path π′ with x(π′) = x(π). Since every ∆-optimal solution represented by D is also

represented by D′, we have that Suf∆(u) ⊆ Suf∆(u′), due to the fact that π is a minimum-weight

path. However, by hypothesis Suf∆(u) 6= Suf∆(u′), and so we have Suf∆(u′) \ Suf∆(u) 6= ∅.
Now consider any u′–t path σ′ for which x(σ′) ∈ Suf∆(u′) \ Suf∆(u). This implies that x(σ′) is

the suffix of some ∆-optimal solution, and so there must be an r–u′ path ρ′ with

w(ρ′) + w(σ′) ≤ z∗ + ∆ (1.5)

However, we can see as follows that (x(π′), x(σ′)) is not a ∆-optimal solution. Note that by

Lemma 1.1, π is the only path in D representing x(π) = x(π′). Thus if (x(π′), x(σ′)) were ∆-

optimal, the soundness of D would imply that x(σ′) = x(σ) ∈ Suf∆(u) for some u–t path σ, which

contradicts the fact that x(σ′) ∈ Suf∆(u′) \ Suf∆(u). So (x(π′), x(σ′)) is not ∆-optimal, which

means w(π′) +w(σ′) > z∗+ ∆. This and (1.5) imply w(ρ′) < w(π′). But (1.5) also implies that the

sound diagram D must contain a node v and an r–v path ρ with x(ρ′) = x(ρ), so that w(ρ) < w(π).

Since π is a minimum-weight r–u path, this implies u 6= v.

We now show that u can be sound-reduced into v by verifying conditions (1.3) and (1.4). To

19

show (1.3), consider any u–t path τ with x(τ) ∈ Suf∆(u). Since π is a minimum-weight r–u path,

(x(π), x(τ)) is a ∆-optimal solution. Now since D′ is sound for P(∆) and x(π) = x(π′), there is

a u′–t path τ ′ in D′ for which (x(π′), x(τ ′)) is ∆-optimal. This means (x(ρ′), x(τ ′)) is ∆-optimal

because w(ρ′) < w(π′), which implies that (x(ρ), x(τ)) is ∆-optimal. Since by Lemma 1.1, ρ is the

only path representing x(ρ), there must be a v–t path τ̄ with x(τ̄) = x(τ) and x(τ̄) ∈ Suf∆(v).

This implies x(τ) ∈ Suf(v) and (1.3).

Finally, to show (1.4), let π̄ be an r–u path with x(π̄) ∈ Pre(u), and let σ̄ be a v–t path with

x(σ̄) ∈ Suf(v)\Suf(u). Note that if w(ρ)+w(σ̄) > z∗+∆, then since w(π̄) ≥ w(π) > w(ρ), we have

w(π̄) +w(σ̄) > z∗ + ∆, and (1.4) follows. We may therefore suppose w(ρ) +w(σ̄) ≤ z∗ + ∆, which

means that (x(ρ), x(σ̄)) is ∆-optimal because D is sound. Since D′ is sound and x(ρ) = x(ρ′), by

Lemma 1.1 there must be a u′–t path σ̄′ for which x(σ̄′) = x(σ̄) and (x(ρ′), x(σ̄′)) is ∆-optimal. This

means that D′ represents the solution (x(π′), x(σ̄′)), which is the same as (x(π), x(σ̄)). But since

x(σ̄) 6∈ Suf(u), D does not represent the solution (x(π), x(σ̄)), which therefore cannot be ∆-optimal.

Thus since D′ represents this solution, it must be spurious, and we have w(π) + w(σ̄) > z∗ + ∆.

This implies w(π̄) + w(σ̄) > z∗ + ∆ and (1.4). �

Theorem 1.8. A sound decision diagram D for P(∆) has a minimum number of nodes and a

minimum number of arcs, among diagrams that are sound for P(∆) and have the same variable

ordering, if and only if D is minimal and sound-reduced.

Proof. If D is not minimal, we can remove one or more nodes or arcs, and if D is not sound-reduced,

we can remove at least one node. Thus D is minimal and sound-reduced if it has a minimum number

of nodes and arcs.

To prove the converse, suppose D is minimal and sound-reduced. Due to Lemma 1.6, all nodes

in any given layer j of D have sets of ∆-suffixes. By Lemma 1.7, these distinct sets of ∆-suffixes

exist for nodes in layer j of any sound diagram for P(∆). Thus any sound diagram for P(∆) has

at least as many nodes as D. Furthermore, the minimality of D implies that any arc a leaving a

node u in layer j of D is part of some ∆-optimal solution. Given any diagram D′ that is sound for

P(∆), the node u′ in layer j of D′ with Suf∆(u′) = Suf∆(u) must have an outgoing arc with the

same label as a. Thus D′ has at least as many arcs as D. �

Although all sound-reduced diagrams for a given P(∆) have minimum size, they are not nec-

essarily identical. For example, while all sequences of sound reductions of Fig. 1.3(a) terminate in

the same diagram Fig. 1.3(b), this is not the case for the slightly different diagram of Fig. 1.5(a).

Sound-reducing u3 into q yields the sound-reduced diagram of Fig. 1.5(b), and sound-reducing u3

into v3 yields Fig. 1.5(c). Both diagrams are of minimum size and satisfy Lemma 1.7, but they are

distinct.

20

(a)

tr.............
.............

.............
.............

.............
...........

..

4t.. 1

t... 1
.............

.............
.............

.............
.......t.. 1

tu1..

1

t v1..

1t.............
.............
.............

tu2..

1

t v2.............
.............
.............tq

2
...

.............
.............

.............
.............

tu3.............
.............
.............

t v3.............
.............
.............t.............

.............

.............

t
2

..

...
.............

.............
........

t
t

(b)

tr.............
.............

.............
.............

.............
...........

..

4t.. 1

t... 1
.............

.............
.............

.............
.......t.. 1

tu1..

1

t v1..

1t.............
.............
.............

tu2..

1
t v2.............
.............
.............tq

2
...

.............
.............

.............
.............

t v3.............
.............
.............t.............

.............

.............

t
2

..

...
.............

.............
........

t
t

(c)

tr.............
.............

.............
.............

.............
...........

..

4t.. 1

t... 1
.............

.............
.............

.............
.......t.. 1

tu1..

1

t v1..

1t.............
.............
.............

tu2..
1

t v2.............
.............
.............tq

2
...

.............
.............

.............
.............

t v3.............
.............
.............t.............

.............

.............

t
2

..

...
.............

.............
........

t
t

Figure 1.5: Distinct sound-reduced diagrams (b) and (c) obtained from diagram (a), where z∗ = 2
and ∆ = 6.

1.6 Two-Sided Soundness

A sound diagram is permitted to represent feasible and infeasible solutions that are worse than

∆-optimal. A natural question is whether it would be useful to allow (infeasible) solutions that are

better than optimal. Superoptimal solutions, like solutions that are worse than ∆-optimal, can be

filtered out during postoptimality analysis by examining only objective function values.

Since such a diagram D requires excluding solutions with values on either side of the interval

[z∗, z∗ + ∆], we will say that it has two-sided soundness, meaning that it satisfies

S(∆) = Sol(D) ∩ {x ∈ S1 × · · · × Sn | z∗ ≤ f(x) ≤ z∗ + ∆}

Conceivably, this weaker condition for including solutions could allow more flexibility for finding a

small sound diagram.

There is a theoretical reason, however, that two-sided soundness is less suitable for practical

application. In a one-sided sound diagram, it is easy to check whether a given r–u path of cost w

can be completed to represent a δ-optimal solution. Namely, find a shortest u–t path and check

whether its length is at most z∗ − w + δ. In a two-sided sound diagram, this decision problem is

NP-complete. It is therefore difficult to extract δ-optimal solutions from a two-sided sound diagram.

Theorem 1.9. Checking whether some r–t path in a given decision diagram has cost that lies in

an given interval [z∗, z∗ + δ] is NP-complete.

Proof. The problem belongs to NP because an r–t path with cost in [z∗, z∗ + δ] is a polynomial-

size certificate. It is NP-complete because we can reduce the subset sum problem to it. Given a

set S = {s1, . . . , sn} of integers, the subset sum problem is to determine whether some nonempty

subset of these integers sums to zero. We can solve the problem by constructing a decision diagram

21

as follows. Let U1 = {r}, Uj = {uj1, . . . , ujn} for j = 2, . . . , n, and Un+1 = {t}. There is one arc

with weight sk from r to each u2k, k = 1, . . . , n. There are two arcs from each ujk to uj+1,k for

j = 2, . . . , n − 1, one with weight zero, and the other with weight sj if j − 1 < k and weight sj+1

otherwise. There are two arcs from each unk to t, one with weight zero, and the other with weight

sn−1 if k = n and weight sn otherwise. Then there is a one-to-one correspondence between r–t

paths and nonempty subsets of S. The subset sum problem has a solution if and only if there is an

r–t path with cost in the interval [0, 0]. �

Corollary 1.10. Checking whether a given r–u path can be extended to a path with cost in [z∗, z∗+δ]

is NP-complete.

Proof. Let the given r–u path in diagram D have cost w, and consider the decision diagram D′

consisting of all u–t paths of D. The path extension problem is equivalent to checking whether

some u–t path in D′ has cost in the interval [z∗ − w, z∗ − w + δ], which by Theorem 1.9 is an

NP-complete problem. �

1.7 Sound Diagrams for Bounded Integer Linear Programs

We now specialize problem (P) to an integer linear program:

min{cx | Ax ≥ b, x ∈ S1 × . . .× Sn} (ILP)

in which A is an m × n matrix and each Sj is a finite set of integers. We wish to build a sound

decision diagram that represents ∆-optimal solutions of (ILP); that is, a sound diagram for ILP(∆).

We assume that (ILP) has been solved to optimality and the optimal value z∗ is known. This will

accelerate the construction of a sound diagram.

We build the diagram by constructing a branching tree, identifying nodes that necessarily have

the same set of ∆-suffixes, and removing some nodes that cannot be part of a ∆-optimal solution.

To accomplish this, we associate with every node u ∈ Uj a state (u.lhs, w(r, u)). In the simplest

case, u.lhs is an m-tuple in which component i is the sum of left-hand-side terms of inequality

constraint i that have been fixed by branching down to layer j. The root node r initially has state

(0, 0), where 0 is a tuple of zeros. We can identify nodes u, u′ that have the same lhs state, because

they necessarily have the same ∆-suffixes. The resulting node v has state (v.lhs, w(r, v)), where

v.lhs = u.lhs and w(r, v) = min{w(r, u), w(r, u′)}. Thus the state variable w(r, v) maintains the

weight of a minimum-weight r–v path in the current diagram.

We can also observe that inequality constraint i is satisfied at node u ∈ Uj , for any values of

xj , . . . , xn, when the sum of the fixed terms on the left-hand side is sufficiently large. Specifically,

22

inequality i is necessarily satisfied when the sum of these terms is at least bi −Mij , where

Mij =
n∑
k=j

min
{
Aikxk | xk ∈ Sk

}
This allows us to update the lhs state to min{u.lhs, b−Mj} and still identify nodes that have the

same state. Here, Mj = (M1j , . . . ,Mmj), and the minimum is taken componentwise.

We can remove a node u ∈ Uj when the cost of any r–t path through u must be greater

than z∗ + ∆, based on the linear relaxation of (ILP) at node u. We therefore remove u when

w(r, u) + LPj(u.lhs) > z∗ + ∆, where

LPj(u.lhs) = min
{ j−1∑
k=1

ckxk

∣∣∣ n∑
k=j

Akxk ≥ b− u.lhs, xk ∈ Ik, k = j, . . . , n
}

and Ik is the interval [minSk,maxSk]. This can remove some spurious solutions, but not necessarily

all, because w(r, u) can underestimate the weight of r–u paths, and LPj(u.lhs) can underestimate

the weight of u–t paths.

The diagram construction is controlled by Algorithm 1, which maintains unexplored nodes in a

priority queue that determines where to branch next. When exploring node u ∈ Uj , the procedure

invokes Algorithm 2 to create an outgoing arc for each value in the domain Sj of xj . Some of these

arcs may lead to dead-end nodes based the LP relaxation as described above. If all lead to dead

ends, u and predecessors of u with no outgoing arcs are removed by the subroutine at the bottom

of Algorithm 1.

Each surviving arc a out of u is processed as follows. Let the node q at the other end of arc a

have state (q.lhs, w(r, u) + cj`(a)), where

q.lhs = min
{
b−Mj , u.lhs +Aj`(a)

}
If no node currently in Uj+1 has the same lhs state as q, add node q to Uj+1. Otherwise, some

node v ∈ Uj+1 has v.lhs = q.lhs, and we let arc a run from u to v, updating w(r, v) if necessary.

If v has been explored already, it is revisited in Algorithm 3, because the updated value of w(r, v)

may affect which nodes and arcs can be deleted.

A key concept in the procedure is that of a closed node. The terminal node t is designated as

closed (t.closed = true) when it is first reached in Algorithm 2. Higher nodes in the diagram are

recursively marked as closed when all of their successors are closed. The recursion is implemented by

maintaining the number u.openArcs of arcs from node u that do not lead to closed nodes. When

Algorithm 1 pops u from the priority queue and processes it, u.openArcs is set to the number

|Sj | of domain elements of xj . Algorithm 1 decrements this number for each dead-end arc, and

Algorithm 2 decrements it for each arc leading to a pre-existing node that is closed. Node u is

23

Algorithm 1 Builds sound diagram for (ILP) using an arbitrary search type

1: procedure PopulateSoundDiagram()
2: r ← new Node(min{0,M1}, 0)
3: U1 ← {r}
4: PriorityQueue← {(1, r)} . Begins search at root node r
5: RevisitBFSQueue← {}
6: while PriorityQueue 6= ∅ do
7: (j, u)← PriorityQueue.pop() . Queue policy defines search type
8: u.openArcs← |Sj |
9: Deadend← true

10: for α ∈ Sj do
11: Success← TryBranching(j, u, α) . Algorithm 2
12: Deadend← Deadend ∧ ¬Success
13: end for
14: if Deadend then . No branch succeeded
15: RemoveDeadendNode(j, u) . Procedure below
16: else if RevisitBFSQueue 6= ∅ then . Nodes following u reopened
17: RevisitNodes() . Algorithm 3
18: else if u.openArcs = 0 then . Nodes following u are all closed
19: CloseNode(j, u) . Algorithm 4
20: end if
21: u.explored← true
22: end while
23: end procedure

Subroutine: Removes nodes that cannot reach t recursively

24: procedure RemoveDeadendNode(j, u)
25: Uj ← Uj \ {u}
26: for all a = (v, u) ∈ A do
27: A← A \ {a}
28: v.openArcs← v.openArcs− 1
29: if @a′ = (v, u′) ∈ A : u′ 6= u then . Node above is a deadend
30: RemoveDeadendNode(j − 1, v)
31: else if v.openArcs = 0 then
32: CloseNode(j − 1, v)
33: end if
34: end for
35: end procedure

closed when u.openNodes reaches zero.

One purpose of the node closing mechanism is to implement a possibly more effective test for

removing nodes than the LP relaxation. When the terminal node t is reached, a third state variable

w(t, t) is set to 0. When a node u is closed, the state variable w(u, t) is updated to indicate the

weight of a minimum-weight path to t. Algorithm 4 then removes node u if w(r, u)+w(u, t) > z∗+∆.

It also removes an outgoing arc a to a node v when w(r, u) + cj`(a) + w(v, t) > z∗ + ∆. Even this

test, however, may not remove all spurious solutions.

24

Algorithm 2 Tries to branch on value and creates a new node if needed

1: function TryBranching(j, u, α)
2: nodeLhs← min{u.lhs +Ajα,Mj}
3: nodeWeight← w(r, u) + cjα
4: if nodeWeight + LPj(u.lhs) > z∗ + ∆ then . LP =∞ if infeasible
5: return false
6: end if
7: if ∃v ∈ Uj+1 : v.lhs = nodeLhs then . Found node with same lhs
8: if nodeWeight < w(r, v) then . Improves minimum cost path to r
9: w(r, v)← nodeWeight

10: if v.explored then
11: RevisitBFSQueue.add(j + 1, v) . For Algorithm 3
12: end if
13: end if
14: A← A ∪ {(u, v)}
15: if v.closed then . Fails if not improving for a closed node
16: u.openArcs← u.openArcs− 1
17: end if
18: else . Creates node for new lhs
19: v ← new Node(nodeLhs, nodeWeight)
20: Uj+1 ← Uj+1 ∪ {v}
21: A← A ∪ {(u, v)}
22: if j < n then . Adds non-terminal node to queue
23: PriorityQueue.add(j + 1, v)
24: else . First reached terminal node t
25: v.closed← true
26: w(v, t)← 0
27: end if
28: end if
29: return true
30: end function

1.8 Algorithm for Sound Reduction

Applying the conditions (1.3)–(1.4) for sound reduction presupposes that the suffixes of nodes u

and v are known, as well as the weight of a minimum-weight path from v to the terminal node.

Sound reduction is therefore attempted only when a node is closed, because it is at this point that

the necessary information becomes available.

Algorithm 5 attempts to sound-reduce u into other closed nodes in the same layer, and to

sound-reduce other nodes in the layer into u. It is invoked at line 23 in Algorithm 4. To check the

conditions for sound-reducing u into v, Algorithm 5 recursively computes the weight of a minimum-

weight suffix of v that is not a suffix of u (and similarly with u and v reversed). We refer to this

as a least-cost differing suffix (LCDS) and denote its weight by LCDSj [v, u]. The computation of

LCDSj [v, u] and LCDSj [u, v] occurs in lines 4–17 of the algorithm.

The test for sound-reducing u into v occurs in lines 18–22. To break symmetry, we attempt

the sound-reduction only when w(r, v) ≤ w(r, u). A failure of condition (1.3) for sound reduction

occurs when a ∆-suffix of u is not a suffix of v, so that w(r, u) + LCDSj [u, v] ≤ z∗ + ∆. Condition

25

Algorithm 3 Revisits nodes already explored for updating and re-branching

1: procedure RevisitNodes()
2: while RevisitBFSQueue 6= ∅ do
3: (j, u)← RevisitBFSQueue.pop()
4: if u.closed then
5: ReopenNode(u) . Procedure below
6: end if
7: for α ∈ Sj do
8: if @a = (u, v) ∈ A : l(a) = α then . Branches again on absent α
9: u.openArcs← u.openArcs + 1

10: TryBranching(j, u, α) . Algorithm 2
11: else
12: if w(r, u) + cjα < w(r, v) then . Improves w(r, v)
13: w(r, v)← w(r, u) + ciα
14: if v.explored then
15: RevisitBFSQueue.add(j + 1, v)
16: end if
17: end if
18: end if
19: end for
20: if u.openArcs = 0 then . Nodes following u remained closed
21: CloseNode(j, u) . Algorithm 4
22: end if
23: end while
24: end procedure

Subroutine: Reopens nodes in bottom-up order recursively

25: procedure ReopenNode(u)
26: u.closed← false
27: for all a = (v, u) ∈ A do . Opens all nodes above
28: if v.closed then
29: ReopenNode(v)
30: v.openArcs← 1
31: else
32: v.openArcs← v.openArcs + 1
33: end if
34: end for
35: end procedure

(1.4) is violated when v has a suffix that is not a suffix of u and incurs a cost no greater than z∗+∆

when combined with some prefix of u. This occurs when w(r, u) + LCDSj [v, u] ≤ z∗ + ∆. We can

therefore sound-reduce u into v when

w(r, u) + min
{

LCDSj [u, v],LCDSj [v, u]
}
> z∗ + ∆

The analogous test for sound-reducing v into u occurs in lines 23–26. The removal of a node

during sound reduction may disconnect subsequent nodes in the diagram, which are removed by

the subroutine at the bottom of Algorithm 5.

Sound reduction is relatively efficient. Algorithm 5 is called O(nW) times, where W is the

maximum width of a layer. Each call checks O(W) nodes having O(Smax) arcs each, where Smax is

26

Algorithm 4 Closes nodes and performs bottom-up processing recursively

1: procedure CloseNode(j, u)
2: u.closed← true
3: for all a = (u, v) ∈ A do . Computes minimum cost path to t
4: w(u, t)← min{w(u, t), cj`(a) + w(v, t)}
5: end for
6: if w(r, u) + w(u, t) > z∗ + ∆ then . Node is not minimal
7: RemoveDeadendNode(i, u) . Subroutine in Algorithm 1
8: end if
9: for all a = (u, v) ∈ A do

10: if w(r, u) + cj`(a) + w(u, t) > z∗ + ∆ then . Arc is not minimal
11: A← A \ {a}
12: end if
13: end for
14: ClosingQueue← {}
15: for all a = (v, u) ∈ A do
16: if ¬v.closed then
17: v.openArcs← v.openArcs− 1
18: if v.openArcs = 0 then . Closes node above
19: ClosingQueue← ClosingQueue ∪ {(j, u)}
20: end if
21: end if
22: end for
23: CompressDiagram(j, u) . Algorithm ?? or 5
24: while ClosingQueue 6= ∅ do
25: (j, u)← ClosingQueue.pop()
26: CloseNode(j, u)
27: end while
28: end procedure

the size of the largest variable domain. This totals O(nW 2Smax) operations before node removals.

Each call of the bottom procedure requires time O(Smax), for a total time of O(nWSmax).

1.9 Postoptimality Analysis

Because a sound decision diagram transparently represents all near-optimal solutions, a wide variety

of postoptimality analyses can be conducted with minimal computational effort. We describe a few

of these here.

The most basic postoptimality task is to retrieve all feasible solutions whose cost is within a

given distance of the optimal cost. That is, we wish to retrieve all δ-optimal solutions from a

diagram D that is sound for P(∆), for a desired δ ∈ [0,∆]. This is accomplished by Algorithm 6.

The algorithm assumes that the weight w(r, u) of a minimum-weight path from r to each node u

has been pre-computed in a single top-down pass. Then, for each desired tolerance δ, the algorithm

finds δ-optimal solutions in a bottom-up pass. It accumulates for each node u a set Sufδ(u) of

suffixes that could be part of a δ-optimal solution, based on the weight of a minimum-weight r–u

path. When the algorithm reaches the root r, Sufδ(r) is precisely the set Sufδ(r) of δ-optimal

27

Algorithm 5 Sound-reduces node u with another closed node if possible

1: procedure CompressDiagram(j, u)
2: for all v ∈ Uj : v 6= u ∧ v.closed, and v ordered by nondecreasing w(r, d) do
3: LCDSj [u, v],LCDSj [v, u]←∞
4: for all α ∈ Sj do
5: if ∃au = (u, u+) : `(au) = α then
6: if ∃av = (v, v+) : `(av) = α then
7: LCDSj [u, v]← min{LCDSj [u, v], w(au) + LCDSj+1[u+, v+]}
8: LCDSj [v, u]← min{LCDSj [v, u], w(au) + LCDSj+1[v+, u+]}
9: else

10: LCDSj [u, v]← min{LCDSj [u, v], w(au) + w(u+, t)}
11: end if
12: else
13: if ∃av = (v, v+) : `(av) = α then
14: LCDSj [v, u]← min{LCDSj [v, u], w(av) + w(v+, t)}
15: end if
16: end if
17: end for
18: if w(r, v) ≤ w(r, u) then
19: if w(r, u) + min{LCDSj [u, v],LCDSj [v, u]} > z∗ + ∆ then
20: SoundReduce(j, u, v) . First procedure below
21: break
22: end if
23: else if w(r, v) + min{LCDSj [u, v],LCDSj [v, u]} > z∗ + ∆ then
24: SoundReduce(j, v, u) . First procedure below
25: break
26: end if
27: end for
28: end procedure

Subroutine: Sound-reduces node u into node v at level j

29: procedure SoundReduce(j, u, v)
30: for all a = (q, u) ∈ A do
31: a← (q, v) . Redirects arcs to v
32: end for
33: v.lhs← ∅ . Removes v’s state
34: RemoveIfDisconnected(j, u) . Next procedure below
35: end procedure

Subroutine: Removes node u ∈ Uj and subsequent disconnected nodes in D

36: procedure RemoveIfDisconnected(j, u)
37: if @a = (v, u) ∈ A then
38: Uj ← Uj \ {u}
39: for all a = (u, v) ∈ A do
40: A← A \ {a}
41: RemoveIfDisconnected(j + 1, v)
42: end for
43: end if
44: end procedure

solutions, because at this point the exact cost of solutions is known.

The worst-case complexity of the algorithm is proportional to the number of solutions D rep-

resents, including spurious solutions. However, many spurious solutions are screened out as the

algorithm works its way up, particularly because a solution with cost greater than z∗ + δ (where

28

Algorithm 6 Retrieves δ-optimal solutions from a sound diagram for δ ∈ [0,∆]

1: function RetrieveSolutions(δ)
2: Sufδ(t) = {null} . Sufδ(u) = set of possible δ-suffixes of u
3: w(null) = 0 . null is the zero-length suffix.
4: for j = n→ 1 do . Retrieve δ-optimal solutions in bottom-up pass.
5: for all u ∈ Uj do
6: Sufδ(u) = ∅
7: for all a = (u, v) ∈ Aj do
8: for all s ∈ Sufδ(v) do . Examine suffixes of v.
9: if w(r, u) + w(a) + w(s) ≤ z∗ + δ then . Possible new δ-suffix of u?

10: Sufδ(u)← Sufδ(u) ∪ {`(a)||s} . Append `(a) to suffix s.
11: w(`(a)||s) = w(`(a)) + w(s) . Compute weight of new suffix.
12: end if
13: end for
14: end for
15: end for
16: end for
17: return Sufδ(r) . Returns set of δ-optimal solutions.
18: end function

possibly δ � ∆) can be discarded. Retrieval can therefore be quite fast for small δ.

The same algorithm can answer a number of postoptimality questions. For example, one might

ask which solutions are δ-optimal when certain variables are fixed to certain values—or, more

generally, when the domains Sj of certain variables are replaced by proper subsets S′j of those

domains. This is easily addressed by removing, for each S′j , all arcs leaving layer j with labels that do

not belong to S′j . Algorithm 6 is then applied to the smaller diagram that results, after recomputing

weights w(r, u). Since the use of smaller domains does not add any ∆-optimal solutions, no δ-

optimal solutions are missed. Methods for efficient updating of shortest paths are discussed in

Miller-Hooks and Yang [2005].

One might also ask which solutions are δ-optimal when the objective function coefficients are

altered, say to c′. Since changing the cost coefficients can introduce ∆-optimal solutions, the sound

diagram may fail to represent some solutions that are ∆-optimal for the altered costs. However, we

can identify all solutions that remain δ-optimal after the cost change for δ ≤ ∆−
n∑
j=1

|c′j − cj | since

all of those were originally ∆-optimal. This is accomplished simply by modifying the arc weights

to reflect the new costs and running Algorithm 6, again with recomputed weights w(r, u).

Several additional types of postoptimality analysis can be performed, all with the advantage

that spurious solutions have no effect on the computations. These types of analysis can therefore

be conducted very rapidly.

For example, we can determine the values that a given variable can take such that the resulting

minimum cost is within δ of the optimum. We refer to this as the δ-optimal domain of the variable.

For each variable xj , we need only scan the arcs leaving layer j and observe which ones pass test

(1.2) when ∆ is replaced with δ. This is done in Algorithm 7, which computes δ-optimal domains

29

Algorithm 7 Computes δ-optimal domains for all variables, where δ ∈ [0,∆]

1: procedure ComputeNearOptimalDomains(δ)
2: for j = 1→ n do
3: Xj ← ∅ . Xj is the subset of Sj in δ-optimal solutions.
4: for all a = (u, v) ∈ Aj : `(a) /∈ Xj do . Loops on arcs of missing values
5: if w(r, u) + w(a) + w(v, t) ≤ x∗ + δ then
6: Xj ← Xj ∪ {`(a)} . Found a δ-optimal solution where xj = `(a)
7: end if
8: end for
9: end for

10: end procedure

for all variables. In particular, the solution value of xj is invariant across all δ-optimal solutions if

its δ-optimal domain is a singleton. The algorithm assumes that shortest path lengths w(r, u) and

w(u, t) have been pre-computed for each node u. Its complexity is dominated by the complexity

O(nW 2) of computing the shortest path lengths. The algorithm can also be run after the domains

of certain variables are replaced with proper subsets of those domains, to determine the effect on

the δ-optimal domains of the other variables.

We can also perform range analysis for individual cost coefficients cj . As with the previous

analysis, the presence of spurious solutions has no effect. For each variable xj , we can look for

the values of cj that would make each value in the domain of xj optimal, provided that the other

cost coefficients are unchanged. This idea is particularly simple and insightful when the domains

are binary, as described in Algorithm 8: if there are solutions in the diagram for which xj = 0

and xj = 1, there is a unique value c′j for which there are alternate optima with both values. Any

cj > c′j makes solutions where xj = 1 suboptimal, and conversely any cj < c′j makes solutions where

xj = 0 suboptimal. If applied to solutions that were originally ∆-optimal, the outcome remains

valid as long as cj does not change more than ∆.

1.10 Computational Experiments

The experiments were designed to assess the compactness of sound decision diagrams, based on

0–1 problem instances in MIPLIB. We constructed three data structures for each of 12 instances

and a range of tolerances ∆. The first structure is a branching tree T that represents all ∆-

optimal solutions. The second is the sound diagram U that is obtained from Algorithms 1–4, but

omitting the sound-reduction step in Algorithm 5. The third is the sound-reduced diagram S that

is obtained by applying Algorithms 1–5. Diagram S is therefore a smallest possible sound diagram

for the problem instance. By comparing the size U with the size of T , we can see the advantage

of representing solutions with a sound decision diagram in which equivalent states are unified. By

comparing the size of S with the size of U , we can measure the additional advantage obtained by

30

Algorithm 8 Computes the cost coefficient c′j for each variable xj on 0–1 domains that yields
optimal solutions with xj = 0 and xj = 1 among the solutions of the decision diagram, if the other
cost coefficients remain the same
1: function ComputeIndifferentCostCoefficients()
2: for j = 1→ n do
3: for α ∈ {0, 1} do
4: zα ←∞ . zα is min

∑
j′ 6=j

cj′xj′ when xj = α

5: end for
6: for all a = (u, v) ∈ Aj do
7: if w(r, u) + w(v, t) < z`(a) then

8: z`(a) ← w(r, u) + w(v, t) . Found a lower value of
∑
j′ 6=j

cj′xj′

9: end if
10: end for
11: if z0 =∞ then . There is no solution with xj = 0
12: c′j =∞
13: else if z1 =∞ then . There is no solution with xj = 1
14: c′j = −∞
15: else . There are solutions for both assignments
16: c′j = z0 − z1 . Coefficient for which z0 = z1 + c′j
17: end if
18: end for
19: return c′

20: end function

sound reduction.

We carried out the experiments for tolerances ∆ that range over a wide interval from zero to

∆max in increments of 0.1∆max. For the smaller instances, we set ∆max large enough to encompass

all feasible solutions; that is, large enough so that all feasible solutions are ∆max-optimal. These in-

stances are bm23, enigma, p0033, p0040, stein9, stein15, and stein27. Thus for these instances,

∆max is the difference in value between the best and worst solutions. For the remaining instances,

we set ∆max equal to the median absolute value of nonzero objective coefficients. This allows us

to test variations of up to 100% in objective coefficients of half of these variables. If the runtime

was less that 1000 seconds, we kept doubling ∆max until the runtime exceeded 1000 seconds, but

stopped short of a doubling that resulted in a runtime of more than 24 hours.

In all experiments, the branching priority is DFS, variables are ordered by increasing index, and

0-arcs are explored before 1-arcs. The code is written in C++ (gcc version 4.8.24), uses the COIN-

OR CLP solver1 (version 1.16.10), and ran in Ubuntu 14.04.2 LTS on a machine with Intel(R)

Xeon(R) CPU E5-2680 v3 @ 2.50GHz processors and 128 GB of RAM.

Table 1.2 displays the statistics for the maximum tolerance ∆max, including the number of

optimal and ∆max-optimal solutions, and the size and construction time for T , U , and S. The

sound-reduced diagram S is dramatically smaller than the branching tree T for all the instances

except enigma. It is also significantly smaller than the unified diagram U except in the cases of

1projects.coin-or.org/Clp

31

Table 1.2: Solution counts, with diagram sizes and construction times, for MIPLIB instances
using a maximum tolerance ∆max.

Solutions Size (nodes) Runtime (s)

Instance ∆max Opt. ∆max-opt. T U S U S

air01 3194 2 16,899 5,058,113 61,652 61,652 340 11,000
bm23∗ 59 1 2,168 23,620 20,356 5,460 31 40
enigma∗ 1 2 4 278 243 243 41 41
lseu 236.16 2 67,250 2,057,264 294,108 53,465 2,900 8,600
mod008 21 6 4,954 891,543 188,359 38,292 15,000 16,000
p0033∗ 2112 9 10,746 55,251 847 449 5.8 33
p0040∗ 7102 1 519,216 2,736,899 2,950 831 2.6 620
p0201 375 4 34,504 2,326,052 107,312 6,627 1,900 7,700
sentoy 280.8 1 85,401 1,868,562 1,754,681 101,618 3,800 12,000
stein9∗ 4 54 172 460 137 80 0.02 0.05
stein15∗ 6 315 2,809 8,721 2,158 816 0.54 1.6
stein27∗ 9 2,106 367,525 1,450,702 338,916 25,444 159 1,400

∗ The value of ∆max makes the set large enough to include all feasible solutions.

air01 and enigma, and smaller by at least an order of magnitude in three instances. On the other

hand, sound reduction added significantly more computation time to the diagram construction in

seven of the instances.

In practice, the desired tolerance ∆ is typically much less than ∆max. We therefore display in

Figs. 1.6–1.7 how the diagram sizes and computation times depend on ∆ for six of the instances.

Note that the diagram sizes and runtimes are plotted on a logarithmic scale. As predicted by

Corollary 1.4, the diagram size is monotone nondecreasing in ∆.

The sound-reduced diagram S is substantially more compact than the branching tree T in every

instance. It is also smaller than U in all instances but one, although one must normally pay a higher

computational price for this reduction. Of course, a sound-reduced diagram need only be generated

once in order to carry out a large number of postoptimality queries. The sound-reduced diagrams

for typical values of ∆ are well within a practical size range for rapid postoptimality processing,

normally a few hundred or a few thousand nodes. The computation times for constructing diagrams

of this size are likewise modest, ranging from a few seconds to a few minutes.

1.11 Conclusion

We explored sound decision diagrams as a data structure for concisely and transparently represent-

ing near-optimal solutions of integer programming problems. We showed that repeated application

of a simple sound-reduction step yields a smallest possible sound diagram for any given discrete

optimization problem. Based on this result, we stated an algorithm for constructing sound-reduced

diagrams for integer programming problems. We showed how the resulting diagrams permit several

types of postoptimality analysis, and that the presence of spurious solutions in the diagrams has

no effect on most types of analysis. Computational testing indicates that sound-reduced diagrams

32

0 10 20 30 40 50

102

103

104

Near-optimal gap ∆

N
o
d
e
s

(a1) Representation sizes for bm23

T
U
S

0 10 20 30 40 50

100

101

Near-optimal gap ∆

R
u
n
ti
m
e
(s
)

(b1) Construction time for bm23

U
S

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

102

103

104

105

106

Near-optimal gap ∆

N
o
d
e
s

(a2) Representation sizes for p0040

T
U
S

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

10−1

100

101

102

103

Near-optimal gap ∆

R
u
n
ti
m
e
(s
)

(b2) Construction time for p0040

U
S

0 2 4 6 8

104

105

106

Near-optimal gap ∆

N
o
d
e
s

(a3) Representation sizes for stein27

T
U
S

0 2 4 6 8
101

102

103

Near-optimal gap ∆

R
u
n
ti
m
e
(s
)

(b3) Construction time for stein27

U
S

Figure 1.6: Diagram size and computation time vs. ∆ for three smaller instances.

generally offer dramatic reductions in the space required to represent near-optimal solutions, rela-

tive to that required by a branching tree. For the MIPLIB instances tested, the resulting diagrams

are well within a size range that permits rapid postoptimality processing.

This study is inspired by the idea that solution of an optimization problem should be viewed

more broadly than merely generating one or more optimal solutions. Rather, it should be seen as

transforming an opaque data structure that defines the problem but does not reveal its solutions,

to a transparent data structure that provides ready access to optimal and suboptimal solutions of

33

0 500 1,000 1,500 2,000 2,500 3,000

103

104

105

106

107

Near-optimal gap ∆

N
o
d
e
s

(a1) Representation sizes for air01

T
U
S

0 500 1,000 1,500 2,000 2,500 3,000

101

102

103

104

Near-optimal gap ∆

R
u
n
ti
m
e
(s
)

(b1) Construction time for air01

U
S

0 50 100 150 200

102

103

104

105

106

Near-optimal gap ∆

N
o
d
e
s

(a2) Representation sizes for lseu

T
U
S

0 50 100 150 200

102

103

104

Near-optimal gap ∆

R
u
n
ti
m
e
(s
)

(b2) Construction time for lseu

U
S

0 5 10 15 20

103

104

105

106

Near-optimal gap ∆

N
o
d
e
s

(a3) Representation sizes for mod008

T
U
S

0 5 10 15 20

102

103

104

Near-optimal gap ∆

R
u
n
ti
m
e
(s
)

(b3) Construction time for mod008

U
S

Figure 1.7: Diagram size and computation time vs. ∆ for three larger instances.

interest. We attempted to lay a foundation for this type of solution for integer programming, but

an obvious research direction is to extend the method to mixed integer programming. Decision

diagrams can continue to play a role, because paths in a diagram can represent values for the

integer variables in the problem.

34

Chapter 2

Reverse Polar Normalization of

Lift-and-Project Cuts

This chapter is based on the manuscript “Reformulating the Disjunctive Cut Generating Linear

Program” [Serra, 2018], which was presented at the MIP workshop in 2016 and at the Interactive

Presentation Award at the INFORMS 2016 Annual Meeting.

2.1 Introduction

Many optimization problems can be formulated as a Mixed Integer Linear Program (MILP) of the

form min{cTx : Ax ≥ b, x ∈ {0, 1}p × Rn−p+ }. Some are found more frequently and have been

studied in more detail, such as the classic traveling salesman problem, for which families of valid

inequalities are known [Applegate et al., 2006]. One can tackle an MILP problem by solving its

Linear Program (LP) relaxation min{cTx : Ax ≥ b, x ∈ Rn+} and then iteratively branch to restrict

the domains of integer variables or add inequalities of the form αTx ≥ β to separate solutions in

which those variables are fractional. These inequalities are denoted as cuts with respect to the

fractional solutions that they separate, and in many cases the cuts from different methods are

equivalent.

In general, there is a greater and justified interest for facet-defining cuts, which are those

essential to characterize a full-dimensional convex hull of feasible solutions. There is also a secondary

interest in the broader family of cuts defining supporting hyperplanes, which cannot be strengthened

by merely increasing the right-hand side β. When considering a general MILP instead of a special

case, however, it is challenging to guarantee that a cut defines even a supporting hyperplane with

respect to the convex hull of the feasible solutions. Hence, we aim for a compromise: which cuts

would define facets or supporting hyperplanes of the immediate closure? In other words, among

the many cuts that can be obtained in the first round of a method, can we select the essential ones

or else those that are not comparatively weaker?

35

We investigate this question from the perspective of lift-and-project [Balas et al., 1993], which

is a method to generate cuts by defining tighter relaxation of the MILP using a Disjunctive

Program (DP) [Balas, 1998]. Such DP usually consists of a union of disjoint polyhedra cover-

ing the feasible set of the MILP. In a typical example, if a solution x̄ of the LP is such that

0 < x̄i < 1 for some 1 ≤ i ≤ p, we can intersect the split disjunction {x : xi ≤ 0} ∪ {x :

xi ≥ 1} with the LP feasible set {x : Ax ≥ b, x ≥ 0} := {x : Ãx ≥ b̃} to define a sys-

tem on the inequalities that are valid for each term and thus for the disjunctive hull PK =

conv
(
{x ∈ Rn : Ãx ≥ b̃,−xi ≥ 0} ∪ {x ∈ Rn : Ãx ≥ b̃, xi ≥ 1}

)
. In fact, we can define a restricted

system without loss of non-dominated inequalities as follows:

α −uT Ã +u0ek = 0

α −vT Ã −v0ek = 0

β −uT b̃ = 0

β −vT b̃ −v0 = 0

u, v, u0, v0 ≥ 0

(C)k

Among these inequalities, we obtain one that separates x̄ by solving a Cut Generating Linear

Program (CGLP) [Balas et al., 1993, 1996] such as

min αT x̄− β
s.t. (C)k

uT e+ vT e+ u0 + v0 = 1

(CGLP)k

These formulations have invariably aimed at maximizing the cut violation for x̄, i.e., making

αT x̄ − β as negative as possible. However, cuts from (CGLP)k optima may neither define a facet

nor a supporting hyperplane of the immediate closure [Fischetti et al., 2011]. This paradox is

due to how cuts are ranked by the CGLP, which relates to how these formulations restrict the

algebraic representation of the valid inequalities. Since (λα)Tx ≥ (λβ) is the same cut for any

λ > 0, one has to further limit the feasible set defined by the cone (C)k to guarantee the existence

of an optimal solution. This is usually done by adding a so-called normalization constraint, such

as uT e + vT e + u0 + v0 = 1. These constraints are as important to the CGLP outcome as the

objective function: each normalization defines a different infeasibility certificate for x̄ from solving

the CGLP dual [Ceria and Soares, 1997], which in turn validates cuts from CGLP optima. Aiming

for cuts with better guarantees, our goal is to understand which normalization to use and, more

broadly, how to define the CGLP.

The name for these constraints comes from early approaches fixing the norm of cut coefficients

through linear constraints, including ‖α‖` = 1 for ` ∈ {1,∞} and β = κ for κ ∈ {−1, 0,+1}.
Fixing an `-norm of α implies that cuts from CGLP maximize the distance to x̄ in that norm.

While ` ∈ {1,∞} can be defined with multiple constraints, Cadoux [2010] explored a nonlinear

36

formulation to maximize Euclidean distance. However, cuts maximizing distance are not necessarily

facet-defining. More generally, since facet-defining cuts correspond to extreme rays of (C)k, it is

preferable to apply a normalization consisting of a single linear constraint that intersects all rays to

ensure that facet-defining cuts correspond to extreme points of the CGLP. In the case of fixing β,

we are partitioning the cuts into three CGLPs and some of those might remain unbounded. Hence,

more recent approaches have focused on constraining the Farkas multipliers instead. Fischetti et al.

[2011] shows that the so-called Standard Normalization Constraint (SNC) uT e+ vT e+ u0 + v0 = 1

tends to generate sparser and lower-rank cuts, but also that the solutions depend on the scaling of

the constraints and they might not define supporting hyperplanes. Variants and a generalization

of SNC are discussed by Fischetti et al. [2011] and Balas and Bonami [2009], respectively. Notably,

is has been shown that the so-called trivial normalization u0 + v0 = 1 yields the Gomory fractional

cut when x̄ is a basic solution of the LP (for example, in Fischetti et al. [2011]).

Finally, we note that explicitly solving a CGLP is considered prohibitive in practice because

the CGLP is at least twice as large as the LP. For a system such as (C)k, there are two rows for

each column of the LP and two columns for each row. However, it is possible to find cuts from

CGLP optima through formulations with same size as the LP. In the case of split disjunctions,

Balas and Perregaard [2003] have shown that there is a correspondence between cuts from CGLP

optima and Gomory fractional cuts from basic solutions of the LP, which may or may not be

feasible. Hence, one may pivot among LP basic solutions to find a cut deemed as optimal by

the CGLP formulation [Balas and Perregaard, 2003, Balas and Bonami, 2009]. In the case of

the trivial normalization on 2-term disjunctions, Bonami [2012] has shown how to project out the

Farkas multipliers and obtain a dual problem known as the Membership Linear Program (MLP),

which only differs from the LP by the objective and right-hand side.

2.1.1 Contribution

We propose a CGLP reformulation that we name the Reverse Polar CGLP (RP-CGLP), which

switches the roles played by the objective function and the normalization constraint. Cuts are

normalized by fixing their violation with respect to x̄ and the objective function evaluates the cut

at a point p ∈ PK. To the best of our knowledge, this is the first CGLP formulation that uses a

different objective, which can be leveraged to generate diverse cuts.

More interestingly, cuts derived from optimal solutions of RP-CGLP define supporting hyper-

planes of the immediate closure. When the disjunctive hull PK is full-dimensional, there is always

a facet-defining cut from some RP-CGLP optimum. In fact, cutting planes from RP-CGLP optima

are those exposed when a ray from x̄ toward p first intersects PK. If the point at which that ray

first intersects PK is at the interior of a facet, then that facet is the unique cutting plane from

RP-CGLP optima. More generally, each cutting plane from RP-CGLP optima is a combination of

facets separating and active at x̄.

37

We note that related work by Balas and Perregaard [2002], Cadoux and Lemaréchal [2013],

and Conforti and Wolsey [2016] can be framed as proposing CGLP variants yielding the same

cuts. Compared to those, the main advantage of ours is that the feasible set of RP-CGLP does

not depend on p, which facilitates generating multiple cuts by just reoptimizing the CGLP with a

new objective function. This equivalence is shown by unveiling the true objective function of these

CGLPs after normalization. To the best of our knowledge, a precise and meaningful objective

function has only been previously reported for CGLPs fixing a norm of α.

Finally, we show that the solution of RP-CGLP can be mimicked over the tableau of the LP

relaxation, hence requiring little adaptation to be incorporated in solvers generating lift-and-project

cuts that way. We report computational results on the implementation.

2.1.2 Organization

First, we present the RP-CGLP and its properties in Section 2.2, and prove its equivalence to other

recently proposed CGLP formulations in Section 2.3. In the sequence, we present results to solve

the RP-CGLP using the LP tableau in Section 2.4, we show experiments comparing RP-CGLP to

a conventional CGLP in Section 2.5. We draw some conclusions in Section 2.6.

2.2 The Reverse Polar Reformulation

We propose the Reverse Polar Cut Generating Linear Program (RP-CGLP) to generate a cut

αTx ≥ β separating x̄ with the orientation of some point p ∈ PK:

min αT p− β
s.t. (C)k

β − αT x̄ = 1

(RP-CGLP)pk

Similarly to other CGLP formulations, (RP-CGLP)pk contains a single normalization constraint,

β − αT x̄ = 1, which fixes the violation conventionally maximized by a CGLP. Moreover, the

interplay between objective and normalization changes. While most normalizations bound the

feasible set to guarantee that there is an optimum, we discuss in the next paragraph that the

feasible set remains unbounded, whereas the normalization prevents the root (α, β, u, v, u0, v0) = 0

of (C)k from being optimal. That is due to αT p ≥ β for any valid inequality, which implies that

the objective is always nonnegative while αT0− 0 = 0. Finally, the separability of x̄ is guaranteed

by CGLP feasibility instead of optimality.

By reformulating the MILP on coordinates centered at x̄, say x′ = x − x̄, the corresponding

RP-CGLP defines a cut of the form α′Tx′ ≥ β′, where α′ = α and β′ = 1. Hence, valid cuts can be

characterized by their left-hand sides, which define a subset of the reverse polar set
(
PK−x̄

)−
:={

y : yT (x− x̄) ≥ 1 ∀x ∈ PK
}

. For any p ∈ PK, (RP-CGLP)pk yields a cut αTx ≥ β for some

38

y ∈
(
PK−x̄

)−
, where α = y and β = 1 + yT x̄. More broadly, cone (C)k along with normalization

β − αT x̄ = 1 defines an extended formulation of the reverse polar set.

When convenient to elucidate proofs, cuts from (RP-CGLP)pk will be denoted in the form

yT (x − x̄) ≥ 1. Whenever we refer to a cut from (RP-CGLP)pk or from any other formulation, we

assume that these cuts come from optimal solutions of that CGLP.

Lemma 2.1. Cuts from (RP-CGLP)pk define supporting hyperplanes of PK.

Proof. Let us suppose, for contradiction, that there is a cut from (RP-CGLP)pk where that does not

hold. Since the distance from x̄ to αT x̄ = β is given by dist(αTx = β, x̄) =
|αT x̄− β|
‖α‖ with respect

to any norm, the norm of parallel cutting planes get smaller as they move away from x̄. Hence, if

we put that cut in the form ȳT (x − x̄) ≥ 1, then ∃ε ∈ (0, 1) for which εȳT (x − x̄) ≥ 1 is valid for

PK. However, the former cut would not be optimal since the objective function value of the latter

is smaller: ȳT (p− x̄)− 1 > εȳT (p− x̄)− 1.

From this point on, let us assume that PK is full-dimensional and then characterize which of

its facets intersect at cutting planes from (RP-CGLP)pk optima. Let F =
{

(γi)T (x− x̄) ≥ δi
}
i∈F

be the set of facet-defining inequalities of PK, with F finite for A, b rational. Without loss of

generality, we partition F = F+ ∪ F 0 ∪ F−, where δi = 1 if i ∈ F+, δi = 0 if i ∈ F 0, and δi = −1

if i ∈ F− . Hence, a face-defining cut ȳT (x − x̄) ≥ 1 such as an (RP-CGLP)pk optimum can be

described by some nonnegative combination of multipliers {λ̄i}i∈F in which ȳ =
∑
i∈F

λ̄iγ
i, λ̄ ≥ 0,

and
∑
i∈F+

λ̄i −
∑
i∈F−

λ̄i = 1 since
∑
i∈F

λ̄iδi = 1.

Now we can characterize the cuts from (RP-CGLP)pk through a result that resembles comple-

mentary slackness for the facets not separating x̄:

Theorem 2.2. For a cut ȳT (x − x̄) ≥ 1 derived from (RP-CGLP)pk for p ∈ PK, any combination

λ̄ is such that λ̄i = 0 or (γi)T (p− x̄)− δi = 0 ∀i ∈ F 0 ∪ F−.

Proof. Suppose not for a cut of the form ȳT (x − x̄) ≥ 1 with a combination λ̄. Let G0 := {i ∈
F 0 : λ̄i > 0 and (γi)T (p − x̄) > 0} and G− := {i ∈ F− : λ̄i > 0 and (γi)T (p − x̄) + 1 > 0}, where

G0 ∪ G− 6= ∅. If G0 6= ∅, then starting with λ′ ← λ̄ and setting λ′i ← 0 ∀i ∈ G0 would yield a

valid cut with objective value smaller by
∑
i∈G0

λ̄i[(γ
i)T (p − x̄)] > 0. If G− 6= ∅, we similarly could

start with λ′ ← λ̄, set λ′i ← 0 ∀i ∈ G− and accordingly set λ′j ← λ̄j/

1 +
∑
i∈G−

λ̄i

 ∀j ∈ F+ to

keep
∑
i∈F+

λ′i −
∑
i∈F−

λ′i = 1. That reduces the CGLP objective by
∑
i∈G−

λ̄i[(γ
i)T (p− x̄) + 1] > 0 and∑

j∈F+

(λ̄j − λ̄′j)[(γj)T (p − x̄) − 1] ≥ 0, respectively. Hence, ȳT (x − x̄) ≥ 1 would not come from an

(RP-CGLP)pk optimum, a contradiction.

39

Corollary 2.3. For a cut ȳT (x− x̄) ≥ 1 with combination λ̄ derived from (RP-CGLP)pk for p ∈ PK,

we have ȳT (p− x̄) = (γi)T (p− x̄) ∀i ∈ F+ : λ̄i > 0.

Proof. From Theorem 2.2, we have ȳT (p− x̄) =
∑
i∈F+

λ̄i[(γ
i)T (p− x̄)]. Furthermore, either ȳT (p−

x̄)− 1 = 0 or
∑
i∈F+

λ̄i = 1, since otherwise
∑
i∈F−

λ̄i > 0 and we could find a cut with better objective

with multipliers λ′ by starting with λ′ ← λ̄, setting λ′i ← 0 ∀i ∈ F−, and then scaling down with

λ′j ← λ̄j/

1 +
∑
i∈F−

λ̄i

 ∀j ∈ F+. Thus, if ȳT (p − x̄) > (γi)T (p − x̄) for some i ∈ F+ : λ̄i > 0,

then ∃j ∈ F+ : λ̄j > 0 such that ȳT (p − x̄) < (γj)T (p − x̄) and vice-versa. If that was possible,

however, then there would be a cut with strictly better objective by increasing λ̄i while decreasing

λ̄j accordingly.

Corollary 2.4. For p ∈ int(PK), a cut from (RP-CGLP)pk is a combination λ̄ of facets separating

x̄ that each correspond to some (RP-CGLP)pk optimum.

Proof. If p is not on any facet, Theorem 2.2 implies that λ̄i = 0 ∀i ∈ F 0∪F−, and by Corollary 2.3

the cut from each facet i with λ̄i > 0 defines an (RP-CGLP)pk optimum.

Thus, cuts from (RP-CGLP)pk are a combination of (i) inequalities of F that are active at p,

and (ii) inequalities of F that separate x̄. The only set with non-zero objective value is the latter,

which comprises inequalities indexed by F+ with same evaluation for p if normalized by the same

right-hand side, hence each associated with some (RP-CGLP)pk optimum. We are now left with one

question – what makes the cuts defining each of such facets optimal?

Lemma 2.5. A cut αTx ≥ β from (RP-CGLP)pk with objective value ζ is active at the point

p′ := x̄+ 1
ζ+1(p− x̄), which lies on the ray from x̄ to p.

Proof. It suffices to check that αT p′−β = 0: αT
(
x̄+ 1

ζ+1(p− x̄)
)
−β = (αT x̄−β)+

(
1
ζ+1(αT p− αT x̄)

)
=

−1 +
(

1
ζ+1(αT p− (β − 1))

)
= −1 +

(
1
ζ+1(ζ + 1)

)
= 0.

Theorem 2.6. A cut from (RP-CGLP)pk is active at the first intersection of PK with the ray from

x̄ to p, which corresponds to point p′ from Lemma 2.5.

Proof. A cut αTx ≥ β from (RP-CGLP)pk is such that αT x̄ − β = −1 and αT p − β ≥ 0, hence

defining a monotonically increasing function for the slack along the ray. Since that slack is negative

for any point before p′, those are all separated by the cut and p′ is the first intersection of the ray

with PK.

In other words, cutting planes from (RP-CGLP)pk optima are combinations of facets of PK that

are first intersected by a ray from x̄ toward p. Note that the ray from x̄ to p may intersect other

40

facets separating x̄ prior to p′. In fact, a cutting plane from (RP-CGLP)pk only combines facets

indexed by F+ that are last intersected by the ray from x̄ to p.

We can observe that in a different way. If we replace β according to the normalization, the

objective can be restated as minαT (p− x̄)− 1. Consequently, all points defining the same ray with

x̄ as p yield the same cuts from (RP-CGLP)pk. If we choose a point p′ along that ray for which the

objective value is 0, it becomes clear that facets separating x̄ should be active at p′. If p′ is at the

interior of a facet of PK, then that facet is the unique cutting plane from (RP-CGLP)pk optima, as

implied by Corollary 2.3.

2.3 Equivalent and Related Work

For any CGLP formulation, the imposed normalization and its interplay with the objective function

may result in a different ranking of the cuts. In order to compare (RP-CGLP)pk with other recent

formulations, we need to understand how cuts are truly evaluated.

Lemma 2.7. Valid inequalities of PK that separate x̄ are compared by (RP-CGLP)pk using

min
αT p− β
β − αT x̄ (2.1)

Proof. Let us denote cuts in the form µTx ≥ ν, where ‖µ‖ = 1. Hence, for a cut of the form

αTx ≥ β, we consider a correspondence of the form (α, β) = θ(µ, ν) for some θ > 0.

Normalization β − αT x̄ = 1 implies that θ = 1
ν−µT x̄ . The objective function is restated as

minαT p− β = min θ(µT p− ν) = min µT p−ν
ν−µT x̄ . Therefore, the cuts separating x̄ obtained with (RP-

CGLP)pk are those minimizing the ratio between the slack for p and the violation for x̄. Note that

the ratio does not depend on the algebraic representation of the cut.

2.3.1 Equivalent Formulations

A similar reformulation is proposed by Balas and Perregaard [2002], as follows:

min αT x̄− β
s.t. (C)k

αT (p− x̄) = 1

(BP-CGLP)pk

Balas and Perregaard [2002] have proven that (BP-CGLP)pk has an optimum if, and only if, the line

defined by x̄ and p ever intersects PK. If so, the resulting cut defines a supporting hyperplane, which

contains the point of PK that is the closest to x̄ on the line between x̄ and p. This normalization

is used for multi-row cuts by Louveaux et al. [2015]. Formulation (BP-CGLP)pk resembles (RP-

CGLP)pk when the objective of the latter is restated as minαT (p−x̄)−1 by substituting β according

41

to the normalization, except that switching the expressions for the objective function and the

normalization constraint.

However, a key difference between (BP-CGLP)pk and (RP-CGLP)pk is that the feasible set of the

latter does not depend on p. That allows to generate different cuts by just changing the objective

function and reoptimizing, hence entailing more variability if we choose the next point in PK to

entirely change the set of CGLP optima. Thus, it generalizes the approach by Balas [1997] of using

alternate CGLP optima to generate multiple cuts.

Corollary 2.8. (BP-CGLP)pk and (RP-CGLP)pk derive the same cuts for p ∈ PK.

Proof. The normalization of (BP-CGLP)pk implies θ = 1
(µ)T (p−x̄)

, and the objective becomes minαx̄−
β = maxβ − αx̄ = max θ[ν − µT x̄] = max ν−µT x̄

µT (p−x̄)
= max ν−µT x̄

(µT p−ν)+(ν−µT x̄)
. Since (BP-CGLP)pk op-

tima yield cuts separating x̄, we can divide numerator and denominator by the violation. The

objective becomes max 1
µT p−ν
ν−µT x̄+1

, which is equivalent to min µT p−ν
ν−µT x̄ + 1, which in turn matches that

of (RP-CGLP)pk except for a constant term.

Cadoux and Lemaréchal [2013] praise the boundedness from normalizing by an interior point,

hence motivating what we denote as the Polar CGLP (P-CGLP):

min αT x̄− β
s.t. (C)k

αT p− β = 1

(P-CGLP)pk

We can similarly state (P-CGLP)pk as a CGLP for a problem on coordinates centered at p with

right-hand side of −1, hence characterizing the α-projection as a subset of the polar
(
PK−p

)◦
:=

{y : yT (x − p) ≤ 1 ∀x ∈ PK} when p is an interior point. Moreover, we can adapt the proof of

Lemma 2.1 to show that cuts from (P-CGLP)pk define supporting hyperplanes. However, while

normalization αT p − β = 1 defines a bounded feasible set if p ∈ int(PK), a valid inequality might

be active at p while separating x̄ if p ∈ bd(PK), in which case (P-CGLP)pk has no optimum. If PK

is not full-dimensional, there are no interior points.

While giving less importance to separating x̄, Cadoux and Lemaréchal [2013] nevertheless regard

that as a possible role for the objective function in the polar formulation. If separating x̄ is of central

importance, however, we show below that (RP-CGLP)pk is equivalent but more general than (P-

CGLP)pk because it works with any p ∈ bd(PK). When the happens, cuts from (P-CGLP)pk have

to be derived from rays of the unbounded problem. Cadoux and Lemaréchal [2013] also present

a concern with unbounded sets such as the reverse polar, which we address with the objective

function evaluating a point in PK.

Corollary 2.9. If (P-CGLP)pk has an optimum, then (P-CGLP)pk and (RP-CGLP)pk derive the

same cuts for p ∈ PK.

42

Proof. For (P-CGLP)pk, the normalization implies θ = 1
µT p−ν and the objective becomes minαx̄−

β = maxβ − αx̄ = max θ[ν − µT x̄] = max ν−µT x̄
µT p−ν . Hence, unless p is active at some facet-defining

inequality separating x̄, we are maximizing a well-defined ratio.

Finally, the work most closely related to ours is a parallel development by Conforti and Wolsey

[2016]. After placing a point p from the relative interior at the origin, they maximize violation

through a polar normalization with positive or zero slack. The latter is required when the disjunctive

hull is not full-dimensional, hence generalizing (P-CGLP)pk. In contrast, their work does not explore

the ratios that define how cuts are ranked.

A poster with the results proven above was presented on May 2016 at the MIP Workshop, which

was almost simultaneous with their presentation at the CORE@50 Conference.

2.3.2 Duality

The dual of a CGLP is regarded as the lift-and-project primal, where the solutions correspond to

a convex combination of points on each term of the disjunction. The effect of each normalization

constraint in the CGLP is to relax the lift-and-project in a different way to make x̄ feasible, hence

defining an infeasibility certificate. Ceria and Soares [1997] explore the interpretation of these duals

in conventional CGLP formulations.

Among the formulations that we have proven equivalent above, the dual for (BP-CGLP)pk is

particularly insightful because it yields the point alluded by Lemma 2.5 as p′ = x0 + x1:

min ω

s.t. Ãx0 −b̃y0 ≥ 0

x0
j ≥ 0

Ãx1 −b̃y1 ≥ 0

x1
j −y1 ≥ 0

y0 + y1 = 1

(x̄− p)ω +x0 + x1 = x̄

(BP-L&P)pk

2.3.3 Supporting Hyperplane Methods

There is a broader stream of literature dating back to Veinott [1967], which are often denoted as the

supporting hyperplane methods. They are used for network design by Ben-Ameur and Neto [2007]

and for mixed-integer nonlinear programs by Kronqvist et al. [2016], both considering a segment

between an interior point p and x̄ to obtain a boundary point p′ and a cutting plane active at

p′. Using a conventional CGLP, the in-out approach by Fischetti and Salvagnin [2010] separates

another exterior point within that segment. For p sufficiently close to PK, the latter approach is

intuitively equivalent to ours.

43

The target cuts by Buchheim et al. [2008] exploit a projection where it is possible to enumerate

all extreme points. Using a polar normalization and an objective maximizing violation, a linear

program prevents inequalities from separating the extreme points and yields a facet-defining cut

for the projection. This facet is active at the boundary point between p and x̄. The method is

later applied to solve robust network design [Buchheim et al., 2011] and quadratic integer program-

ming [Buchheim et al., 2010]. The same idea is used by Tjandraatmadja and van Hoeve [2016] to

generate facet-defining cuts with respect to the polytope associated with a decision diagram for a

problem relaxation.

2.4 Cut Generation from the Simplex Tableau

When the CGLP is defined on a split disjunction with a single normalization constraint, Balas

and Perregaard [2003] have shown that there is a correspondence between basic solutions of the

CGLP defining a cut and those of the LP relaxation. Those results assume the restricted set of

inequalities defined by (C)k, where there are 2n + 3 basic variables in any basic CGLP solution

defining a cut separating x̄. The basic variables consist of α, β, u0, v0, and n multipliers among

u and v. Furthermore, the basic variables among u and v correspond to linearly independent

inequalities of the LP feasible set. From each of those basic multipliers, we infer that the slack of

the corresponding inequality is non-basic at a basic LP solution where the same cut can be derived

as a Gomory cut. These slacks correspond to the variables in x for the inequalities defining bounds.

In what follows, we show how to generate cuts from (RP-CGLP)pk directly from the simplex

tableau, hence using some results and proof steps from Balas and Perregaard [2003] when appro-

priate. Let āij denote the j-th column and āi0 the right-hand side of the i-th row of the simplex

tableau for basic solution x̄. The set J = M1 ∪M2 defines the index set of nonbasic variables of

the LP for a given CGLP solution, where M1 correspond to basic multipliers among u and M2 to

basic multipliers among v. Finally, let the slacks of the linear relaxation with respect to x̄ and p

as s̄ = Ãx̄− b̃ and ¯̄s = Ãp− b̃, respectively.

Theorem 2.10. For a given basic solution of the LP relaxation, the reduced costs of non-basic

multipliers ui and vi of (RP-CGLP)pk for some row i for the corresponding given basic solution

(ᾱ, β̄, ū, v̄) are

rui = −σ

∑
j∈M2

āij s̄j − āi0(1− x̄k)

−
∑
j∈M2

āij ¯̄sj − āi0(1− pk)

 (2.2)

44

and

rvi = −σ

∑
j∈M1

āij s̄j − āi0x̄k

−
∑
j∈M1

āij ¯̄sj − āi0pk

 , (2.3)

where the objective function value of the CGLP solution corresponds to

σ = −
∑

j∈M2
ākj ¯̄sj − āk0(1− pk)∑

j∈M2
ākj s̄j − āk0(1− x̄k)

(2.4)

or

σ = −
∑

j∈M1
ākj ¯̄sj + (1− āk0)pk∑

j∈M1
ākj s̄j + (1− āk0)x̄k

(2.5)

with ākj ≤ 0 ∀j ∈M1 and ākj ≥ 0 ∀j ∈M2.

Proof. By restricting to the basic multipliers in u and v along with one non-basic multiplier for

each term, ui and vi, we have the following expressions for the cut coefficients:

α = uTM1
ÃM1 + uiÃi −u0ek = vTM2

ÃM2 + viÃi +v0ek (2.6)

β = uTM1
b̃M1 + uib̃i = vTM2

b̃M2 + vib̃i +v0 (2.7)

After substitutions using Lemma 8 from Balas and Perregaard [2003], we have

uj = −(u0 + v0)ākj + (ui − vi)āij ∀j ∈M1 (2.8)

vj = (u0 + v0)ākj − (ui − vi)āij ∀j ∈M2 (2.9)

v0 = (u0 + v0)āk0 − (ui − vi)āi0 (2.10)

Since u0, v0 > 0, we show the partitioning among M1 and M2 by setting ui, vi = 0:

uj = − (u0 + v0)ākj → ākj ≤ 0 ∀j ∈M1 (2.11)

vj = (u0 + v0)ākj → ākj ≥ 0 ∀j ∈M2 (2.12)

45

Now we compute the slack of x̄ with respect to the M2 and also M1:

αT x̄− β = vTM2
(ÃM2

x̄− b̃M2
) + vi(Ãix̄− b̃i) + v0(eTk x̄− 1)

= vTM2
s̄M2 + vis̄i + v0(x̄k − 1)

= (u0 + v0)
∑
j∈M2

ākj s̄j − (ui − vi)
∑
j∈M2

āij s̄j + vis̄i + [(u0 + v0)āk0 − (ui − vi)āi0](x̄k − 1)

= (u0 + v0)

∑
j∈M2

ākj s̄j − āk0(1− x̄k)

− (ui − vi)

∑
j∈M2

āij s̄j − āi0(1− x̄k)

+ vis̄i

(2.13)

αT x̄− β = uTM1
(ÃM1 x̄− b̃M1) + ui(Ãix̄− b̃i)− u0eTk x̄

= uTM1
s̄M1

+ uis̄i − u0x̄k
= −(u0 + v0)

∑
j∈M1

ākj s̄j + (ui − vi)
∑
j∈M1

āij s̄j + uis̄i − [(u0 + v0)(1− āk0) + (ui − vi)āi0]x̄k

= −(u0 + v0)

∑
j∈M1

ākj s̄j + (1− āk0)x̄k

+ (ui − vi)

∑
j∈M1

āij s̄j − āi0x̄k

+ uis̄i

(2.14)

We can obtain similar expressions with respect to p:

αT p− β = (u0 + v0)

∑
j∈M2

ākj ¯̄sj − āk0(1− pk)

− (ui − vi)

∑
j∈M2

āij ¯̄sj − āi0(1− pk)

+ vi ¯̄si (2.15)

αT p− β = −(u0 + v0)

∑
j∈M1

ākj ¯̄sj + (1− āk0)pk

+ (ui − vi)

∑
j∈M1

āij ¯̄sj − āi0pk

+ ui ¯̄si (2.16)

This is the point where our proof differs from Balas and Perregaard [2003]. We use our normal-

ization to determine the value of u0 + v0 and plug that in the objective function. We first use the

expressions depending on M2:

αT x̄− β = −1→ (u0 + v0) =
−1 + (ui − vi)

[∑
j∈M2

āij s̄j − āi0(1− x̄k)
]
− vis̄i∑

j∈M2
ākj s̄j − āk0(1− x̄k)

(2.17)

46

αT p− β =
−1 + (ui − vi)

[∑
j∈M2

āij s̄j − āi0(1− x̄k)
]
− vis̄i∑

j∈M2
ākj s̄j − āk0(1− x̄k)

∑
j∈M2

ākj ¯̄sj − āk0(1− pk)


−(ui − vi)

∑
j∈M2

āij ¯̄sj − āi0(1− pk)

+ vi ¯̄si (2.18)

Note that fixing ui, vi = 0 above yields the CGLP objective as in (2.4), whereas fixing only

vi = 0 and subtracting σ yields (2.2). Now we use the expressions depending on M1:

αT x̄− β = −1→ (u0 + v0) =
1 + (ui − vi)

[∑
j∈M1

āij s̄j − āi0x̄k
]

+ uis̄i[∑
j∈M1

ākj s̄j + (1− āk0)x̄k

] (2.19)

αT p− β =
−1− (ui − vi)

[∑
j∈M1

āij s̄j − āi0x̄k
]
− uis̄i[∑

j∈M1
ākj s̄j + (1− āk0)x̄k

]
∑
j∈M1

ākj ¯̄sj + (1− āk0)pk


+(ui − vi)

∑
j∈M1

āij ¯̄sj − āi0pk

+ ui ¯̄si (2.20)

Similarly, fixing ui, vi = 0 above yields the CGLP objective as in (2.5), whereas fixing ui = 0

and subtracting σ yields (2.3). Note that it would also be possible to define rvi with respect to M1

as well as rui with respected to M2, but both of these would leave the slack of a nonbasic multiplier

in the expression, which does not need to be computed otherwise.

We can observe that σ resembles (2.1). In contrast, Balas and Perregaard [2003] showed that

the tableau expression for (CGLP)k is σ′ =

∑
j∈M2

ākj s̄j − āk0(1− x̄k)
1 +

∑
j∈J |ākj |

, where the denominator

evidences the effect of coefficient scale pointed out by Fischetti et al. [2011].

Note that choosing which variable enters the CGLP basic solution corresponds to choosing

which variable leaves the LP basic solution: solving the CGLP through the LP implies dualizing

the solution method. However, LP solutions do not need to be feasible. In fact, it is very common

for a CGLP solution to be associated with an infeasible LP solution.

If we decide to put ui or vi into the CGLP basis, we need to pivot out xi from the LP basis and

replace it by some other variable xl. Consequently, we are changing the coefficients of the non-basic

variables in the line defining xk and thus the cut that we obtain.

To simplify notation, we assume xk is defined by row k, xi by row i, and sj denotes a nonbasic

variable in the LP that is a basic multiplier in the CGLP. Hence, the rows associated with xk and

47

xi in the LP relaxation can be denoted as

xk +
∑
j∈J

ākjsj =āk0 (2.21)

xi +
∑
j∈J

āijsj =āi0 (2.22)

Corollary 2.11. Given an LP basis where bx̄kc < xk < dx̄ke and variable xi leaves the basis,

pivoting a non-basic variable xl preserves bx̄kc < xk < dx̄ke if
bx̄kc − āk0

āi0
< γl <

dx̄ke − āk0

āi0
, where

γl = − ākl
āil

. If γl > 0, the corresponding improvement in the objective function of (RP-CGLP)pk is

given by

f+(γ) := −
∑

j∈J (min{0, ākj + γāij}) ¯̄sj + (1− āk0 − γāij)pk∑
j∈J (min{0, ākj + γāij}) s̄j + (1− āk0 − γāij)x̄k

− σ.

Otherwise, if γl < 0,

f−(γ) := −
∑

j∈J (max{0, ākj + γāij}) ¯̄sj − (āk0 + γāi0)(1− pk)∑
j∈J (max{0, ākj + γāij}) s̄j − (āk0 + γāi0)(1− x̄k)

− σ.

The pivot operation yields no improvement if γl = 0.

Proof. If we add row i multiplied by some γ > 0 to row k, we obtain

xk + γxi +
∑
j∈J

(ākj + γāij)sj = āk0 + γāi0

and the right-hand side remains in the range (bx̄kc, dx̄ke) if
bx̄kc − āk0

āi0
< γ <

dx̄ke − āk0

āi0
.

If xi is pivoted out and replaced by the variable in the l-th column, then setting the coefficient

of that variable to 0 in the k-th row requires γ = − ākl
āil

= γl.

The impact of such pivot on (RP-CGLP)pk depends on γl being positive or negative. If γl > 0,

column i joins M2. In such case, M1 remains a subset of the non-basic variables from the previous

basis, which corresponds to those variables with nonpositive coefficients in the k-th row. Hence,

the objective function of (RP-CGLP)pk after the pivot is given by

−
∑

j∈J (min{0, ākj + γāij}) ¯̄sj + (1− āk0 − γāij)pk∑
j∈J (min{0, ākj + γāij}) s̄j + (1− āk0 − γāij)x̄k

48

Otherwise, if γl < 0, column i joins M1 and the objective with respect to M2 becomes

−
∑

j∈J (max{0, ākj + γāij}) ¯̄sj − (āk0 + γāi0)(1− pk)∑
j∈J (max{0, ākj + γāij}) s̄j − (āk0 + γāi0)(1− x̄k)

Note that there is no change in σ if γl = 0 because the k-th row remains the same.

Finally, we observe that there are LP basic solutions corresponding to solutions with negative

objective for (RP-CGLP)pk, which are those yielding inequalities that do not separate x̄. These

solutions have no correspondence in the CGLP because they are removed by the normalization

constraint. When using the LP relaxation to generate the cut, one should not pivot to such bases.

If we keep using p ∈ PK, they are easily spotted through the objective function of the CGLP.

2.5 Computational Experiments

This section compares the cuts generated by solving (CGLP)k and (RP-CGLP)pk through the

tableau of the linear relaxation. We use the implementation for (CGLP)k described in [Balas

and Bonami, 2009] and adapt it to also generate cuts using (RP-CGLP)pk with two different meth-

ods to generate the point p. In the first, we take a linear combination of points maximizing the

minimum slack on each term of the disjunction, using a point along any unbonded direction in the

case that all slacks can be made arbitarily large. In the second, we restrict the objective to the

slacks of constraints containing xk and normalize them by the coefficient of xk in the constraint.

In the experiments, we solve the linear relaxation of instances from the MIPLIB benchmarks1

and then generate a lift-and-project cut for each fractional variable xk using either (CGLP)k or

(RP-CGLP)pk, which is then strengthened, up to a limit of 300 distinct cuts. We circumvent most

of the numerical issues that arise when the objective function gets too close to zero by reverting to

the conventional formulation in those cases. As we generate the cuts for each instance using each

formulation, we measure the total gap closed when adding all the cuts generated and resolving the

linear relaxation, the average Euclidean distance of each cutting plane to x̄, the number of cuts

discarded by the generator. The gap closed here refers to the optimal value of the linear relaxation

after adding the cuts in comparison with the optimal value of the linear relaxation with no cuts

and the known optimal value of each instance. Finally, we try solving the problem on CPLEX with

the cuts from each method added and automatic cut generation disabled and a time limit of one

hour, from which we report either the solving time or else the remaining gap after one hour.

All code is written in C++ (gcc version 4.8.24) and ran in Ubuntu 14.04.2 LTS on a machine

with an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz processor and 128 GB of RAM.

Table 2.1 summarizes the results, where conventional refers to using (CGLP)k, reformulation

1 to using (RP-CGLP)pk with the first method to generate p, and reformulation 2 to using (RP-

1miplib.zib.de

49

CGLP)pk with the second method. On the one hand, we note that the gap closed and the average

Euclidean distance of the cuts with the reformulation are often smaller. The reformulation with

the first method closes a larger gap in 26 instances and a smaller one in 36 instances, while with

the second it closes a larger gap in 26 instances and a smaller one in 45. With respect to the

average Eucliean distance, the first method leads to better results in 38 instances against 51, and

the second is better in 29 instances against 65. In addition, more cuts are discarded for the sake of

numerical safety: from 258 with the convetional formulation, we observe a total of 292 with the first

method and 320 with the second method. On the other hand, we note a different outcome when

comparing the performance of the formulation with the cuts on CPLEX: while the first method

performs better in 45 cases against 61, the second performs better in 64 cases against 42.

2.6 Conclusion

This chapter introduced the Reverse Polar Cut Generating Linear Program (RP-CGLP), which is

parameterized by a point x̄ that we want to separate and a point p that we cannot. We have shown

that these lift-and-project cuts define supporting hyperplanes of the immediate closure. When that

closure if full-dimensional, the cutting plane is a combination of facets that are active at the point

that a ray from x̄ to p first intersects the closure, with each facet separating x̄ also corresponding

to an optimal solution to RP-CGLP. Finally, we proved that RP-CGLP is equivalent to some other

CGLPs and presented some computational results from a tableau implementation.

While we switch the roles of normalization and objective in comparison to other CGLP formu-

lations, we nevertheless observe that a distortion in how the cuts are compared with respect to the

objective is unavoidable. We fix violation to guarantee separability and then choose to minimize

the slack for p to ensure boundedness. That intuitively favors cuts that are farther away from x̄

and closer to p. In fact, we show that RP-CGLP actually minimizes the ratio between slack for p

and violation for x̄ across all valid cuts, consequently proving the equivalence between RP-CGLP

and other recent CGLP formulations. Previously, the CGLPs for which an explicit representation

of the objective was known were those fixing a norm of α. Moreover, in comparison to the equiva-

lent CGLP formulations that have been recently proposed, RP-CGLP has the benefit of preserving

the feasible set for different choices of p, whereas changing p affects the left-hand side of those

formulations. Hence, RP-CGLP may facilitate generating multiple cuts because we only need to

reoptimize after changing p. In addition, we could possibly use sensitivity analysis on the objective

of RP-CGLP to look for points in the disjunctive hull yielding a disjoint set of cuts. However,

finding a good choice for such point p is a topic that deserves further attention.

The experimental results have shown that there is some potential for RP-CGLP, but also room

for improvement. The total gap closed and the average distance of the cutting planes is smaller

when p is generated with either method proposed. This is intuitive given that these cutting planes

are only a combination of facets separating x̄ along the ray towards p instead of a valid inequality

50

T
a
b

le
2.

1:
C

om
p

ar
is

on
of

to
ta

l
g
a
p

cl
os

ed
(%

),
av

er
ag

e
E

u
cl

id
ea

n
d

is
ta

n
ce

of
th

e
cu

ts
,

n
u

m
b

er
of

d
is

ca
rd

ed
cu

ts
,

an
d

ru
n
ti

m
e

in
se

co
n

d
s

to
so

lv
e

th
e

p
ro

b
le

m
af

te
r

ad
d

in
g

th
e

ge
n

er
at

ed
cu

ts
.

C
o
n
v
en

ti
o
n
a
l

R
ef

o
rm

u
la

ti
o
n

1
R

ef
o
rm

u
la

ti
o
n

2

In
st

a
n
ce

G
a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X
G

a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X
G

a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X

1
0
te

a
m

s
5
7
.1

%
0
.0

2
1

0
4
0
.1

s
5
7
.1

%
0
.0

2
1

0
5
8
.1

s
5
7
.1

%
0
.0

2
1

0
7
1
.1

s
a
1
c1

s1
2
2
.1

%
0
.9

1
1

1
3
0
.1

%
1
9
.1

%
0
.8

5
1

7
3
1
.1

%
1
9
.1

%
0
.8

5
1

7
3
1
.1

%
a
fl
ow

3
0
a

2
0
.1

%
0
.0

6
1

0
4
8
.1

s
2
0
.1

%
0
.0

6
1

0
4
2
.1

s
1
8
.1

%
0
.0

4
1

0
3
0
.1

s
a
fl
ow

4
0
b

1
2
.1

%
0
.0

2
1

0
1
8
2
1
.1

s
1
2
.1

%
0
.0

2
1

0
1
6
8
7
.1

s
1
1
.1

%
0
.0

2
1

0
8
7
2
.1

s
a
ir

0
1

1
0
0
.1

%
0
.0

3
1

0
0
.1

s
1
0
0
.1

%
0
.0

3
1

0
0
.1

s
1
0
0
.1

%
0
.0

3
1

0
0
.1

s
a
ir

0
2

7
5
.1

%
0
.0

1
1

0
3
.1

s
7
5
.1

%
0
.0

1
1

0
0
.1

s
7
5
.1

%
0
.0

1
1

0
1
.1

s
a
ir

0
3

1
0
0
.1

%
0
.0

1
1

0
2
.1

s
1
0
0
.1

%
0
.0

1
1

0
3
.1

s
1
0
0
.1

%
0
.0

1
1

0
2
.1

s
a
ir

0
4

1
1
.1

%
0
.0

0
1

2
6

3
2
8
.1

s
1
2
.1

%
0
.0

0
1

2
6

4
7
0
.1

s
1
2
.1

%
0
.0

0
1

2
6

2
1
2
.1

s
a
ir

0
5

5
.1

%
0
.0

0
1

0
8
4
.1

s
5
.1

%
0
.0

0
1

0
6
0
.1

s
5
.1

%
0
.0

0
1

0
2
6
.1

s
a
ir

0
6

4
4
.1

%
0
.0

0
1

0
2
5
.1

s
4
5
.1

%
0
.0

0
1

0
4
8
.1

s
4
5
.1

%
0
.0

0
1

0
3
9
.1

s
a
rk

i0
0
1

2
8
.1

%
0
.1

7
1

7
3
2
.1

s
2
8
.1

%
0
.1

7
1

7
4
9
.1

s
2
9
.1

%
0
.1

6
1

1
8

5
1
.1

s
a
tl

a
n
ta

-i
p

1
.1

%
0
.0

2
1

1
4

3
4
0
1
.1

s
1
.1

%
0
.0

2
1

1
2

1
.1

%
1
.1

%
0
.0

2
1

2
1

3
.1

%
b

el
l3

a
5
2
.1

%
0
.5

4
1

0
3
.1

s
5
2
.1

%
0
.5

8
1

1
1
0
.1

s
5
1
.1

%
0
.5

3
1

0
7
.1

s
b

el
l3

b
4
7
.1

%
0
.5

4
1

0
8
.1

s
4
7
.1

%
0
.5

5
1

0
2
.1

s
4
7
.1

%
0
.5

5
1

0
1
.1

s
b

el
l4

2
9
.1

%
0
.5

6
1

0
6
.1

s
2
9
.1

%
0
.5

6
1

0
7
.1

s
2
9
.1

%
0
.5

6
1

0
2
.1

s
b

el
l5

8
5
.1

%
0
.4

8
1

2
2
4
.1

s
8
5
.1

%
0
.4

8
1

2
1
8
.1

s
8
5
.1

%
0
.4

8
1

1
1
9
.1

s
b
le

n
d
2

1
6
.1

%
0
.1

1
1

0
1
6
.1

s
1
6
.1

%
0
.1

1
1

0
1
3
.1

s
1
6
.1

%
0
.1

1
1

0
3
7
.1

s
b
m

2
3

1
7
.1

%
0
.1

2
1

0
1
3
.1

s
1
3
.1

%
0
.1

3
1

0
9
.1

s
8
.1

%
0
.0

6
1

0
4
.1

s
ca

p
6
0
0
0

3
2
.1

%
0
.0

1
1

0
1
1
0
.1

s
3
7
.1

%
0
.0

1
1

0
5
3
.1

s
4
2
.1

%
0
.0

1
1

0
5
9
.1

s
cr

a
cp

b
1

0
.1

%
0
.0

5
1

0
1
.1

s
0
.1

%
0
.0

2
1

0
1
.1

s
0
.1

%
0
.0

2
1

0
0
.1

s
d
a
n
o
in

t
2
.1

%
0
.1

1
1

2
6

6
8
1
.1

s
2
.1

%
0
.0

7
1

2
9

5
9
8
.1

s
2
.1

%
0
.0

1
1

3
1

5
5
9
.1

s
d
cm

u
lt

i
3
8
.1

%
1
.5

2
1

1
0

1
1
.1

s
3
8
.1

%
1
.2

4
1

1
0

1
2
.1

s
3
8
.1

%
1
.2

2
1

1
0

9
.1

s
d
s

1
.1

%
0
.0

0
1

1
7
4
.1

%
1
.1

%
0
.0

0
1

1
7
6
.1

%
1
.1

%
0
.0

0
1

1
7
7
.1

%
d
sb

m
ip

0
.1

%
0
.4

7
1

1
2

6
.1

s
0
.1

%
0
.4

8
1

1
2

8
.1

s
0
.1

%
0
.5

0
1

1
5

1
.1

s
eg

o
u
t

5
5
.1

%
0
.8

8
1

0
1
2
.1

s
5
5
.1

%
0
.9

0
1

0
1
0
.1

s
5
5
.1

%
0
.9

0
1

0
5
.1

s
fa

st
0
5
0
7

2
.1

%
0
.0

0
1

0
1
6
4
0
.1

s
3
.1

%
0
.0

0
1

0
6
8
2
.1

s
1
.1

%
0
.0

0
1

0
5
9
9
.1

s
fa

st
0
5
0
7

2
.1

%
0
.0

0
1

0
4
7
9
.1

s
1
.1

%
0
.0

0
1

0
8
9
6
.1

s
3
.1

%
0
.0

0
1

0
7
3
6
.1

s
fi
b

er
3
9
.1

%
0
.0

5
1

0
4
8
.1

s
3
9
.1

%
0
.0

5
1

0
4
9
.1

s
3
8
.1

%
0
.0

5
1

0
2
4
.1

s
fi
x
n
et

3
7
5
.1

%
0
.7

3
1

0
2
5
.1

s
7
4
.1

%
0
.7

3
1

0
2
7
.1

s
7
4
.1

%
0
.7

3
1

0
1
9
.1

s
fi
x
n
et

4
2
8
.1

%
0
.7

3
1

0
2
1
.1

s
2
6
.1

%
0
.7

3
1

0
2
5
.1

s
2
6
.1

%
0
.7

3
1

0
1
1
.1

s
fi
x
n
et

6
1
1
.1

%
0
.7

3
1

0
2
7
.1

s
1
1
.1

%
0
.7

3
1

0
4
7
.1

s
1
1
.1

%
0
.7

3
1

0
3
4
.1

s
fl
u
g
p
l

1
1
.1

%
0
.3

5
1

2
5
.1

s
1
1
.1

%
0
.3

5
1

2
6
.1

s
1
1
.1

%
0
.3

5
1

2
6
.1

s
g
en

6
9
.1

%
0
.0

5
1

0
5
.1

s
6
9
.1

%
0
.0

5
1

0
1
2
.1

s
6
9
.1

%
0
.0

5
1

0
1
0
.1

s
g
es

a
2

2
8
.1

%
0
.1

6
1

4
5
6
.1

s
2
5
.1

%
0
.2

2
1

2
0

4
5
.1

s
2
5
.1

%
0
.2

2
1

2
0

9
9
.1

s
g
es

a
2

o
3
0
.1

%
0
.2

1
1

0
4
0
.1

s
3
0
.1

%
0
.2

0
1

0
5
0
.1

s
3
0
.1

%
0
.2

0
1

0
2
9
.1

s
g
es

a
3

6
1
.1

%
0
.0

9
1

2
1

4
.1

s
2
8
.1

%
0
.0

8
1

2
8

1
3
.1

s
2
8
.1

%
0
.0

8
1

3
0

1
7
.1

s

51

C
on

ti
n
u

at
io

n
of

T
ab

le
2.

1

C
o
n
v
en

ti
o
n
a
l

R
ef

o
rm

u
la

ti
o
n

1
R

ef
o
rm

u
la

ti
o
n

2

In
st

a
n
ce

G
a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X
G

a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X
G

a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X

g
es

a
3

o
7
3
.1

%
0
.1

3
1

4
9
.1

s
5
2
.1

%
0
.1

2
1

4
3
.1

s
5
2
.1

%
0
.1

2
1

5
6
.1

s
g
la

ss
4

0
.1

%
0
.9

6
1

0
1
2
4
.1

s
0
.1

%
0
.9

6
1

0
1
3
0
.1

s
0
.1

%
0
.9

6
1

0
1
0
2
.1

s
g
t2

9
2
.1

%
0
.5

8
1

0
1
4
.1

s
9
2
.1

%
0
.5

8
1

0
1
3
.1

s
9
2
.1

%
0
.5

8
1

0
7
.1

s
h
a
rp

2
2
6
.1

%
0
.0

3
1

0
1
2
9
.1

s
2
3
.1

%
0
.0

2
1

0
1
5
8
.1

s
2
3
.1

%
0
.0

2
1

0
1
0
6
.1

s
k
h
b
0
5
2
5
0

7
5
.1

%
0
.6

4
1

0
2
6
.1

s
7
5
.1

%
0
.6

4
1

0
2
3
.1

s
7
5
.1

%
0
.6

4
1

0
1
9
.1

s
l1

5
2
la

v
3
.1

%
0
.0

1
1

0
2
8
.1

s
5
.1

%
0
.0

1
1

0
7
.1

s
3
.1

%
0
.0

1
1

0
2
7
.1

s
lp

4
l

5
1
.1

%
0
.0

2
1

0
7
.1

s
8
8
.1

%
0
.0

2
1

0
0
.1

s
9
4
.1

%
0
.0

2
1

0
0
.1

s
ls

eu
5
6
.1

%
0
.1

1
1

0
8
.1

s
5
6
.1

%
0
.0

7
1

0
1
6
.1

s
5
6
.1

%
0
.0

9
1

0
7
.1

s
m

a
n
n
a
8
1

1
0
0
.1

%
0
.2

9
1

0
0
.1

s
1
0
0
.1

%
0
.2

9
1

0
0
.1

s
1
0
0
.1

%
0
.2

9
1

0
0
.1

s
m

a
rk

sh
a
re

1
0
.1

%
0
.0

3
1

0
1
0
0
.1

%
0
.1

%
0
.0

3
1

0
1
0
0
.1

%
0
.1

%
0
.0

3
1

0
1
0
0
.1

%
m

a
rk

sh
a
re

2
0
.1

%
0
.0

3
1

0
1
0
0
.1

%
0
.1

%
0
.0

3
1

0
1
0
0
.1

%
0
.1

%
0
.0

3
1

0
1
0
0
.1

%
m

a
s7

4
7
.1

%
0
.0

1
1

0
5
7
3
.1

s
6
.1

%
0
.0

1
1

0
6
8
6
.1

s
5
.1

%
0
.0

1
1

0
5
1
6
.1

s
m

a
s7

6
6
.1

%
0
.0

1
1

0
4
3
.1

s
4
.1

%
0
.0

2
1

0
8
3
.1

s
5
.1

%
0
.0

1
1

0
5
3
.1

s
m

is
c0

1
3
.1

%
0
.1

4
1

0
5
.1

s
3
.1

%
0
.1

4
1

0
6
.1

s
3
.1

%
0
.1

2
1

0
3
.1

s
m

is
c0

2
5
.1

%
0
.1

4
1

0
5
.1

s
5
.1

%
0
.1

3
1

0
5
.1

s
5
.1

%
0
.1

4
1

0
1
.1

s
m

is
c0

3
9
.1

%
0
.0

7
1

0
6
.1

s
9
.1

%
0
.0

7
1

0
1
6
.1

s
9
.1

%
0
.0

6
1

0
1
0
.1

s
m

is
c0

4
1
9
.1

%
0
.1

2
1

3
4
.1

s
1
6
.1

%
0
.0

8
1

4
4
.1

s
1
6
.1

%
0
.0

8
1

4
3
.1

s
m

is
c0

5
2
4
.1

%
0
.0

9
1

0
8
.1

s
2
4
.1

%
0
.0

9
1

0
1
0
.1

s
2
4
.1

%
0
.0

9
1

0
2
.1

s
m

is
c0

6
3
0
.1

%
0
.0

3
1

3
6
.1

s
3
0
.1

%
0
.0

3
1

3
7
.1

s
3
0
.1

%
0
.0

3
1

5
1
4
.1

s
m

is
c0

7
0
.1

%
0
.0

5
1

0
1
8
.1

s
0
.1

%
0
.0

5
1

0
3
5
.1

s
0
.1

%
0
.0

4
1

0
1
7
.1

s
m

it
re

8
5
.1

%
0
.0

4
1

1
0
.1

s
8
5
.1

%
0
.0

4
1

1
0
.1

s
8
5
.1

%
0
.0

4
1

1
0
.1

s
m

k
c

1
5
.1

%
0
.0

8
1

0
0
.1

%
1
3
.1

%
0
.0

5
1

0
0
.1

%
1
1
.1

%
0
.0

5
1

0
0
.1

%
m

k
c

1
5
.1

%
0
.0

8
1

0
0
.1

%
1
3
.1

%
0
.0

6
1

0
0
.1

%
1
1
.1

%
0
.0

5
1

0
0
.1

%
m

o
d
0
0
8

2
0
.1

%
0
.0

2
1

0
3
9
.1

s
4
.1

%
0
.0

2
1

0
1
5
.1

s
4
.1

%
0
.0

2
1

0
1
2
.1

s
m

o
d
0
1
0

6
.1

%
0
.0

2
1

0
4
.1

s
7
0
.1

%
0
.0

1
1

0
0
.1

s
7
0
.1

%
0
.0

2
1

0
1
.1

s
m

o
d
0
1
1

1
9
.1

%
0
.5

9
1

0
3
1
.1

s
3
2
.1

%
0
.3

2
1

0
2
5
.1

s
3
2
.1

%
0
.3

0
1

0
3
1
.1

s
m

o
d
0
1
3

4
.1

%
0
.4

8
1

0
1
8
.1

s
4
.1

%
0
.5

0
1

0
1
7
.1

s
4
.1

%
0
.4

9
1

0
8
.1

s
m

o
d
g
lo

b
1
5
.1

%
0
.5

4
1

0
8
1
.1

s
1
7
.1

%
0
.5

6
1

0
9
5
.1

s
1
9
.1

%
0
.5

6
1

0
4
1
.1

s
m

o
m

en
tu

m
1

4
5
.1

%
0
.1

5
1

6
7

4
.1

%
4
5
.1

%
0
.1

6
1

6
7

0
.1

%
6
5
.1

%
0
.1

4
1

6
7

0
.1

%
m

o
m

en
tu

m
2

4
3
.1

%
0
.1

8
1

9
3
5
6
.1

s
4
3
.1

%
0
.1

7
1

9
6
6
8
.1

s
4
3
.1

%
0
.1

8
1

9
2
7
6
4
.1

s
m

sc
9
8
-i

p
9
.1

%
0
.0

6
1

1
1
8
1
8
.1

s
8
.1

%
0
.0

6
1

1
1
9
9
5
.1

s
1
2
.1

%
0
.0

4
1

1
9
.1

%
m

zz
v
1
1

2
9
.1

%
0
.0

3
1

1
7
4
.1

s
2
8
.1

%
0
.0

3
1

1
9
9
.1

s
3
2
.1

%
0
.0

2
1

1
1
6
0
.1

s
m

zz
v
4
2
z

2
2
.1

%
0
.0

2
1

1
4
9
.1

s
2
2
.1

%
0
.0

2
1

1
5
7
.1

s
2
1
.1

%
0
.0

2
1

1
4
0
.1

s
n
et

1
2

9
.1

%
0
.1

4
1

1
7
9
0
.1

s
9
.1

%
0
.1

4
1

1
5
8
6
.1

s
7
.1

%
0
.0

7
1

0
4
2
9
.1

s
n
o
sw

o
t

0
.1

%
0
.1

4
1

3
3
6
.1

s
0
.1

%
0
.1

4
1

3
2
6
.1

s
0
.1

%
0
.1

4
1

3
1
6
.1

s
n
sr

a
n
d
-i

p
x

3
5
.1

%
0
.0

1
1

0
2
6
6
2
.1

s
3
2
.1

%
0
.0

0
1

0
0
.1

%
2
7
.1

%
0
.0

0
1

0
0
.1

%

52

C
on

ti
n
u

at
io

n
of

T
ab

le
2.

1

C
o
n
v
en

ti
o
n
a
l

R
ef

o
rm

u
la

ti
o
n

1
R

ef
o
rm

u
la

ti
o
n

2

In
st

a
n
ce

G
a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X
G

a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X
G

a
p

A
v
g
.

d
is

t.
L

o
st

C
P

L
E

X

n
w

0
4

6
2
.1

%
0
.0

0
1

0
1
8
.1

s
6
2
.1

%
0
.0

0
1

0
1
7
.1

s
6
2
.1

%
0
.0

0
1

0
1
9
.1

s
o
p
t1

2
1
7

5
.1

%
0
.0

7
1

0
2
4
.1

%
0
.1

%
0
.0

7
1

0
2
5
.1

%
2
6
.1

%
0
.0

8
1

0
1
8
.1

%
p
0
0
3
3

5
7
.1

%
0
.3

7
1

0
4
.1

s
5
7
.1

%
0
.3

7
1

0
4
.1

s
1
3
.1

%
0
.3

4
1

0
3
.1

s
p
0
0
4
0

1
0
0
.1

%
0
.1

0
1

0
1
.1

s
1
0
0
.1

%
0
.1

0
1

0
0
.1

s
1
0
0
.1

%
0
.1

0
1

0
0
.1

s
p
0
2
0
1

4
1
.1

%
0
.0

4
1

0
4
.1

s
4
1
.1

%
0
.0

4
1

0
5
.1

s
4
1
.1

%
0
.0

4
1

0
3
.1

s
p
0
2
8
2

4
.1

%
0
.1

5
1

0
8
.1

s
4
.1

%
0
.1

5
1

0
8
.1

s
8
.1

%
0
.1

4
1

0
1
3
.1

s
p
0
2
9
1

4
1
.1

%
0
.2

4
1

0
1
1
.1

s
2
8
.1

%
0
.1

8
1

0
1
0
.1

s
6
.1

%
0
.1

6
1

0
3
.1

s
p
0
5
4
8

4
1
.1

%
0
.6

0
1

0
1
0
.1

s
4
1
.1

%
0
.6

0
1

0
1
3
.1

s
4
1
.1

%
0
.5

9
1

0
8
.1

s
p
2
7
5
6

1
.1

%
0
.4

3
1

0
6
8
.1

s
1
.1

%
0
.4

3
1

0
9
5
.1

s
1
.1

%
0
.4

3
1

0
4
1
.1

s
p
6
0
0
0

3
2
.1

%
0
.0

1
1

0
9
4
.1

s
3
7
.1

%
0
.0

1
1

0
6
0
.1

s
4
2
.1

%
0
.0

1
1

0
1
5
.1

s
p
ip

ex
2
8
.1

%
0
.1

5
1

0
9
.1

s
2
8
.1

%
0
.1

5
1

0
9
.1

s
2
8
.1

%
0
.1

5
1

0
2
.1

s
p
k
1

0
.1

%
0
.0

1
1

0
4
7
.1

s
0
.1

%
0
.0

1
1

0
6
5
.1

s
0
.1

%
0
.0

1
1

0
6
6
.1

s
p
p
0
8
a

5
1
.1

%
0
.8

1
1

0
5
5
0
.1

s
5
1
.1

%
0
.8

1
1

0
4
1
8
.1

s
4
2
.1

%
0
.8

0
1

0
1
2
7
7
.1

s
p
p
0
8
a
C

U
T

S
4
0
.1

%
0
.2

8
1

1
9
.1

s
3
0
.1

%
0
.2

7
1

2
1
3
.1

s
2
8
.1

%
0
.2

3
1

2
1
2
.1

s
p
ro

tf
o
ld

3
1
.1

%
0
.0

5
1

1
4
5
.1

%
6
.1

%
0
.0

3
1

1
3
8
.1

%
6
.1

%
0
.0

2
1

1
4
0
.1

%
q
n
et

1
2
2
.1

%
0
.0

4
1

0
1
5
.1

s
1
5
.1

%
0
.0

1
1

0
1
5
.1

s
1
3
.1

%
0
.0

2
1

0
2
0
.1

s
q
n
et

1
o

5
0
.1

%
0
.1

9
1

0
1
8
.1

s
4
6
.1

%
0
.1

4
1

0
6
.1

s
4
7
.1

%
0
.1

4
1

0
2
6
.1

s
rd

-r
p
lu

sc
-2

1
0
.1

%
0
.1

7
1

2
9

7
6
4
.1

s
0
.1

%
0
.1

5
1

3
0

9
4
4
.1

s
0
.1

%
0
.1

4
1

3
0

3
6
0
.1

s
re

n
ta

ca
r

2
4
.1

%
0
.9

7
1

6
1
5
.1

s
2
4
.1

%
0
.9

7
1

6
1
1
.1

s
2
4
.1

%
0
.9

9
1

7
1
5
.1

s
rg

n
5
.1

%
0
.0

9
1

0
7
.1

s
1
0
.1

%
0
.1

2
1

0
1
1
.1

s
1
2
.1

%
0
.1

3
1

0
6
.1

s
ro

ll
3
0
0
0

2
8
.1

%
0
.0

8
1

0
3
.1

%
2
8
.1

%
0
.0

8
1

0
2
.1

%
2
4
.1

%
0
.0

7
1

0
3
.1

%
ro

u
t

3
.1

%
0
.0

8
1

0
8
7
.1

s
3
.1

%
0
.0

7
1

0
5
3
.1

s
2
.1

%
0
.0

7
1

0
8
0
.1

s
sa

m
p
le

2
6
.1

%
0
.5

9
1

0
1
1
.1

s
6
.1

%
0
.5

9
1

0
1
0
.1

s
6
.1

%
0
.5

9
1

0
3
.1

s
se

n
to

y
1
9
.1

%
0
.0

3
1

0
5
.1

s
2
0
.1

%
0
.0

5
1

0
1
0
.1

s
1
6
.1

%
0
.0

4
1

0
5
.1

s
se

t1
ch

3
8
.1

%
0
.8

2
1

0
1
4
.1

%
3
8
.1

%
0
.8

1
1

0
1
5
.1

%
3
6
.1

%
0
.7

8
1

0
1
5
.1

%
se

y
m

o
u
r

1
3
.1

%
0
.0

7
1

1
2
.1

%
1
3
.1

%
0
.0

7
1

1
2
.1

%
1
1
.1

%
0
.0

6
1

1
2
.1

%
sp

9
7
a
r

1
6
.1

%
0
.0

0
1

0
1
.1

%
1
6
.1

%
0
.0

0
1

0
1
.1

%
1
4
.1

%
0
.0

0
1

0
1
.1

%
st

ei
n
9

0
.1

%
0
.2

1
1

0
2
.1

s
0
.1

%
0
.2

2
1

0
3
.1

s
0
.1

%
0
.1

9
1

0
1
.1

s
st

ei
n
1
5

0
.1

%
0
.2

5
1

0
2
.1

s
0
.1

%
0
.2

6
1

0
5
.1

s
0
.1

%
0
.2

5
1

0
2
.1

s
st

ei
n
2
7

0
.1

%
0
.2

4
1

0
5
.1

s
0
.1

%
0
.2

4
1

0
6
.1

s
0
.1

%
0
.2

4
1

0
1
6
.1

s
st

ei
n
4
5

0
.1

%
0
.3

0
1

0
3
3
.1

s
0
.1

%
0
.1

8
1

0
4
5
.1

s
0
.1

%
0
.2

2
1

0
4
4
.1

s
sw

a
th

2
8
.1

%
0
.0

7
1

0
1
8
.1

%
1
3
.1

%
0
.0

3
1

0
1
9
.1

%
1
3
.1

%
0
.0

4
1

0
1
8
.1

%
ti

m
ta

b
1

2
4
.1

%
0
.3

0
1

0
1
5
.1

%
2
4
.1

%
0
.3

0
1

0
1
4
.1

%
2
4
.1

%
0
.3

0
1

0
2
2
.1

%
ti

m
ta

b
2

1
8
.1

%
0
.2

3
1

0
5
1
.1

%
1
8
.1

%
0
.2

3
1

0
5
0
.1

%
1
8
.1

%
0
.2

3
1

0
5
5
.1

%
v
p
m

1
1
0
.1

%
0
.1

4
1

0
2
5
.1

s
1
0
.1

%
0
.1

3
1

0
2
5
.1

s
1
0
.1

%
0
.1

3
1

0
2
8
.1

s
v
p
m

2
1
9
.1

%
0
.0

7
1

0
1
8
.1

s
1
5
.1

%
0
.0

6
1

0
2
2
.1

s
1
4
.1

%
0
.0

5
1

0
2
7
.1

s

53

that maximizes violation for some scale of the constraints. However, one could argue that there

is a way to choose p in each case for which the same cuts from the conventional formulation are

obtained, or else strictly better ones are found in the case that they do not define supporting

hyperplanes. In addition, we also observe that more cuts are discarded with the reformulation.

Finally, there is a noticeable difference in the results according to the method used to generate p,

especially for the second experiment of testing the performance on CPLEX with those cuts and

automatic cut generation disabled. While in both cases the outcome is more favorable than that

observed with respect to the total gap or the average distance, the conventional formulation is only

beat by this second method that maximizes the scaled slacks of constraints containing the variable

defining the disjunction. A better performance in this case is also intuitive, given that the points

generated with respect to each disjunction are expected to be more distinct from one another.

Ultimately, one could argue that the reformulation shifts where the numerical issues are. While

the concept of a most violated cut depends on an adequate scale of the constraints in the conven-

tional formulation, the family of equivalent in-out formulations to which RP-CGLP belongs depends

on a careful choice of point or ray parameterizing direction of separation. Therefore, an important

milestone for these approaches is finding points in the disjunctive hull that yield strictly better cuts.

One would expect the ideal point to define a CGLP optima with unique (α, β)-projection, which in

turn derives a cut αTx ≥ β defining a facet of the disjunctive hull. When the disjunctive hull is not

full-dimensional and the point is inevitably at the boundary, further restricting the CGLP by facial

reduction [Borwein and Wolkowicz, 1981] may possibly attenuate numerical issues associated with

small perturbations. In a sense, while we are able to obtain cuts defining supporting hyperplanes,

their quality ultimately depends on how p is chosen and the space is restricted for each disjunction.

54

Chapter 3

Checking the Regularity of

Lift-and-Project Cuts

This chapter is based on the manuscript “When Lift-and-Project Cuts are Different” [Balas and

Serra, 2018], which is under preparation for submission.

3.1 Introduction

Many techniques to generate cutting planes for a Mixed-Integer Linear Program (MILP) are equiv-

alent to one another under certain conditions. Since some are more general and usually more

expensive computationally, it is important to determine if and when they generate cuts that others

cannot. In this chapter, we introduce a technique to verify if a lift-and-project cut [Balas et al.,

1993, 1996] from an arbitrary disjunction corresponds to a standard intersection cut [Balas, 1971]

and analyze computational results on several instances for insights. This study is particularly rel-

evant due to the recent research activity around cuts from multiple rows of the simplex tableau

since their introduction by Andersen et al. [2007b], which in the case of q rows are equivalent to

disjunctive cuts from a 2q-term disjunction [Balas and Qualizza, 2013]. More specifically, it helps

us find out about the convese: how often lift-and-project cuts from multi-term disjunctions cannot

be directly obtained from the simplex tableau.

We can obtain a lift-and-project cut by solving a Cut Generating Linear Program (CGLP),

which defines valid inequalities for an MILP relaxation consisting of a Disjunctive Program (DP)

[Balas, 1979, 1998]. Such DPs are often unions of disjoint polyhedra that exclude the region around

a particular solution x = x̄ of the Linear Program (LP) relaxation. The most common DPs consist

of intersecting the LP relaxation with a split disjunction of the form {x : πx ≤ π0}∪{x : πx ≥ π0+1}
when π0 < πx̄ < π0 + 1 and no MILP solution is removed by the disjunction. For that case, Balas

and Perregaard [2003] have shown that there is a correspondence between basic CGLP solutions

and intersection cuts from basic solutions of the LP relaxation, feasible or not. That entails a more

55

efficient procedure to implicitly solve CGLPs from split disjunctions by pivoting among LP bases,

which has been implemented in a number solvers including CglLandP [Balas and Bonami, 2009] in

COIN-OR [COIN].

The equivalence identified by Balas and Perregaard [2003] is particularly useful because lift-

and-project cuts from a simple split disjunction of the form {x : xk ≤ 0} ∪ {x : xk ≥ 1} map

to Gomory fractional cuts [Gomory, 1958] from the row of the tableau defining the value of xk.

Similarly, strengthening those lift-and-project cuts by changing the coefficients associated with

integer nonbasic variables [Balas and Jeroslow, 1980, Balas et al., 1993] makes them equivalent to

Gomory Mixed-Integer (GMI) cuts [Gomory, 1960] from the corresponding row of the tableau.

More recently, Balas and Kis [2016] have shown that the correspondence between lift-and-project

cuts and intersection cuts may also hold for some lift-and-project cuts from arbitrary disjunctions.

More specifically, they have proven that it holds if, and only if, there is a basic CGLP solution

associated with the cut that maps to an LP basis where it corresponds to a standard intersection

cut. These basic CGLP solutions mapping to LP bases are denoted regular. A lift-and-project cut

is then denoted regular if there exists a corresponding regular basic CGLP solution and irregular

otherwise.

The elegance and convenience of generating cuts from the simplex tableau has motivated a re-

cent stream of theoretical work on generating cuts from two rows of the simplex tableau [Andersen

et al., 2007b, Cornuéjols and Margot, 2008] and subsequently more rows [Borozan and Cornuéjols,

2009, Basu et al., 2010], on how these cuts can be strengthened when nonbasic variables are inte-

ger [Dey and Wolsey, 2010, Conforti et al., 2011a, Basu et al., 2013, Fukasawa et al., 2016], and

several other variants. The reader is referred to Conforti et al. [2011b] and Basu et al. [2015] for

a broader review of this line of work, which has been accompanied by extensive computational

experimentation [Espinoza, 2010, Basu et al., 2011, Dey et al., 2014, Louveaux et al., 2015].

However, there are other ways in which one can exploit that more than one integer variable is

fractional in x̄. For example, we can generate lift-and-project cuts using disjunctions with more than

two terms, and those may yield irregular cuts instead. A natural generalization of the commonly

used split disjunction is defined by Li and Richard [2008] as the t-branch split disjunction⋃
S⊆{1,2,...,t}

{
x : πix ≤ πi0, if i ∈ S; πix ≥ πi0 + 1, if i /∈ S

}
,

of which the cross disjunction [Dash et al., 2012] corresponds to the special case where t = 2. Dash

et al. [2014] observed that the resulting cuts close a substantially larger gap in comparison to split

cuts, thus making it important to identify when they are likely to be distinct from regular cuts.

Furthermore, Andersen et al. [2005] as well as Kis [2014] have shown examples of disjunctive cuts

that do not correspond to intersection cuts.

In this work, we focus on the equivalence with respect to lift-and-project cuts without strength-

56

ening, which is determined by solving an MILP formulation based on the CGLP. We note that

mixed-integer formulations have already been used for similar purposes, such as generating Chvátal-

Gomory cuts [Fischetti and Lodi, 2007].

In this work, we focus on the equivalence with respect to lift-and-project cuts without strength-

ening, which is determined by solving an MILP formulation based on the CGLP. Mixed-integer

formulations have already been used for similar purposes, such as generating Chvátal-Gomory

cuts [Fischetti and Lodi, 2007], and may help us understand the structure of families of instances.

This chapter presents the following contributions. First, we state a result that simplifies the

verification of regularity for basic CGLP solutions from Balas and Kis [2016] and show that it can

also be applied to CGLP solutions that are not basic in Section 3.3. Second, we introduce and

prove the validity of an MILP that checks whether there is a regular CGLP solution for a given

cut in Section 3.4. Third, we describe a numerical procedure based on such MILP that verifies if a

lift-and-project cut is regular or not in Section 3.5. Finally, we present computational results from

74 benchmark instances in Section 3.6, and we use these results to analyze what factors may lead

to a higher incidence of irregular cuts and how these cuts compare with regular ones in Section 3.7.

3.2 Preliminaries

Let us consider a mixed 0−1 linear program with rational coefficients

min
{
cx : Ax ≥ b, x ≥ 0, xj ∈ {0, 1}, j = 1, . . . , p

}
, (P)

where A is an m × n matrix. Let Ãx ≥ b̃ denote the feasible set of the LP relaxation P := {x :

Ax ≥ b, x ≥ 0, xj ≤ 1, j = 1, . . . , p} and let PI := {x : x ∈ P, xj ∈ {0, 1}, j = 1, . . . , p} denote the

feasible set of (P). Hence, Ã is a q × n matrix, where q = m+ n+ p. Let Q := {1, . . . , q}.
Furthermore, let x̄ be a basic optimal solution of the LP relaxation of (P), i.e., x̄ = arg min{cx :

Ãx ≥ b̃}. If x̄ is not feasible for (P), we can define a disjunction ∪t∈TDtx ≥ dt0 that contains the

feasible set of (P) and not x̄. For example, if there is a nonempty set K ⊆ {1, . . . , p} for which

0 < x̄k < 1 for every k ∈ K, then we can define a disjunction of the form

⋃
K′⊆K

(
xk ≥ 1, k ∈ K ′
xk ≤ 0, k ∈ K \K ′

)
, (3.1)

which we denote as a simple t-branch split disjunction1, where t = |K|. In its general form

∪t∈TDtx ≥ dt0, we can parameterize a family of polyhedra with PI -free interior S
(
{vt}t∈T

)
:= {x :

(vtDt) ≤ vtdt0}, where vt ≥ 0 and vt 6= 0, and for each such polyhedron containing x̄ as an interior

point it is possible to derive an intersection cut separating x̄.

1Unless noted otherwise, we will use t to index terms of a DP in general form instead of t-branch split disjunctions.

57

We can generate lift-and-project cuts by intersecting sets such as (3.1) with the linear relaxation

of (P). More generally, we have a DP of the form

⋃
t∈T

(
Ãx ≥ b̃
Dtx ≥ dt0

)
. (3.2)

The classic formulation for the Cut Generating Linear Program (CGLP) used to find a lift-and-

project cut from (3.2) separating x̄, which excludes some dominated inequalities, is as follows:

min αx̄− β (3.3)

α −utÃ− vtDt = 0, t ∈ T (3.4)

β −utb̃− vtdT0 = 0, t ∈ T (3.5)∑
t∈T

ute+
∑
t∈T

vte = 1 (3.6)

ut,vt ≥ 0, t ∈ T (3.7)

If we assume, without loss of generality, that the upper bounds on the binary variables are

contained in Ax ≥ b, then we extend x with surplus variables of the form xn+i =

n∑
j=1

aijxj − bi for

i = 1, . . . ,m and define the following LP cone C(J) from each basic solution x(J) of P :

xi = āi0 −
∑
j∈J

āijxj , i ∈ I (3.8)

xi ≥ 0, i ∈ J (3.9)

where I is the index set of basic variables and J of the nonbasic variables. Cone C(J) has an

extreme ray rj(J) corresponding to each nonbasic variable xj , j ∈ J , with rjj(J) = 1, rji (J) = −āij
for i ∈ I, and rji (J) = 0 for i ∈ J \ {j}. If there is a convex set S containing x(J) but no feasible

point in its interior, which we denote as PI -free, we can define the intersection cut [Balas, 1971]

∑
j∈J

1

λ∗j
xj ≥ 1 (3.10)

separating x(J) from PI , where λ∗j parameterizes the point at which each ray x(J) + λjrj(J)

intersects with the boundary of S. If some ray never intersects the boundary, then the corresponding

coefficient of the intersection cut is zero instead of λ∗j inversed.

58

3.3 Regularity of CGLP Solutions

Let w̄ =
(
ᾱ, β̄, {ūt, v̄t}t∈T

)
be a basic feasible CGLP solution. The inequality ᾱx ≥ β̄ cuts off part

of P only if v̄te > 0 for each t ∈ T , since otherwise ᾱx ≥ β̄ is implied by Ãx ≥ b̃, as shown in

Lemma 1 of Balas and Perregaard [2003].

From Theorem 10 of Balas and Kis [2016], a CGLP solution w̄ such that v̄te > 0 is regular if Ã

has an n× n nonsingular submatrix ÃJ such that ūtj = 0 for all j /∈ J, t ∈ T , in which case ᾱx ≥ β̄
is equivalent to the intersection cut from the LP cone associated with the cobasis indexed by J

and the PI -free convex set defined by {x : (v̄tDt)x ≤ v̄tdt0, t ∈ T}. More specifically, a positive

multiplier for some row of Ax ≥ b maps the corresponding surplus variable as nonbasic, a positive

multiplier for a bound xj ≥ 0 maps xj as nonbasic at the lower bound, and a positive multiplier for

the row corresponding to bound xj ≤ 1 maps xj as nonbasic at the upper bound. From Theorem

12 of Balas and Kis [2016], the sufficient condition for the regularity of w̄ given in Theorem 10 is

also necessary, i.e., if the condition is not met, then w̄ is irregular.

The next Theorem gives a simple criterion for deciding whether a basic CGLP solution w̄ is

regular or not.

Theorem 3.1. For a basic CGLP solution w̄ = (ᾱ, β̄, {ūt, v̄t}t∈T), let ÃN be the |N |×n submatrix

of Ã whose rows are indexed by N(ū) := {j ∈ Q : ūtj > 0 for some t ∈ T}. Then w̄ is a regular

solution if, and only if, ÃN is of full row rank.

Proof. Sufficiency. Assume rank(ÃN) = |N |. Then |N | ≤ n. We show that in this situation w̄ is

regular.

Case 1 : |N | = n. Then ÃN is an n × n nonsigular submatrix of Ã such that utj = 0 for all

j /∈ N and all t ∈ T , i.e., w̄ satisfies the condition of Theorem 10 of Balas and Kis [2016].

Case 2 : |N | < n. Then Ã has n − |N | rows Ãj with utj = 0 which can be added to ÃN in

order to form an n× n nonsingular matrix ÃN ′ since Ã contains In. Substituting ÃN ′ for ÃN then

reduces this case to Case 1.

Necessity. Assume rank(ÃN) < |N |. We show that in this case w̄ is irregular. In particular,

any n× n nonsingular submatrix ÃJ of Ã has among its rows at most rank(ÃN) rows of ÃN , thus

leaving |N | − rank(ÃN) rows j such that ūtj > 0 for some t ∈ T outside of ÃJ . Therefore no such

ÃJ meets the condition of Theorem 10 of Balas and Kis [2016], hence w̄ is irregular.

Corollary 3.2. If a CGLP solution w̄ = (ᾱ, β̄,
{
ūt, v̄t

}
t∈T) is not basic but satisfies the other

conditions of Theorem 3.1 for regularity, then the cut is valid for the closure of regular cuts.

Proof. If w̄ is not basic, then we can describe it as a proper convex combination of a set of basic

CGLP solutions. Let these solutions be indexed by a given set B, so that (ᾱ, β̄,
{
ūt, v̄t

}
t∈T) =∑

b∈B
λb

(
α̃b, β̃b,

{
ũt
b
, v̄t

b
}
t∈T

)
, λ > 0, and

∑
b∈B

λb = 1.

59

Note that ũt
b

j > 0 implies that ūtj > 0, and thus N(ũb) ⊆ N(ū) for all b ∈ B. Since the

submatrix of Ã on the rows of N(ū) is of full row rank, then there exists a set N such that |N | = n

and N(ū) ⊆ N for which rank(ÃN) = n, and thus N(ũb) ⊆ N for all b ∈ B. That implies that all

cuts of the form α̃bx ≥ β̃b for each b ∈ B define intersection cuts from a same basis.

Thus deciding whether a basic CGLP solution w̄ is regular or not is straightforward. However,

if w̄ is irregular, then according to Theorem 12 of Balas and Kis [2016] the cut ᾱx ≥ β̄ is irregular

only if there exists no regular basic feasible solution w̃ = (α̃, β̃, {ũt, ṽt}t∈T) of the CGLP with

(ã, b̃) = θ(ᾱ, β̄) for some θ > 0. With Corollary 3.2, any regular CGLP solution suffices to prove

that a given cut is regular. Next we examine how to use that for determining cut regularity.

3.4 Regularity of Cuts from CGLP Solutions

Given an irregular CGLP solution w̄ = (ᾱ, β̄, {ūt, v̄t}t∈T), we define a mixed-integer program based

on the CGLP to establish whether there is a regular CGLP solution w̃ = (α̃, β̃, {ũt, ṽt}t∈T) such

that (α̃, β̃) = θ(ᾱ, β̄) for some θ > 0. In comparison to the CGLP formulation, we add a variable

θ ∈ [0, 1] and restrict the value of (α, β) to θ(ᾱ, β̄). Furthermore, we remove the normalization

constraint (3.6) and introduce a binary upper bounding variable δj for each uj in order to model

the set N of indices j ∈ Q such that utj > 0 for some t ∈ T . We embed Theorem 1 by restricting

the size of such set to at most n and requiring that the submatrix ÃN to be of full row rank. We

denote the resulting formulation as the Regular Cut Verifier MILP (RCV-MILP):

max θ (3.11)

θᾱ −utÃ− vtDt = 0, t ∈ T (3.12)

θβ̄ −utb̃− vtdt0 = 0, t ∈ T (3.13)

δj −utj ≥ 0, j ∈ Q, t ∈ T (3.14)∑
j∈Q

δj ≤ n (3.15)

∑
j∈N

δj ≤ rank(ÃN), N ⊆ Q (3.16)

ut,vt ≥ 0, t ∈ T (3.17)

δj ∈ {0, 1}, j ∈ Q (3.18)

θ ∈ [0, 1] (3.19)

Some comments regarding RCV-MILP are in order. First, constraints (3.14) and (3.18) define

an implicit normalization constraint ‖u‖∞ ≤ 1, which may prevent us from finding the cut in

60

the same scale. Hence, variable θ is necessary even though normalization (3.6) is removed in

comparison to the CGLP. Second, the equivalence between a RCV-MILP solution (θ̆, δ̆, {ŭt, v̆t}t∈T)

and a regular CGLP solution denoting a cut equivalent to ᾱx ≥ β̄ is not direct. Instead of simply

stating a corresponding CGLP solution (θ̆ᾱ, θ̆β̄, {ŭt, v̆t}t∈T), we may need to first scale the RCV-

MILP solution if
∑
t∈T

ŭte+
∑
t∈T

v̆te 6= 1 in order to satisfy normalization (3.6). Such scaling is done a

number of times in the next proof. Last, the number of subsets of Q, and consequently the number

of rows due to constraint (3.16), can be very large. In Section 3.5, we address that by iteratively

adding only the relevant subsets of Q to the formulation.

The next result proves the validity of RCV-MILP. In what follows, we keep denoting the set

of rows with positive multipliers as N(ū). Furthermore, let δ(ū) be a vector in which δi = 1 if

ūti > 0 for some t ∈ T and δi = 0 otherwise.

Theorem 3.3. Let w̄ = (ᾱ, β̄, {ū,v̄t}t∈T) be a basic optimal solution of CGLP and let (θ̌, δ̌, {ǔt, v̌t}t∈T)

be an optimal solution of RCV-MILP for cut ᾱx ≥ β̄. Then the cut is regular if, and only if, θ̌ > 0.

Furthermore, if ᾱx ≥ β̄ is regular then there is a cobasis indexed by J , J ⊇ N(ū), such that the cut

is equivalent to the intersection cut from such basis and the PI-free polyhedron S(v̄).

Proof. If w̄ is a regular CGLP solution, then (1, δ(ū), {ūt, v̄t}t∈T) is an optimal solution of RCV-

MILP. First, θ = 1 implies that constraints (3.4) and (3.5) are equivalent to (3.12) and (3.13),

whereas constraints (3.7) and (3.17) are the same. Second, normalization (3.6) implies that ū ≤ 1

and thus δ(ū) satisfies constraints (3.14) and (3.18). Last, constraints (3.15) and (3.16) are satisfied

since w̄ is regular.

For the rest of the proof, we assume that the CGLP solution w̄ is irregular.

Suppose that the cut is regular, and thus there is a regular CGLP solution w̃ = (α̃, β̃, {ũt, ṽt}t∈T)

for which (ᾱ, β̄) = λ(α̃, β̃) for some λ > 0. If λ ≤ 1, then (λ, δ(ũ), {ũt, ṽt}t∈T) is feasible for RCV-

MILP and thus θ̌ ≥ λ > 0. If λ > 1, we can divide the same values by λ to obtain another feasible

CGLP solution ŵ =

(
1

λ
α̃,

1

λ
β̃,

{
1

λ
ũt,

1

λ
ṽt
}
t∈T

)
=

(
ᾱ, β̄,

{
1

λ
ũt,

1

λ
ṽt
}
t∈T

)
. The construction of a

RCV-MILP solution when λ ≤ 1 applies to ŵ, thereby implying that

(
1, δ(ũ),

{
1

λ
ũt,

1

λ
ṽt
}
t∈T

)
is

optimal for RCV-MILP and thus θ̌ = 1.

Finally, suppose that the cut is irregular, and thus there is no regular CGLP solution corre-

sponding to cut ᾱx ≥ β̄. Let us suppose, for contradiction, that there is a RCV-MILP solution

(θ̆, δ̆, {ŭt, v̆t}t∈T) with θ̆ > 0. Let σ :=
∑
t∈T

ŭte +
∑
t∈T

v̆te. Since the cut separates x̄ and θ̆ > 0,

then (ᾱ, β̄) 6= 0 and thus σ > 0. Hence, if we divide the multipliers {ŭt, v̆t}t∈T by σ, then nor-

malization (3.6) is satisfied and

(
θ̆

σ
ᾱ,
θ̆

σ
β̄,

{
1

σ
ŭt,

1

σ
v̆t
}
t∈T

)
is a feasible regular CGLP solution: a

contradiction.

61

3.5 Numerical Procedure

Next we describe a numerical procedure to identify irregular lift-and-project cuts, which addresses

two issues with using RCV-MILP directly.

First, finite numerical precision may lead to rounding errors and cause false negatives, thus

overcounting the number of irregular cuts. We address that by adding a relative tolerance parameter

ε on the coefficients of the cut. For example, if we want to determine if a cut 2x1 + 0.3x2 ≥ 10 is

regular for ε = 0.0001, then we look for valid inequalities on each term where α1 ∈ θ[1.9998, 2.0002],

α2 ∈ θ[0.29997, 0.30003], and β ∈ θ[9.999, 10.001]. Thus we avoid type II errors at the price of

tolerating type I errors. This choice is intentional, since we are mainly interested in knowing which

lift-and-project cuts are not regular. Furthermore, if ε is sufficiently small, misclassifications are

very unlikely.

Second, the number of subsets of Q can be very large and many of those subsets might be

irrelevant. We can address that by defining a set Q of subsets of Q and then adding elements to

this set as needed.

Hence, we define the Iterative RCV-MILP (IRCV-MILP):

max θ

− θε ≤ θᾱ− utÃ− vtDt ≤ θε, t ∈ T
− θε ≤ θβ̄ − utb̃− vtdt0 ≤ θε, t ∈ T
δj − utj ≥ 0, j ∈ Q, t ∈ T∑
j∈Q

δj ≤ n∑
j∈N

δj ≤ rank(ÃN), N ⊆ Q

ut, vt ≥ 0, t ∈ T
δj ∈ {0, 1}, j ∈ Q
θ ∈ [0, 1]

Algorithm 9 uses IRCV-MILP to determine if a cut is regular, subject to false positives only. It

finishes in finite time since each repetition of the loop corresponds to adding a different subset N

to Q. In the unlikely worst case, Algorithm 9 terminates when all subsets of Q have been added

to Q.

We can reduce the number of loop repetitions by preventing combinations of inequalities corre-

sponding to parallel hyperplanes across different terms of the disjunction. For example, if rows j1

and j2 correspond to xi ≥ 0 and xi ≤ 1, then we can add the following inequality to IRCV-CGLP:

62

Algorithm 9 Checks if there is a regular CGLP solution for a given cut

1: function IsCutRegular(ᾱ, β̄, {ūt, v̄t}t∈T , ε)
2: N ← N(ū)
3: if rank(ÃN) = |N | then
4: return True . Original CGLP solution is regular
5: else
6: Q ← ∅
7: loop
8: Get optimal solution (θ̌, δ̌, {ǔt, v̌t}t∈T) of IRCV-MILP
9: N ← N(ǔ)

10: if θ̄ = 0 then
11: return False . There is no regular CGLP solution
12: else if rank(ÃN) < |N | then
13: Q ← Q∪ {N} . Loop has to be repeated
14: else
15: return True . Found regular CGLP solution
16: end if
17: end loop
18: end if
19: end function

δj1 + δj2 ≤ 1 (3.20)

3.6 Computational Experiments

We have run experiments to find irregular lift-and-project cuts among the first round of cuts

generated for 74 instances from the MIPLIB 2, 3, and 2003 benchmarks [Bixby et al., 1992, 1998,

Achterberg et al., 2006]. For each of those instances, we found an optimal solution x̄ of the LP

relaxation and generated a cut using the CGLP from each disjunction of the form (3.1) with

|K| = 2 for all instances as well as |K| = 3 and |K| = 4 for smaller ones. Since the verification can

be computationally expensive, the experiments were restricted to instances with at most 10,000

nonzeroes and each verification was interrupted if inconclusive after a predefined number of steps

or time, which are both detailed later. All code is written in C++ (gcc 4.8.2) and ran in Ubuntu

14.04.1 LTS on a machine with 48 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz processors and 32

GB of RAM. No more than two copies were run in parallel and each was restricted to 10 GB of

RAM. The formulations were solved with CPLEX version 12.6.3 and matrix ranks were computed

with Eigen2. Finally, we have run Algorithm 9 to determine if the cut is irregular with ε = 0.0001

and constraints of the form (3.20) for the bounds of each variable xi, i = 1, . . . , p.

The most extensive experiments were run on 45 instances, where we counted the number of

times that the loop of Algorithm 9 is repeated and set a time limit of 1 hour to interrupt the

verification for each cut. We have chosen the subset of instances with at most 2,000 nonzeroes, 150

2Available at http://eigen.tuxfamily.org

63

Figure 3.1: Incidence of cuts assessed by Algorithm 9 by the order of repetitions of the loop upon
termination.

0 1 4 64 1024
0

1,000

2,000

3,000

4,000

5,000

Loop repetitions

C
u
ts

w
it
h
|K
|=

2 Regular Irregular

0 1 4 64 1024
0

2,000

4,000

6,000

8,000

Loop repetitions

C
u
ts

w
it
h
|K
|=

3 Regular Irregular

0 1 4 64 1024
0

2,000

4,000

6,000

8,000

Loop repetitions

C
u
ts

w
it
h
|K
|=

4 Regular Irregular

integer variables, or 50 rows; and we have also included larger instances from families of instances

that nearly made the cut, namely p0291, misc03, misc07, and pp08a. For instances with at most

20 fractional values in x̄ for integer variables, we generated and tested cuts with |K| = 2 to |K| = 4.

For instances with at most 30 fractional values, we generated and tested cuts with |K| = 2 and

|K| = 3. For other instances with at most 50 fractional values and pp08a, we only generated and

tested cuts with |K| = 2. Some instances were discarded or only the results for less disjunctions

were reported in cases where too many verifications timed out or the program run out of resources.

The results for 36 instances having cuts with |K| = 2 and |K| = 3 are found in Table 3.1.

Additional results for the 22 instances having cuts with |K| = 4 are found in Table 3.2. We also

compare the incidence of irregular CGLP solutions and cuts with |K| = 2 to |K| = 4 for those

22 instances in Table 3.3. The results for the remaining 9 instances having cuts with |K| = 2 are

found in Table 3.4. Since the number of cuts for each instance varies, we summarize a per-instance

average of the percentages for each metric, which weights the results of each instance for equal

contribution.

Figure 3.1 shows the number of cuts identified as regular and irregular by Algorithm 9 according

to the order of magnitude of repetitions of the loop upon termination. Figure 3.2 compares the

regularity of cuts from each K of size 3 and 4 with that of cuts from subsets of K of size 2 among the

97% of the cases where no cut for a subset timed out. Figure 3.3 compares the average gap closed

and the average Euclidean distance of the cuts generated with respect to the fractional solution x̄

on all disjunction sizes where both types of cuts are observed on each of the 45 instances.

For the remaining 29 instances reported in Table 3.5, we repeat the loop in Algorithm 9 once.

This set includes some instances previously excluded.

64

T
ab

le
3
.1

:
R

es
u

lt
s

fo
r

in
st

a
n

ce
s

w
h

er
e

li
ft

-a
n

d
-p

ro
je

ct
cu

ts
w

it
h
|K
|=

2
an

d
|K
|=

3
ar

e
ge

n
er

at
ed

te
st

ed
.

F
or

ea
ch

in
st

an
ce

an
d

si
ze

of
K

,
w

e
re

p
o
rt

th
e

re
gu

la
ri

ty
o
f

th
e

C
G

L
P

so
lu

ti
on

an
d

th
e

re
gu

la
ri

ty
of

th
e

cu
t

b
y

ru
n

n
in

g
A

lg
or

it
h

m
9

w
it

h
ti

m
e

li
m

it
of

on
e

h
ou

r.

L
if

t-
a
n
d
-p

ro
je

ct
cu

ts
w

it
h
|K
|=

2
L

if
t-

a
n
d
-p

ro
je

ct
cu

ts
w

it
h
|K
|=

3

F
ra

c.
C

G
L

P
b
a
si

s
C

u
t

C
G

L
P

b
a
si

s
C

u
t

In
st

.
V

a
rs

.
R

eg
u
la

r
Ir

re
g
u
la

r
R

eg
u
la

r
Ir

re
g
u
la

r
U

n
k
n
ow

n
R

eg
u
la

r
Ir

re
g
u
la

r
R

eg
u
la

r
Ir

re
g
u
la

r
U

n
k
n
ow

n

a
ir

0
1

5
4

6
4

6
0

1
9

1
5

4
b

el
l5

2
5

2
4
0

6
0

2
8
0

9
1
1

1
7
8
7

5
1
3

2
0
9
0

6
3

1
4
7

b
le

n
d
2

6
4

1
1

9
5

1
8

1
2

1
5

4
1

b
m

2
3

6
0

1
5

0
1
5

0
0

2
0

0
2
0

0
en

ig
m

a
8

4
2
4

2
5

0
3

4
5
2

4
5

0
1
1

fl
u
g
p
l

1
0

1
6

2
9

1
6

2
9

0
3
3

8
7

3
5

8
5

0
g
t2

1
1

5
5

0
5
5

0
0

1
5
3

1
2

1
6
4

0
1

k
h
b
0
5
2
5
0

1
9

1
0

1
6
1

1
1

1
6
0

0
0

9
6
9

6
9
5
7

6
ls

eu
1
1

4
3

1
2

5
1

4
0

9
2

7
3

1
5
0

1
5

0
m

a
rk

sh
a
re

1
6

0
1
5

0
1
5

0
0

2
0

0
2
0

0
m

a
rk

sh
a
re

2
7

1
0

1
1

1
0

1
1

0
9

2
6

1
0

2
5

0
m

a
s7

4
1
2

6
5

1
6
6

0
0

2
0
3

1
7

2
2
0

0
0

m
a
s7

6
1
1

5
5

0
5
5

0
0

1
6
5

0
1
6
5

0
0

m
is

c0
1

1
2

6
4

2
6
4

0
2

1
6
6

5
4

1
7
5

1
3

3
2

m
is

c0
2

8
2
6

2
2
6

2
0

3
2

2
4

3
2

1
4

1
0

m
is

c0
3

1
4

8
7

4
8
7

1
3

3
3
4

3
0

3
3
4

0
3
0

m
is

c0
5

1
1

1
7

3
8

2
1

2
2

1
2

1
8

1
4
7

2
7

6
4

7
4

m
is

c0
7

1
6

1
1
5

5
1
1
5

0
5

5
0
2

5
8

5
0
2

0
5
8

m
o
d
0
0
8

5
0

1
0

4
6

0
0

1
0

3
7

0
m

o
d
0
1
3

5
4

6
6

4
0

2
8

6
3

1
m

o
d
g
lo

b
3
0

2
4
3
3

3
2

4
0
3

0
0

4
0
6
0

7
5

3
9
8
3

2
p
0
0
3
3

6
1
3

2
1
5

0
0

1
9

1
2
0

0
0

p
0
0
4
0

4
5

1
6

0
0

3
1

4
0

0
p
0
2
0
1

2
0

1
8
9

1
1
9
0

0
0

1
1
2
4

1
6

1
1
4
0

0
0

p
0
2
8
2

2
6

2
4
1

8
4

2
5
5

4
8

2
2

1
5
8
5

1
0
1
5

1
7
0
3

4
7
1

4
2
6

p
0
2
9
1

1
0

3
0

1
5

3
4

7
4

7
0

5
0

7
6

2
6

1
8

p
ip

ex
6

3
1
2

8
7

0
0

2
0

8
7

5
p
k
1

1
5

1
1
0
4

9
9
6

0
0

4
5
5

4
4
5
1

0
rg

n
1
4

4
0

5
1

6
5

2
5

1
7
6

2
8
8

1
9
0

1
5
2

2
2

sa
m

p
le

2
1
2

1
8

4
8

2
1

4
4

1
2
8

1
9
2

3
1

1
7
5

1
4

se
n
to

y
8

1
2
7

1
1

1
7

0
0

5
6

2
8

2
8

0
st

ei
n
9

6
9

6
1
3

2
0

2
1
8

1
2

8
0

st
ei

n
1
5

1
2

9
5
7

1
3

5
3

0
0

2
2
0

0
2
2
0

0
st

ei
n
2
7

2
1

4
2

1
6
8

4
5

1
6
4

1
8

1
3
2
2

1
4

1
3
1
6

0
v
p
m

1
1
5

1
0
0

5
1
0
2

3
0

4
4
1

1
4

4
5
0

5
0

v
p
m

2
3
0

3
1
4

1
2
1

3
9
0

3
8

7
2
6
3
2

1
4
2
8

3
4
4
1

4
6
1

1
5
8

In
st

.
av

er
a
g
e

5
1
.3

%
4
8
.7

%
6
2
.9

%
3
5
.0

%
2
.0

%
4
0
.8

%
5
9
.2

%
5
4
.5

%
3
8
.5

%
7
.0

%

65

Table 3.2: Additional results for instances where lift-and-project cuts with |K|=4 are also
generated and tested.

Lift-and-project cuts with |K| = 4

Frac. CGLP basis Cut

Inst. Vars. Regular Irregular Regular Irregular Unknown

blend2 6 4 11 6 9 0
bm23 6 0 15 0 15 0

enigma 8 4 66 68 1 1
flugpl 10 52 158 71 139 0
gt2 11 179 151 238 1 91

markshare1 6 0 15 0 15 0
markshare2 7 1 34 1 34 0

misc03 14 850 151 856 0 145
mod008 5 0 5 1 4 0
mod013 5 2 3 3 2 0
p0033 6 15 0 15 0 0
p0040 4 0 1 1 0 0
p0201 20 4191 654 4753 0 92
p0291 10 106 104 109 34 67
pipex 6 0 15 3 5 7
pk1 15 0 1365 0 1365 0
rgn 14 74 927 317 539 145

sample2 12 17 478 21 430 44
sentoy 8 0 70 31 39 0
stein9 6 0 15 12 3 0
stein15 12 0 495 0 495 0
vpm1 15 1339 26 1347 17 1

Inst. average 26.6% 73.4% 47.3% 46% 6.7%

Figure 3.2: Incidence of regular and irregular cuts from disjunctions with |K| = 3 and |K| = 4
according to the incidence of irregular cuts across all disjunctions from 2-subsets of K, i.e., all K’

⊂ K such that |K’|=2.

0 1 2 3
100

101

102

103

104

Irregular cuts from 2-subsets of K

C
u
ts

w
it
h
|K
|=

3 Regular Irregular

0 1 2 3 4 5 6
100

101

102

103

104

Irregular cuts from 2-subsets of K

C
u
ts

w
it
h
|K
|=

4 Regular Irregular

66

Table 3.3: Frequency of irregular bases and cuts with |K| = 2, 3, and 4.

|K| = 2 |K| = 3 |K| = 4

Inst. Basis Cut Basis Cut Basis Cut

blend2 73.3% 33.3% 60% 20% 73.3% 60%
bm23 100% 100% 100% 100% 100% 100%

enigma 85.7% 0% 92.9% 0% 94.3% 1.4%
flugpl 64.4% 64.4% 72.5% 70.8% 75.2% 66.2%
gt2 0% 0% 7.3% 0% 45.8% 0.3%

markshare1 100% 100% 100% 100% 100% 100%
markshare2 52.4% 52.4% 74.3% 71.4% 97.1% 97.1%

misc03 4.4% 1.1% 8.2% 0% 15.1% 0%
mod008 100% 60% 100% 70% 100% 80%
mod013 60% 40% 80% 30% 60% 40%
p0033 13.3% 0% 5% 0% 0% 0%
p0040 16.7% 0% 25% 0% 100% 0%
p0201 0.5% 0% 1.4% 0% 13.5% 0%
p0291 33.3% 15.6% 41.7% 21.7% 49.5% 16.2%
pipex 80% 46.7% 100% 35% 100% 33.3%
pk1 99% 91.4% 100% 99.1% 100% 100%
rgn 56% 27.5% 79.1% 41.8% 92.6% 53.8%

sample2 72.7% 66.7% 87.3% 79.5% 96.6% 86.9%
sentoy 96.4% 60.7% 100% 50% 100% 55.7%
stein9 40% 13.3% 90% 40% 100% 20%
stein15 86.4% 80.3% 100% 100% 100% 100%
vpm1 4.8% 2.9% 3.1% 1.1% 1.9% 1.2%

Inst. average 56.3% 38.9% 64.9% 42.3% 73.4% 46%

Table 3.4: Results for instances where only lift-and-project cuts with |K| = 2 are generated and
tested.

Lift-and-project cuts with |K| = 2

Frac. CGLP basis Cut

Inst. Vars. Regular Irregular Regular Irregular Unknown

bell3a 32 404 92 458 12 26
bell3b 36 442 188 568 33 29
bell4 46 887 148 966 18 51

dcmulti 49 503 673 526 631 19
egout 40 16 764 435 320 25

noswot 22 189 42 199 0 32
p0548 48 313 815 648 138 342
pp08a 53 35 1343 35 1343 0

pp08aCUTS 46 430 605 636 295 104

Inst. average 48.4% 51.6% 64.9% 26.9% 8.2%

67

Table 3.5: Remaining results for larger instances where lift-and-project cuts with |K| = 2 are
generated and tested, but the loop of Algorithm 9 is only repeated once.

Lift-and-project cuts with |K| = 2

CGLP basis Cut

Inst. Vars. Regular Irregular Regular Irregular Unknown

aflow30a 31 155 310 157 296 12
aflow40b 38 347 356 349 240 114
cracpb1 40 389 391 408 259 113
dsbmip 48 464 664 871 36 221

fiber 42 687 174 713 42 106
fixnet3 69 198 2148 228 0 2118
fixnet4 67 180 2031 196 0 2015
fixnet6 60 139 1631 153 0 1617

gen 41 505 315 511 58 251
gesa2 58 704 949 749 7 897

gesa2 o 73 1356 1272 1383 763 482
gesa3 85 1785 1785 1820 589 1161

gesa3 o 100 2175 2775 2266 1555 1129
glass4 72 2556 0 2556 0 0
harp2 30 435 0 435 0 0
l152lav 51 254 1021 292 904 79

lp4l 23 50 203 73 121 59
opt1217 27 74 277 88 106 157
p2756 77 1521 1405 2190 282 454

qiu 36 474 156 474 16 140
qnet1 47 578 503 645 12 424

qnet1 o 11 20 35 32 0 23
rout 35 304 291 308 220 67

set1al 218 239 23414 276 20940 2437
set1ch 138 122 9331 150 8786 517
set1cl 220 180 23910 225 21393 2472

timtab1 134 2829 6082 2942 5935 34
timtab2 236 8929 18801 9172 18027 531
tr12-30 348 47 60331 605 59046 727

Inst. average 38.7% 61.3% 43.0% 31.8% 25.2%

Figure 3.3: Comparison of regular vs. irregular cuts on instances and sizes of K where both types
are found: the average gap closed is larger in 22 cases for irregular cuts vs. 24 cases for regular
cuts; and the average Euclidean distance of the cut is larger in 37 cases for irregular cuts vs. 34

for regular cuts.

0.1% 1% 10% 100%

0.1%

1%

10%

100%

Regular cuts

Ir
re
gu

la
r
cu
ts

Average gap closed

|K| = 2
|K| = 3
|K| = 4

10−2 10−1 100 101

10−2

10−1

100

101

Regular cuts

Ir
re
gu

la
r
cu
ts

Average Euclidean distance

|K| = 2
|K| = 3
|K| = 4

68

3.7 Discussion

The experiments above evidence some trends on irregular CGLP bases and cuts, from which we

can draw five observations about their incidence.

First, there is a substantial difference between the number of irregular CGLP bases and that

of irregular cuts. In all tables, the per-instance averages differ in at least 10% with respect to

the total number of cuts. Therefore, an irregular CGLP basis often does not guarantee that the

corresponding cut is irregular.

Second, most regular and irregular cuts can nevertheless be identified with the first test applied

on them. Such paradox is in part explained by the fact that irregular cuts are less frequent than

regular cuts in our experiments. Figure 3.1 shows that most regular cuts are identified immediately

because they come from regular CGLP solutions, whereas most irregular cuts are identified in the

first repetition of the loop of Algorithm 9. The same is true for the larger problems reported in

Table 3.5: with a few exceptions, the majority of the cuts is identified as regular or irregular even

though the loop is never repeated. In other words, restricting the number of nonzero multipliers of

the linear relaxation to n across all terms of the CGLP formulation is an effective way of determining

if a cut is irregular. Conversely, most irregular cuts are those that can only be derived by using

more than n rows of the linear relaxation. Hence, the linear dependence among such rows is a

secondary factor for cut irregularity in practice.

Third, simple t-branch split disjunctions with more terms yield more irregular cuts and even

more irregular CGLP bases. We can observe that first from the difference in per-instance averages

of the corresponding columns for |K| = 2 and |K| = 3 in Table 3.1 and from |K| = 2 to |K| = 4

in Table 3.3. In addition, the frequency of irregular CGLP bases and cuts for each instance often

increases with the size of K, the former more than the latter. For the 36 instances reported in

Table 3.1, the frequency of irregular CGLP bases for |K| = 3 is higher in 29 instances and lower

in 3 when compared to the case of |K| = 2, whereas the frequency of irregular cuts is higher in 17

and lower in 9. For the 22 instances reported in Table 3.3, there are proportionally more irregular

CGLP bases for |K| = 4 in 15 instances and less in 2 instances when compared to |K| = 2, while

the ratio of irregular cuts is higher in 12 instances and lower in 4 instances. Hence, a disjunction

with more terms seems more likely to yield lift-and-project cuts that are not regular.

Fourth, some disjunctions are more likely to yield irregular cuts than others. For simple t-branch

split disjunctions, we observe in Figure 3.2 that an irregular cut is often obtained from a disjuction

where K augments the set K ′ of indices of a disjunction with less terms, for which an irregular cut

is obtained. For example, a disjunction on variables xA, xB, and xC yields an irregular cut with

increasing probability as more irregular cuts are obtained among disjuctions on xA and xB, xA and

xC , and xB and xC . The probability of an irregular cut is already close to 50% from |K ′| = 2 to

|K| = 3 and |K| = 4 if one disjunction yields an irregular cut. A simpler hypothesis that could

be ventured is that the presence of certain variables in the disjunction make it more likely to yield

69

irregular cuts, although it is yet to be determined what makes disjunctions on particular variables

more prone to yield irregular cuts. Nevertheless, our results indicate that one could use information

about cuts from disjunctions where |K| = 2 to augment and combine those sets of indices yielding

irregular cuts in the hope of obtaining irregular cuts on disjunctions with more terms.

Finally, the frequency of irregular cuts depends on the structure of the problem, it can be

higher in larger instances but lower when more inequalities are added. This comes from observing

the results for the many families of instances in the experiments. For families with similar size,

we observe that some have little irregularity in the results (mas74 and mas76, all misc instances

except misc05, bell instances, and fixnet instances), some have a moderate level (markshare1

and markshare2, mod008 and mod013, and aflow30a and aflow40b), and some are highly irregular

(set1 instances and timtab instances). Notably, instances in the latter sets are often larger. We

also observe instances yielding more irregular cuts according to their size for p instances, stein9 to

stein27, and vpm1 and vpm2. Curiously, however, we observe a reduction in the number of irregular

cuts when additional valid inequalities are added to some problems. There are pairs of problems

that only differ in that, for example from pp08a to pp08aCUTS, from gesa2 o to gesa2, and from

gesa3 o to gesa3. In all thoses cases, the number of irregular cuts reduced. One exception is from

qnet1 o to qnet1, but in this case the number of fractional variables is substantially smaller and

that may have affected the results. We could hypothesize that these additional constraints extend

the reach of regular cuts, hence making irregular cuts less relevant than before. Overall, these

results indicate that cuts from disjunctions with more terms would yield more irregular cuts at the

root node and that they are more likely to do so in larger problems.

On the other hand, there is no clear picture about the impact of regular vs. irregular cuts.

When comparing the average gap closed or the average Euclidean distance to the fractional solution

separated, there are about the same number of cases favoring either type of cut. From Figure 3.3,

we can nevertheless note that the results for the average Euclidean distance fluctuate at a much

smaller scale around the identity line, possibly indicating that outliers to either side could be a

starting point to refine the analysis in future work.

3.8 Conclusion

We have used a mixed-integer formulation to determine the equivalence between lift-and-project

cuts from arbitrary disjunctions and intersection cuts. This method is conveniently used to evaluate

the extent to which t-branch split cuts differ from multi-row cuts, two types of cuts that have been

intensely studied for the past decade. When there is no equivalence, the cut is said to be irregular

and can only be obtained from irregular CGLP solutions. On the one hand, we have found that the

incidence of irregular cuts varies across different families of instances and that many irregular CGLP

solutions nevertheless correspond to regular cuts. On the other hand, the incidence of irregular

cuts often increases as the problems get larger, the linear relaxation is weaker, and the disjunction

70

has more terms. Furthermore, we have observed that 3-branch and 4-branch split disjunctions yield

irregular cuts more often when they augment multiple 2-branch split disjunctions that also yield

irregular cuts, a result that could be used to judiciously choose disjunctions with more terms from

which to generate additional irregular cuts.

71

Chapter 4

The Integrated Last-Mile

Transportation Problem

This chapter is based on the paper “The Integrated Last-Mile Transportation Problem (ILMTP)” [Raghu-

nathan et al., 2018], which is in the proceedings of the upcoming ICAPS 2018 conference.

4.1 Introduction

Last-mile transportation (LMT) is defined as the service that delivers people from the hub of a mass

transportation (MT) service to each passenger’s final destination. The MT service can be one of

air, boat, bus, or train. The LMT service can be facilitated by bike [Liu et al., 2012], car [Shaheen,

2004, Thien, 2013], autonomous pods [Shen et al., 2017], or personal rapid transit systems. Though

the term LMT has also been used for the movement of goods in supply chains, home-delivery

systems, and telecommunications, we will restrict our attention in this chapter exclusively to the

transportation of people. A LMT service expands the access of MT to an area wider than that

defined as “walking distance” of a transportation hub. Interest in the design and operation of LMT

has grown tremendously in the past decade. This has been driven primarily by three factors [Wang,

2017]: (i) governmental push to reduce congestion and air pollution; (ii) increasing aging population

in cities; and (iii) providing mobility for the differently abled and school children.

We consider the following typical scenario for the operation of the MT service in conjunction

with the LMT. All passengers of the LMT service start their journey on the MT from one of the

stations served by a train, and request automated transportation to the buildings within a time-

window. The buildings B1-B10 can represent offices for different companies that are collocated in

an industrial park, or residential buildings in a neighborhood. The buildings can be accessed by

paths that are shared by both pedestrians and LMT vehicles. For convenience, we will refer to

the vehicle providing LMT service as a commuter vehicle (CV). The CVs are typically parked at

a terminal (T0) at which passengers arrive from trains and proceed to their respective destination

72

buildings by sharing a ride in a CV. The LMT service may represent the morning commute to the

office or the evening commute back to residences. Once all the passengers are delivered to their

destinations, the CVs return back to the terminal for subsequent trips.

We envision an operational scenario in which the passengers indicate their origin station, des-

tination building, and the desired time-window of arrival at the destination. This information is

assumed to be available to the scheduler well in advance of scheduling decisions. For instance, con-

sider the situation where the buildings represent offices and the passengers enter requests through

a smartphone app on the evening of the previous day. Once all requests have been received, the

scheduler determines for each user: (i) the train to board at their origin station; (ii) the CV to

board at T0, (iii) the time the CV will depart from T0, and (iv) the time of arrival at the destination

building. The scheduler also communicates to the different CVs the routes, start times, and list of

passengers. The choice of route determines the times of arrival of passengers at their destination

and the total time spent by the passengers in the CV.

Note that the first-mile operation, wherein the passengers first ride on CVs to reach a hub of a

MT service, can be easily accommodated in an analogous manner. Furthermore, the requests need

not be provided in advance and can instead be communicated to the scheduler in a just-in-time

manner, but we do not address such online variants in this work.

In this work, we introduce the Integrated Last-Mile Transportation Problem (ILMTP). The

ILMTP is defined as the problem of scheduling passengers jointly on the MT and LMT services

so that the passengers reach their destinations within specified time-windows and the total transit

time for all passengers is minimized. We assume that the information about passengers is available

in advance. The transit time includes the time spent traveling in the transportation vehicles in

addition to any time spent waiting for the LMT service. In determining the schedules on the LMT

service, the problem also determines the set of groups that share a ride in a CV. Thus, the time

spent by the passengers in the CV depends on the co-passengers. To the best of our knowledge,

this general version has not been addressed in the literature.

We introduce a constructive heuristic and a local search method to group passengers for LMT

trips, which based on this grouping are then optimally scheduled in a few seconds by an Integer

Linear Programming (ILP) solver. These groups preserve the invariant that each group has a single

destination and that the deadlines of the passengers across groups going to the same destination

can be sorted in nondecreasing order. We show that there is always an optimal solution with such

a structure if all passengers have time windows of the same size, all MT trips serve all stations

with uniform trip times, and each LMT trip has a single destination. We present computational

results restricted to solutions of this form and compare them with a general lower bound.

73

4.2 Related Work

The ILMTP can be broadly viewed as an instance of routing and scheduling with time-windows.

We survey the relevant literature and describe the key differences with the problem here studied.

4.2.1 Last-Mile Transportation Problem

The literature on last-mile transportation has been mostly focused on the LMT service, without

much consideration to the MT system. Seminal work in this area dates back to the 1960s and

has focused mostly on freight transportation (see Wang (2017) for a discussion). For passenger

transportation, a number of case studies have analyzed the last-mile problem in different contexts,

such as a bicycle-sharing program in Beijing [Liu et al., 2012]. Wang (2017) is the first work to

consider routing and scheduling in the LMT service. The paper also considered the minimization

of total travel time and proposed a heuristic approach for constructing solutions. More recently,

Mahéo et al. (2018) consider the design of a public transit system that includes multiple modes

of transportation, however the authors did not considered scheduling aspects. The ILMTP is a

strict generalization of Wang (2017), in that we consider time-windows for arrival and scheduling

on the MT service. Furthermore, it also complements the work of Mahéo et al. (2018) by focusing

exclusively on the scheduling aspects of multi-modal transportation.

4.2.2 Personal Rapid Transit

Personal Rapid Transit (PRT) has similarities to the last-mile problem and has attracted significant

attention in the past decade. Research has been conducted on PRT system control frameworks [An-

derson, 1998], financial assessments [Bly and Teychenne, 2005, Berger et al., 2011], performance

approximations [Lees-Miller et al., 2009, 2010] and case studies [Mueller and Sgouridis, 2011]. How-

ever, none of these papers have addressed last-mile operational issues.

4.2.3 Demand Responsive Transit

A large body of research has been devoted to demand responsive transit (DRT), which is another

type of on-demand service. Some papers focus on DRT concept discussions, practical implementa-

tion, and assessment of simulations in case studies [Brake et al., 2004, Horn, 2002a, Mageean and

Nelson, 2003, Palmer et al., 2004, Quadrifoglio et al., 2008]. Models have been developed to assist in

system design and regulation (e.g., Daganzo 1978, Diana et al. 2006, Wilson and Hendrickson 1980).

Routing options in specific contexts have also been considered [Chevrier et al., 2012, Horn, 2002b].

The LMT can be viewed as a specific variant of a broadly defined DRT concept—namely, a demand

responsive transportation system that addresses last-mile service requests with batch passenger de-

mand and a shared passenger origin. Unlike most papers in the DRT literature, we also focus on

routing and scheduling on the MT and LMT from an optimization and operational perspective.

74

4.2.4 Vehicle Routing & Dial-a-Ride Problems

Vehicle routing problems have long been studied, and they comprise a large body of literature. The

vehicle routing problem with time windows (VRPTW) has been the subject of intensive study, with

many heuristic and exact optimization approaches suggested in the literature. A thorough review of

the VRPTW literature can be found in Toth and Vigo [2014]. The dial-a-ride problem (DARP) and

related variations have also been extensively investigated [Cordeau and Laporte, 2007, Jaw et al.,

1986, Lei et al., 2012]. As argued by Wang [2017], the VRPTW focuses on reducing operating costs

while ILMTP aims to improve the level-of-service by minimizing total passenger transit time. The

limited capacity of CVs may also comparatively facilitate approaching the ILMTP .

In summary, ILMTP has the following features that distinguishes it from previous studies in

the literature: (1) joint scheduling of passengers on the MT and LMT services; (2) time-windows

on arrival at destination; (3) common last-mile origin (which is also the vehicle depot); and (4)

minimization of the total passenger transit time.

4.3 Problem Formulation

In this section we introduce notation relevant to ILMTP and present an optimization model. For

ease of exposition, we will assume for the rest of the chapter that the MT corresponds to trains

that arrive at T0. The problem data, summarized in Table 4.1, can be divided into those associated

with: (i) the MT service, (ii) the LMT service, and (iii) the passengers. The set U(s) represents

the set of all possible MT service options that are available for passengers from station s to the

terminal T0. The MT services that are identical in travel time to reach T0 but leave at different

times are treated as distinct MT service options in U . The set U(s) includes the possibility of

passengers transferring between trains in order to travel from s to T0. A user that leaves from s

on a MT service u ∈ U(s) has a travel time of (tT0(s)− tstart(u, s)) on the MT service to reach T0.

If a user does not leave on the CV until time t, then the user spends (t − tT0(u, s)) time waiting

at T0. For commuting in the CVs, the travel time for the passengers depends on: (i) the route

choice on the CV, and (ii) the number of stops on the route prior to their destination. Without loss

of generality, we abstract loading and unloading times as part of the pre-computed routes, since

routes with stops that are not actually used are suboptimal.

The decision variables in the formulation are:

• yp,u ∈ {0, 1}: is 1 if passenger p is assigned to train service u ∈ U(s(p));

• zp,r,t ∈ {0, 1}: is 1 if passenger p is assigned to CV route r ∈ R (with b(p) ∈ B(r)) and departs

at time t ∈ T ;

• nT0,t: number of CVs at T0 at time t ∈ T ;

75

T planning horizon for the problem
S set of boarding stations for passengers
T0 the alighting station for passengers
U(s) the set of all MT services that serve s
tstart(u, s) time that MT service u ∈ U(s) leaves s
tT0(u) time that MT service u ∈ U(s) reaches T0

P set of passengers
s(p) origin station of p ∈ P
b(p) destination of p ∈ P
rel(p) earliest time of arrival for p ∈ P
ded(p) latest time of arrival for p ∈ P

C set of commuter vehicles
CV max capacity of CV
R the set of routes that the CV can take
B(r) the set of stops served on LMT route r ∈ R
τ travel(r, b) elapsed time on CV to reach b ∈ B(r) starting from T0 on route r
τtrip(r) elapsed time for a CV to return to T0 on route r

Table 4.1: List of symbols for the ILMTP.

• nr,t ∈ {1, . . . , |C|}: number of CVs that are assigned to route r and depart at time t ∈ T ; and

• τp: transit time for passenger p ∈ P.

We first describe the constraints in the problem that model operational requirements. The total

transit time for each passenger p ∈ P is

τp =
∑
r∈R

∑
t∈T

(t+ τ travel(r, b(p))) · zp,r,t −
∑

u∈U(s(p))

tstart(u) · yp,u. (4.1a)

Next we model that each passenger p ∈ P is assigned to exactly one u on the MT service and has

an unique CV route r and start time t: ∑
u∈U(s(p))

yp,u = 1,

∑
r∈R

∑
p∈P

zp,r,t = 1.
(4.1b)

The following constraints ensure that each passenger starts on a CV trip after arriving to T0 :∑
t≤tT0(u)

zp,r,t ≤ 1− yp,u ∀ p ∈ P, u ∈ U(s(p)). (4.1c)

76

The time-windows on the arrivals are imposed using

rel(p) ≤
∑
r∈R

∑
t∈T

(t+ τ travel(r, b(p)) · zp,r,t ≤ ded(p). (4.1d)

The availability of CVs at T0 for transporting passengers are modeled using time-difference equa-

tions in (4.1e). This formulation was presented by Wang (2017) and is frequently used in modeling

cumulative scheduling problems.

nT0,t =nT0,t−1 +
∑
r∈R

nr,t−τtrip(r) −
∑
r∈R

nr,t ∀ t ∈ T

nT0,0 =|C|.
(4.1e)

Constraint (4.1e) states that the number of CVs in T0 at t is the sum of three components: number

of CVs in T0 at time t − 1; number of CVs returning to T0 upon completion of trips started at

time t − τtrip(r) for each route r; and the negative of the number of CVs leaving T0 on trips at

time t.

Finally, the capacity of the CVs are modeled using∑
p∈P

zp,r,t ≤CV max · nr,t∑
p∈P

zp,r,t ≥CV max · (nr,t − 1)

 ∀ r ∈ R, t ∈ T . (4.1f)

An optimization formulation modeling ILMTP is thus

min
∑
p∈P

τp s.t. (4.1a)− (4.1f). (4.2)

To the best of our knowledge, this is the first optimization formulation for the ILMTP. The ILMTP

is a generalization of the problem considered in Wang [2017], which was shown to be NP-Hard.

Hence, the ILMTP is NP-Hard.

4.4 Theoretical Results

In this section, we analyze the structure of optimal solutions to the ILMTP under the following

assumptions:

Assumption 4.1. The MT services in u ∈ U are identical and serve all boarding stations; i.e.

U(s) = U for all s ∈ S and tT0(u)− tstart(u, s) = tT0(u′)− tstart(u′, s) for all u, u′ ∈ U(s) and s ∈ S.

Assumption 4.2. Each LMT trip serves a single destination.

77

Assumption 4.3. For all pairs of passengers p1, p2 ∈ P, ded(p1)− rel(p1) = ded(p2)− rel(p2).

Although Assumptions 4.1-4.3 are restrictive, the analysis in this section shows that there

exists an optimal solution satisfying a particular ordering property. We exploit this in devising an

heuristic, which we show through experimental evaluation is effective at identifying high-quality

solutions.

Prior to presenting the technical results, additional notation is in order. We define a group

to be a set of passengers that ride together in a CV on their LMT trip. Thus, a group consists

of passengers having: the same start time on a common CV; cardinality less than the capacity

of the CV; and a common destination (by Assumption 4.2). For any solution, let G1, . . . , GL

denote the partitioning of passengers into groups. Let G(pj) be the group that contains passengers

pj . We assume, without loss of generality, that the passengers are ordered p1, . . . , p|P| so that

i < j ⇐⇒ rel(pi) ≤ rel(pj). Denote by CVT(G`) the time that the CV for group G` reaches the

destination building.

We begin the analysis with some preliminary results.

Lemma 4.4. All passengers in a group have the same wait time between services in an optimal

solution to the ILMTP.

Proof. Due to Assumption 4.1, in any optimal solution, all passengers arrive with the latest MT

service that arrives at T0 prior to their departure time on the CV. Hence, their wait times are the

same.

Following Lemma 4.4, let TT0(G`) denote the time that G` reaches T0 on the MT in an optimal

solution to ILMTP.

Lemma 4.5. Let G1, . . . , GL be the groupings in an optimal solution to an ILMTP instance. If

passengers p1, p2 are such that b(p1) = b(p2) and G(p1) 6= G(p2), then exchanging passengers p1

and p2 between groups G(p1) and G(p2) (holding all else equal) does not affect the solution value.

Proof. For each passenger p, let τp be the original total transit time and τ ′p be the resulting total

transit time for that passenger. The only change to the objective function is the change in the total

transit times for these two passengers. In particular, the resulting transit times for the passengers

are τ ′p1 = τp1 + ∆2 −∆1 and τ ′p2 = τp2 + ∆1 −∆2 where ∆i = CVT(G(pi))−TT0(G(pi)). The net

change in the objective function value is
(
τ ′p1 + τ ′p2

)
− (τp1 + τp2) = 0.

Lemma 4.5 states that we can exchange passengers between groups that are going to the same

destination without affecting the objective. Note that Lemma 4.5 does not make any claim on the

feasibility of the groupings after the exchange.

Lemma 4.6. For any optimal solution and any group G`, let pi1 , pi2 ∈ G`, for 1 ≤ i1 < i2 ≤ |P|.
If |G`| < CV max, then for any i with i1 < i < i2, moving passenger pi into group G` preserves

feasibility.

78

Proof. We need only show that rel(pi) ≤ CVT(G`) ≤ ded(pi). The first inequality follows because

rel(pi) ≤ rel(pi2), by the assumption on the ordering of the passengers, and rel(pi2) ≤ CVT(G`),

by the feasibility of the original solution. The second inequality follows because CVT(G`) ≤
ded(pi1), by the feasibility of the solution, and ded(pi1) ≤ ded(pi), by the assumption on the

ordering of the passengers, together with Assumption 4.3.

We now state and prove, in Theorem 4.7, the main result of the section, which shows that an

optimal solution exists where the passengers in a group have consecutive deadlines.

Theorem 4.7. Suppose the passengers {p1, . . . , pn} have identical destinations and are ordered so

that i ≤ j ⇐⇒ rel(pi) ≤ rel(pj). For any ILMTP instance there is an optimal solution with

groupings G1, . . . , GL for which if pj , pj+k ∈ G`, for some j ∈ {1, . . . , n− 2} , k ≥ 2 with j+k ≤ n,b

and ` ∈ {1, . . . ,L}, then pj+1 ∈ G`.

Proof. By way of contradiction, suppose there exists an instance for which there is no optimal

solution satisfying the condition of the theorem. Consider the optimal solution for which the

smallest index j that violates this condition is maximized. Let j∗ be the smallest index in this

solution for which there exists a k with G(pj∗) = G(pj∗+k) and G(pj∗+1) 6= G(pj∗). Let k∗ be such

an index k, G` = G(pj∗) and G`′ = G(pj∗+1). We first show that j ≥ j∗ + 1 for all {j | pj ∈ G`′}.
Suppose not; let ĵ = arg max{j | pj ∈ G`′ , pj+1 /∈ G`′ , j < j∗ + 1} (which will be non-empty by

assumption). Then passenger indices j′, j′ + k′ with j′ = ĵ, k′ = j∗ + 1− ĵ satisfy pj′ , pj′+k′ ∈ G`′
and pj′+1 /∈ G`′ are a set of indices violating the claim of the theorem, contradicting the minimality

of j∗. Hence, (j∗ + 1) is the minimum index among all pj ∈ G`′ .
In the remainder of the proof, we construct another solution in which the index j∗ does not

violate the claims of the theorem. This contradicts the maximality of j∗ among all optimal solutions,

thereby establishing the result.

Conditioning on the relative values of the departure times of the CVs for G` and G`′ , first

consider the case where CVT(G`) ≤ CVT(G`′). We claim that exchanging the group assignment of

pj∗+1 and pj∗+k∗ and holding all else equal results in another feasible solution. We need only show

that (a) rel(pj∗+1) ≤ CVT(G`) ≤ ded(pj∗+1) and (b) rel(pj∗+k∗) ≤ CVT(G`′) ≤ ded(pj∗+k∗). (a)

follows directly from Lemma 4.6 with i1 = j∗, i2 = j∗+k∗ and i = j∗+1. The first inequality in (b)

follows because rel(pj∗+k∗) ≤ CVT(G`), by the feasibility of the original solution, and CVT(G`) ≤
CVT(G`′), by assumption. The second inequality in (b) holds because ded(pj∗+1) ≤ CVT(G`′), by

the feasibility of the original solution and ded(pj∗+1) ≤ ded(pj∗+k∗), by the ordering of passengers.

Furthermore, by Lemma 4.5 the objective function remains unchanged by this exchange, and is

therefore optimal. If the resulting solution satisfies the claim of this theorem, then the claim holds.

If not, then the claim of this theorem is violated for another j > j∗; contradicting the maximality

of j∗.

We now consider the alternative case where CVT(G`) > CVT(G`′). The exchange from the

79

previous case may not work because putting passenger pj∗+k∗ into group G`′ may not be feasible.

Additionally, if there exist k′ > 0 passengers in G` with indices lower than j∗ then these passengers

must be pj∗−k′ , . . . , pj∗−1. If not, it would contradict the assumption of j∗ as the smallest index in

the optimal solution violating the claim of this theorem. Define k′ so that pj∗−k′ is the minimum

indexed passenger in group G`, which is 0 if pj∗ is the minimum indexed passenger.

Consider the following two-step exchange—for i = 0, . . . , k′, move each passenger pj∗−i from G`

into G`′ . Then, move the k′ + 1 passengers with the highest indices in the resulting G`′ into G`.

The resulting groups have the same cardinality as they originally had, and so by Lemma 4.5 the

objective values remain the same.

We now show that the resulting solution is valid and then show that the choice of optimal

solution contradicts the maximality assumption on the selection of j∗, which concludes the proof.

Any passenger pi ∈ G` with index i ≤ j∗ can be moved to G`′ without violating pi’s arrival

time window because rel(pi) ≤ rel(pj∗+1) ≤ CVT(G`′) < CVT(G`) and ded(pi) ≥ CVT(G`) >

CVT(G`′). Additionally, any passenger p ∈ G`′ can be moved to G` without violating the arrival

time windows because rel(p) ≤ CVT(G`′) < CVT(G`) and ded(p) ≥ ded(pj∗) ≥ CVT(G`). Hence,

the resulting solution is also optimal. Finally, if the resulting solution violates the claim of this

theorem, then the smallest index must be larger than j∗. This again contradicts the maximality of

j∗ among all optimal solutions, as assumed.

Note that we can independently reorganize the set of passengers for each destination to be

sorted as indicated in Theorem 4.7. The result can thus be extended to instances with multiple

destinations, with the additional assumption that each CV is restricted to carry passengers going

to a common building (Assumption 4.2).

4.5 Algorithm

We describe an algorithmic framework for constructing a heuristic solution and improving it with

local search.

The heuristic construction comprises three phases: (i) sorting the passengers; (ii) grouping

them; and (iii) assigning groups to vehicles and scheduling the LMT trips.

4.5.1 Sorting the Passengers

We define a bijection ordp : {1, . . . , |P|} → P such that

ded
(
ordp(i)

)
≤ ded

(
ordp(j)

)
, 1 ≤ i < j ≤ |P|.

The intuition is that passengers with similar arrival deadlines can be grouped and served together.

80

Algorithm 10 Groups the passengers by destination

1: function GroupPassengersByDestination(P, ordp)
2: G ← ∅
3: for i = 1→ |P| do
4: Groupedi ← False

5: end for
6: for i = 1→ |P| do
7: if not Groupedi then
8: p← ordp(i)
9: g ← {p}

10: j ← i+ 1
11: while j ≤ |P| and |g| < CV max do
12: if not Groupedj then
13: q ← ordp(j)
14: if rel(q) < ded(p) and b(p) = b(q) then
15: g ← g ∪ {q}
16: Groupedj ← True

17: end if
18: end if
19: end while
20: G ← G ∪ {g}
21: end if
22: end for
23: return G
24: end function

4.5.2 Grouping the Passengers

Algorithm 10 defines groups of passengers with common destination by traversing the set of pas-

sengers as sorted by ordp. For each passenger p = ordp(i) that does not have a group yet, i.e.,

Groupedi = False, the loop starting at line 6 creates a new group g. Then the loop starting at

line 11 verifies if each of the next ungrouped passengers q = ordp(j) for j > i can be added to

group g. Since the passengers are added as ordered by ordp, their deadlines are nondecreasing and

the verification that the earliest arrival time for q is before the latest time for p in line 14 suffices

to determine if the resulting group is feasible for a single destination.

4.5.3 Optimal Scheduling of the Groups

We now present an ILP formulation to obtain an optimal schedule of groups on MT and LMT for

a given grouping of passengers for the LMT trips. For ease of exposition, we begin by describing

some sets that can be pre-computed for a fixed grouping.

The set of feasible start times on CVs for a group g ∈ G using route r can be computed as

T (g, r) :=

{
t

∣∣∣∣∣ (t+ τ travel(r, b(p))) ∈ [rel(p), ded(p)]

∀ p ∈ g

}
.

We use binary variables xg,r,t ∈ {0, 1} to represent the start time t for group g on a CV route

81

r, i.e.

xg,r,t =

{
1 if group g uses route r and starts at t

0 otherwise

∀ g ∈ G, r ∈ R(g), t ∈ T (g, r),

where R(g) is the set of CV routes that stop at destinations of passengers in g; i.e.

R(g) := {r ∈ R | b(p) ∈ B(r)∀ p ∈ g } .

To model the use of CVs by different groups, we compute a set defining the groups, routes, and

start times directly affecting the number of CVs used at each time instant t as

V(t) :=
{

(g, r, t′) | t ∈ [t′, t′ + τ trip(g, r)]
}
.

Each of these is a subset of the indices of decision variables and its use will be clear in the upcoming

formulation.

The exact ILP modeling the optimal scheduling of passengers on CVs for LMT service is as

follows:

min
∑
g∈G

∑
r∈R(g)

∑
t∈T (g,r)

αg,r,t · xg,r,t (4.3a)

s.t.
∑

r∈R(g)

∑
t∈T (g,r)

xg,r,t = 1∀ g ∈ G (4.3b)

∑
(g,r,t′)∈V(t)

xg,r,t′ ≤ |C| ∀ t ∈ T . (4.3c)

The objective coefficient αg,r,t is defined as

αg,r,t :=
∑
p∈g

(
t+ τ travel(r, b(p))− tstart(umin(t, s(p)))

)
,

where umin(t, s(p)) := arg min
u∈U(s(p)):tT0(u)≤t

(t− tstart(u)).

Constraint (4.3b) imposes that each group is assigned to exactly one CV route and start time.

Constraint (4.3c) ensures that the number of groups that are on the LMT service at any time is

less than or equal to the total number of CVs.

For a given optimal solution x∗g,r,t to (4.3), we can obtain an optimal assignment of routes

r∗ : G → R and start times t∗ : G → T for groups on CVs as follows:

r∗(g) = r ⇐⇒ x∗g,r,t = 1 and t∗(g) = t ⇐⇒ x∗g,r,t = 1.

The optimal MT services u∗ : P → U are then obtained as

u∗(p) = umin(t∗(g), s(p),) where g : p ∈ g.

82

Algorithm 11 Assigns vehicles to scheduled groups

1: function AssignVehiclesToGroups(C, ordp, r∗(.))
2: veh queue ← ∅
3: for v ∈ C do
4: veh queue.push

(
(v, 0)

)
5: end for
6: for i← 1, . . . , |G| do
7: (v, t)← veh queue.pop()
8: g ← ord(i)
9: veh(g) ← v

10: veh queue.push
(

(v, t+ τ trip(g, r∗(g)) + 1)
)

11: end for
12: return veh

13: end function

Formulation (4.3) does not explicitly assign a CV to any of the groups. The CV assignments can

be determined once the solution is given by Algorithm 11. The algorithm makes use of a priority

queue veh queue consisting of (v, t) pairs, where v is index of the CV and t is time that the CV is

available at T0 for servicing a group. The pairs with lower t have higher priority in the queue. Let

ord : G → {1, . . . , |G|} be a mapping that sorts G in ascending order of t∗(g), i.e.

ord(g) ≤ ord(g′) ⇐⇒ t∗(g) ≤ t∗(g′).

Algorithm 11 returns a mapping veh : G → C such that veh(g) is the vehicle assigned to service

the group g.

Some comments regarding formulation (4.3) are in order. In contrast to formulation (4.2), the

time indices in formulation (4.3) for each group are restricted to the intersection of possible depar-

tures for all passengers in the group, hence making the formulation more tractable. Furthermore,

formulation (4.3) also avoids the combinatorial explosion in the number of routes, which takes all

possible subsets of CV max stops. It is possible to define smaller formulations in both cases by mod-

eling time with continuous variables instead of indexing binary variables, as discussed by Floudas

and Lin (2004). However, Balas (1985) has shown that the linear relaxation of such formulations is

the weakest possible, thereby pushing the solution process towards a time-consuming enumeration

of alternatives that does not truly benefit from the ILP techniques that mathematical optimization

solvers exploit.

4.5.4 Lower Bounds

This section describes lower bounds on MT and LMT trip times per passenger as well as on the

sum of wait and LMT trip times per passenger and per group of passengers. We use these bounds

to evaluate the quality of solutions and also to direct the local search methods as described next.

83

The minimum MT trip time per passenger is defined as

MMT(p) := min
{
tT0(u)− tstart

(
u, s(p)

)
| u ∈ U

(
s(p)

)}
. (4.4)

In turn, the minimum LMT trip time is given by

MLM(p) := min
{
τ travel

(
r, b(p)

)
| r ∈ R, b(p) ∈ B(r)

}
. (4.5)

For convenience, we define a function corresponding to the minimum waiting time if a passenger

coming from station s leaves the terminal in the time window [ta, tb]:

MWT(s, ta, tb) := min
{
ta − tT0(u) |u ∈ U(s), tT0(u) ≤ tb

}
. (4.6)

This waiting time is implied by the set of MT trips that can bring a passenger from s to the

terminal within [ta, tb]. In turn, the time window may be restricted according to the passengers

that are grouped together.

For each passenger p, we can compute the minimum waiting time if the passenger takes the

shortest travel time as

MPWT(p) := MWT (s(p), rel(p)−MLM(p), ded(p)−MLM(p)) . (4.7)

Note that this is not a bound on the waiting time, since passenger p could wait less if taking a

longer LMT trip. However, trading waiting for trip time would never lead to a smaller sum of both,

and thus the combined bound is valid. We can therefore obtain a lower bound LB that combines

the trip times and the wait times for each passenger as

LB :=
∑
p∈P

MMT(p) + MLM(p) + MPWT(p). (4.8)

If the number of CVs is large enough to define groups where no passenger delays another and all

groups can be scheduled at the most convenient time for its passengers, then LB corresponds to

the value of the optimal solution. When this is not the case, we need to account for the tighter

departure time windows defined by each group.

For a group of passengers g, the minimum wait time of each passenger p ∈ g if taking a trip of

shortest time is

MGWT(g, p) := MWT

(
s(p),max

q∈g
(rel(q)−MMT(q)),min

q∈g
(ded(q)−MMT(q))

)
. (4.9)

Whenever MGWT(g, p) > MPWT(p) for some p ∈ g, then some passenger in g \ {p} is delaying p.

While the former expressions define a lower bound per passenger, the latter is used to decide which

84

groups to modify by local search.

4.5.5 Break-and-Shift Local Search

Algorithm 10 aims to create as few groups as possible, each with many passengers. This can

increase total waiting time because the CV fleet may be underutilized. Hence, we define a local

search method to iteratively modify these groups by breaking them and swapping passengers.

We define a local search to address this, which loops between two operations: (i) breaking groups

where one passenger delays another; and (ii) shifting passengers to groups with earlier departure

times when this is feasible and no delay is implied. These operations are performed on sets of

groups that arrive through MT trips at the same time to T0 according to an optimal solution

of (4.3). If the LMT trips take less than the inter-arrival time of MT, operation (i) can result in

as many groups as the number of CVs (|C|). The fragmented groups resulting from operation (i)

can be reorganized differently by operation (ii), whereby some groups might vanish. In such a case,

we are able to repeat a loop with both operations once more. Hence, we define a set of MT arrival

times as

T :=
{
tT0(u) | u ∈ U(s), s ∈ S

}
(4.10)

and the groups corresponding to each t ∈ T is

Gt :=
{
g ∈ G | t = max

{
tT0(u) | u ∈ U , tT0(u) ≤ t∗(g)

}}
. (4.11)

For convenience, we denote the set of passengers on each group g as g :=
{
g(1), . . . , g(|g|)

}
, with

ded
(
g(i)

)
≤ ded

(
g(j)

)
for i ≤ j. Furthermore, let Gb denote the set of groups with all passengers

heading to b, and let Gb :=
{
gb1, . . . , g

b
|Gb|

}
with t∗(gbi) ≤ t∗(gbj) for i ≤ j. Algorithm 12 describes

operation (i), which breaks down some groups in Gt. Staring with a set Ht corresponding to Gt,

the procedure loops over each group g ∈ Gt, attempting to break them to increase the objective

value of the solution. If the total number of groups is still smaller than the number of CVs and the

earliest passenger g(1) has to wait more with the group than alone, the group is broken before the

first passenger g(i) that causes the delay, thereby replacing g with two groups in Ht. Algorithm 13

describes operation (ii), which moves passengers between consecutive groups. In this case, Hb

begins empty, we refer to the next group to be added to Hb as h, and we loop on Gb to construct

this set Hb. We define the first group in Gb as the initial incumbent group h and, while possible, we

keep adding passengers to it by looping on the subsequent groups. We either empty these groups

on h and proceed to the next one, or else fill h to capacity. In the latter case, we add h to Hb

and reassign h as h′, which consists of the remaining passengers from the last group of Gb that we

iterated on.

In order to avoid infeasibility when breaking and reorganizing the groups, one can solve (4.3)

after each modification. For efficiency, we have found that it was sufficient to apply both operators

85

Algorithm 12 Breaks groups with co-passenger delays

1: function BreakGroups(Gt)
2: Ht ← Gt
3: for g ∈ Gt do
4: if |Ht| < |C| and MGWT

(
g, g(1)

)
> MPWT

(
g(1)

)
then

5: for i← 2, . . . , |g| do
6: if MPWT

(
g(i)

)
> MPWT

(
g(1)

)
then

7: g′ ← {g(1), . . . , g(i− 1)}
8: g′′ ← {g(i), . . . , g(|g|)}
9: Ht ←

(
Ht \ {g}

)
∪ {g′, g′′}

10: break
11: end if
12: end for
13: if |Ht| = |C| then
14: break
15: end if
16: end if
17: end for
18: return Ht
19: end function

until either there was no change in the groups or the groups resulted in an infeasible schedule.

4.6 Experiments

We present numerical experiments in the setting of Figure ??. The passengers originate from a set

of 4 stations and desire to reach one of the buildings in B1-B10 within a specified time-window. U
consists of MT services that reach T0 every 15 minutes and the travel time between stations is 5

minutes. We assume that the CVs are all parked at T0 and return back to the T0 after dropping

off all passengers. The CVs take 1 minute to go between T0-B1, T0-B10, and all pairs of buildings

that are adjacent on the shaded track, except for B5-B6 which takes 2 minutes. The CVs are

restricted to move along the shaded region shown in Figure ??. We also assume that a CV spends

0.5 minutes at a building where they drop passengers. As a result, the time that a passenger reaches

the destination depends on co-passengers in the CV that have prior destinations. The modeling

of drop-off time is important in applications where the capacity of CV max is small, typically ≤ 5.

Inspired by the application to corporate-campus settings, we use a small number of destinations.

This may not be the case in all applications, where one might expect the number of destinations

for the LMT service to be in the same order as the number of passengers, thus making the problem

harder to solve. In those cases, however, we believe that the suggestion by Mahéo et al. (2018)

to treat last-mile stops as aggregations of several passenger destinations, such as bus stops, is a

reasonable compromise. Hence, the chosen number of destinations is of minor importance.

In the experiments performed, we restrict the passengers to be grouped according to their

destination. The set of possible CV round-trip movements considered are (in the sequence of

86

Algorithm 13 Reorganizes passenger groups

1: function ShiftPassengers(Gb)
2: Hb ← ∅
3: h← gb1
4: for i← 2, . . . , |Gb| do
5: if |h| = CV max then
6: end if
7: if |h| < CV max then
8: for j ← 1, . . . ,min{CV max − |h|, |gbi |} do State p← gbi (j)
9: if rel(p) ≤ ded

(
h(1)

)
and MGWT

(
h ∪ {p}, h(1)

)
= MGWT

(
h, h(1)

)
then

10: h← h ∪ {p}
11: end if
12: end for
13: h′ ← gbi \ h
14: if |h′| > 0 then
15: Hb ← Hb ∪ {h}
16: h← h′

17: end if
18: end if
19: end for
20: Hb ← Hb ∪ {h}
21: return Hb

22: end function

building visits)

{T0, B1, B2, . . . , B9, B10, T0}, {T0, B10, B9, . . . , B2, B1, T0}

{T0, B1, B2, B3, B8, B9, B10, T0}, {T0, B10, B9, B8, B3, B2, B1, T0}

{T0, B1, . . . , B3, B8, B7, . . . , B3, B8, . . . , B10, T0}

{T0, B10, . . . , B8, B3, B4, . . . , B8, B3, . . . , B1, T0}.

On each of the CV round-trip movements, a stop at the first occurrence of the building is

considered a route r for the CV. Thus, R consists of 52 (= 10 + 10 + 6 + 6 + 10 + 10) routes.

From an optimality perspective, we expect the CVs to typically use only the shortest route to

the destination. However, in a few instances the passengers with earliest deadlines are assigned to

longer routes so that they arrive to their destinations at the start of the time-windows. Removing

this option can result in infeasibility.

To test the algorithms described, we generated 10 scenarios consisting of 600 passengers. The

desired earliest time (rel(p)) of arrival for the passengers is assumed to be uniformly distributed

over 1 hour, in increments of 30 seconds. For each passenger, the origin and destination station are

drawn uniformly and independently at random from the four stations and 10 buildings, as shown

in Figure ??. We assume that the length of time windows (ded(p) − rel(p)) are identical for all

the passengers; the values are set by assigning, if t′ is the requested arrival time for a passenger,

rel(p) = t′ − K/2 and ded(p) = t′ + K/2, for a fixed K > 0. We test the impact of K and

the number of CVs by varying K ∈ {5, 10, 20} and |C| ∈ {30, 40, 50, 60}, resulting in 12 different

configurations, and thus 120 different instances. All experiments were run on a machine with an

87

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz and 32 GB RAM. All algorithms were implemented

in Python 2.7.6 and the ILPs are solved using Gurobi 7.5.1.

Table 4.2 presents a summary of the results. The first two columns report the size of the time

windows and the number of CVs, respectively. Column UBred = (UB0−UBH)/(UB0−LB∗)×100

is the percent decrease in the optimality gap between the initial solution obtained using the heuristic

(UB0) and the final (UBH) solution resulting from the local search procedure, over the best known

lower bound (LB∗) obtained by Gurobi solving model (4.2) with a time limit of 10 minutes, averaged

over all instances in that configuration. A 100% reduction means the entire optimality gap is closed.

It is clear that the heuristic is able to obtain optimal solutions on problems where the number of

CVs and time windows are not very constrained.

The fifth and sixth columns in Table 4.2 show the average percent optimality gap at termination

over the instances where solutions are found when solving model (4.2) using Gurobi: (i) without the

heuristic solution (MIP) and (ii) with the heuristic solution (MIP+H) as an initial solution using

the MIPStart feature. In both approaches, the time limit is set to 10 minutes. The optimality gap

is computed as (UB∗ − LB∗)/LB∗ × 100 where UB∗ is the best feasible solution and LB∗ is the

best lower bound obtained by the approach (MIP or MIP+H). In all cases, the gaps are computed

after subtracting the constant MT travel times from each station of origin to T0. In the cases that

not all runs found feasible solutions, next to each average there is the number of cases where at

least one feasible solution is found. The last two columns in Table 4.2 show the number of instances

that were solved to optimality. From the results in Table 4.2, it is clear that MIP+H outperforms

MIP in terms of the number of problems solved to optimality and average optimality gap closed.

Table 4.2: Summary of results averaging 10 instances per configuration of time window length K
and flee size |C|

Avg. Gap (%) Solved

K |C| UBred (%) tH MIP MIP+H MIP MIP+H

5 30 2.9 0.99 0.0 (1) 0.1 1 4
5 40 14.3 3.73 0.0 (7) 0.0 7 10
5 50 31.4 6.38 0.0 (8) 0.0 8 10
5 60 60.2 15.25 0.0 0.0 10 10

10 30 6.5 3.65 – (0) 2.0 0 0
10 40 34.0 12.31 0.3 (6) 0.2 2 4
10 50 76.1 25.97 0.0 0.0 10 10
10 60 96.0 32.23 0.0 0.0 10 10
20 30 62.4 7.99 0.0 0.0 10 10
20 40 100.0 8.7 0.0 0.0 10 10
20 50 100.0 7.62 0.0 0.0 10 10
20 60 100.0 7.54 0.0 0.0 10 10

We also investigate the effect on the solution quality due to the imposition of single destination

per CV in Assumption 4.2. An upper bound to the optimal gap with respect to the general case

is computed as
(UB(MIP +H)− LB)

LB
, where UB(MIP +H) is the best solution obtained from

our algorithm and LB is the lower bound in (4.8). Note that the computation of LB in (4.8)

88

Figure 4.1: Comparison of model 4.2 with and without the heuristic. (left) A scatter plot with a
point were run. (right) A cumulative distribution plot of performance indicating the number of

instances solved by second.

is independent of the number of stops per CV. Table 4.3 summarizes the gaps for the solution

obtained using MIP+H. These results indicate that Assumption 4.2 is not very restrictive on the

instances tested.

Table 4.3: Upper bound on the optimal gap of the solutions obtained under Assumption 4.2 with
respect to the general case.

K |C| Avg. Gap % Min. Gap % Max. Gap %

5 30 6.2 5.6 6.7
5 40 2.7 2.3 3.2
5 50 1.3 1.0 1.6
5 60 0.5 0.4 0.8

10 30 12.3 10.7 14.32
10 40 2.9 2.5 3.5
10 50 0.7 0.4 0.9
10 60 0.1 0.0 0.2
20 30 0.0 0.0 0.0
20 40 0.0 0.0 0.0
20 50 0.0 0.0 0.0
20 60 0.0 0.0 0.0

Figure 4.1 depicts (left) a scatter plot with a point per instance and (right) a cumulative

distribution plot of performance, comparing the solution times for MIP and MIP+H. The scatter

plot contains a point per instance where the coordinates of the point correspond to the time taken

to solve the instance with and without the heuristic. The plots are sized according to |C| and colored

according to K. The cumulative distribution plot of performance provides another depiction of the

data, showing the number of instances that are solved at each point of time in the solution horizon

for both algorithmic configurations.

89

4.7 Conclusions and Future Work

This chapter addressed the ILMTP, focusing on a special case of this problem where each CV makes

a stop at just one building per trip. Based on this setting, we prove a structured result regarding

the form of optimal solutions that results in insights used to efficiently solve the problem. Our

experiments indicate that the optimal solutions to this case are not far from a lower bound for the

general problem, suggesting that (a) starting from this solution for a future study is promising, and

(b) real-world systems implementing this solution may already achieve near optimal schedules.

We generalize and make improvements to a recent MIP formulation for the general problem

suggested by Wang (2017), and use a constructive heuristic and local search procedure for iden-

tifying an initial high-quality solution that, when used as the starting solution for a commercial

MIP solver, often closing the entire optimality gap. The results obtained with and without the

heuristic also indicate a significant improvement in solution times. The instances appear to in-

crease in difficulty as K and |C| decrease, which can be attributed to the problem becoming more

constrained.

As the design of automated transportation systems becomes a reality, it is critical that models

and algorithms such as the ones developed in this work are developed to ensure the system used

are run efficiently. One critical extension will be to the case when CVs can stop at more than

one building. The local search algorithm developed can be modified to accept solutions of this

form, which may reduce the total waiting times of customers. Additionally, we plan to design

problem-specific solution algorithms that can exploit results like the one proven in Theorem 4.7.

Another avenue for extending this work would be to exploit its complementarity with the study

by Mahéo et al. (2018), where more consideration is given to designing the MT service. We hope

that a unified framework can be developed in future work.

90

Conclusion

This thesis tackled a variety of topics in integer and mixed-integer linear programming. In a

nutshell, we have explored how to operationalize the use of decision diagrams for postoptimality

analysis of integer linear programs, we have analyzed and evaluated lift-and-project cuts for mixed-

integer linear programs, and we have accelerated the solution of a novel scheduling application.

On postoptimality, our goal is to facilitate answering what-if questions on problems that are

relatively easier to solve by storing the solutions for these problems in a compact but transparent

data structure. In that context, decision diagrams can be regarded as a comparatively better data

structure to store near-optimal solutions since, in contrast to using the tree that naturally arises

as these solutions are obtained through a branch-and-bound method, there is an additional benefit

from compressing nodes with same completions. Furthermore, decision diagrams can be efficiently

queried for tasks such as determining the domain of discrete variables in near-optimal solutions,

or the best possible solution upon fixing the value of certain variables. However, these diagrams

can still be very large. Sound decision diagrams, which innocuously admit worse solutions, are

particularly useful in this case because they preserve the equivalence between near-optimal solutions

and near-optimal paths for a chosen optimality gap while exploiting to the maximum extent that

decision diagrams with more solutions can be smaller. Our contributions here are the following:

• We have shown that an ordered tree or decision diagram of near optimal solutions can be

efficiently compressed into a sound decision diagram of minimum size through the application,

in any order, of a node merging operation that we denote as sound-reduction.

• We have shown that, unlike conventional decision diagrams that are compressed through

reduction, the smallest sound decision diagrams are not necessarily unique.

• We have shown that extending the concept of sound decision diagrams to admit solutions that

are either better or worse than a range of values defines a computationally hard problem.

• We have observed in computational experiments that the speed-up strategy of merging nodes

representing equivalent subproblems of an integer linear program while branching naturally

yields a sound decision diagram that in some cases is smaller than a conventional diagram.

91

On lift-and-project, our goal is to understand the cuts that can be obtained from optimal

solutions of the Cut Generating Linear Program (CGLP). On the one hand, a CGLP for a split

disjunction can be indirectly solved by pivoting among feasible and infeasible bases of the linear

relaxation of the problem to which the cuts are generated, but there are different forms in which

these cuts can be compared with each other according to the normalization and its interplay with

the objective function in the CGLP. It has been observed by Fischetti et al. [2011] that this may

result in cuts that are strictly dominated. Our contributions for this line of work are the following:

• We have proposed a new formulation that switches the roles previously played by normaliza-

tion and objective function, the Reverse Polar CGLP (RP-CGLP), where the feasible set is

an extended formulation of the reverse polar set from x̄ and the objective function minimizes

the evaluation of the cut for a point p in the disjunctive hull; and we have shown that cuts

from RP-CGLP optima always define supporting hyperplanes of the disjunctive hull.

• We have shown that, if p is an interior point of the disjunctive hull, then the resulting cut

is a combination of facet-defining cuts separating x̄, all of which optimizing min
αp− β
β − αx̄ . In

fact, the same is true of other formulations such as the BP-CGLP introduced by Balas and

Perregaard [2002] and the P-CGLP suggested by Cadoux and Lemaréchal [2013] and analyzed

by Conforti and Wolsey [2016], and they relate to a broader literature on in-out methods.

On the other hand, the correspondence between lift-and-project cuts and intersection cuts from

bases on the linear relaxation does not necessarily hold in the case of non-split disjunctions [An-

dersen et al., 2005, Kis, 2014], and thus one may wonder if mimicking the CGLP on the tableau

of the original problem may lead to the same cut that would have been obtained by solving the

actual CGLP. Our contributions for this question are the following:

• We have simplified the necessary and sufficient condition shown by Balas and Kis [2016] for

the correspondence between lift-and-project cuts and intersection cuts, which characterizes

regular basic CGLP solutions and cuts, and shown that it applies to any CGLP solution.

• Using the extension above, we have introduced a mixed-integer formulation based on the

CGLP and shown that it can be used to determine if a given cut corresponds to an intersection

cut for the same problem, in which case we can find a corresponding basis and PI -free set.

• We have used this formulation to evaluate lift-and-project cuts obtained from simple t-branch

split disjunctions, and thus tested the extent to which these cuts are equivalent to the cor-

responding multi-row cuts. While families of problems differ on the incidence of regular

lift-and-project cuts, we have found that the cuts tend to be irregular as the problems get

larger, the linear relaxation is weaker, and the number of terms of the disjunction increases.

• We have also observed a convenient relationship among disjunctions leading to irregular cuts.

Namely, the incidence of irregular cuts in optimal solutions of CGLPs from simple 3-branch

92

or 4-branch split disjunction relates to the number of irregular cuts from simple 2-branch

split disjunctions on the same variables, hence entailing a method to choose disjunctions with

more terms that are more likely to yield irregular cuts.

On scheduling, our goal is to solve to optimality a last-mile passenger scheduling problem.

While a convenient restriction of this problem can be loaded by a modern commercial solver with

a time-indexed mixed-integer formulation, which is stronger than continuous time formulations,

feasible solutions are often not found in reasonable time. Our contributions are as follows:

• We have shown that, subject to mild assumptions, there are optimal solutions to this problem

that have a particular structure by which requests can be grouped by sorted deadlines.

• We have developed constructive and local search heuristics that preserve this structure while

making a good use of the resources available to find a good scheduling solution.

• We have observed that using these heuristics to warm-start the mixed-integer solver lead to

a significant impact in the runtime and the quality of the solutions obtained.

We believe that these contributions may be leveraged for future work, from developing more

sophisticated forms of postoptimality analysis to finding efficient methods to generate irregular cuts

and solving other scheduling problems through a mix of theory and computational experimentation.

93

Bibliography

T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters, 34(4):361–372,

2006.

T. Achterberg, S. Heinz, and T. Koch. Counting solutions of integer programs using unrestricted

subtree detection. In L. Perron and M. A. Trick, editors, Proceedings of CPAIOR, pages 278–282.

Springer, 2008.

S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27:509–516, 1978.

H. R. Andersen, T. Hadžić, J. N. Hooker, and P. Tiedemann. A constraint store based on multival-

ued decision diagrams. In C. Bessiere, editor, Principles and Practice of Constraint Programming

(CP 2007), volume 4741 of Lecture Notes in Computer Science, pages 118–132. Springer, 2007a.

K. Andersen, G. Cornuéjols, and Y. Li. Split closure and intersection cuts. Mathematical Program-

ming, 102(3):457–493, 2005.

K. Andersen, Q. Louveaux, R. Weismantel, and L. A. Wolsey. Inequalities from two rows of

a simplex tableau. In M. Fischetti and D. P. Williamson, editors, Integer Programming and

Combinatorial Optimization, pages 1–15. Springer Berlin Heidelberg, 2007b.

J. E. Anderson. Control of personal rapid transit systems. J. Adv. Transportation, 32(1):57–74,

1998.

D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Salesman Problem: A

Computational Study. Princeton University Press, 2nd edition, 2006.

J. A. Arthur, M. Hachey, K. Sahr, M. Huso, and A. R. Kiester. Finding all optimal solutions to

the reserve site selection problem: Formulation and computational analysis. Environmental and

Ecological Statistics, 4:153–165, 1997.

E. Balas. Intersection cuts – a new type of cutting planes for integer programming. Oper. Res., 19:

19–39, 1971.

E. Balas. Disjunctive programming. Annals of Discrete Mathematics, (5):3–51, 1979.

94

E. Balas. On the facial structure of scheduling polyhedra. Mathematical Programming Study, 24:

179–218, 1985.

E. Balas. A modified lift-and-project procedure. Mathematical Programming, 79(1-3):19–31, 1997.

E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete

Applied Mathematics, 89(13):3 – 44, 1998.

E. Balas and P. Bonami. Generating lift-and-project cuts from the lp simplex tableau: open source

implementation and testing of new variants. Mathematical Programming Computation, 1(2-3):

165–199, 2009.

E. Balas and R. G. Jeroslow. Strengthening cuts for mixed integer programs. European Journal of

Operational Research, 4(4):224 – 234, 1980.

E. Balas and T. Kis. On the relationship between standard intersection cuts, lift-and-project cuts,

and generalized intersection cuts. Math. Program., 160:85–114, 2016.

E. Balas and M. Perregaard. Lift-and-project for mixed 0–1 programming: recent progress. Discrete

Applied Mathematics, 123:129–154, 2002.

E. Balas and M. Perregaard. A precise correspondence between lift-and-project cuts, simple dis-

junctive cuts, and mixed integer gomory cuts for 0–1 programming. Math. Program., Ser. B, 94:

221–245, 2003.

E. Balas and A. Qualizza. Intersection cuts from multiple rows: A disjunctive programming ap-

proach. EURO J. Comput. Optim., 1:3–49, 2013.

E. Balas and T. Serra. When lift-and-project cuts are different. Technical report, 2018.

E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0–1

programs. Math. Program., 58:295–324, 1993.

E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0–1 programming by lift-and-project in a branch-

and-cut framework. Manage. Sci., 42:1229–1246, 1996.

A. Basu, M. Conforti, G. Cornuéjols, and G. Zambelli. Maximal lattice-free convex sets in linear

subspaces. Mathematics of Operations Research, 35(3):704–720, 2010.

A. Basu, P. Bonami, G. Cornujols, and F. Margot. Experiments with two-row cuts from degenerate

tableaux. INFORMS Journal on Computing, 23(4):578–590, 2011.

A. Basu, M. Campêlo, M. Conforti, G. Cornuéjols, and G. Zambelli. Unique lifting of integer

variables in minimal inequalities. Mathematical Programming, 141(1):561–576, 2013.

95

A. Basu, M. Conforti, and M. Di Summa. A geometric approach to cut-generating functions.

Mathematical Programming, 151(1):153–189, 2015.

W. Ben-Ameur and J. Neto. Acceleration of cutting-plane and column generation algo-

rithms:Applications to network design. Networks, 49(1):3–17, 2007.

T. Berger, Y. Sallez, S. Raileanu, C. Tahon, D. Trentesaux, and T. Borangiu. Personal rapid transit

in an open-control framework. Comput. Indust. Engrg., 61(2):300–312, 2011.

D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. Hooker. Decision Diagrams for Optimization.

Springer, 2016a.

D. Bergman, A. A. Ciré, W.-J. van Hoeve, and J. N. Hooker. Discrete optimization with binary

decision diagrams. INFORMS Journal on Computing, 28:47–66, 2016b.

R. E. Bixby, E. A. Boyd, and R. R. Indovina. MIPLIB: A test set of mixed integer programming

problems. SIAM News, 25:16, 1992.

R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P Savelsbergh. An updated mixed integer

programming library: MIPLIB 3.0. Optima, (58):12–15, 1998.

P. H. Bly and R. Teychenne. Three financial and socio-economic assessments of a personal rapid

transit system. In Proc. 10th Internat. Conf. Automated People Movers, pages 1–16, 2005.

P. Bonami. On optimizing over lift-and-project closures. Mathematical Programming Computation,

4:151–179, 2012.

V. Borozan and G. Cornuéjols. Minimal valid inequalities for integer constraints. Mathematics of

Operations Research, 34(3):538–546, 2009.

J. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of Mathematical

Analysis and Applications, 83(2):495 – 530, 1981.

J. Brake, J. D. Nelson, and S. Wright. Demand responsive transport: Towards the emergence of a

new market segment. J. Transport Geography, 12(4):323–337, 2004.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on

Computers, C-35:677–691, 1986a.

R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers, C-35(8):677–691, 1986b.

C. Buchheim, F. Liers, and M. Oswald. Local cuts revisited. Operations Research Letters, 36:

430–433, 2008.

96

C. Buchheim, F. Liers, and M. Oswald. Speeding up IP-based algorithms for constrained quadratic

0-1 optimization. Math. Program., Ser. B, 124:513–535, 2010.

C. Buchheim, F. Liers, and L. Sanità. An exact algorithm for robust network design. In Proceedings

of INOC 2011, pages 7–17. 2011.

F. Cadoux. Computing deep facet-defining disjunctive cuts for mixed-integer programming. Math-

ematical Programming, 122(2):197–223, 2010.

F. Cadoux and C. Lemaréchal. Reflections on generating (disjunctive) cuts. EURO J. Comput.

Optim., 1(1-2):51–69, 2013.

J. D. Camm. ASP, the art and science of practice: A (very) short course in suboptimization.

Interfaces, 44(4):428–431, 2014.

S. Ceria and J. Soares. Disjunctive cuts for mixed 0−1 programming: duality and lifting. GSB,

Columbia University, 1997.

R. Chevrier, A. Liefooghe L. Jourdan, and C. Dhaenens. Solving a dial-a-ride problem with a hybrid

evolutionary multi-objective approach: Application to demand responsive transport. Appl. Soft

Comput., 12(4):1247–1258, 2012.

COIN. COIN-OR (Common Infrastructure for Operations Research).

Available at http://www.coin-or.org.

M. Conforti and L. A. Wolsey. “Facet” separation with one linear program. CORE DISCUSSION

PAPER, (2016/16), 2016.

M. Conforti, G. Cornuéjols, and G. Zambelli. A geometric perspective on lifting. Operations

Research, 59(3):569–577, 2011a.

M. Conforti, G. Cornuéjols, and G. Zambelli. Corner polyhedron and intersection cuts. Surveys in

Operations Research and Management Science, 16(2):105 – 120, 2011b.

J. F. Cordeau and G. Laporte. The dial-a-ride problem: Models and algorithms. Ann. Oper. Res.,

153(1):29–46, 2007.

G. Cornuéjols and F. Margot. On the facets of mixed integer programs with two integer variables

and two constraints. Mathematical Programming, 120(2):429–456, 2008.

C. F. Daganzo. An approximate analytic model of many-to-many demand responsive transportation

systems. Transportation Res., 12(5):325–333, 1978.

97

E. Danna, M. Fenelon, Z. Gu, and R. Wunderling. Generating multiple solutions for mixed integer

programming problems. In M. Fischetti and D. P. Williamson, editors, Proceedings of IPCO,

pages 280–294. Springer, 2007.

S. Dash, S. S. Dey, and O. Günlük. Two dimensional lattice-free cuts and asymmetric disjunctions

for mixed-integer polyhedra. Mathematical Programming, 135(1):221–254, 2012.

S. Dash, O. Gnlk, and J. P. Vielma. Computational experiments with cross and crooked cross cuts.

INFORMS Journal on Computing, 26(4):780–797, 2014.

M. Dawande and J. N. Hooker. Inference-based sensitivity analysis for mixed integer/linear pro-

gramming. Operations Research, 48:623–634, 2000.

S. S. Dey and L. A. Wolsey. Two row mixed-integer cuts via lifting. Mathematical Programming,

124(1):143–174, 2010.

S. S. Dey, A. Lodi, A. Tramontani, and L. A. Wolsey. On the practical strength of two-row tableau

cuts. INFORMS Journal on Computing, 26(2):222–237, 2014.

M. Diana, M. M. Dessouky, and N. Xia. A model for the fleet sizing of demand responsive trans-

portation services with time windows. Transportation Res. Part B: Methodological, 40(8):651–666,

2006.

D. G. Espinoza. Computing with multi-row Gomory cuts. Operations Research Letters, 38(2):115

– 120, 2010.

M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Mathematical Programming,

110(1):3–20, 2007.

M. Fischetti and D. Salvagnin. An in-out approach to disjunctive optimization. In Proceedings of

CPAIOR, pages 136–140. 2010.

M. Fischetti, A. Lodi, and A. Tramontani. On the separation of disjunctive cuts. Mathematical

Programming A, 128:205–230, 2011.

Christodoulos A Floudas and Xiaoxia Lin. Continuous-time versus discrete-time approaches for

scheduling of chemical processes: a review. Computers & Chemical Engineering, 28(11):2109–

2129, 2004.

R. Fukasawa, L. Poirrier, and Á. S. Xavier. The (not so) trivial lifting in two dimensions. Technical

report, University of Waterloo, 2016.

G. Gamrath, B. Hiller, and J. Witzig. Reoptimization techniques for MIP solvers. In E. Bampis,

editor, Proceedings of SEA, pages 181–192. Springer, 2015.

98

GAMS Support Wiki. Getting a list of best integer solutions of my MIP, 2013. URL https:

//support.gams.com.

A. M. Geoffrion and R. Nauss. Parametric and postoptimality analysis in integer linear program-

ming. Management Science, 23(5):453–466, 1977.

F. Glover, A. Løkketangen, and D. L. Woodruff. An annotated bibliography for post-solution

analysis in mixed integer programming and combinatorial optimization. In M. Laguna and J. L.

González-Velarde, editors, OR Computing Tools for Modeling, Optimization and Simulation:

Interfaces in Computer Science and Operations Research, pages 299–317. Kluwer, 2000.

A. Goetzendorff, M. Bichler, P. Shabalin, and R. W. Day. Compact bid languages and core pricing

in large multi-item auctions. Management Science, 61(7):1684–1703, 2015.

R. E. Gomory. An algorithm for the mixed integer problem. Technical report, The Rand Corpora-

tion, 1960.

R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math.

Soc., 64:275–278, 1958.

P. Greistorfer, A. Løkketangen, S. Voß, and D. L. Woodruff. Experiments concerning sequential

versus simultaneous maximization of objective function and distance. Journal of Heuristics, 14:

613–625, 2008.

T. Hadžić and J. N. Hooker. Postoptimality analysis for integer programming using binary decision

diagrams. Technical report, Carnegie Mellon University, 2006a.

T. Hadžić and J. N. Hooker. Discrete global optimization with binary decision diagrams. In

Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming,

and Computational Algebraic Geometry (GICOLAG), Vienna, 2006b.

T. Hadžić and J. N. Hooker. Cost-bounded binary decision diagrams for 0–1 programming. In

P. van Hentemryck and L. Wolsey, editors, CPAIOR Proceedings, volume 4510 of Lecture Notes

in Computer Science, pages 332–345. Springer, 2007.

S. Hoda, W.-J. van Hoeve, and John N. Hooker. A systematic approach to MDD-based constraint

programming. In Proceedings of the 16th International Conference on Principles and Practices

of Constraint Programming, Lecture Notes in Computer Science. Springer, 2010.

S. Holm and D. Klein. Three methods for postoptimal analysis in integer linear programming.

Mathematical Programming Study, 21:97–109, 1984.

99

M. E. Horn. Multi-modal and demand-responsive passenger transport systems: A modelling frame-

work with embedded control systems. Transportation Res. Part A: Policy Practice, 36(2):167–

188, 2002a.

M. E. Horn. Fleet scheduling and dispatching for demand responsive passenger services. Trans-

portation Res. Part C: Emerging Tech., 10(1):35–63, 2002b.

A. J. Hu. Techniques for efficient formal verification using binary decision diagrams. Thesis CS-

TR-95-1561, Stanford University, Department of Computer Science, December 1996.

IBM Support. Using CPLEX to examine alternate optimal solutions, 2010. URL http://www-01.

ibm.com/support/docview.wss?uid=swg21399929.

J. J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. Wilson. A heuristic algorithm for the multi-

vehicle advance request dial-a-ride problem with time windows. Transportation Res. Part B:

Methodological, 20(3):243–257, 1986.

F. Kilinç-Karzan, A. Toriello, S. Ahmed, G. Nemhauser, and M. Savelsbergh. Approximating the

stability region for binary mixed-integer programs. Operations Research Letters, 37:250–254,

2009.

T. Kis. Lift-and-project for general two-term disjunctions. Discrete Optimization, 12:98 – 114,

2014.

J. Kronqvist, A. Lundell, and T. Westerlund. The extended supporting hyperplane algorithm for

convex mixed-integer nonlinear programming. J. Glob. Optim., 64:249–272, 2016.

C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell Systems Technical

Journal, 38:985–999, 1959.

J. D. Lees-Miller, J. C. Hammersley, and N. Davenport. Ride sharing in personal rapid transit

capacity planning. In 12th Internat. Conf. Automated People Movers, pages 321–332, 2009.

J. D. Lees-Miller, J. C. Hammersley, and R. E. Wilson. Theoretical maximum capacity as bench-

mark for empty vehicle redistribution in personal rapid transit. Transportation Res. Record: J.

Transportation Res. Board, 2146(1):76–83, 2010.

H. Lei, G. Laporte, and B. Guo. Districting for routing with stochastic customers. Eur. J. Trans-

portation Logist., 1(1?2):67–85, 2012.

Y. Li and J.-P. P. Richard. Cook, Kannan and Schrijver’s example revisited. Discrete Optimization,

5(4):724 – 734, 2008.

100

Z. Liu, X. Jiang, and W. Cheng. Solving in the last mile problem: Ensure the success of public

bicycle system in beijing. Procedia Soc. Behav. Sci., 43:73–78, 2012.

Q. Louveaux, L. Poirrier, and D. Salvagnin. The strength of multi-row models. Mathematical

Programming Computation, 7(2):113–148, 2015.

J. Mageean and J. D. Nelson. The evaluation of demand responsive transport services in europe.

J.Transport Geography, 11(4):255–270, 2003.

A. Mahéo, P. Kilby, and P. Van Hentenryck. Benders decomposition for the design of a hub and

shuttle public transit system. Transportation Science, 2018.

E. Miller-Hooks and B. Yang. Updating paths in time-varying networks given arc weight changes.

Transportation Science, 39:451–464, 2005.

K. Mueller and S. P. Sgouridis. Simulation-based analysis of personal rapid transit systems: Service

and energy performance assessment of the masdar city prt case. J. Adv. Transportation, 45(4):

252–270, 2011.

K. Palmer, M. Dessouky, and T. Abdelmaguid. Impacts of management practices and advanced

technologies on demand responsive transit systems. Transportation Res. Part A: Policy Practice,

38(7):495–509, 2004.

L. Quadrifoglio, M. M. Dessouky, and F. Ordón̈ez. A simulation study of demand responsive transit

system design. Transportation Res. Part A: Policy Practice, 42(4):718?737, 2008.

A. Raghunathan, D. Bergman, J. Hooker, T. Serra, and S. Kobori. The integrated last-mile

transportation problem (ilmtp). In Proceedings, International Conference on Automated Planning

and Scheduling (ICAPS) – to appear, 2018.

L. Schrage and L. Wolsey. Sensitivity analysis for branch and bound integer programming. Oper-

ations Research, 33:1008–1023, 1985.

T. Serra. Reformulating the disjunctive cut generating linear program. Technical report, 2018.

T. Serra and J. Hooker. Compact representation of near-optimal integer programming solutions.

Technical report, 2017.

S. Shaheen. U.S. carsharing & station car policy considerations: Monitoring growth, trends &

overall impacts. Technical report, Institute of transportation studies, Working paper series,

Institute of Transportation Studies, UC Davis, 2004.

Y. Shen, H. Zhang, and J. Zhao. Simulating the First Mile Service to Access Train Stations by

Shared Autonomous Vehicle. In Transportation Research Board 96th Annual Meeting, 2017.

101

N. D. Thien. Fair cost sharing auction mechanisms in last mile ridesharing. PhD thesis, Singapore

Management University, 2013.

C. Tjandraatmadja and W.-J. van Hoeve. Target cuts from relaxed decision diagrams. Submitted,

2016.

P. Toth and D. Vigo. Vehicle Routing: Problems, Methods and Applications. SIAM, second edition,

2014.

S. Van Hoesel and A. Wagelmans. On the complexity of postoptimality analysis of 0/1 programs.

Discrete Applied Mathematics, 91:251–263, 1999.

A.F. Jr. Veinott. The supporting hyperplane method for unimodal programming. Operations

Research, 15(1):147–152, 1967.

H. Wang. Routing and Scheduling for a Last-Mile Transportation Problem. Transportation Science,

pages 1–17 (forthcoming), 2017. doi: https://doi.org/10.1287/trsc.2017.0753. URL http://

pubsonline.informs.org/doi/abs/10.1287/trsc.2017.0753.

I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. Society

for Industrial and Applied Mathematics, 2000.

N. H. Wilson and C. Hendrickson. Performance models of flexibly routed transportation services.

Transportation Res. Part B: Methodological, 14(1):67–78, 1980.

102

