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Abstract

With increasing deployment of optimization and Artificial Intelligence (AI) to assist high-stake real
life decisions, fairness has become an essential factor of consideration for both the designers and
users of these tools. This dissertation studies new approaches for formulating, attaining and eliciting
fairness. Chapter one begins with a brief introduction of the background on fairness and a selection of
common fairness measures.

Chapter two studies balancing fairness and efficiency through optimization models. We propose
new social welfare functions (SWFs) as combined measures of two well-known criteria, Rawlsian
leximax fairness and utilitarianism. We then design a procedure to sequentially maximize these SWFs
with mixed integer/linear programming models to find socially optimal solutions. This approach
has practical potentials on a wide range of resource allocation applications, and is demonstrated on
realistic size applications in healthcare provision and shelter assignment for disaster preparation.

Chapter three considers an optimization task motivated by fair machine learning (ML). When
developing fair ML algorithms, it is useful to understand the computational costs of fairness in
comparison to the standard non-fair setting. For fair ML methods that utilize optimization models
for training, specialized optimization algorithms have potentials to offer better computational per-
formances than generic solvers. In this chapter, I explore this question for support vector machines
(SVMs), and design block coordinate descent type algorithms to train SVMs containing linear fairness
constraints. Numerical experiments highlight that the new specialized algorithms are more efficient
than an off-the-shelf solver for training fair SVMs.

Chapter four examines social welfare optimization as a general paradigm for formalizing welfare-
based fairness in AI systems. Contrary to commonly used statistical bias metrics in fair AI, optimizing
a social welfare objective supports broader perspective on fairness motivated by distributive justice
considerations. We propose in-processing and post-processing integration schemes between social
welfare optimization and AI, in particular, ML and rule-based AI. We implement and evaluate the
integration schemes on a simulated loan processing instance. The empirical results demonstrate the
advantages of the proposed integration strategies. We conclude this chapter by highlighting research
directions to pursue for a holistic view of welfare-based fairness.

The next two chapters explore the human-centric perspective to elicit people’s moral values
through preference learning. Chapter five studies a general preference learning framework based on
online learning (OL) from revealed preferences: a learner learns an agent’s private utility function
through interactions in a changing environment. Through designing a new convex loss function, we



vi

design a flexible OL framework that enables a unified treatment of usual loss functions from literature
and supports a variety of online convex optimization algorithms. This framework has advantages in
regret performance and solution time over other OL algorithms from the literature.

Lastly, chapter six explores a moral decision-making inspired task. This chapter considers
the modelling and elicitation of people’s dynamic ethical judgments in the sequential allocation
of resources. We utilize a Markov Decision Process model to represent a sequential allocation
task, where the state rewards capture people’s moral preferences, thus people’s ethical judgments
are reflected via policy rewards. We design a preference inference model which relies on active
preference-based reward learning to infer the unknown reward function. The learning framework is
applied in human-subject experiments on Amazon Mechanical Turk to understand people’s moral
reasoning in a hypothetical scenario of allocating scarce medical resources.
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Chapter 1

Introduction

1 Fairness is important to people's daily lives and society. As a key component of ethics, fairness

seeks equitable distribution of resources and opportunities to promote equality, justice and social

well-beings. In real-life decisions and policies, it is morally desirable and socially sustainable to

pursue fairness. With optimization and Arti�cial intelligence (AI) tools increasingly applied to assist

high-stake decisions, such as, optimizing humanitarian operations with resource allocation models,

using machine learning models for criminal risk assessment, fairness is no longer a nice-to-have

advantage, but rather a necessary property of practical and trustworthy decision support models and

algorithms. This dissertation speaks to the rising demand of better understanding of fairness, and

develops new approaches and insights for fairness in optimization and AI.

In contrast to the widely recognized signi�cance of fairness, there is no uniformly superior

interpretation and operationalization of fairness. Besides the large variety of fairness related theories

proposed across academic �elds, people hold diverse fairness perceptions as in�uenced by their

personal backgrounds and speci�c decision contexts. This dissertation explores two perspectives for

the fundamental questions,what is fairnessandhow to be fair.

One perspective is the formulation of fairness optimization models in alignment with ethics

principles. Optimization has long been used to support decision making. Most practical optimization

problems involves the allocation decisions of some resources. In recent years, optimization also

has been extensively studied in arti�cial intelligence, especially in machine learning (ML) where

optimization models are often core components in a ML framework. Conventionally, optimization

models have a ef�ciency-driven objective function. For resource allocation decisions, the objective

describes seeking the most effective use of resources. For example, a government agency aims to

maximize the total population bene�ts from healthcare provision, a company tries to minimize costs

and maximize pro�ts during facility expansion. For optimization-based ML methods, the standard

objective focuses on minimizing the total prediction losses to seek high accuracy. By pursuing

ef�ciency goals, these conventional optimization models may lead to unfair results, so a crucial

task is to incorporate fairness and equity into existing optimization models. While it is normally

1This chapter uses excerpts from a joint work with John Hooker
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straightforward to formulate an ef�ciency objective, fairness can be understood in multiple ways, with

no generally accepted method for representing any of them in a mathematical idiom. Moreover, the

growth of integrated methods, such as, optimization based on ML predictions, in modern decision-

making adds to the challenge of formulating fairness models. As discussed above, this perspective

opens up interesting modeling and computational questions in the broad �eld of AI. Chapter 2, 3, 4

studies such questions.

The other perspective is to elicit fairness beliefs, and more generally ethical values, from human

stakeholders. Conventional approaches to de�ning and justifying fairness are driven by principles,

namely, the central planner determines what are the suitable ethical values and what should be the

resulting fairness notion. Due to the large variety of fairness concepts and the potentially different

positions held by the planner and stakeholders, the chosen fairness notion could be incompatible

with stakeholders' moral beliefs and ethics principles. The possible incompatibility has led to the

recent research thread of human-centric fairness, a bottom-up strategy aiming to learn what people

believe to be fair under different decision contexts then bring their judgments into the formulation of

fairness. While there are situations where people's perspectives should not be incorporated due to

irrationality or bias, in general, decision makers would seek to align fairness interventions with what

the people desire, so that they would be more welcoming to these interventions. A core component of

this perspective is the modeling, elicitation and learning of preferences: chapter 5 studies a general

preference learning question in an online setup, and chapter 6 explores a concrete moral preference

learning task.

1.1 Background on Fairness

Fairness has a long history of being studied across �elds including philosophy, sociology, psychology

and economics. These early literature provide ethical and conceptual foundations for the more recent

discussion of fairness in operations research and AI, where the goal is to operationalize fairness via

optimization and machine learning for concrete applications. A well known framework to distinguish

fairness concepts is to perceive fairness via distributive justice versus procedural justice. The high-

level intuition is that distributive justice concerns fairness in the outcomes from a decision, whereas

procedural justice emphasizes fairness in the process of decision making. This dissertation focuses on

outcome fairness via the distributive justice perspective.

Mathematical formalization of outcome fairness can be further distinguished into utility-based

and parity-based de�nitions. Utility-based fairness is broadly used in resource allocation to attain a

fair distribution of utilities, which can be pro�ts, negative costs, or some other bene�ts appropriate to

the application. Utilities were initially proposed as part of the theory of utilitarianism, which seeks to

maximize the overall well-beings of the population. In particular, the standard ef�ciency formulation

follows utilitarianism and uses the total or average utility as a measure of the population's overall

welfare. Parity-based fairness is typically considered in machine learning to seek unbiased treatments
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towards the involved groups or individuals. There is a large number of fairness de�nitions in both

types, and samples of popular choices in literature and practice are summarized below.

1.1.1 Utility-based Fairness

Supposeuuu = ( u1; : : : ;un) is a vector of utilities distributed across parties1; : : : ;n andW(uuu) is a utility-

based fairness measure.W(uuu) is a function aggregating the utility values to evaluateuuu with respect to

the selected fairness notion. We categorize utility-based fairness criteria into three types.

Inequality Measures

The �rst type measures fairness via the degree of equality in the distribution of utilities, for which

several statistical metrics have been proposed (Cowell 2000, Jenkins and Van Kerm 2011). There is a

wide variety of philosophical opinion on the ethical signi�cance of equality, ranging from the view

that we have an irreducible obligation to strive for equality, to the view that inequality is unfair only

when it reduces total utility (Frankfurt 2015, Par�t 1997, Scanlon 2003). In any event, it is generally

acknowledged that equality is not the same concept (or cluster of concepts) as fairness, even when

the two are closely related. An equality metric can be appropriate in a context where a speci�cally

egalitarian distribution is the primary goal, without regard for ef�ciency or other forms of equity.

Inequality measures have been used for inequity averse optimization in a broad range of applications.

More recently, inequality measures are also considered in the growing area of algorithmic fairness.

We next introduce several commonly studied de�nitions.

Measures of relative dispersion2. Therelative rangeof utilities is an inequality metric, that,

when negated, yields the fairness measure,

W(uuu) = � (1=ū)
�
umax� umin

�

whereumax = maxi f uig, umin = mini f uig, andū = ( 1=n) å i ui .

Another dispersion metric is therelative mean deviation, which measures inequality more compre-

hensively by considering all utilities rather than only the minimum and maximum. The corresponding

fairness measure is,

W(uuu) = � (1=ū)å
i

jui � ūj:

Thecoef�cient of variationis the normalized standard deviation, leading to the fairness measure

below. It may be appropriate when large deviations from the mean are disproportionately signi�cant,

but it has the possible drawback of computational dif�culty due to the quadratic component.

W(uuu) = �
1
ū

h1
nå

i
(ui � ū)2

i 1
2 :

2All of the following dispersion measures are normalized by the mean utility so as to be invariant under rescaling of
utilities.
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Gini coef�cient and Hoover index. The Gini coef�cient is by far the best known measure

of inequality, as it is routinely used to measure income and wealth inequality (Gini 1912). It is

proportional to the area between the Lorenz curve and a diagonal line representing perfect equality.

Lorenz curve plots the proportion of the total wealth or bene�ts accumulated to the bottomx% of the

population, thus indicating the degree of inequality via its deviation from the perfect equality line. By

de�nition, Gini coef�cient vanishes under perfect equality. We can use the negative Gini coef�cient

as a fairness measure,

W(uuu) = �
1

2ūn2 å
i; j

jui � u j j:

TheHoover indexis also related to the Lorenz curve, as it is proportional to the maximum vertical

distance between the Lorenz curve and a diagonal line representing perfect equality (Hoover 1936). It

can be interpreted as the fraction of total utility that would have to be redistributed to achieve perfect

equality. The corresponding fairness measure is

W(uuu) = �
1

2nūå
i

jui � ūj:

Fairness for the Disadvantaged

Rather than focus solely on inequality, fairness measures can prioritize the disadvantaged. Far and

away the most famous of such measures is the difference principle of John Rawls (1999), a maximin

criterion that is based on careful philosophical argument and debated in a vast literature (surveyed in

Freeman 2003, Richardson and Weithman 1999). The difference principle can be plausibly extended

to a lexicographic maximum principle. There is also the McLoone index, which is a statistical measure

that emphasizes the lot of the less advantaged.

The Rawlsian maximin criterion has been a popular fairness measure for decades. Early works

on fair resource allocation, such as bandwidth allocation, often choose the maximin criterion to seek

the best possible performance for the worst-off service among services competing for bandwidth.

Recent research has applied the criterion to more diverse problem contexts, including peer review

paper assignment, ridesharing, etc.

Rawlsian criteria. The Rawlsiandifference principlestates that inequality should exist only to

the extent that it is necessary to improve the lot of the worst-off. It is defended with a social contract

argument that, in its simplest form, maintains that the structure of society must be negotiated in an

“original position” in which people do not yet know their station in society. Rawls argues that one

can rationally assent to the possibility of ending up on the bottom only if that person would have

been even worse off in any other social structure, whence an imperative to maximize the lot of the

worst-off. The principle is intended to apply only to the design of social institutions, and only to the

distribution of “primary goods,” which are goods that any rational person would want. Yet it can be

adopted as a general criterion for distributing utility, namely amaximincriterion that maximizes the
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smallest utility as the fairness measure,

W(uuu) = min
i

f uig:

The maximin criterion can be plausibly extended tolexicographic maximization(leximax). Lex-

imax is achieved by �rst maximizing the smallest utility subject to resource constraints, then the

second smallest, and so forth.

McLoone index. TheMcLoone indexcompares the total utility of individuals at or below the

median utility to the utility they would enjoy if all were brought up to the median utility. The index is

1 if nobody's utility is strictly below the median, and it approaches 0 if the utility distribution has a

very long lower tail (on the assumption that all utilities are positive). The McLoone index bene�ts the

disadvantaged by rewarding equality in the lower half of the distribution, but it is unconcerned by the

existence of very rich individuals in the upper half. The de�nition is,

W(uuu) =
1

jI (uuu)jũ å
i2 I (uuu)

ui

whereũ is the median of utilities inuuu andI(uuu) is the set of indices of utilities at or below the median,

so thatI (uuu) = f i j ui � ũg.

Combined Fairness and Ef�ciency

The previous examples are all pure fairness measures, which are appropriate when there is no need

to balance fairness against the overall well-being of the population. However, practical situations

frequently call for both fairness and ef�ciency to be explicitly considered. We next review three

common schemes for combining the two criteria and give examples of the combined measures

following each scheme. Chapter 2 provides further discussion of these measures.

Convex combination. The most obvious approach is to maximize a convex combination of

fairness and ef�ciency. SupposeF (uuu) is a pure fairness measure, then a combined measure is

W(uuu) = ( 1� l )å
i

ui + l F (uuu):

The combination strategy is applicable to both inequality indices and fairness for the disadvantaged.

For instance, Eisenhandler and Tzur (2019) and Mostajabdaveh et al. (2019) propose combined

measures with variations of the Gini coef�cient asF (uuu). Yager (1997) and Ogryczak andŚliwiński

(2003) consider the combinations with the Rawlsian maximin criterion usingF (uuu) = mini f uig.

Alpha Fairness.Alpha fairness provides an alternative and perhaps more satisfactory means of

combing fairness and ef�ciency than convex combinations. Alpha fairness regulates the combination

with a continuous parametera , where larger values ofa signify a greater emphasis on fairness. It
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(Mo and Walrand 2000, Verloop et al. 2010) is represented by a family of functions having the form

Wa (uuu) =

8
>><

>>:

1
1� a å

i
u1� a

i for a � 0; a 6= 1

å
i

log(ui) for a = 1

Alpha fairness characterizes a continuum that stretches from a utilitarian criterion (a = 0) to a

maximin criterion asa ! ¥ . Lan et al. (2010) provide an axiomatic treatment ofa -fairnessin the

context of network resource allocation, and Bertsimas et al. (2012) study worst-case fairness/ef�ciency

trade-offs implied by this criterion. The parametera can be interpreted as quantifying the trade-off as

follows: utility u j must be reduced by(u j=ui)a units to compensate for a unit increase inui (< u j )

while maintaining constant social welfare. This gives priority to less-advantaged parties, as we desire,

with a indicating how much priority. Yet it is not obvious what kind of trade-off, and therefore what

value ofa , is appropriate for a given application. There is no apparent interpretation ofa independent

of its role in thea -fairness function.

Threshold Criteria. Williams and Cookson (2000) suggest two ways to combine utilitarian and

maximin objectives using threshold criteria for two persons. One, based on an ef�ciency threshold,

begins with a maximin criterion but switches to a utilitarian criterion when the overall utility cost of

fairness becomes too great. More explicitly, Williams and Cookson uses a maximin criterion when

the two utilities are suf�ciently close to each other withju1 � u2j � D, otherwise it uses a utilitarian

criterion. Hooker and Williams (2013) provide ann-personextension for this criterion. Parities

with ui � umin � D are treated in solidarity with the worst-off through the maximin criterion, and the

remaining greater utilities are treated as themselves. The combined fairness measure is the following,

W(uuu) = ( n� 1)D+
n

å
i= 1

maxf ui � D;uming:

It is evident thatD= 0 corresponds to a purely utilitarian objective andD= ¥ to a purely maximin

objective.

Williams and Cookson also propose the reverse perspective based on a fairness threshold: a

utilitarian criterion is used whenju1 � u2j � D, then a maximin criterion is used since the inequity has

become too severe. Following the same argument from Hooker and Williams (2012), this de�nition

can be extended to then-personcase and leads to the combined measure below. The main difference

with the previous de�nition is that, parities withui � umin � Dare now counted as equal toumin and

the other utilities are counted as themselves.

W(uuu) = nD+
n

å
i= 1

minf ui � D;uming:

Here,D= 0 corresponds to a purely maximin objective andD= ¥ to a purely utilitarian objective.
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In Chapter 2, we illustrate that threshold-based combinations that rely on the maximin notion for

fairness are sensitive to the utility level of only the very worst-off party. The equity situation of other

disadvantaged parties become irrelevant, so long as their utilities are withinD of the lowest. As a

result, fairness among the disadvantaged plays almost no role in the solution. This situation can be

addressed to a great degree by replacing maximin fairness with leximax fairness. We defer details on

these measures combining leximax fairness to Chapter 2.

1.1.2 Parity-based Fairness

In the �eld of machine learning, there have been rising demands for fairness considerations to eliminate

prejudice favoritism toward an individual or a group based on their inherent or acquired characteristics.

One well-known example that motivates extensive interest in fair ML is the series of research efforts

on whether the COMPAS software, supported by a recidivism risk prediction algorithm, is biased

against African-Americans (Angwin et al. 2016, Dieterich et al. 2016). The focus of fair ML is

primarily on mitigating this kind of bias and ensuring that certain minority groups, often de�ned by

law, receive fair treatment. Among ML frameworks, fairness in supervised learning has been most

widely studied. The community has seized upon traditional statistical measures of classi�cation error

to detect bias, so that it can be avoided when possible.

In a typical scenario, an ML model is trained to make yes–no decisions as to who receives a

certain bene�t, such as a mortgage loan, a job interview, parole, and so forth, based on various features

they possess. A fairness test compares decisions for a minority or protected group with those for

the remainder of the population. Four outcomes are possible for each individual: a true positive (the

ML model correctly selects the individual for a bene�t), a false positive (it incorrectly selects), a true

negative (it correctly rejects), and a false negative (it incorrectly rejects). We will refer to the number

of individuals in these four groups, respectively, as TP, FP, TN, and FN. Various metrics involving

these four statistics are compared between the minority group and the rest of the population, each

yielding a measure of parity between the groups.

We setdi = 1 when individuali should be selected, anddi = 0 otherwise, anddi = 1 wheni

is selected anddi = 0 otherwise. We letN1 be an index set for individuals in the protected group,

andN0 for those in the remainder of the population. For simplicity of exposition, we consider the

minority group as the protected group, and the majority as the remainder. Group fairness measures

W(ddd) are de�ned directly in terms of the decision vectorddd. Four of the widely studied de�nitions are

summarized below. We note that fair ML literature also considers other types of de�nitions, including

individual fairness, counterfactual fairness, and more recently, utility-based fairness (Chapter 4

reviews relevant literature).

Demographic parity. The simplest bias metric is based ondemographic parity, also known as

proportional/statistical parity. This metric was introduced by Dwork et al. (2012). It seeks to equalize

the fraction of minority individuals selected for bene�ts and the fraction of majority individuals

selected. It is de�ned by comparing the ratio(TP+ FP)=(TP+ FP+ TN+ FN) across the two groups.
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The demographic parity is de�ned as:

W(ddd) =
1

jN1j å
i2N1

di �
1

jN0j å
i2N0

di :

A main critic of demographic parity is its strict equality of outcomes. By seeking demographic

parity and requiring individuals in both groups receive bene�ts at equal probabilities, we may

discriminate against a minority group that happens to be to be more quali�ed for bene�ts than the

majority on the average.

Equalized odds.Theequalized oddsmetric is based on two related but distinct criteria. One is

that the fraction ofquali�ed minority persons selected is the same as the fraction of quali�ed majority

persons selected (Hardt et al. 2016). The other is that the fraction ofunquali�ed minority persons

selected is the same as the fraction of unquali�ed majority persons selected (Zafar et al. 2017). The

former is also known asequality of opportunityand is de�ned by comparing the ratioTP=(TP+ FN):

W(ddd) =
å i2N1

didi

å i2N1
di

�
å i2N0

didi

å i2N0
di

:

The latter criterion is based on the ratio FP=(FP+ TN):

W(ddd) =
å i2N1

(1� di)di

å i2N1
(1� di)

�
å i2N0

(1� di)di

å i2N0
(1� di)

:

Accuracy parity. The two-sided evaluation in equalized odds can be obviated simply by measur-

ing the fraction of predictions that are accurate, which is the ratio(TP+ TN)=(TP+ TN+ FP+ FN),

namely,

W(ddd) =
1

jN1j å
i2N1

�
didi + ( 1� di)(1� di)

�
�

1
jN0j å

i2N0

�
didi + ( 1� di)(1� di)

�
:

Predictive rate parity. When one wishes to compare what fraction individuals selected from

each group should have been selected, the relevant measure ispredictive rate parity. This measure

aims to equalize TP=(TP+ FP), namely,

W(ddd) =
å i2N1

didi

å i2N1
di

�
å i2N0

didi

å i2N0
di

:

Predictive parity is primarily considered in risk assessment contexts, such as, recidivism prediction

(Dieterich et al. 2016, Chouldechova 2017), child maltreatment screening (Chouldechova et al. 2018).
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1.2 Outline and Contribution

Chapter 2 studies the trade-off between fairness and ef�ciency, an important task in many practical

decisions. We propose a principled and practical method for balancing these two criteria in an

optimization model. Following an assessment of existing schemes, we de�ne a set of social welfare

functions (SWFs) that combine Rawlsian leximax fairness and utilitarianism and overcome some of

the weaknesses of previous approaches. In particular, we regulate the equity/ef�ciency trade-off with

a single parameter that has a meaningful interpretation in practical contexts. We formulate the SWFs

using mixed integer constraints and sequentially maximize them subject to constraints that de�ne

the problem at hand. We demonstrate the method on problems of realistic size involving healthcare

resource allocation and disaster preparation, with solution times of several seconds at most.

Chapter 3 examines an optimization problem rising from training fair support vector machine

(SVM). SVM is a popular supervised learning model that constructs hyperplane(s) for tasks including

classi�cation and regression. Motivated by the computational advantages of specialized algorithms

over general-purpose optimization solvers in training SVM, we propose specialized algorithms to

train SVMs with fairness constraints. We focus on fairness constraints that are linear functions of the

weight vector of the separating hyperplane in a SVM. Utilizing the structure of the dual formulation

of this particular form of fair SVM, we design a coordinate descent type subroutine to extend two dual

based standard SVM training algorithms, the dual coordinate descent (DCD) algorithm for SVM with

a linear kernel and the sequential minimal optimization (SMO) algorithm for SVM with an arbitrary

kernel, to train fair SVMs. We establish convergence properties of these new algorithms. In numerical

experiments, our training algorithms train fair SVMs much more ef�ciently than an off-the-shelf

quadratic program solver. Moreover, compared to training standard SVMs, our algorithms allow

fairness constraints to be included with minor runtime increase.

Chapter 4 proposes optimization as a general paradigm for formalizing welfare-based fairness

in AI systems. We argue that optimization models allow formulation of a wide range of fairness

criteria as social welfare functions, while enabling AI to take advantage of highly advanced solution

technology. We highlight that social welfare optimization supports a broad perspective on fairness

motivated by distributive justice considerations, as literature has designed social welfare functions

capturing various concepts of equity. We formalize in-processing and post-processing integration

schemes between social welfare optimization and AI, in particular machine learning and rule-based

AI. We then present empirical results from a simulated loan processing example to demonstrate the

viability and potentials of the integration strategies. Our optimization-centric integrated decision

framework broadens the research scope of welfare-based fairness, and opens up interesting directions

to pursue a more comprehensive view of fair decision-making.

Chapter 5 studies the problem of online learning (OL) from revealed preferences: a learner

wishes to learn a non-strategic agent's private utility function through observing the agent's utility-

maximizing actions in a changing environment. We adopt an online inverse optimization setup, where

the learner observes a stream of agent's actions in an online fashion and the learning performance
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is measured by regret associated with a loss function. We design a new loss function that is convex

under relatively mild assumptions. Through establishing that the regret with respect to the new loss

bounds the regret with respect to the three classical loss functions used in literature, we provide a

�exible OL framework that enables a uni�ed treatment of loss functions and supports a variety of

online convex optimization algorithms. We demonstrate with theoretical and empirical evidence that

our framework based on the new loss function (coupled in particular with the online Mirror Descent)

has signi�cant advantages in terms of regret performance and solution time over other OL algorithms

from the literature and bypasses the previous technical assumptions as well.

Chapter 6 investigates the modeling and inferring of people's moral preferences. We consider a

setting in which a social planner or policymaker has to make a sequence of decisions regarding the

allocation of scarce resources in high-stakes social domains. Our goal is to understand stakeholders'

moral judgments regarding such allocation policies. In particular, we evaluate the sensitivity of these

judgments to the context/history of allocations and their perceived future impact on various socially

salient groups. We propose a mathematical model to capture and infer stakeholders' potentially-

dynamic moral preferences. We illustrate our model through small-scale human-subject experiments,

which elicit crowd workers' moral judgments regarding scarce medical resource distributions during a

hypothetical viral epidemic. We observe that participants' preferences are indeed history- and impact-

dependent. Additionally, our preliminary experimental results reveal intriguing patterns speci�c to

medical resources—a topic that is especially salient in the backdrop of the global covid-19 pandemic.



Chapter 2

Combining Leximax Fairness and

Ef�ciency in a Mathematical

Programming Model

2.1 Introduction

1 Fairness is an important consideration across a wide range of optimization models. It can be a

central issue in health care provision, disaster planning, workload allocation, public facility location,

telecommunication network management, traf�c signal timing, and many other contexts. While it

is normally straightforward to formulate an objective function that re�ects ef�ciency or cost, it is

not obvious how to express fairness in mathematical form. When both fairness and ef�ciency are

desired, as is typical in practice, there is the additional challenge of mathematically integrating them

in a tractable model.

For example, when a natural disaster brings down the electric power grid, crisis managers

may dispatch crews to urban areas �rst in order to restore power to more households quickly, thus

maximizing ef�ciency. Yet this may cause rural areas to experience very long blackouts, which could

be seen as unfair. A more satisfactory solution might give some amount of priority to rural customers,

but without imposing too much harm on the population as a whole. Similarly, traf�c signal timing

that minimizes total delay may result in impracticably long wait times for traf�c on minor streets that

cross a main thoroughfare. Again a balance between equity and ef�ciency may be desirable. The

issue can be especially acute in health care. Expensive treatments or research programs that prolong

the life of a relatively few gravely ill patients may divert funds from preventive health measures that

would spare thousands the suffering brought by less serious diseases.

In this chapter, we develop a practical and yet principled approach to balancing ef�ciency and

fairness that can be implemented with mixedinteger/linear programming (MILP) models. While

1This chapter is based on joint work with John Hooker, and has been published in Chen and Hooker (2020, 2022a).
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there are many possible measures of fairness, we choose a criterion based ultimately on John Rawls'

concept of justice-as-fairness (Rawls 1999). One consequence of the Rawlsian analysis is his famous

difference principle, which states roughly that a fair distribution of resources is one that maximizes

the welfare of the worst-off. Rawls defends the principle with a social contract argument that can

be plausibly extended to lexicographic maximization. That is, the welfare of the worst-off is �rst

maximized subject to resource constraints, then the second worst-off, and so forth. The Rawlsian

perspective has been defended by closely reasoned philosophical arguments in a vast literature

(Richardson and Weithman 1999, Freeman 2003).

The Rawlsian argument goes roughly as follows. Let's suppose that all concerned parties adopt

an agreed-upon social policy in an original position behind a “veil of ignorance” as to their identity.

It must be a policy that all parties can rationally accept upon learning who they are. Rawls argues

that no rational decision maker will accept a policy in which she is the least advantaged, unless she

would have been even worse off under any other policy. A fair outcome should therefore maximize

the welfare of the worst-off. The argument can be employed recursively to defend a leximax criterion.

Rawls intended his principle to apply only to the design of social institutions, and to pertain only to

the distribution of “primary goods,” which are goods that any rational person would want. Yet it can

be plausibly extended to distributive justice in general, particularly if it is appropriately combined

with an ef�ciency criterion.

A fundamental question that arises in the integration of equity and ef�ciency is how to regulate the

trade-off between the two. We �nd in a survey of existing models that it is rarely clear how trade-off

parameters can be selected and interpreted in a practical context. However, the modeling scheme

of Hooker and Williams (2012) offers a potentially appealing approach to this problem. It governs

the trade-off between a Rawlsian maximin and a utilitarian criterion with a single parameterD that

has the same units as utility and can be related naturally to the problem at hand. The value ofD is

chosen so that parties whose utility is withinD of the lowest are seen as suf�ciently disadvantaged to

deserve priority. Larger values ofD result in greater equity. The model also has a practical mixed

integer/linear programming (MILP) formulation.

The Hooker–Williams (H–W) scheme has a serious limitation, however. Because its fairness

component is the maximin criterion, the actual utility levels of disadvantaged parties other than the

very worst-off have no bearing on social welfare. As a result, the solution can be insensitive to most

equity considerations. This outcome is particularly unsatisfactory when resource limitations tightly

constrain the bene�ts available to a few parties, a situation we have found to be common in practice.

The H–W model awards what utility it can to the most highly-constrained party, whereupon the welfare

of other disadvantaged parties becomes irrelevant, and all solutions become virtually indistinguishable

with respect to equity. The fairness criterion plays essentially no role in the determination of an

optimum among a potentially large number of outcomes considered equally desirable by the H–W

scheme, even for arbitrarily large values ofD.
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2.1.1 Our Approach and Results

A natural way to address this problem is to combine ef�ciency with a lexicographic criterion rather

than a maximin criterion. This allows the utility levels of all disadvantaged parties to factor into social

welfare. However, it poses a dif�cult modeling challenge at both a theoretical and a computational

level. We meet the challenge by maximizing a sequence of social welfare functions that, except for the

�rst, are quite different from the single function used in the H–W model. Nonetheless the parameter

D has a similar interpretation, with increasingD corresponding to greater prioritization of the fairness

criterion.

We show how to formulate these optimization problems as a set of practical MILP models. These

MILP problems have substantially different constraint sets and polyhedral properties than the H–W

formulation. We also describe a family of valid inequalities that can be added to tighten the models.

We extend these results to the common situation in which utility is distributed to groups rather than

individuals, such as organizations, regions, or demographic groups. We conclude this chapter by

demonstrating the practical applicability of our approach on a healthcare resource allocation problem

and an emergency preparedness problems. The former allows us to compare results with those

reported by Hooker and Williams (2012) on the same problem. The latter is a shelter location and

assignment problem of realistic size. We �nd that our approach yields reasonable and nuanced socially

optimal solutions for both problems, with computation times ranging from a fraction of a second to

18 seconds for a givenD.

2.1.2 Basic De�nitions

An optimization model for integrating fairness and ef�ciency can be viewed as maximizing asocial

welfare function(SWF)F(uuu). The value of the function is interpreted as measuring the desirability of

a given distributionuuu = ( u1; : : : ;un) of utilities, whereui is the amount of utility allocated to partyi.

We assume the optimization model has the general form

max
uuu� 000

�
F(uuu)

�
� uuu 2 U

	
(2.1)

whereU is the set of feasible utility vectors. In practice,U is de�ned by a constraint set that generally

contains additional variables. We illustrate realistic models of this kind in Section 6.3.

We de�ne aleximaxsolution of(2.1)with respect to a nondecreasing ordering of utilities rather

than a predetermined ordering, since the former is relevant to the Rawlsian criterion. Thus given

two feasible solutionsuuu;uuu
0
2 U of (2.1), we leti1; : : : ; in be any permutation of1; : : : ;n for which

ui1 � � � � � uin, andk1; : : : ;kn any permutation for whichu0
k1

� � � � � u0
kn

. Thenuuu 2 U is a leximax

solution of(2.1) if for any uuu
0
2 U and anỳ 2 f 1; : : : ;ng such thatui j = u0

k j
for j = 1; : : : ; ` � 1, we

haveui` � u0
k`

.

Two properties that SWFs can possess will be helpful for assessing the equity measures discussed

in the next section. ThePigou–Dalton(P–G) condition is frequently used to assess social welfare
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functions, particularly those that measure equality (Dalton 1920, Moulin 2004). It is satis�ed when

any utility transfer from a better-off party to a worse-off party increases (or does not reduce) social

welfare. Given a utility vectoruuu with ui < u j , we say that aP–G transferis a transfere > 0 of utility

from u j to ui such thatui + e � u j � e. ThenF(uuu) satis�es the P–G condition if for anyuuu, and anyuuu0

that results from a P–G transfer, we haveF(uuu0) � F(uuu).

TheChateauneuf-Moyes(C–M) condition is a slightly weaker condition that considers certain

utility transfers from a better-off class to a worse-off class rather than from one individual to another.

We will refer to these asC–M transfers. Chateauneuf and Moyes (2005) suggest that their condition

is preferable to theP–Gcondition for assessing equity measures. Their simplest argument is that

while a pairwise P–G transfer reduces inequality between two individuals, it may increase inequality

between those individuals and others. A C–M transfer does not incur this problem, because the donor

and recipient classes respectively lie completely above and below the rest of the population.

To de�ne the C–M condition formally, we say that a C–M transfer derivesuuu0 from uuu when

u1 � � � � � un as well asu0
1 � � � � � u0

n, and for some pair of integers`, h with 1 � ` < h � n, we have

u` < uh and

uuu0= uuu+
e
`

`

å
i= 1

eeei �
e

n� h+ 1

n

å
i= h

eeei

for somee > 0, whereeeei is theith unit vector. ThenF(uuu) satis�es the C–M condition ifF(uuu0) � F(uuu)

for any C–M transfer that derivesuuu0from uuu. Any function that satis�es the P–G condition also satis�es

the C–M condition.

2.1.3 Related Literature

We now survey some of the primary schemes that have been proposed for combining fairness

and ef�ciency. Each can be formulated as a social welfare function that can be maximized in an

optimization model of the form (2.1).

Convex Combinations

The most obvious device for combining fairness and ef�ciency is a convex combination of the two.

This corresponds to a SWF of the form

F(uuu) = ( 1� l )å
i

ui + l F (uuu) (2.2)

whereF (uuu) is a fairness measure. A number of functionsF (uuu) have been proposed, such as inequality

metrics, the Rawlsian maximin principle, and leximax fairness (Cowell 2000, Jenkins and Van Kerm

2011, Karsu and Morton 2015).

A perennial problem with convex combinations is that it is dif�cult to interpretl , particularly

sinceF (uuu) is typically measured in units other than utility. For example, if we select the widely-used

Gini coef�cient G(uuu) as a measure of equity, then we must combine utility with a dimensionless
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quantityF (uuu) = 1� G(uuu), where

G(uuu) =
å
i< j

jui � u j j

nå
i

ui
(2.3)

Another dif�culty is that fairness measures are almost always nonlinear, which can pose tractability

problems.

Eisenhandler and Tzur (2019) use a product rather than a convex combination of utility and

1� G(uuu), which reduces to an SWF that is easily linearized:

F(uuu) = å
i

ui �
1
n å

i< j
ju j � ui j

Yet we now have a convex combination of total utility and another equality metric (negative mean

absolute difference) in whichl = 1
2. One may ask why this particular value ofl is suitable.

Mostajabdaveh et al. (2019) use a linear combination that is equivalent toå i ui + m(1� G(uuu)) å i ui ,

wherem2 [0;1]. This at least combines quantities measured in the same units. Yet we again have the

problem of justifying a weightm. In fact, this combination is equivalent to the convex combination

implied by the Eisenhandler and Tzur criterion, except thatl is m=(1+ 2m) rather than1
2.

Since equality is often unsuitable as a fairness measure (Frankfurt 2015, Scanlon 2003), one may

wish to use the Rawlsian criterionF (uuu) = mini f uig. It results in a convex combination of quantities

that are measured in the same units, but it is again unclear how to select a suitable value ofl . Note

that if we index utilities so thatu1 � � � � � un, the convex combination becomes simply a weighted

sumu1 + ( 1� l ) å i> 1ui that gives somewhat more weight to the lowest utility. It is unclear how

much more weight is appropriate.

One might also attempt to formulate a convex combination of ef�ciency with a leximax rather than

a maximin criterion. Yet it is unclear how to capture leximax in a functionF (uuu) when the utilities

cannot be ordered by size in advance. Ogryczak and Sliwinski (2006) show how to formulate leximax

in an optimization model without pre-ordering, but this requires coef�cients that vary enormously

in size and can introduce numerical instability. There is also no evident means for incorporating an

ef�ciency criterion into the model.

Alpha Fairness and Kalai-Smorodinsky Fairness

Alpha fairness is a parameterized combination of equity and ef�ciency that does not rely on a convex

combination. It is based on an SWF of the form

Fa (uuu) =

8
>><

>>:

1
1� a å

i
u1� a

i for a � 0; a 6= 1

å
i

log(ui) for a = 1
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This SWF satis�es the P–G and therefore the C–M condition for alla � 0. Larger values ofa imply

a greater emphasis on equity, witha = 0 corresponding to a pure utilitarian criterion anda = ¥ to

a maximin criterion. Lan et al. (2010) provide an axiomatic treatment, and Bertsimas et al. (2012)

study worst-case equity/ef�ciency trade-offs. An interpretation ofa is that utility u j must be reduced

by (u j=ui)a units to compensate for a unit increase inui (< u j ) while maintaining constant social

welfare. Yet it is again unclear what kind of trade-off, and therefore what value ofa , is appropriate

for a given application. There is also the computational issue thatFa (uuu) is nonlinear.

Another issue with alpha fairness is that it can assign equality the same social welfare as arbitrarily

extreme inequality. In a 2-player situation, for example, the distributionuuu = ( s;s) has the same social

welfare value as(t;T), where

t =

(
s2=T if a = 1
�
2s1� a � T1� a

� 1=(1� a ) if a > 1 and 2s1� a > T1� a

Thus if we hold social welfare �xed, we havet ! 0 asT ! ¥ for a = 1, andt ! 21=(1� a )sasT ! ¥

for a > 1. This means that whena � 1, alpha fairness can judge an egalitarian solution to be no

better than a solution in which one party has arbitrarily more wealth than the other. The same is

true of the maximin criterion, of course, since it assigns(s;s) and(s;T) the same social value for

arbitrarily largeT.

A well-known special case ofa -fairness arises whena = 1. This results in proportional fairness,

which is equivalent to the Nash bargaining solution (Nash 1950). Nash (1950) showed that his

bargaining solution for two persons is implied by a set of axioms for utility theory, including a strong

and perhaps questionable axiom of cardinal noncomparability across parties (Hooker 2013). Harsanyi

(1977), Rubinstein (1982), and Binmore et al. (1986) showed that the Nash solution is the asymptotic

outcome of certain rational bargaining procedures, again based on strong assumptions.

Kalai and Smorodinsky (1975) proposed an alternative to the Nash bargaining solution that

minimizes each player's relative concession. The approach is defended by Thompson (1994) and is

consistent with the contractarian ethical philosophy of Gauthier (1983). Mathematically, the objective

is to �nd the largest scalarb such thatuuu = ( 1� b)ddd+ buuumax is a feasible utility vector, where each

umax
i is the maximum ofui over all feasible utility vectorsuuu and eachdi is the starting utility ofi.

The bargaining solution is the vectoruuu that maximizesb. This can be interpreted geometrically as

the furthest feasible point from the origin on the line segment connecting the origin anduuumax. It is

equivalent to maximizing the SWF

F(uuu) =

(
å i ui ; if uuu = ( 1� b)ddd+ buuumax for someb with 0 � b � 1

0; otherwise
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The SWF is not only discontinuous butviolatesthe C–M (and therefore the P–G) condition. For

example, if we have a 2-person utility distribution(u1;u2) = ( bumax
1 ;bumax

2 ) for someb with 0 <

b � 1, then a utility transfer that tends to equalize the distribution reduces social welfare.

The K–S scheme provides no parameter for adjusting the equity-ef�ciency trade-off. While it can

be suitable for such applications as wage or price negotiation, it can yield solutions in other contexts

that many would consider unjust. For example, it can divert treatment resources from cancer patients

to persons suffering from the common cold to provide them the same fraction of their maximum

health potential.

Threshold Models

Williams and Cookson (2000) proposed a pair of2-personSWFs based on a utility or equity threshold.

A utility-threshold model uses the maximin criterion unless the sacri�ce in total utility exceeds a

threshold, in which case it switches to a utilitarian criterion. An equity-threshold model uses a

utilitarian criterion unless inequality becomes excessive, when it switches to maximin. Hooker and

Williams (2012) extended the utility-threshold model to then-person criterion described earlier, and

McElfresh and Dickerson (2018) proposed a similar scheme based on a leximax rather than maximin

criterion. Our aim in the present paper is likewise to combine leximax and ef�ciency in a threshold

model, but we will argue that it offers several advantages relative to the McElfresh and Dickerson

approach.

The 2-person SWF implied by Williams and Cookson's utility-threshold model can be formulated

F(u1;u2) =

(
u1 + u2; if ju1 � u2j � D

2minf u1;u2g+ D; otherwise
(2.4)

The function is utilitarian whenju1 � u2j � D and represents a maximin criterion otherwise. Indiffer-

ence curves (contours) of the SWF are illustrated in Fig. 2.1. The maximin criterionminf u1;u2g is

modi�ed in (2.4) to obtain continuous contours. We will see that maintaining continuity is a major

factor in the design of threshold-based SWFs.

The feasible set in Fig. 2.1 is the portion of the nonnegative quadrant under the curve. It represents

all feasible utility outcomes that are permitted by the resource budget and other constraints. The shape

of the curve indicates that when party 1's utility reaches a certain point, further improvement requires

extraordinary sacri�ce by party 2 due to the transfer of resources. The utilitarian solution (black dot

in the �gure) might therefore be viewed as preferable to the maximin solution (small open circle) and

in fact yields slightly more social welfare as indicated by the contours.

Hooker and Williams (2012) extend this social welfare function ton persons as follows:

F1(uuu) = ( n� 1)D+ nuh1i +
n

å
i= 1

(ui � uh1i � D)+ (2.5)
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Fig. 2.1 Piecewise linear social welfare contours for 2 persons.

where(a )+ = maxf 0;a g. Here we adopt the convention that(uh1i ; : : : ;uhni ) is the tuple(u1; : : : ;un)

arranged in non-decreasing order. We refer to the function asF1 because it will be the �rst in a series

of functionsF1; : : : ;Fn we de�ne later. It may be more intuitive to rewrite (2.5) as

F1(uuu) =
�
t(uuu) � 1

�
D+

t(u)

å
i= 1

uh1i +
n

å
i= t(u)+ 1

uhii

wheret(uuu) is de�ned so thatuh1i ; : : : ;uht(uuu)i are within D of uh1i ; that is, uhii � uh1i � D if and

only if i � t(uuu). We will refer to utilitiesuh1i ; : : : ;uht(uuu)i as beingin the fair regionand utilities

uht(uuu)+ 1i ; : : : ;uhni as beingin the utilitarian region. The functionF1(uuu) therefore has the effect of

summing all the utilities, but with the proviso that utilities in the fair region are counted as equal to

uh1i . The term(t(uuu) � 1)D is added to ensure continuity of the function.

The parameterD therefore has an interpretation that can be described independently of its role

in the SWF. Namely, any party with utility withinD of the lowest is viewed as disadvantaged

and deserving of special consideration. The SWF then de�nes the special consideration to be an

identi�cation of the disadvantaged party with the worst-off party, which is given disproportionate

weight in the summation of utilities—namely, weight equal to the number of utilities withinD of the

lowest.

A problem with (2.5), however, is that the actual utility levels of the disadvantaged parties, other

than that of the very worst-off, have no effect on the value of the SWF. This is illustrated in the

3-person example of Fig. 2.2, which shows the contours ofF(u1;u2;u3) with D= 3 andu1 �xed to

zero. The SWF is constant in the shaded region, meaning that the utilities allocated to persons 2 and 3

have no effect on social welfare as measured byF1(uuu), so long as they remain in the fair region. As
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Fig. 2.2 Contours ofF1(0;u2;u3). The function is constant in the shaded region.

a result, there are in�nitely many utility vectors that maximize social welfare, some of which differ

greatly with respect to utilities in the fair region. One can add a tie-breaking terme(u2 + u3) to the

social welfare function, wheree > 0 is small, so as to maximize utility as a secondary objective. Yet

this still does not account for equity considerations within the fair region.

To obtain a threshold model that is sensitive to the actual utility levels of all the disadvantaged

parties, one might combine utility with a leximax criterion rather than a maximin criterion. McElfresh

and Dickerson (2018) propose one method of doing so in the context of kidney exchange. Their

method is related to the H–W approach, but it relies on the assumption that the parties can be given

a preference ordering in advance. It �rst maximizes a SWF that combines utilitarian and maximin

criteria in a way that treats the most-preferred party as the worst-off. If all optimal solutions of this

problem lie in the utilitarian region, a utilitarian criterion is used to select one of the optimal solutions.

(Here, a utility vectoruuu is said to be in the fair region ifmaxi f uig � mini f uig � D, and otherwise in

the utilitarian region.) Otherwise a leximax criterion is used for all of the optimal solutions, subject to

the preference ordering. If we index the parties in order of decreasing preference, the SWF is

F(uuu) =

8
<

:

nu1; if jui � u j j � Dfor all i; j

å
i

ui + sgn(u1 � ui)D; otherwise (2.6)

McElfresh and Dickerson state thatF(uuu) has continuous contours, but this is true only forn = 2.

For a counterexample withn = 3, we note thatF(0;0;D+ e) = e andF(0;e;D+ e) = 2e � D for

arbitrarily smalle > 0. The discontinuity of the SWF raises questions regarding its suitability for

application, since a slight change in the utility distribution could bring about a large and unexpected

change in the measurement of social welfare. We also note thatF(uuu) violates the C–M condition and
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therefore the P–D condition whenn � 3. For example, a C–M transfer that converts(u1;u2;u3) from

(e;0;D+ e) to (e;e;D) reduces social welfare from 2e+ D to e.

This approach has two additional limitations. It is often not possible to pre-specify a preference

ranking of parties, as was done in the kidney exchange problem. Another is that the leximax criterion

is not used until optimal solutions of the SWF are already obtained, and then applied only to the

optimal solutions. We wish to allow the leximax criterion to play a role in evaluating all the possible

solutions. These limitations are overcome by our proposal, described in the next section.

An earlier version of our scheme appears in a brief conference paper (Chen and Hooker 2020),

which uses somewhat different SWFs.

2.2 De�ning the Social Welfare Functions

To combine leximax and utilitarian criteria in a threshold model, we propose to maximize asequenceof

social welfare functionsF1(uuu); : : : ;Fn(uuu), each of which combines maximin and utilitarian measures.

The �rst function F1(uuu) is the H–W function (2.5) de�ned earlier and is maximized overuuu =

(u1; : : : ;un) to obtain a value foruh1i . Each subsequent functionFk(uuu) is maximized overuhki ; : : : ;uhni ,

while �xing utilities uh1i ; : : : ;uhk� 1i to the values already obtained, and while givinguhki a certain

amount of priority. The solution of this maximization problem determines the value ofuhki .

The process terminates when maximizingFk(uuu) yields a value ofuhki that lies outside the fair

region. At this point,Fk(uuu) is utilitarian, and utilitiesuhki ; : : : ;uhni are determined simultaneously by

maximizingFk(uuu) while �xing uh1i ; : : : ;uhk� 1i to the values already obtained. We refer to a utility

vector(uh1i ; : : : ;uhni ) that results from this process associally optimal.

We describe this sequential optimization procedure more precisely in Section 2.4, but we must

�rst de�ne and explain the functionsFk(uuu) for k � 2. Three main considerations govern the design of

these functions and give them a signi�cantly different character thanF1(uuu).

• The fair region must be viewed as already de�ned, becauseuh1i was �xed by maximizingF1(uuu).

• The utility uhki should receive less priority ask increases, since the it becomes less disadvantaged

relative to the �xed lowest utilityuh1i .

• It turns out that the priority givenuhki cannot depend on the number of utilities in the fair region,

as it does fork = 1, because this results in an irreducibly discontinuous SWF. We therefore

designFk(uuu) so that the priority depends only onk.

To develop SWFs that are somewhat analogous to the H–W functionF1(uuu) while re�ecting these

considerations, it is helpful to writeF1(uuu) as

F1(uuu) = t(uuu)uh1i +
�
t(uuu) � 1

�
D+

n

å
i= t(uuu)+ 1

uhii
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The function assigns weightt(uuu) to utility uh1i and weight 1 to utilities in the utilitarian region. This

is algebraically equivalent to the formulation

F1(uuu) = nuh1i + ( n� 1)D+
n

å
i= t(uuu)+ 1

(uhii � uh1i � D)

We modify this pattern as follows:

Fk(uuu) =

8
>>>><

>>>>:

k

å
i= 1

(n� i + 1)uhii +
n

å
i= t(uuu)+ 1

(uhii � uh1i � D); if t(uuu) � k

n

å
i= 1

uhii ; if t(uuu) < k

(2.7)

This SWF assigns weightn� k+ 1 to utility uhki and weight 1 to utilities in the utilitarian region. As

desired, the priority given touhki depends only onk and decreases ask increases. WhileFk(uuu) for

k = 1 assigns weight touh1i equal to the number of utilities in the fair region, this weight is reduced

by one each timek increases by one, to re�ect the fact that one of these utilities is �xed and removed

from the optimization problem. We also note that additional multiples ofD are not required to ensure

continuity ofFk(uuu) whenk � 2.

Thus as the functionsFk(uuu) are sequentially maximized for increasing values ofk, each utilityuhki

in the fair region receives priority at some point in the process. This scheme incorporates lexicographic

optimization in the sense that the smaller utilities are determined earlier in the sequence, although

rather than maximizinguhki in stepk, we maximize a SWF that gives priority touhki . Utilitarianism in

incorporated because each maximization problem considers total utility as well as fairness.

This process yields a purely utilitarian solution whenD= 0. For in this case we havet(uuu) = 1 for

all uuu, andF1(uuu) reduces to a utilitarian criterion. The fair region is the single pointuh1i , and we solve

the social welfare problem simply by maximizingF1(uuu), which yields a utilitarian solution. At the

opposite extreme, whenD! ¥ , maximizingFk(uuu) is equivalent to maximizinguhki . The reason is

that for suf�ciently largeD, t(uuu) = n for all feasibleuuu, andFk(uuu) is (n� k+ 1)uhki plus a constant for

k = 1; : : : ;n. (Recall thatuh1i ; : : : ;uhk� 1i are �xed whenFk(uuu) is maximized.) Thus by sequentially

maximizingF1(uuu); : : : ;Fn(uuu), we maximize the smallest utilityui , then maximize the second smallest

while holdingui �xed, and so forth. When there is a tie for the smallest utility, the resulting solution

may not be leximax, depending on how the tie is broken, but one of the solutions generated in this

manner will be leximax.

Figure 2.3 illustrates how maximizingF1(uuu); : : : ;Fn(uuu) sequentially is more sensitive to equity

than maximizingF1(uuu), which has the �at region shown in Fig. 2.2, as noted earlier. Suppose we

determine a value foru1 by maximizingF1(uuu), sayu1 = 0. Then the functionF2(uuu) has no �at regions,

as is evident in Fig. 2.3, and the solutions in the �at region of Fig. 2.2 are now distinguished.
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Fig. 2.3 Contours ofF2(0;u2;u3) with D= 3 and contour interval 1.

2.3 Properties of the Social Welfare Functions

We now investigate some mathematical properties of the social welfare functionsFk(uuu). First, we note

that the contours in Fig. 2.2 are continuous, and the continuity ofFk(uuu) can be shown in general.

Theorem 1. The functions Fk(uuu) are continuous for k= 1; : : : ;n.

Proof. To prove continuity ofF1(uuu), it suf�ces to show that each term of (2.5) is continuous, because

a sum of continuous functions is continuous. The �rst term of (2.5) is a constant, and the second term

is continuous because order statistics are continuous functions. Each term of of the summation is

continuous because it is the maximum of two continuous functions. To show thatFk(uuu) is continuous

for k � 2, it is convenient to write (2.7) as

Fk(uuu) =
k� 1

å
i= 1

(n� i + 1)uhii + ( n� k+ 1)uhki

� (n� k)(uhki � uh1i � D)+ +
n

å
i= k+ 1

(uhii � uh1i � D)+

which simpli�es to

Fk(uuu) =
k� 1

å
i= 1

(n� i + 1)uhii

+( n� k+ 1) minf uh1i + D;uhki g+
n

å
i= k

(uhii � uh1i � D)+
(2.8)

Because order statistics are continuous,uhki anduh1i are continuous functions ofuuu. Also minf uh1i +

D;uhki gand(uhii � uh1i � D)+ are continuous because they are the minimum or maximum of continuous

functions. �
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The SWFs have a monotonicity property as well. BecauseF1(uuu) can be written

F1(uuu) = ( n� 1)D+
n

å
i= 1

maxf ui � D;uh1i g (2.9)

the following is evident on inspection of (2.8) and (2.9).

Theorem 2. F1(uuu) is monotone nondecreasing. Whenuh1i is �xed, Fk(uuu) is monotone nondecreasing

for k � 2.

We also note that whileFk(uuu) can violate the P–G condition forn � 3, it satis�es the C–M

condition. A counterexample to the P–G condition is illustrated forF1(uuu) in Fig. 2.2, where the

utility-preserving transfer from A to B reduces social welfare as measured byF1(uuu). However, we

have the following result.

Theorem 3. The social welfare functionsFk(uuu) satisfy the Chateauneuf–Moyes condition fork =

1; : : : ;n.

Proof. We wish to show thatFk(uuu) satis�es the C–M condition fork = 1; : : : ;n. Recall that a C–M

transfer is a transfer of utility fromuuu to uuu0such thatu1 � � � � � un as well asu0
1 � � � � � u0

n, and for

some pair of integers̀, h with 1 � ` < h � n, we haveu` < uh and

uuu0= uuu+
e
`

`

å
i= 1

eeei �
e

n� h+ 1

n

å
i= h

eeei

for somee > 0. ThenF(uuu) satis�es the C–M condition if

F(uuu0) � F(uuu) (2.10)

for any C–M transfer fromuuu to uuu0.

We �rst prove the theorem fork = 1. We wish to show that (2.10) holds for any C–M transfer from

uuu to uuu0. There are three types of C–M transfer, illustrated in Fig. 2.4: (a)` < h � t(uuu), (b) ` � t(uuu) < h,

and (c)t(uuu) < ` < h. The resulting utility gain by individuals1; : : : `, and loss by individualsh; : : : ;n,

are indicated in Table 2.1. It is clear on inspection of Fig. 2.4 that the gain is at leaste in each case,

and the loss never more thane. The C-M condition is therefore satis�ed.

Fig. 2.4 Illustration of C–M transfers relevant toF1(uuu).
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Table 2.1 Verifying the Chateauneuf-Moyes condition forF1(uuu)

Case Gain Loss

(a)
t(uuu)

`
e > e

n� t(uuu)
n� h+ 1

e < e

(b)
t(uuu)

`
e > e e

(c) e e

We now prove the theorem fork � 2. It is clear that a C–M transfer satis�es(2.10)whenk > t(uuu),

because in this caseFk(uuu) is simply utilitarian. We therefore need only consider the six types of C–M

transfer illustrated in Fig. 2.5, in whichk � t(uuu).

It is convenient to writeFk(uuu) in the following form:

Fk(uuu) = t(uuu)uh1i +
k

å
i= 2

(n� i + 1)uhii +
n

å
i= t(uuu)+ 1

(uhii � D)

The resulting gain by individuals1; : : : `, and loss by individualsh; : : : ;n, are indicated in Table 2.2.

In cases (b)–(f), it is clear on inspection of Fig. 2.5 that the gain is more thane in each case, and the

loss never more thane. In case (a), we note �rst that the gain can be written

n�
` � 1

2
�

n� t(uuu)
`

To show that the loss is no greater than the gain, it suf�ces to show this whenh = ` + 1, sinceh � ` + 1

and the loss is nonincreasing with respect toh. Thus it suf�ces to show

n�
` � 1

2
�

n� t(uuu)
`

�
1

n� `

� k

å
i= `+ 1

(n� i + 1)+ n� t(uuu)
�

Fig. 2.5 Illustration of C–M transfers relevant toFk(uuu), k � 2.
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Table 2.2 Verifying the Chateauneuf-Moyes condition forFk(uuu), k � 2

Case Gain Loss

(a)
1
`

�
t(uuu)+

`

å
i= 2

(n� i + 1)
�

e
1

n� h+ 1

� k

å
i= h

(n� i + 1)+ n� t(uuu)
�

e

(b)
1
`

�
t(uuu)+

`

å
i= 2

(n� i + 1)
�

e �
t(uuu)

`
e > e

n� t(uuu)
n� h+ 1

e < e

(c)
1
`

�
t(uuu)+

k

å
i= 2

(n� i + 1)
�

e �
t(uuu)

`
e > e

n� t(uuu)
n� h+ 1

e < e

(d)
1
`

�
t(uuu)+

`

å
i= 2

(n� i + 1)
�

e �
t(uuu)

`
e > e

n� h+ 1
n� h+ 1

e = e

(e)
1
`

�
t(uuu)+

k

å
i= 2

(n� i + 1)
�

e �
t(uuu)

`
e > e

n� h+ 1
n� h+ 1

e = e

(f)
1
`

�
t(uuu)+

k

å
i= 2

(n� i + 1)+ ` � t(uuu)
�

e � e
n� h+ 1
n� h+ 1

e = e

Sincek � t(uuu) and each term of the summation is at mostn� `, it suf�ces to show

n�
` � 1

2
�

n� t(uuu)
`

�

�
t(uuu) � `

�
(n� `) + n� t(uuu)
n� `

Rearranging, we obtain
�
n� t(uuu)

� � 1
`

+
1

n� `
� 1

�
�

` + 1
2

(2.11)

This inequality is clearly satis�ed when the following is false:

1
`

+
1

n� `
� 1 (2.12)

We therefore assume (2.12) is true. Since (2.11) is clearly satis�ed when` = 1, we supposè � 2, in

which case (2.12) impliesn < ` 2=(` � 1). Since` < h � n, we can state

` + 1 � n <
`2

` � 1

or `2 � 1 � n(` � 1) < ` 2. Sincen and` are positive integers, this impliesn = ` + 1, in which case

(2.11) reduces to
` + 1� t(uuu)

`
�

` + 1
2

This holds becauset(uuu) � ` + 1, and the theorem follows. �
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Finally, we note that unlike maximin and alpha fairness, the functionsFk cannot assign equality

and arbitrarily extreme inequality the same social welfare value. For a given egalitarian distribution

ûuu = ( s; : : : ;s), we haveF1(ûuu) = ns+( n� 1)DandFk(ûuu) = ( n� k+ 1)s for k � 2. We obtain the same

social welfare value, for allk, by setting one utility inuuu to (n� k+ 1)s+ Dand the othern� 1 utilities

to zero. It follows that the maximum gap between utilities is(n� k+ 1)s+ D, rather than arbitrarily

large.

2.4 The Sequential Optimization Procedure

The sequential optimization procedure combines leximax and utilitarian criteria by �rst giving priority

to the worst-off party, then somewhat less priority to the second worst-off party, and so forth (the

leximax element), but while never demanding excessive sacri�ce from the well-off (the utilitarian

element). This is accomplished by sequentially maximizing the SWFsF1(uuu);F2(uuu); : : : to determine

the utility level of the worst-off, second worst-off, etc., because the SWFs are designed to adjust the

priorities in this manner. The process continues until the utilities of all disadvantaged parties are �xed,

whereupon the remaining utilities are determined in a purely utilitarian fashion. The disadvantaged

parties are those with utilities in the fair region, which the user de�nes by setting the parameterD.

We �rst simplify notation by removing the initial constants fromFk(uuu) for k � 2, resulting in the

SWF

F̄k(uuu) = ( n� k+ 1)uhki +
n

å
i= k

(uhii � uh1i � D)+ (2.13)

This obviously has no effect on the optimal solution that results from maximizing the SWF. For

convenience, we de�nēF1(uuu) = F1(uuu).

We next maximize the social welfare functionsF̄1(uuu); : : : ; F̄n(uuu) sequentially, subject to resource

constraints and the condition that the un�xed utilities should be no smaller than the largest utility

already �xed. The un�xedui with the smallest value in the solution becomes the utility determined by

maximizingF̄k(uuu).

We indicate resource limits by writinguuu 2 U . In practice, they would be formulated in a MILP

model by introducing variables and constraints that specify resource limitations and how resource

allocations to individual parties translate to utilities. This will be illustrated in our experiments in

Section 6.3.

To state the optimization procedure more precisely, we recursively de�ne a sequence of maxi-

mization problemsP1; : : : ;Pn, whereP1 maximizesF1(uuu) subject touuu 2 U , andPk for k = 2; : : : ;n
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is

max F̄k(uuu)

s.t. ui � ūik� 1; i 2 Ik

ui j = ūi j ; j = 1; : : : ;k � 1

uuu 2 U

(2.14)

The indicesi j are de�ned so thatui j is the utility determined by solvingPj . Thus

i j = argmin
i2 I j

f u[ j ]
i g

whereuuu[ j ] is an optimal solution ofPj andI j = f 1; : : : ;ngn f i1; : : : ; i j � 1g. We denote bȳui j = u[ j ]
i j

the

solution value obtained forui j in Pj . We need only solvePk for k = 1; : : : ;K + 1, whereK is the largest

k for which ūik � ūi1 + D. The solution of the social welfare problem is then

u�
i =

(
ūi for i = i1; : : : ; iK� 1

u[K]
i for i 2 IK

As is frequently the case with optimization models, alternate optimal solutions may exist. In

particular, there may be multiple utilitiesui with the same minimum value in the solutionuuu[k] of a

given problemPk. Any of these utilities may be �xed when solvingPk+ 1, possibly (but not necessarily)

giving rise to multiple socially optimal solutions. This is illustrated in the example of the next section.

At least one optimal solution of each problemPk is Pareto optimal over the setU , due to the

monotonicity of eachFk(uuu) (Theorem 2). Yet the �nal socially optimal solution is not guaranteed

to be Pareto optimal for an arbitrary feasible set. For example, if a3-personproblem has only two

feasible solutionsuuu = ( 1;2;2); (1;3;2), then both solutions are socially optimal whenD= 3, but only

one is Pareto optimal. However, we will �nd that the great majority of socially optimal solutions

are Pareto optimal in our experiments. Furthermore, a simple postprocessing step checks whether a

socially optimal solutionuuu� is Pareto optimal and, if not, converts it to a Pareto optimal solution. We

need only solve the optimization problem

max
n

å
i= 1

ui

s.t. ui � u�
i ; i = 1; : : : ;n

uuu 2 U

(2.15)

If the optimal solution̂uuu hasûi > u�
i for somei, thenuuu� is not Pareto optimal, but̂uuu is. We �nd in the

experiments that the adjustment to achieve Pareto optimality is slight even when it is necessary.
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2.5 A Small Example

We illustrate the sequential optimization procedure on an example with3 utilities, uuu = ( u1;u2;u3).

Suppose there are exactly5 feasible solutions, shown in the �rst column of Table 2.3. The remainder

of the table displays SWF values̄F1(uuu); F̄2(uuu); F̄3(uuu) for variousD settings. OnlyF̄1(uuu) is shown for

D= 0, since onlyP1 is solved in this case. Recall that fork � 2, F̄k(uuu) is modi�ed from Fk(uuu) by

removing constant terms.

Table 2.3 Values of̄F1(uuu); F̄2(uuu); F̄3(uuu) for a small example. Only
F̄1(uuu) is shown forD= 0.

uuu D= 0 D= 2 D= 5

uuu1 = ( 4;6;6) 16 16,12,6 22,12,6
uuu2 = ( 2;6;9) 17 17,19,14 18,14,11
uuu3 = ( 1;1;14) 16 18,13,25 21,10,22
uuu4 = ( 1;2;13) 16 17,14,23 20,11,20
uuu5 = ( 2;1;13) 16 17,14,23 20,11,20

Socially optimal solutions are found as follows.

• D = 0: ProblemP1 is purely utilitarian, anduuu2 maximizesF̄1(uuu). The process stops with

socially optimal solutionuuu� = uuu[1] = uuu2 without solvingP2 andP3, becauseu[1]
i1 = u[1]

1 = 2 is in

the utilitarian region.

• D= 2: ProblemP1 has optimal solutionuuu[1] = uuu3 becauseuuu3 maximizesF̄1(uuu). We can select

u1 or u2 as the utilityui2 �xed by this solution, since both are minimum inuuu3. If we selectu1,

then the feasible set forP2 is f uuu3;uuu4g, anduuu[2] = uuu4 maximizesF̄2(uuu) over this feasible set.

This leavesuuu4 as the only feasible solution ofP3, and the socially optimal solution isuuu� = uuu4.

If we selectu2 as the �xed utility,P2 has the feasible setf uuu3;uuu5g and optimal solutionuuu[2] = uuu5,

resulting in socially optimal solutionuuu� = uuu5. Thusuuu4 anduuu5 are both socially optimal.

• D= 5: ProblemP1 has optimal solutionuuu[3] = uuu1. Hereu[1]
i1 = u[1]

1 = 4, and the only feasible

solution ofP2 andP3 is uuu1, which is socially optimal.

We highlight some key observations from this example. The procedurereturnsa utilitarian solution

whenD= 0 and a leximax solution whenD= 5, while the intermediate valueD= 2 yields a solution

that is neither purely utilitarian nor purely leximax. Unlike the H–W criterion, it is sensitive to the

utility of a disadvantaged player other than the very worst-off. The H–W criterionF1(uuu) prefers

solutionuuu3 to solutionsuuu4 anduuu5 whenD= 2, while our method has the opposite preference because

it considers the lot of the second-worst-off player. We also prefer solutionsuuu4 anduuu5 to solutionuuu1

whenD= 2 because of the large sacri�ceuuu1 imposes on player 3. WhenD is increased to 5, however,

the improved lot of players 1 and 2 inuuu1 outweighs this sacri�ce due to the greater importance of

equity.
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2.6 Mixed Integer Programming Model

For practical solution of the optimization problemsPk, we wish to formulate them as MILP models.

We drop the resource constraintsu 2 U from problemsP1; : : : ;Pn to obtainP0
1; : : : ;P0

n, because we

wish to analyze the MILP formulations of the SWFs without the complicating factor of resource

constraints. These constraints can later be added to the optimization models before they are solved. In

addition, problemsP0
1; : : : ;P0

n contain innocuous auxiliary constraints that make the problems MILP

representable.

The MILP model forP0
1 follows a different pattern than the models forP0

2; : : : ;P0
n, and we therefore

treat the two cases separately. ProblemP0
1 can be written

max z1

s.t. z1 � nuh1i + ( n� 1)D+
n

å
i= 2

(uhii � uh1i � D)+ (a)

ui � 0; all i (b)

ui � u j � M; all i; j (c)

(2.16)

Constraints (c) ensure MILP representability, as explained in Hooker and Williams (2012), because

they imply that the hypograph of (2.16) is a �nite union of polyhedra having the same recession

cone (Jeroslow 1987). The constraints have no practical import for suf�ciently largeM, although for

theoretical purposes we assume onlyM > D.

The MILP model forP0
1 can be written as follows:

maxz1

s.t. z1 � (n� 1)D+
n

å
i= 1

vi (a)

ui � D � vi � ui � Ddi ; i = 1; : : : ;n (b)

w � vi � w+ ( M � D)di ; i = 1; : : : ;n (c)

ui � 0; di 2 f 0;1g; i = 1; : : : ;n

(2.17)

The following is proved in Hooker and Williams (2012).

Theorem 4. Model (2.17) is a correct formulation of P01.
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Whenk � 2, the expression (2.13) for̄Fk(uuu) implies that problemP0
k can be written

maxzk

s.t. zk � (n� k+ 1) minf ūi1 + D;uhki g+ å
i2 Ik

(ui � ūi1 � D)+ (a)

ui � ūik� 1; i 2 Ik (b)

ui � ūi1 � M; i 2 Ik (c)

(2.18)

The constraints (2.18c) are included to ensure that the problem is MILP representable. Sinceūi1 is a

constant, the hypograph is a union of bounded polyhedra whose recession cones consist of the origin

only and are therefore identical.

The MILP model forP0
k whenk = 2; : : : ;n is

maxzk

s.t. zk � (n� k+ 1)s + å
i2 Ik

vi (a)

0 � vi � Mdi ; i 2 Ik (b)

vi � ui � ūi1 � D+ M(1� di); i 2 Ik (c)

s � ūi1 + D (d)

s � w (e)

w � ui ; i 2 Ik ( f )

ui � w+ M(1� ei); i 2 Ik (g)

å
i2 Ik

ei = 1 (h)

w � ūik� 1 (i)

ui � ūi1 � M; i 2 Ik ( j)

di ;ei 2 f 0;1g; i 2 Ik

(2.19)

Theorem 5. Model (2.19) is a correct formulation of P0k for k = 2; : : : ;n.

Proof. We �rst show that given any(uuu;zk) that is feasible for (2.18), whereui j = ūi j for j = 1; : : : ;k� 1,

there existvvv;ddd;eee;w;s for which (uuu;zk;vvv;ddd;eee;w;s ) is feasible for (2.19). Constraint (2.19j) follows
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directly from (2.18c). To satisfy the remaining constraints in (2.19), we set

(di ;ei ;vi) =

8
>>>><

>>>>:

(0;0;0); if ui � ūi1 � D andi 6= k

(0;1;0); if ui � ūi1 � D andi = k

(1;0;ui � ūi1 � D); if ui � ūi1 > D andi 6= k

(1;1;ui � ūi1 � D); if ui � ūi1 > D andi = k

9
>>>>=

>>>>;

; i 2 Ik

w = uk

s = minf ūi1 + D;uk g

(2.20)

wherek is an arbitrarily chosen index inIk such thatuk = uhki . It is easily checked that these

assignments satisfy constraints (b)–(h). They satisfy (i) because (2.18b) implies thatuk � ūik� 1. To

show they satisfy (2.19a), we note that (2.19a) is implied by (2.18a) becauseminf ūi1 + D;uk g � s

and(ui � ūi1 � D)+ � vi for i 2 Ik. Since (2.18a) is satis�ed by(uuu;z), it follows that (2.19a) is satis�ed

by (2.20).

For the converse, we show that for any(uuu;zk;vvv;ddd;eee;w;s ) that satis�es (2.19),(uuu;zk) satis�es

(2.18). Constraint (2.18b) follows from (2.19f ) and (2.19i), and (2.18c) is identical to (2.19j). To

verify that (2.18a) is satis�ed, we letk be the index for whichek = 1, which is unique due to (2.19g).

It suf�ces to show that (2.19a) implies (2.18a) when the remaining constraints of (2.19) are satis�ed.

For this it suf�ces to show that

s � minf ūi1 + D;uk g (2.21)

vi � (ui � ūi1 � D)+ ; i 2 Ik (2.22)

(2.21) follows from (d), (e), and (f ) of (2.19). (2.22) follows from (b) and (c) of (2.19). This proves

the theorem. �

2.7 Valid Inequalities

In this section, we identify some valid inequalities that can strengthen the MILP model ofP0
k for

k � 2. The MILP model (2.17) forP0
1 is already sharp, meaning that the inequality constraints of the

model describe the convex hull of the feasible set, and there is therefore no bene�t in adding valid

inequalities. The sharpness property may be lost when budget constraints are added, but the resulting

model may remain a relatively tight formulation. Whenn � 3, the modelsP0
k for k � 2 become sharp

when the valid inequalities described below are added. This is not true whenn � 4, but the valid

inequalities nonetheless tighten the formulation.

The sharpness of the MILP model (2.17) forP0
1 is proved in Hooker and Williams (2012). We

present a simpler proof in Appendix 2.2

Theorem 6. The MILP model (2.17) is a sharp representation of P0
1 (2.16).

2The proof in Hooker and Williams (2012) can be simpli�ed by using only the multipliersa i = M
nD

�
ai � 1+ D

M

�
for

i = 1; : : : ;n, because eachai � 1� D=M. The multipliersbi j in their proof are unnecessary.
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We now describe a class of valid inequalities that can be added to the MILP model (2.19) ofP0
k

for k � 2 to tighten the formulation.

Theorem 7. The following inequalities are valid for P0k for k � 2:

zk � å
i2 Ik

ui (2.23)

zk � (n� k+ 1)ui + b å
j2 Iknf ig

(u j � ūik� 1); i 2 Ik (2.24)

where

b =
M � D

M � (ūik� 1 � ūi1)
=

�
1�

D
M

��
1�

ūik� 1 � ūi1

M

� � 1
(2.25)

Proof. It suf�ces to show that for any(uuu;zk;vvv;ddd;eee;w) that satis�es (2.19), whereui j = ūi j for

j = 1; : : : ;k � 1, the vectoruuu satis�es (2.23) and (2.24). Since we know from Theorem 5 thatuuu is

feasible in (2.18), it suf�ces to show that (2.18) implies (2.23) and (2.24). To derive (2.23), we write

(2.18a) as

zk � å
i2 Ik

�
minf ūi1 + D;uhki g+ ( ui � ūi1 � D)+

�
(2.26)

For any termi in the summation, we consider two cases. Ifui � ūi1 + D, thenuhki � ūi1 + D (because

uhki � ui), and the term reduces touhki . If ui > ūi1 + D, termi becomes

minf ūi1 + D;uhki g+ ( ui � ūi1 � D) = minf 0;uhki � ūi1 � Dg+ ui � ui

In either case, termi is less than or equal toui , and (2.23) follows.

To establish (2.24), it is enough to show that (2.24) is implied by (2.18) for eachi 2 Ik. We

consider the same two cases as before.

Case 1:ui � ūi1 � D, which impliesuhki � ūi1 � D. Sinceuuu satis�es (2.18a), we have

zk � (n� k+ 1)uhki + å
j2 Iknf ig

u j � ūi1> D

(u j � ūi1 � D) (2.27)

It suf�ces to show that this implies

zk � (n� k+ 1)ui + b
�

å
j2 Iknf ig

u j � ūi1 � D

(u j � ūik� 1) + å
j2 Iknf ig

u j � ūi1> D

(u j � ūik� 1)
�

; (2.28)

because (2.28) is equivalent to the desired inequality (2.24). But (2.27) implies (2.28) becauseuhki � ui

by de�nition of uhki , u j � ūik� 1 � 0 for all j 2 Ik due to (2.18b), and it can be shown that

b(u j � ūik� 1) � u j � ūi1 � D (2.29)
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for any j 2 Ik. To show (2.29), we note that the de�nition ofb implies the following identity:

ūi1 � ūik� 1 + D= ( 1� b)(M + ūi1 � ūik� 1):

Adding (1� b)ūik� 1 to both sides, we obtain

ūik� 1 � b ūik� 1 + D= ( 1� b)(M + ūi1) � (1� b)u j ; (2.30)

where the inequality holds becauseM + ūi1 � u j due to (2.18c). We obtain (2.29) by rearranging

(2.30).

Case 2:ui � ūi1 > D. It again suf�ces to show that (2.18) implies (2.28). Due to the case hypothesis,

we have from (2.18a) that

zk � (n� k+ 1) minf ū1 + D;uhki g+ ( ui � ūi1 � D)+ å
j2 Iknf ig

u j � ūi1> D

(u j � ūi1 � D)+

This can be written

zk � (n� k+ 1)ui � (n� k+ 1)
�

ui � minf ū1 + D;uhki g
�

+( ui � ūi1 � D)+ å
j2 Iknf ig

u j � ūi1> D

(u j � ūi1 � D)+

which can be written

zk � (n� k+ 1)ui � (n� k)
�

ui � minf ū1 + D;uhki g
�

�
�

ū1 + D� minf ū1 + D;uhki g
�

+ å
j2 Iknf ig

u j � ūi1> D

(u j � ūi1 � D)+ (2.31)

The second term is nonpositive becauseui > ū1 + D by the case hypothesis, andui � uhki . The third

term is clearly nonpositive. Thus (2.31) implies (2.28) becauseu j � ūik� 1 � 0 and (2.29) holds for

j 2 Ik as before. �

2.8 Modeling Groups of Individuals

In many applications, utility is naturally allocated to groups rather than individuals, where individuals

within each group receive an equal allocation. This occurs in the examples of Section 6.3, in

which groups correspond to classes of patients with the same disease/prognosis or to neighborhood

populations. In other applications, the number of individuals may be too large for practical solution,

since problemPi must be solved for each individuali. In such cases, individuals can typically be

grouped into a few classes within which the individual differences are small or irrelevant, thus making
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the problem tractable and the results easier to digest. We therefore modify the above SWFs to

accommodate groups rather than individuals.

We suppose there aren groups of possibly different sizes. We letui denote the utility of each

individual in groupi andsi the number of individuals in the group.

We begin by derivingG1(uuu). Let u0
i0 be the utility ofindividual i0, and letui be the utility of each

individual ingroup i. There aren0 individuals andn groups. Letsi be the size of groupi, so that

n0=
n

å
i= 1

si (2.32)

Then

F1(uuu0) = n0u0
h1i + ( n0� 1)D+

n0

å
i0= 1

(u0
i0 � u0

h1i � D)+

Sinceuh1i = u0
h1i and groupi has sizesi , we have

G1(uuu) =
� n

å
i= 1

si � 1
�

D+
� n

å
i= 1

si

�
uh1i +

n

å
i= 1

si(ui � uh1i � D)+ (2.33)

This is the formula used in Hooker and Williams (2012). Hooker and Williams prove the following.

Theorem 8. The problem P
0

1, modi�ed for groups, is equivalent to the MILP model

maxz1

s.t. z1 �
� n

å
i= 1

si � 1
�

D+
n

å
i= 1

sivi

ui � D � vi � ui � Ddi ; i = 1; : : : ;n

w � vi � w+ ( M � D)di ; i = 1; : : : ;n

ui � 0; ei ;di 2 f 0;1g; i = 1; : : : ;n

(2.34)

We now deriveḠk(uuu) for k � 2. Recall that the SWF for individuals is

F̄k0(uuu0) = ( n0� k0+ 1) minf u0
h1i + D;u0

hk0i g+
n0

å
i0= k0

(u0
hi0i � ū0

h1i � D)+ (2.35)

To obtainḠk(uuu), we again assume the individuals in each groupi have the same utilityui . The �rst

individual in (2.35) that belongs to groupk is individual

k0= 1+
k� 1

å
j= 1

si j (2.36)
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Due to (2.32) and (2.36), the �rst term on the RHS of (2.35) is

�
n0� 1�

k� 1

å
j= 1

si j + 1
�

minf uhki + D;uhki g =
� n

å
i= k

shii

�
minf uhki + D;uhki g

since all the utilities in a group are the same. Thus we have

Ḡk(uuu) =
� n

å
i= k

shii

�
minf uh1i + D;uhki g+

n

å
i= k

shii (uhii � uh1i � D)+ (2.37)

Theorem 9. The functionsḠk(uuu) are continuous in uhki ; : : : ;uhni for k = 1; : : : ;n.

Proof. It suf�ces to show each term of (2.37) is a continuous function ofuhki ; : : : ;uhni , with uh1i ; : : : ;uhk� 1i

and the corresponding group sizessh1i ; : : : ;shk� 1i �xed. The �rst term is continuous because it is equal

to a constant time the minimum of order statisticsuh1i anduhki , which are continuous functions ofuuu.

Similarly, each term of the summation is a constant times the maximum of a continuous expression

and zero. �

The MILP model is very similar to the one we developed for (2.18):

maxzk

s.t. zk �
�
å
i2 Ik

si

�
s + å

i2 Ik

sivi (a)

(2:19b)–(2:19j) (b)–( j)

di ;ei 2 f 0;1g; i 2 Ik

(2.38)

Theorem 10. The problem P0k, reformulated for groups, is equivalent to (2.38) for k= 2; : : : ;n.

Proof. We �rst show that given any(uuu;zk) that is feasible for (2.18), whereui j = ūi j for j = 1; : : : ;k� 1,

there existvvv;ddd;eee;w;s for which (uuu;zk;vvv;ddd;eee;w;s ) is feasible for (2.38). Constraint (2.38j) follows

directly from (2.18c). To satisfy the remaining constraints in (2.38), we assign values tovvv;ddd;eee;w;s

as in (2.20), wherek is an arbitrarily chosen index inIk such thatuk = uhki . It is easily checked that

these assignments satisfy constraints (2.38b)–(2.38h). They satisfy (2.38i) because (2.18b) implies

thatuk � ūik� 1. To show they satisfy (2.38a), we note that (2.38a) is implied by (2.18a) because

minf ūi1 + D;uk g � s and(ui � ūi1 � D)+ � vi for i 2 Ik. Since (2.18a) is satis�ed by(uuu;z), it follows

that (2.38a) is satis�ed by (2.20).

For the converse, we show that for any(uuu;zk;vvv;ddd;eee;w;s ) that satis�es (2.38),(uuu;zk) satis�es

(2.18). Constraint (2.18b) follows from (2.19f ) and (2.19i), and (2.18c) is identical to (2.38j). To

verify that (2.18a) is satis�ed, we letk be the index for whichek = 1, which is unique due to (2.38g).

It suf�ces to show that (2.38a) implies (2.18a) when the remaining constraints of (2.38) are satis�ed.

For this it suf�ces to show that

s � minf ūi1 + D;uk g (2.39)
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vi � (ui � ūi1 � D)+ ; i 2 Ik (2.40)

(2.39) follows from (d), (e), and (f ) of (2.38). (2.40) follows from (b) and (c) of (2.38). This proves

the theorem. �

Hooker and Williams prove that (2.17) is a sharp representation ofP
0

1, and (2.34) a sharp represen-

tation ofP
0

1 reformulated for groups. We present a simpler proof of both theorems. It is necessary

only to prove the latter, because the former is a special case of it.

Theorem 11. The MILP model (2.34) is a sharp representation of P0
1 reformulated for groups.

of Theorems 6 and 11.We prove Theorem 11, of which Theorem 6 is a special case in whichsi = 1

for eachi. It suf�ces to show that any inequalityz1 � aaaTuuu+ b that is valid forP0
1 is a surrogate

(nonnegative linear combination) of inequalities in (2.34). Let

N =
n

å
i= 1

si

We �rst show that the following is a surrogate of (2.34) for anyi:

z1 � (N � 1)D+
�

si + ( N � si)
D
M

�
ui +

�
1�

D
M

�
å
j6= i

sju j : (2.41)

We then show thatz1 � aaaTuuu+ b is a surrogate of the inequalities (2.41). The theorem follows.

To show that (2.41) is a surrogate of (2.34), we �rst note that the following is a linear combination

of the upper bounds onvi in (2.34b) and (2.34c), using multipliers 1=D and 1=(M � D), respectively:

v j �
D
M

w+
�

1�
D
M

�
u j : (2.42)

We also have the following from (2.34b) and (2.34c):

vi � ui : (2.43)

w � vi : (2.44)

We now obtain the following, for any giveni and j, as a linear combination of (2.42) and (2.44), using

multipliers 1 andD=M, respectively:

v j �
D
M

vi +
�

1�
D
M

�
u j : (2.45)

Finally, we obtain (2.41) for any giveni by summing (2.34a) with multiplier 1, (2.43) with multiplier

si + ( N � si)
D
M

and (2.45) over allj 6= i with multiplier sj .



2.8 Modeling Groups of Individuals 37

It remains to show thatz1 � aaaTuuu+ b is a surrogate of (2.41) fori = 1; : : : ;n. We �rst observe

that(uuu;z) = ( 0; (N � 1)D) is feasible inP
0

1 and must therefore satisfyz1 � aaaTuuu+ b, which implies

b � (N� 1)D. We can assume without loss of generality thatb= ( N� 1)D, since otherwise we can add

an appropriate multiple of the valid inequality0 � b to obtain the desired inequalityz1 � aaaTuuu+ b. We

also note that(uuu;z) = ( M; : : : ;M;NM+( N � 1)D) is feasible and must satisfyz1 � aaaTuuu+ ( N � 1)D,

which means
m

å
j= 1

a j � N (2.46)

Finally, we note that(uuu;z) = ( Meeei ; (N � 1)D+ si(M � D)) is feasible forP
0

1, whereeeei is theith unit

vector. Substituting this intoz1 � aaaTuuu+ ( N � 1)D, we obtain

ai �
�

1�
D
M

�
si (2.47)

Due to (2.46), we can suppose without loss of generality thatå m
j= 1a j = N, since otherwise we can

add appropriate multiples of the valid inequalities 0� a j to obtainz1 � aaaTuuu+ b.

To obtainz � aaaTuuu+ b as a surrogate of (2.41), we sum (2.41) over allj using the multipliers

a i =
M
ND

�
ai �

�
1�

D
M

�
si

�
(2.48)

for eachi. It is easily checked thatå m
i= 1a i = 1, so that the linear combination has the form

z� dddTuuu+ ( N � 1)D (2.49)

We wish to show thatddd = aaa. Note that

di =
�

si + N
D
M

�
a i +

�
1�

D
M

�
si å

j6= i
a j

Using the fact thatå m
j= 1a j = 1, this becomes

di = N
D
M

a i +
�

1�
D
M

�
si

which immediately reduces todi = ai . We conclude that (2.49) is a linear combination of the

inequalities (2.41) using multipliersa i . It remains to show that eacha i is nonnegative, but this follows

from (2.47) and (2.48). �

Finally, we describe a set of valid inequalities for the MILP model (2.38) fork � 2.
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Theorem 12. The following inequalities are valid for the group problem P0
k for k � 2:

zk � å
i2 Ik

siui (2.50)

zk �
�

å
j2 Ik

si

�
u j + b å

j2 Iknf ig

sj (u j � ūik� 1); i 2 Ik (2.51)

whereb is given by (2.25).

Proof. Recall that the group version ofP0
k for k � 2:

maxzk

s.t. zk �
�

å
i2 Ik

si

�
minf ūi1 + D;uhki g+ å

i2 Ik

si(ui � ūi1 � D)+ (a)

ui � ūik� 1; i 2 Ik (b)

ui � ūi1 � M; i 2 Ik (c)

(2.52)

It suf�ces to show that for any(uuu;zk;vvv;ddd;eee;w) that satis�es (2.38), whereui j = ūi j for j = 1; : : : ;k � 1,

the vectoruuu satis�es (2.23) and (2.24). Since we know from Theorem 10 thatuuu is feasible in (2.52), it

suf�ces to show that (2.52) implies (2.50) and (2.51). To derive (2.50), we write (2.52a) as

zk � å
i2 Ik

si

�
minf ūi1 + D;uhki g+ ( ui � ūi1 � D)+

�
(2.53)

For any termi in the summation, we consider two cases. Ifui � ūi1 + D, thenuhki � ūi1 + D (because

uhki � ui), and the term reduces tosiuhki . If ui > ūi1 + D, termi becomes

si

�
minf ūi1 + D;uhki g+ ( ui � ūi1 � D)

�
= si

�
minf 0;uhki � ūi1 � Dg+ ui

�
� siui

In either case, termi is less than or equal toui , and (2.50) follows.

To establish (2.51), it is enough to show that (2.51) is implied by (2.52) for eachi 2 Ik. We

consider the same two cases as before.

Case 1:ui � ūi1 � D, which impliesuhki � ūi1 � D. Sinceuuu satis�es (2.52a), we have

zk �
�

å
j2 Ik

sj

�
uhki + å

j2 Iknf ig
u j � ūi1> D

sj (u j � ūi1 � D) (2.54)

It suf�ces to show that this implies

zk �
�

å
j2 Ik

sj

�
ui + b

�
å

j2 Iknf ig
u j � ūi1 � D

sj (u j � ūik� 1) + å
j2 Iknf ig

u j � ūi1> D

sj (u j � ūik� 1)
�

; (2.55)
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because (2.55) is equivalent to the desired inequality (2.51). But (2.54) implies (2.55) becauseuhki � ui

by de�nition of uhki , u j � ūik� 1 � 0 for all j 2 Ik due to (2.52b), and (2.12) for allj 2 Ik.

Case 2:ui � ūi1 > D. It again suf�ces to show that (2.52) implies (2.55). Due to the case hypothesis,

we have from (2.52a) that

zk �
�

å
j2 Ik

sj

�
minf ū1 + D;uhki g+ si(ui � ūi1 � D)+ å

j2 Iknf ig
u j � ūi1> D

sj (u j � ūi1 � D)

This can be written

zk �
�

å
j2 Ik

sj

�
ui �

�
å
j2 Ik

sj

��
ui � minf ū1 + D;uhki g

�

+ si(ui � ūi1 � D)+ å
j2 Iknf ig

u j � ūi1> D

sj (u j � ūi1 � D)

which can be written

zk �
�

å
j2 Ik

sj

�
ui �

�
å

j2 Iknf ig

sj

��
ui � minf ū1 + D;uhki g

�

� si

�
ū1 + D� minf ū1 + D;uhki g

�
+ å

j2 Iknf ig
u j � ūi1> D

sj (u j � ūi1 � D) (2.56)

The second term is nonpositive becauseui > ū1 + D by the case hypothesis, andui � uhki . The third

term is clearly nonpositive. Thus (2.56) implies (2.55) becauseu j � ūik� 1 � 0 and (2.29) holds for

j 2 Ik as before. �

2.9 Applications

We now implement our approach on a healthcare resource allocation problem and a disaster manage-

ment problem. We solve all MILP instances using Gurobi 8.1.1 on a desktop PC running Windows

10.

2.9.1 Healthcare Resource Allocation

A proper balance between fairness and ef�ciency is crucial in the allocation of healthcare resources.

Hooker and Williams (2012) study a problem in which treatments are made available to patients on

the basis of their disease and prognosis. In discussing this case, we caution that the results we report

should not be taken as general recommendations for the allocation of medical resources. They are

based on cost and clinical data speci�c to a particular set of circumstances. We use this example

because it allows comparison with the published H–W results on the same problem instance.
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Patients are divided into groups based on their disease and prognosis. There is one treatment

potentially available to each patient group, and for policy consistency, it is provided to either all or

none of the group members. Binary variableyi is 1 if groupi receives the recommended treatment and

0 otherwise. The average utilityui experienced by members of groupi is measured in terms of quality

adjusted life years (QALYs);qi is the net gain in QALYs for a member of groupi when receiving

the recommended treatment, anda i is the expected QALYs experienced with medical management

without the treatment. Thus

ui = a i + qiyi ; i = 1; : : : ;n (2.57)

The budget constraint is
n

å
i

siciyi � B (2.58)

wheresi is the group size,ci the cost of treating one patient in groupi, andB the total available

budget. The budget is set so as to force some hard decisions. The constraints (2.57)–(2.58), along

withwitudget
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(a) Instance cp92 (n = 50,m= 25) (b) Instance cp122 (n = 50,m= 50)

Fig. 2.6 Runtime in the shelter allocation example

Fig. 2.7 Utility distributions in shelter allocation instance cp92 (n = 50,m= 25)

Figs. 2.7 and 2.8 show the evolution of per capita utility in individual neighborhoods asDincreases.

The shaded region indicates which utilities are in the fair region (withinD of the worst). We see

immediately that the problem is highly constrained, because the lowest utilities quickly reach a plateau

and remain at a low level even for largeD values. These neighborhoods are located at a considerable

distance from candidate shelter locations, and so they remain disadvantaged even when given high

priority. In this type of situation, it is particularly important to use a leximax rather than a maximin

criterion of fairness, so as to take into account the situation of disadvantaged neighborhoods other

than the very worst-off. If a maximin criterion is used, only the most distant neighborhood is given

special priority, and the other disadvantaged neighborhoods bene�t only from tie-breaking and the

fact that maximizing the worst-off imposes a �oor on their utility level. This can be seen in Fig. 2.9,
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SVM models, Zafar et al. (2017a, 2019) directly apply solvers for convex and non-convex programs,

and Olfat and Aswani (2018) devise an iterative algorithm where each iteration relies on a non-convex

program solver. As off-the-shelf solvers are designed to handle general models with only necessary

structural assumptions, they may not be ef�cient for all problem instances, hence these fair SVM

training methods may encounter computational issues in complex, large-scale real applications.

3.1.1 Our Approach and Results

An overlooked opportunity in algorithmic development of fair SVM is to build connections with

standard SVM training, then make use of the extensive SVM training techniques in literature. In this

paper, we examine this opportunity and study whether algorithmic and computational techniques used

to train standard SVMs can be extended to train fair SVMs. Our main contribution is that we extend

two dual-based SVM training algorithms, the DCD algorithm for linear SVM and the SMO algorithm

for general SVM, to handle fair SVM formulations with fairness constraints that are linear in the

weights of SVM. The extension utilizes a coordinate descent type subroutine for updating the dual

multipliers corresponding to fairness constraints. Moreover, the numerical techniques of shrinking and

caching that are effective for improving standard SVM training are valid for the modi�ed algorithms

as well. We evaluate the empirical performance of these specialized training methods for fair SVM

and demonstrate that their computational costs are comparable with the corresponding standard

counterparts. Moreover, they can be more ef�cient than a state-of-the-art solver on large instances.

SVM Formulations and Notations. We study the standard soft-margin C-SVM formulation

for binary classi�cation. Suppose a training set containingn sample points isD = f (xi ;yi ;zi)gn
i= 1,

wherexi 2 X are feature vectors,yi 2 f 1; � 1g is i's true label, andzi 2 f 0;1g indicatesi's group

membership in a protected class (e.g. gender, race). Note that the group features will be used to de�ne

fairness constraints. Letf (xi) denote a map of featurexi andC be the penalty parameter, then(3.1)

and (3.2) are respectively the primal and dual SVM formulations.

min
q;b;x

1
2

kqk2 + Cå n
i= 1xi s.t. xi � 1� yi(hq; f (xi)i + b);xi � 0 8i: (3.1)

min
m

� eT m+
1
2

mTQm s.t. å n
i= 1 miyi = 0;0� mi � C 8i: (3.2)

In (3.2), m2 Rn denotes the vector of dual variables ande is the all1 vector inRn. Q is a n� n

matrix with Qi; j = yiy jK(xi ;x j ), whereK(xi ;x j ) = hf (xi); f (x j )i represents the kernel function. For

notation ease, we use the abbreviationKi j = K(xi ;x j ). One notable advantage of SVM is that using

different kernel functions in(3.2) leads to a wide range of predictive models. For example, two

popular options are: linear function kernelK(xi ;x j ) = hxi ;x j i , Gaussian radial basis function (RBF)

kernelK(xi ;x j ) = exp(�

 xi � x j


 2=s 2).
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Supposem� is an optimal dual solution, then the weightq � and biasb� in the optimal classi�erq �

can be computed as follows. We usexsv;ysv to denote a training sample point that is a support vector,

namely its corresponding dual optimal solution satis�esm�
sv 2 (0;C):

q � = å n
i= 1 m�

i yi f (xi); b� = ysv� å n
i= 1 m� yiK(xi ;xsv): (3.3)

A special class of SVM that is often studied separately is the linear SVM, which uses a linear

kernel function, or equivalentlyf (xi) = xi . In this case,(3.1)can be simpli�ed by treating the bias

termb as an additional dimension inq. As shown in Hsieh et al. (2008), the dual formulation for

linear SVM does not need the equation constraint and the optimalq � ;b� can be obtained together

from the optimal dual solution.

min
m

� eT m+
1
2

mTQm s.t. 0� mi � C 8i: (3.4)

q � = å n
i= 1 m�

i yixi ; b� = å n
i= 1 m�

i yi : (3.5)

3.1.2 Related Literature

There is a large number of SVM training algorithms in literature. As summarized in the survey paper

Shawe-Taylor and Sun (2011), majority of proposed methods solve the dual formulation(3.2), and

well-studied methodologies include interior point method, decomposition method, active set method

and coordinate descent. We focus on reviewing literature related to decomposition method for general

SVM and coordinate descent for linear SVM, as they are more relevant to our study.

Decomposition methods solve the complete dual formulation, a quadratic program (QP), by

breaking it down into a series of smaller QP subproblems. This technique is useful for handling the

potential computational challenge rising from a large number of training samples and features. Each

subproblem optimizes the same objective function but with the restriction that only a subset of the dual

variables, typically referred to as aworking set, can be modi�ed. A decomposition method iteratively

uses subproblems to search among feasible solutions until convergence to an optimal solution. Two

popular software packages for decomposition methods areSVMlight (Joachims (1998)) and LIBSVM

(Chang and Lin (2011)).

Early works such as Osuna et al. (1997a) and Osuna et al. (1997b) consider constant size working

sets in decomposition methods. The seminal paper Joachims (1998) formalize the working set

selection as an optimization problem and design theSVMlight algorithm as an ef�cient implementation

of decomposition methods to train SVM with arbitrary kernel function. Later, Platt (1998) propose

the sequential minimal optimization (SMO) algorithm, a simpler and faster decomposition method

where each working set contains exactly two variables. Follow-up works have been improving SMO

algorithm with more ef�cient working sets selection heuristics, e.g. Fan et al. (2005); Glasmachers

et al. (2006); Keerthi et al. (2001); List and Simon (2004); Yang et al. (2019). Some key developments

include the �rst-order information basedMaximum Violating Pairselection rule from Keerthi et al.
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(2001), second-order information based heuristics from Fan et al. (2005); Glasmachers et al. (2006);

List and Simon (2004), and more recently Yang et al. (2019) incorporate higher order information to

select working sets. The LIBSVM library Chang and Lin (2011) implements SMO as described in

Fan et al. (2005) for common SVM formulations and kernel functions.

Parallel with the research on algorithm design, another stream of papers focus on theoretical

properties of various decomposition methods for SVM. Keerthi and Gilbert (2002) prove the �nite

termination of the SMO algorithm stated in Keerthi et al. (2001) which set the stopping criteria as

satisfying the KKT conditions associated with(3.1)and(3.2)within up tot violation. Lin (2002b)

extend the analysis to general decomposition methods with working sets of size greater than two

such asSVMlight. As noted in papers including Lin (2001b), these �nite termination results are not

equivalent to convergence to the optimal solution due to the violation tolerancet . Lin (2001b) prove

the asymptotic convergence ofSVMlight given in Joachims (1998). Lin (2002a) extend the proof to

show asymptotic convergence of the SMO algorithm in Keerthi et al. (2001). In addition, Lin (2001a)

prove the linear convergence of both algorithms Joachims (1998); Keerthi et al. (2001) when the dual

objective function is strictly convex, which is possible for some kernel choices such as the Gaussian

RBF kernel. A comprehensive convergence analysis of general decomposition methods for SVMs can

be found in Chen et al. (2006).

Coordinate descent is another optimization technique that has been applied to train SVMs. Coordi-

nate descent is an iterative algorithm that �nds an optimal solution through successive coordinate-wise

optimization. Early research on applying coordinate descent methods to the dual SVM formulations

can be found in Mangasarian and Musicant (1999, 2001). Later works explore the potentials of

this technique in large-scale linear SVMs, for example, Chang et al. (2008) and Hsieh et al. (2008)

respectively design coordinate descent methods to solve the primal and the dual linear SVM models.

The algorithms from Hsieh et al. (2008) are implemented in the LIBLINEAR (Fan et al. (2008))

library for large-scale linear classi�cation. The convergence analysis can take advantage of relevant

results for general descent methods from convex programming. For instance, Hsieh et al. (2008) apply

the techniques from Luo and Tseng (1993) to prove the global convergence of their dual coordinate

descent algorithm for linear SVM, which implies both asymptotic convergence and �nite termination

to a desirable accuracy level.

Numerical techniques in the implementation of these fore-mentioned specialized algorithms are

useful for further speeding up SVM training. Two best-known techniques areshrinking and caching,

both initially proposed in Joachims (1998). They are routinely implemented in decomposition methods

(e.g. Fan et al. (2005); Joachims (1998)) and coordinate descent methods (e.g. Hsieh et al. (2008)).

The shrinking technique takes advantage of the fact that an optimal dual solution contains a relatively

small number of variables not at bounds, which correspond to the support vectors, and the remaining

variables are bounded, i.e.mi = 0 or C. To accelerate training, we can identify dual variables that

are likely to be bounded at optimality and temporarily remove these variables to reduce the size of

the dual problem, namely, we ignore the shrunk elements when choosing working sets. The caching

technique refers to storing some recently usedKi j in the available memory to reduce the needed
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number of kernel function evaluations and computation time. This technique is particularly useful

for large problems whereQ is too large to be fully stored andQi j = yiy jKi j has to be calculated as

needed.

Another related line of literature is fair machine learning (ML). Fair ML methods are typically

designed by modifying standard ML methods before, during or after the training phase, respectively

known as pre-, in-, or post-processing fair ML. Besides the variety in fairness seeking strategies, there

is also a large number of fairness de�nitions, which can be categorized as group versus individual

fairness. In the contexts of SVMs, or more generally, classi�cation models, group fairness de�nitions

with respect to the confusion matrix of classi�cation are the most common. We refer to Mehrabi et al.

(2019a) for a comprehensive survey of fair ML.

Next, we focus on a speci�c in-processing approach that is closely related to our study. One

can train a fair SVM using the following modi�ed SVM formulation, wherefl (q;b;D ) are fairness

measures withel denoting the respective desirable fairness levels.

min
q;b;x

1
2

kqk2 + Cå n
i= 1xi s.t. xi � 1� yi(hq; f (xi)i + b);xi � 0 8i; fl (q;b;D ) � el 8l : (3.6)

Olfat and Aswani (2018); Zafar et al. (2017a, 2019) have studied this general model. Zafar et al.

(2017a) de�ne a convex proxy for the well-known demographic parity constraint using the covariance

associated with the SVM decision boundary. Their constraint ensures(3.6) is a convex program

which can be readily solved by commercial solvers in some cases. Donini et al. (2018a) considers

SVM as a special case of empirical risk minimization, and applies a similar proxy technique to

approximate equalized opportunity constraints. A main motivation for our paper is that even though

state-of-the-art solvers are highly ef�cient for(3.6)with a linear kernel, they tend to suffer noticeable

performance drop with a non-linear kernel such as RBF kernel. Specialized fair SVM algorithms,

as we demonstrate, could be more robust to kernel choices. Olfat and Aswani (2018) also focus on

demographic parity. They note that the convex proxy used in Zafar et al. (2017a) is a relatively weak

relaxation of the exact demographic parity de�nition. They propose a non-convex quadratic constraint

as a more accurate proxy, then designed an iterative algorithm to solve(3.6)by solving a sequence

of structured convex-concave programs with available solvers. More recently, Zafar et al. (2019)

de�ne a continuous proxy for the equalized odds constraints, which require equal false positive rate

and false negative rate across groups. The new measure leads to(3.6) in the form of a Disciplined

Convex-Concave Program, which are still solvable with some existing solvers. These latter two papers

are not explicitly comparable with our methods, since they work with a more dif�cult non-convex

fair SVM formulation whereas we aim to design specialized algorithms to solve convex fair SVM

formulations.
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3.2 Problem Formulation

We use(3.6)as thefair SVMmodel in this paper. In addition, we focus on a speci�c form of fairness

constraints.

Assumption 1.The fairness measuresfl are functions ofq;D ; moreover, they are linear inq. For

notation ease, we denotefl as: fl (q;D ) := hpl (D );qi + cl . �

Note thatpl (D ) is dependent only on the training dataD and its de�nition re�ects the desirable

notion of fairness. To further simplify notation, we setpl = pl (D ). Assumption 1 ensures the

convexity of(3.6)and makes it convenient to obtain the following Lagrangian dual formulation of fair

SVM.

For easy comparison with(3.2), we again usem2 Rn as the dual multipliers for the constraints

on xi . Suppose(3.6)containsk fairness constraints, then we letg 2 Rk denote dual multipliers for

the fairness constraints, andd 2 Rk represents the constraint parameters withdl = el � cl for all

l = 1; : : : ;k. In addition, we usēQ to denote a matrix de�ned similarly asQ in the standard SVM

case:Q̄ =

"
Q A

AT P

#

, Q is the same as in(3.2)with Qi j = hyi f (xi);y j f (x j )i , A is ak� n matrix with

Ali = �h pl ;yi f (xi)i , andP is ak� k with Pll 0 = hpl ;pl0i .

min
m;g

� eT m� dTg+
1
2

"
m

g

#T

Q̄

"
m

g

#

s.t å n
i= 1 miyi = 0 (a); 0 � mi � C; 8i; gl � 0; 8l : (3.7)

Proposition 1. Under Assumption 1,(3.7) is the Lagrangian dual of the fair SVM formulation(3.6).

In the linear SVM case, namelyf (xi) = xi in (3.6), constraint (a) is not needed in the dual formulation.

Proof. We usef mi ; l i ;gl : i 2 [n]; l 2 [k]g to denote the dual multipliers respectively for the three sets

of constraints in (3.6). Under Assumption 1, the Lagrangian function for (3.6) is:

L (q;b;x ;m; l ;g) =
1
2

kqk2 + C
n

å
i= 1

xi +
n

å
i= 1

mi(1� yi(hq; f (xi)i + b) � xi) +
n

å
i= 1

l i(� xi) +
k

å
l= 1

gl (hpl ;qi + cl � el )

By de�nition, the Lagrangian dual is:

max
l ;m;g2Rn

+ � Rn
+ � RK

+

min
q;b;x2P(q;b;x )

L (q;b;x ;m; l ;g);

whereP(q;b;x ) represents the primal feasible region. We can simplify the Lagrangian dual from

the above max-min form to a maximization problem in terms of only the dual variables by taking
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advantage of the following KKT conditions.

¶L
¶q

= 0 ) q �
n

å
i= 1

miyi f (xi) +
k

å
l= 1

gl pl = 0

¶L
¶b

= 0 ) �
n

å
i= 1

miyi = 0

¶L
¶xi

= 0 ) C� mi � l i = 0 8i

Given a primal optimal solutionq;b;x and a dual optimal solutionl ;m;g, they must satisfy these

KKT conditions. We use the �rst condition to replaceq by its equivalent formula in terms ofm;g,

and use the other two conditions to eliminate terms involvingb andx in the Lagrangian function.

In addition, we include the latter two conditions as constraints onmi ; l i . Thel i multipliers can be

eliminated by replacing the equations with inequalities. After applying simple algebra to reformulate

the objective function, we obtain (3.7) as the Lagrangian dual.

In the case when a linear kernel is used in(3.6), same as the standard linear SVM, we can simplify

(3.6)by treatingb as an additional dimension inq, then all the above derivation steps involvingb are

no longer needed. In particular, we do not need to include the KKT condition corresponding to theb

term,� å n
i= 1 miyi = 0, in the dual formulation. �

Supposem� ;g� is an optimal solution to(3.7), the optimalq � andb� for general kernel and linear

kernel respectively satisfy (3.8) and (3.9).

q � = å n
i= 1 m�

i yi f (xi) � å k
l= 1g�

l pl ; b� = ysv� h q � ; f (xsv)i : (3.8)

q � = å n
i= 1 m�

i yixi � å k
l= 1g�

l pl ; b� = å n
i= 1 m�

i yi : (3.9)

We observe that(3.7) is a quadratic program (QP) with a very similar structure to(3.1). In addition,

the variablesmandg are separable in the constraints, which plays a key role in the design of our

specialized methods. We also note that(3.7)and the optimal formulas forq � andb� simplify to their

corresponding forms in standard SVM if allgl = 0.

3.2.1 Supported Fairness Constraints

We next state two examples of fairness constraints that satisfy Assumption 1. We specify these con-

straints for binary classi�cation on the training dataD = f (xi ;yi ;zi)gn
i= 1. Both examples characterize

statistical group fairness notions which seek fairness by eliminating certain disparity among the

involved groups. For simplicity of presentation, we consider a single group labelzi 2 f 0;1g indicating

whetheri belongs to the protected group of interest, but it is possible to extend the formulations to

handle multiple groups by comparing each pair separately.

Among group fairness de�nitions proposed for fair ML, three well studied notions areDemo-

graphic Parity, Equalied OddsandPredictive Rate Parity. In binary classi�cation, exact formula-
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tions of these fairness conditions need integer variables to denote the predicted labelsŷi 2 f 1; � 1g.

To obtain more tractable constraints, Zafar et al. (2017a) propose the technique of replacing the

discrete prediction̂yi with the continuous decision boundaryhq; f (xi)i + b. They thereby ob-

tain the followingcovariance parityconstraint as a convex proxy for demographic parity, i.e.,

jP(ŷ = 1jz= 1) � P(ŷ = 1jz= 0)j � e. We denote ¯z= 1
n å n

i= 1zi .

1
nå n

i= 1(zi � z̄)(hq; f (xi)i + b) � e;

�
1
nå n

i= 1(zi � z̄)(hq; f (xi)i + b) � e:
(3.10)

Both constraints in(3.10)satisfy Assumption 1; more speci�cally, we havep1 = 1
n å n

i= 1(zi � z̄)f (xi)

andp2 = � p1.

The same technique applies toequalized odds, namelytrue positive rate parity, which requires

jP(ŷ = 1jz= 1;y = 1) � P(ŷ = 1jz= 0;y = 1)j � e. For notation ease, lety
0

i = yi+ 1
2 , wi = ziy

0

i , clearly

y
0

i ;wi 2 f 0;1g. In addition, we de�ne ¯y = 1
n å n

i= 1y
0

i , w̄ = 1
n å n

i= 1wi .

1
nå n

i= 1(y
0

iw̄� ȳwi)(hq; f (xi)i + b) � e;

�
1
nå n

i= 1(y
0

iw̄� ȳwi)(hq; f (xi)i + b) � e
(3.11)

Similar to the covariance parity constraint, we conclude that(3.11) is a pair of constraints,p1 =
1
n å n

i= 1(y
0

iw̄� ȳwi)f (xi) andp2 = � p1, satisfying Assumption 1.

We conclude this section by noting two limitations with this substitute technique. First, recent

papers Bendekgey and Sudderth (2021); Wu et al. (2019) investigate the theoretical guarantees of

these relaxed group fairness constraints and observe that they may be insuf�cient to provide fairness

guarantees for certain range ofe. Bendekgey and Sudderth (2021) propose an alternative substitute

strategy: use a logistic surrogate instead of the simple linear surrogatehq; f (xi)i + b. With a logistic

surrogate, we can no longer derive the exact dual fair SVM formulation, so our dual-based algorithms

are not directly applicable. Second, the substitute technique does not generalize to predictive rate

parity, which is conditional on the predicted labels instead of the true labels as in demographic

parity and equalized odds. Formulating tractable continuous surrogates of predictive rate parity is a

challenging open question in literature.

3.3 Fair SVM Training Algorithms

We develop specialized methods to train fair SVM via solving(3.7). As our methods extend dual-

based standard SVM algorithms, we begin with a review of specialized algorithms for standard SVM

with a general kernel and a linear kernel.
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3.3.1 Training Standard SVM

Decomposition Method: General SVM

Decomposition method solves(3.2) by decomposing the complete QP into a series of smaller QP

subproblems, and relies on the Karush-Kuhn-Tucker (KKT) conditions to choose working sets, update

working set variable values and determine whether an optimal solution is found. We refer toSVMlight

(Joachims (1998)) as a standard implementation of decomposition method.

SVMlight initiates with a feasible solutionm(0) and maintains a feasiblemthroughout the procedure.

In iterationt, SVMlight examines whether the current solutionm(t) is optimal based on the KKT

conditions of(3.2). The algorithm terminates and returns the optimal solution if one has been found,

otherwise it proceeds to the next subproblem. In each subproblem, the complete variable setmis split

into aworking set, B, of free variables to be updated, and aninactive set, N, of �xed variables to be

temporarily treated as constants.

Supposemandq;b are respectively feasible solutions to(3.2)and(3.1), then they are both optimal

when they satisfy the following KKT conditions.

mi = 0 ) yi(hq; f (xi)i + b) � 1

mi 2 (0;C) ) yi(hq; f (xi)i + b) = 1

mi = C ) yi(hq; f (xi)i + b) � 1

(3.12)

We denote the objective function in (3.2) ash(m), then the gradient with respect tomi is:

Ñmi h(m) = å n
j= 1Qi j mj � 1: (3.13)

Using these gradient formulas, an equivalent representation of (3.12) is:

mi > 0 ) Ñmi h(m)+ byi � 0; mi < C ) Ñih(m)+ byi � 0 (3.14)

Therefore, a feasiblemis optimal if there existsb such that the KKT conditions(3.14)are satis�ed.

We can easily check whether a validb exists by keeping track of the following bounds:

m(m)= max
i2 Iup(m)

� yiÑmi h(m); whereIup(m) := f i : mi < C;yi = 1 or mi > 0;yi = � 1g

M(m)= min
i2 Ilow(m)

� yiÑmi h(m); whereIlow(m) := f i : mi < C;yi = � 1 or mi > 0;yi = 1g
(3.15)

Sinceyi 2 f 1; � 1g, (3.14)is satis�ed when there existsm(m) � b � M(m). In practice, decomposition

algorithms typically do not require a perfect ful�llment of(3.14). SVMlight considers the following

termination criterion allowing up tot violation to the KKT conditions.

m(m) � M(m) � t (3.16)
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If (3.16)does not hold at a givenm, then KKT conditions(3.14)are violated at somemi . These indices

are the candidates for the next working set, in other words, updating these indices may improve the

solution.

In SVMlight, working set selection is performed via an optimization problem:(3.17)solves for a

feasible directiond that leads to the steepest descent in a �rst-order approximation of the objective

function.

min
d

Ñmi h(m)Td s.t. yTd = 0; jf di : di 6= 0gj � q

di � 0 if mi = 0; di � 0 if mi = C; � 1 � di � 1;8i
(3.17)

Joachims (1998) show that(3.17)can be solved with a simple iterative procedure. The obtained

directiond contains at mostq nonzero components. The variables corresponding to these nonzero

indices are included in the working setB, namely,B = f i : di 6= 0g and its size is controlled by the

choice ofq. After selecting a working set,SVMlight proceeds to solve a new subproblem obtained

from restricting the changing variables tomB := f mi : i 2 Bg and �xing mN := f mj : j 62Bg. Note that

Ñ2
mi ;mj

h(m) denotes the second order derivative ofh(m) with respect tomi ;mj , and we further derive

Ñ2
mi ;mj

h(m) = Qi j .

min
mB

å i2BÑmi h(m)mi +
1
2å i; j2BÑ2

mi ;mj
h(m)mimj

s.t. mT
B yB + mT

NyN = 0; 0� mi � C;8i 2 B
(3.18)

(3.18) is a convex quadratic program with a small number of variables, so it can be handled by

off-the-shelf solvers, for instance, SVMlight use a solver based on interior-point method.

To speed up the decomposition algorithm,SVMlight implementscachingto store recently used

Qi j in the available memory to reduce the needed number of kernel evaluations, andshrinkingto

reduce the problem size by temporarily neglecting variables that are likely to be bounded (mi = 0 or

C) at optimality. We note that both techniques are broadly applicable to SVM training methods. In

addition,SVMlight maintains an updatedÑmi h(m) along with the updates ofmto eliminate unnecessary

computations. In particular, when an iteration updates the working set variables frommB to mnew
B , we

can easily update the gradient at an arbitrary indexi as:

Ñmi h(mnew) = Ñmi h(m)+ å j2B(mnew
j � mj )Qi j (3.19)

Sequential Minimal Optimization: General SVM

Sequential minimal optimization (SMO) is a special type of decomposition method where all working

sets have a �xed size of two. Compared to a generic decomposition method such asSVMlight, SMO

follows the same main steps but use simpler working set selection and variable update subproblems.

For working set selection in SMO, one approach is to apply(3.17)with q = 2. This method is

studied in Keerthi et al. (2001) as theMaximal Violating Pair (MVP)rule. Recall that a feasiblemis
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not optimal if we cannot �ndb that satis�es all the KKT conditions in(3.14)at m. A pair of indices

f i; j : i 2 Iup(m); j 2 Ilow(m)g leads to violation if� Ñmi h(m) > � Ñmj h(m). The MVP rule picks the

pair with the most violation, namely,i 2 Iup(m) and j 2 Ilow(m) that respectively correspond tom(m)

andM(m). Namely, at a givenm, the MVP rule selects the following working set:

B = f i; jg; wherei = argmaxi02Iup(m) � yi0Ñmi0
h(m); j = argminj02Ilow(m) � y j0Ñmj0

h(m): (3.20)

After selecting a working set, SMO proceeds to solve the subproblem of the format(3.18), which

simpli�es to the following QP.

min
mi ;mj

�

"
1� å l2N Qil ml

1� å l2N Q jl ml

#T"
mi

mj

#

+
1
2

"
mi

mj

#T"
Qii Qi j

Qi j Q j j

#"
mi

mj

#

s.t. miyi + mjy j = � å l2N ml yl ; 0 � mi ;mj � C:

(3.21)

Since this subproblem is a QP of two variables, its closed form optimal solution is easy to obtain.

SMO applies the closed form formulas to updatemi ;mj . The optimal updates

mnew
i =

8
>>><

>>>:

0 if m�
i < 0

C if m�
i > C

m�
i otherwise

;mnew
j =

8
>>><

>>>:

0 if m�
j < 0

C if m�
j > C

m�
j otherwise

are clipped from the following unconstrained optimal solutionsm�
i ;m�

j to �t in the [0;C] bounds. Note

thatd > 0 is a small constant.

m�
i = mi + yi

bi j

ai j
; m�

j = mj � y j
bi j

ai j
;

whereai j =

8
<

:
Kii + K j j � 2Ki j if Kii + K j j � 2Ki j > 0

d if Kii + K j j � 2Ki j = 0
;bi j = y jÑmj g(m;g) � yiÑmi g(m;g):

(3.22)

Dual Coordinate Descent Method: Linear SVM

The previous two methods are designed to handle general kernel functions. Among all kernel choices,

the linear kernel has been studied separately in literature as the simple structure of linear SVM

provides great potentials for large-scale problems. We next review the dual coordinate descent (DCD)

algorithm that Hsieh et al. (2008) propose for linear SVMs. Note that this is one of the dual-based

algorithms implemented in the LIBLINEAR (Fan et al. (2008)) package.

Coordinate descent is a well-known optimization technique that �nds an optimal solution via

coordinate-wise optimization, namely, it successively updates one variable at a time via a single-

variable subproblem until reaching certain termination criteria. The DCD method in Hsieh et al.

(2008) essentially apply this standard technique to solve(3.4). The algorithm initiates with a feasible
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m(0) . An iteration of updatingm(t� 1) to m(t) consists ofn inner iterations, each of which solves a

single-variable optimization model to �nd the optimal update along each coordinate.

Let m(i;t� 1) denote the solution obtained in thei-th inner iteration, thenm(0;t� 1) = m(t� 1) , m(i;t� 1) =

[m(t)
1 ; : : : ;m(t)

i ;m(t� 1)
i+ 1 ; : : : ;m(t� 1)

n ] for i = 1; : : : ;n� 1, andm(n;t� 1) = m(t) . Thei-th inner iteration solves

the following optimization model to updatem(i;t� 1) to m(i+ 1;t� 1) :

min
d

h(m(i;t� 1) + dei) s:t: 0 � m(t� 1)
i + d � C (3.23)

Hereei is then-dimensional unit vector with(ei) i = 1. (3.23)thereby �nds the optimal feasible update

along the direction ofmi . We further evaluateh to simplify (3.23) to a quadratic program:

min
d

1
2

Qii d2 + Ñmi h(m(i;t� 1))d s:t: 0 � m(t� 1)
i + d � C (3.24)

These update subproblems also provide a convenient way to check optimality:m(t) is optimal if all n

subproblems have an optimal solution atd = 0, namely, no further improvement is possible along any

coordinate. We note thatd = 0 is an optimal solution to(3.24)if and only if the projected gradient

ÑP
mi

h(m) = 0 for all i, where,

ÑP
mi

h(m) =

8
>>><

>>>:

Ñmi h(m) if 0 < mi < C

minf 0;Ñmi h(m)g if mi = 0

maxf 0;Ñmi h(m)g if mi = C

: (3.25)

Similar to decomposition methods, instead of seeking the exact optimality, Hsieh et al. (2008) use a re-

laxed stopping criteria which requiresmaxmi f ÑP
mi

h(m)g� minmi f ÑP
mi

h(m)g< t andmaxmi fj ÑP
mi

h(m)jg <

t , minmi fj ÑP
mi

h(m)jg < t . Another implementation detail is the shrinking procedure: Hsieh et al.

(2008) demonstrate that the same shrinking techniques used in decomposition methods are valid for

the DCD algorithm.

3.3.2 Training Fair SVM

We next develop algorithms for training fair SVM with the dual formulation(3.7). The key challenge

of solving(3.7) is that we need to search the optimal values of two sets of variables,mandg. We

observe thatmandg are fully separable in the constraints, and they share the same functional format

in the objective function. Given a �xedg, (3.7)apparently simpli�es to the dual formulations,(3.2)or

(3.4), used in standard SVM. Given a �xedm, (3.7)becomes a convex quadratic program with only

non-negativity constraints on theg variables:ming � dTg+ ( Am)g+ 1
2gTPg+ constant :gl � 0;8l .

Note that a quadratic program of this form is solvable with the coordinate descent method (Luo and

Tseng (1993)). In fact, the dual formulation(3.4)of standard linear SVM has the same format, which

allows Hsieh et al. (2008) to design the dual coordinate descent method.
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Drawing motivation from these observations, we propose to solve(3.7)with separate treatment of

mandg updates; more explicitly, we apply the update subroutine from a standard SVM algorithm to

updatemand we design a coordinate descent based update subroutine forg variables. Utilizing the

newg update subroutine, we extend SMO and DCD to specialized algorithms, respectively for fair

SVMs with a general kernel and a linear kernel. We note that the same extension is also applicable to

generic decomposition methods.

Main Steps and Termination Criteria

Same as standard SVM algorithms, our fair SVM algorithms initiate with a feasible solution

(m(0) ;g(0)). In iterationt, we examine whether the current solution satis�es the termination cri-

teria. If the termination criteria are not reached yet, we �rst apply an update iteration from a standard

SVM algorithm (Section 3.3.2) to updatem(t� 1) to m(t) with g(t� 1) treated as �x constants, then we

updateg(t� 1) to g(t) with m(t) �xed using coordinate descent (Section 3.3.2).

We rely on the KKT conditions to select the stopping criteria. Letg(m;g) denote the objective

function in (3.7).

Proposition 2. The KKT conditions for fair SVMs de�ned in(3.6), (3.7)are:

mi > 0 ) Ñmi g(m;g)+ byi � 0; mi < C ) Ñmi g(m;g)+ byi � 0;

gl = 0 ) Ñgl g(m;g) � 0; gl > 0 ) Ñgl g(m;g) = 0;
(3.26)

where the gradient formulas are:

Ñmi g(m;g) =
n

å
j= 1

Qi j mj +
k

å
l= 1

Ali gl � 1; Ñgl g(m;g) =
n

å
j= 1

Al j mj +
k

å
l0= 1

Pll 0gl0 � (cl � el ): (3.27)

Proof. We �rst derive the gradient formulas for the dual objective functiong(m;g). Recall that

g(m;g) = � eT m� dTg+ 1
2

"
m

g

#T

Q̄

"
m

g

#

, whereQ̄ =

"
Q A

AT P

#

: Q is the samen� n matrix used in

the standard dual SVM withQi j = hyi f (xi);y j f (x j )i , A is ak� n matrix with Ali = �h pl ;yi f (xi)i ,

andP is ak� k with Pll 0 = hpl ;pl0i . It is easy to compute the gradients as follows, which are exactly

(3.27).

Ñmi g(m;g) =
n

å
j= 1

Qi j mj +
k

å
l= 1

Ali gl � 1; Ñgl g(m;g) =
n

å
j= 1

Al j mj +
k

å
l0= 1

Pll 0gl0 � (cl � el ):
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These gradients have the following equivalent representations when we plug in the formulas for

the matrix entries.

Ñmi g(m;g) = hyi f (xi);å n
j= 1 mjy j f (x j )i � h yi f (xi);å k

l= 1gl pl i � 1;

Ñgl g(m;g) = �h å n
j= 1 mjy j f (x j );pl i + hpl ;å k

l0= 1gl0pl0i � (cl � el ):

Supposeq;b andm;g are respectively the optimal solution to(3.6) and(3.7), then the KKT

conditions of this primal-dual pair are:

mi > 0 ) yi(hq; f (xi)i + b) � 1; mi < C ) yi(hq; f (xi)i + b) � 1;

gl = 0 ) h pl ;qi + cl < el ; gl > 0 ) h pl ;qi + cl = el ;

We recall from(3.8) that the optimal solutions satisfyq = å n
i= 1 miyi f (xi) � å k

l= 1gl pl . When we

replaceq in the above KKT conditions with this optimal format in terms of dual variables, we obtain

the format in (3.26).

mi > 0 ) yi(hå n
i= 1 miyi f (xi) � å k

l= 1gl pl ; f (xi)i + b) � 1 � Ñmi g(m;g)+ byi � 0;

mi < C ) yi(hå n
i= 1 miyi f (xi) � å k

l= 1gl pl ; f (xi)i + b) � 1 � Ñmi g(m;g)+ byi � 0;

gl = 0 ) h pl ;å n
i= 1 miyi f (xi) � å k

l0= 1gl0pl0i + cl < el � Ñgl g(m;g) > 0;

gl > 0 ) h pl ;å n
i= 1 miyi f (xi) � å k

l0= 1gl0pl0i + cl = el � Ñgl g(m;g) = 0:

�

In fair SVM algorithms, we apply the stopping criteria from standard SVM algorithms with the

only change thatÑg(m;g) replaceÑh(m). Suppose we allow up tot violation to the KKT conditions.

For training a fair SVM with a general kernel, we terminate the fair SMO algorithm when the obtained

solution(m;g) satis�esm(m;g) � M(m;g) � t where

m(m;g)= max
i2 Iup(m)

� yiÑmi g(m;g); M(m;g)= max
i2 Ilow(m)

� yiÑmi g(m;g): (3.28)

For a linear kernel, we can further simplify(3.26) to eliminate the terms includingb through the

augmentation trick, that is, we add an additional element equal to1 to xi for all i and an additional zero

element topl for all l . Fair linear SVM algorithm thereby uses a similar stopping condition as the DCD

method in Section 3.3.1, that is,maxi f ÑP
mi

g(m;g)g � mini f ÑP
mi

g(m;g)g � t , maxi fj ÑP
mi

g(m;g)jg < t ,

mini fj ÑP
mi

g(m;g)jg � t , where the projected gradientÑP
mi

g(m;g) has an analogous de�nition to

ÑP
i h(m).
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Update Dual Variables for Standard SVM Constraints

In iterationt, we �rst updatem(t) to m(t+ 1) with g(t) �xed. The update requires solving a subproblem

containing only themvariables. Similar to the stopping criteria, compared to the subproblems used

in standard SVM algorithms, the only change needed is to substitute the gradient de�nitions with

Ñg(m;g(t� 1)).

For fair SVMs with a general kernel, we modify the update step in the SMO algorithm. In each

iteration, we choose the working setB from mvariables by solving(3.17)with Ñih(m) replaced by

Ñmi g(m;g). It suf�ces to use the following modi�ed maximal violation pair rule.

B = f i; jg; wherei = argmaxi02Iup(m) � yi0Ñmi0
g(m;g); j = argminj02Ilow(m) � y j0Ñmj0

g(m;g): (3.29)

Then we solve for the optimal update with the following subproblem.

min
mB

å i2BÑmi g(m;g)mi +
1
2å i; j2BÑ2

mi ;mj
g(m;g)mimj

s.t. mT
B yB + mT

NyN = 0; 0� mi � C;8i 2 B
(3.30)

For fair linear SVMs, we utilize the DCD method: the outer iteration updatingm(t� 1) to m(t)

consists ofn coordinate-wise optimization subproblems. Thei-th subproblem is stated below.

min
d

1
2

Qii d2 + Ñmi g(m(i;t� 1) ;g(t� 1))d s:t: 0 � m(t� 1)
i + d � C: (3.31)

Update Dual Variables for Fairness Constraints

We now introduce the coordinate descent updates forg variables. Recall that there arek fairness

constraints, thusk dual variables. The outer iteration of computingg(t) consists ofk inner iterations.

For l = 0; : : : ;k, we useg(l ;t� 1) to denote the solution obtained from thel-th inner iteration, then

g(0;t� 1) = g(t� 1) , g(l ;t� 1) = [ g(t)
1 ; : : : ;g(t)

l ;g(t� 1)
l+ 1 ; : : : ;g(t� 1)

k ] for l = 1; : : : ;k� 1, andg(k;t� 1) = g(t) . The

l -th inner iteration optimizes the objective functiong(m(t) ;g) along the direction ofgl with the

following optimization problem whereel is thek-dimensional unit vector with thel -th element equal

to 1.

min
d

g(m(t) ;g(l � 1;t� 1) + del ) s.t.g(t� 1)
l + d � 0 (3.32)

The closed form solution to (3.32) is stated in the following proposition.

Proposition 3. Supposem(t) is a given feasible solution in iterationt, for l = 1; : : : ;k, the optimal

solution to(3.32)is d�
l = maxf dl ; � g(t� 1)

l g, where

dl := �
å n

i= 1Ali m
(t)
i + å k

l0= 1Pll 0g(l � 1;t� 1)
l0 � (cl � el )

Pll
= �

Ñgl g(m(t) ;g(l � 1;t� 1))
Pll

:
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Therefore,g(t)
l = maxf g(t� 1)

l �
Ñgl g(m(t) ;g(l � 1;t� 1) )

Pll
;0g for all l.

Proof. The objective function of (3.32) simpli�es to the following format:

g(m(t) ;g(l � 1;t� 1) + del ) =
1
2







n

å
i= 1

m(t)
i yi f (xi) �

k

å
l0= 1

g(l � 1;t� 1)
l0 pl0 � dpl







2

� (cl � el )d

We observe that the objective function is a convex function ofd. In addition, the gradient has the

following formula:

Ñdg(m(t) ;g(l � 1;t� 1) + del ) = �h pl ;å n
i= 1 m(t)

i yi f (xi) � å k
l0= 1g(l � 1;t� 1)

l0 pl0 � dpl i � (cl � el )

= dPll + å n
i= 1Ali m

(t)
i + å k

l0= 1Pll 0g(l � 1;t� 1)
l0 � (cl � el )

= dPll + Ñgl g(m(t) ;g(l � 1;t� 1)) = dPll � dl Pll

The last two equations follow directly from the de�nition ofÑgl g(m(t) ;g(l � 1;t� 1)) anddl . Since

(3.32)contains a single bound constraint, if the stationary point of the objective function satis�es the

constraint, then the stationary point is the optimal solution. Namely,

d�
l = dl wheng(t� 1)

l + dl � 0:

Otherwise, ifg(t� 1)
l + dl < 0, which further implies thatÑgl g(m(t) ;g(l � 1;t� 1)) > g(t� 1)

l Pll � 0, therefore

the objective function is minimized at the smallestdl feasible. Namely,

d�
l = � g(t� 1)

l wheng(t� 1)
l + dl < 0:

The optimal formula ford�
l implies thatg(t)

l = maxf g(t� 1)
l + dl ;0g. �

An alternative interpretation of the subproblem(3.32)is that in thet-th outer iteration with a given

feasiblem(t) , in each inner iteration forl = 1; : : : ;k, we updategl to �x the violatedgl -related KKT

condition atm(t) and the latest updatedg(l � 1;t� 1) . This is formalized in the next proposition.

Proposition 4. Supposem(t) is a given feasible solution iterationt, andg(1;t� 1) ; : : : ;g(k;t� 1) is the

sequence of updates generated by coordinate descent method with subproblems(3.32), then for all

l = 1; : : : ;k, (m(t) ;g(l ;t� 1)) satis�es the following conditions whereg(t)
l = g(l ;t� 1)

l is the update from

the l-th inner iteration:

g(t)
l = 0 ) Ñgl g(m(t) ;g(l ;t� 1)) � 0; g(t)

l > 0 ) Ñgl g(m(t) ;g(l ;t� 1)) = 0:

Proof. We have derived that the gradient ofg with respect togl is:

Ñgl g(m;g) =
n

å
j= 1

Al j mj +
k

å
l0= 1

Pll 0gl0 � (cl � el ):
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In iterationt, given a feasiblem(t) , the gradientÑgl g after thel -th inner iteration satis�es:

Ñgl g(m(t) ;g(l ;t� 1)) = Ñgl g(m(t) ;g(l � 1;t� 1)) + Pll (g
(t)
l � g(t� 1)

l ):

We next discuss in two separate cases. First,g(t)
l > 0, by the derivedg update formula in Proposition 3,

this happens wheng(t)
l = g(t� 1)

l �
Ñgl g(m(t) ;g(l � 1;t� 1) )

Pll
, therefore we can conclude

Ñgl g(m(t) ;g(l ;t� 1)) = Ñgl g(m(t) ;g(l � 1;t� 1)) + Pll (g
(t)
l � g(t� 1)

l ) = 0:

The second case isg(t)
l = 0, which happens wheng(t)

l � g(t� 1)
l �

Ñgl g(m(t) ;g(l � 1;t� 1) )
Pll

. This further

implies

Ñgl g(m(t) ;g(l ;t� 1)) = Ñgl g(m(t) ;g(l � 1;t� 1)) + Pll (g
(t)
l � g(t� 1)

l ) � 0:

�

Implementation techniques

We use caching to reduce the needed kernel evaluations in both fair SMO and fair DCD. In addition,

both algorithms maintain an ef�cient update of the gradientsÑg(m;g) by updating the gradients along

with the variable updates. In Fair SMO, after computingm(t) in iterationt, we update all gradients

once with the following formulas:

Ñmi g(m(t) ;g(t� 1)) = Ñmi g(m(t� 1) ;g(t� 1)) + å n
j= 1Qi j (m

(t)
j � m(t� 1)

j ) 8i

Ñgl g(m(t) ;g(t� 1)) = Ñgl g(m(t� 1) ;g(t� 1)) + å n
j= 1Al j (m

(t)
j � m(t� 1)

j ) 8l
(3.33)

Then during the coordinate descent steps updatingg(t� 1) to g(t) , we update all gradients after each

inner iteration. Namely, after thel -th iteration computesg(t)
l , we update new gradients as below:

Ñmi g(m(t) ;g(l ;t� 1)) = Ñmi g(m(t) ;g(l � 1;t� 1)) + Ali (g
(t)
l � g(t� 1)

l ) 8i

Ñgl0
g(m(t) ;g(l ;t� 1)) = Ñgl0

g(m(t) ;g(l � 1;t� 1)) + Pll 0(g(t)
l � g(t� 1)

l ) 8l0:
(3.34)

In fair DCD, an iterationt updates all gradients in each inner iteration ofmupdate with(3.33)and in

each inner iteration ofg update with (3.34).

3.4 Theoretical Properties of Fair SVM Algorithms

We prove that both specialized algorithms for fair SVM asymptotically converge to a optimal solution

of (3.7). In particular, we establish the stronger linear convergence property for fair DCD, which

implies that fair DCD returns a solution with up tot violation to the KKT conditions, namely reaches

the termination criteria, in �nitely many iterations. Moreover, we show that the shrinking heuristic for

standard DCD is applicable to fair DCD and guarantees a �nite termination.
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3.4.1 Asymptotic convergence of fair SMO for fair general SVMs

We observe that fair SMO algorithm is a block coordinate descent method, as each iteration �nds

a new feasible solution by either updating a block of size two among themvariables or a block of

size one among theg variables. Tseng and Yun (2010) prove the asymptotic convergence of a block

coordinate descent method for linearly constrained smooth optimization when the block is chosen to

provide suf�cient descent in the objective value. For completeness, we state the convergence result

from Tseng and Yun (2010).

Theorem 13(Theorem 4.1 Tseng and Yun (2010)). Given a linearly constrained smooth optimization

problem

min
x

f (x) s.t. Ax= b; l � x � u;x 2 Rn:

In a block coordinate descent algorithm, iteration t consists of the following steps:

1. select a nonempty blockB(t) from all x coordinates and a symmetric matrixH(t) 2 Rn� n with

B T
B(t) H

(t)
B(t)B(t) B B(t) � 0, whereB B(t) is a matrix whose columns form an orthonormal basis for

Null(AB(t) ).

2. updatex(t+ 1) = x(t) + a (t)d(t) , with a (t) > 0 and d(t) = argmind2Rnf Ñ f (x)Td + 1
2dTH(t)d :

A(x(t) + d) = b; l � x(t) + d � u;di = 0 8i 62B(t)g.

Every limit point off x(t)g is an optimal solution if the following conditions are satis�ed:

(a) f(x(t) + a (t)d(t)) � f (x(t) + ã (t)d(t)) for all t, wheref ã (t)g is chosen by the Armijo rule.

(b) There exists0 < v � 1 such that for all t,

minf Ñ f (x)Td+
1
2

dTdiag(H(t))d : A(x(t) + d) = b; l � x(t) + d � u;di = 0 8i 62B(t)g

� vminf Ñ f (x)Td+
1
2

dTdiag(H(t))d : A(x(t) + d) = b; l � x(t) + d � ug:

(3.35)

In addition, there exist0 < l � l such that for all t,l � diag(H(t)) � l .

To prove the asymptotic convergence of fair SMO algorithm, it suf�ces to show that fair SMO

satis�es all the needed conditions in (Tseng and Yun, 2010, Theorem 4.1), thus the convergence result

applies. We �rst prove the following lemma which states the degree of improvement achieved with

each update.

Lemma 1. Supposef (m(t) ;g(t))g is the sequence generated by fair SMO. In the outer iterationt,

supposef g(l ;t)gl2 [k] is the sequence generated by the inner iterations updatingg. Then

g(m(t+ 1) ;g(t)) � g(m(t) ;g(t)) � �
1
4

ait jt



 m(t+ 1) � m(t)





2
; (3.36)
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g(m(t+ 1) ;g(l ;t)) � g(m(t+ 1) ;g(l � 1;t)) � �
1
2

Pll (g
l ;t
l � gl � 1;t

l )2; (3.37)

wheref it ; jtg is the working set used in iteration t and ait jt =

 f (xit ) � f (x jt )


 2. Moreover,

g(m(t+ 1) ;g(t+ 1)) � g(m(t) ;g(t)) � �
1
4

ait jt



 m(t+ 1) � m(t)





2
�

1
2

k

å
l= 1

Pll (g
(t+ 1)
l � g(t)

l )2: (3.38)

Proof. Suppose fair SMO choosesf it ; jtg as the working set in iterationt. For notation ease, we

denote(i; j) = ( it ; jt), then the optimal updates without the bound constraints are:

m�
i = m(t)

i + yid = m(t)
i + yi

bi j

ai j
; m�

j = m(t)
j � y jd = m(t)

j � y j
bi j

ai j

With the additional constraints0 � m(t)
i + yid � C and0 � m(t)

j + y jd � C, we supposeL � d � U is

the feasible domain ofd. Then the optimal feasible updates are:

m(t+ 1)
i = m(t)

i + yi d̄; m(t+ 1)
j = m(t)

j � y j d̄; whered̄ := minf
bi j

ai j
;Ug:

Recall from the working set selection rule,bi j � 0, so we haved̄ � 0. Since the other indices are

not modi�ed in iterationt, we conclude

 m(t+ 1) � m(t)


 2

= 2d̄2. Using the de�nition ofg(m;g), we

have:

g(m(t+ 1) ;g(t)) � g(m(t) ;g(t)) = (
1
2

Kii +
1
2

K j j � Ki j )d̄2 + ( yiÑmi g(m(t) ;g(t)) � y jÑmj g(m(t) ;g(t))) d̄

=
1
2

ai j d̄2 � bi j d̄ = ( ai j d̄ � bi j )d̄ �
1
2

ai j d̄2

� �
1
2

ai j d̄2 = �
ai j

4



 m(t+ 1) � m(t)





2
:

The last inequality follows fromai j d̄ � bi j � 0 andd̄ � 0.

Now, to prove(3.37), we again begin with the de�nition ofg to simplify the function difference

formula. Recall from Proposition 3,d�
l = maxf�

Ñgl g(m(t+ 1) ;g(l � 1;t) )
Pll

; � g(t)
l g.

g(m(t+ 1) ;g(l ;t)) � g(m(t+ 1) ;g(l � 1;t)) =
1
2

Pll (d�
l )2 � (el � cl +

n

å
i= 1

miAli +
k

å
l0= 1

gl0Pl0l )d
�
l

= ( Pll d�
l + Ñgl g(m(t) ;g(l � 1;t)))d�

l �
1
2

Pll (d�
l )2

In the case whend�
l = �

Ñgl g(m(t+ 1) ;g(l � 1;t) )
Pll

, the RHS in the above formula simpli�es to� 1
2Pll (d� )2.

In the other case whend�
l = � g(t)

l � 0, we haved�
l � �

Ñgl g(m(t+ 1) ;g(l � 1;t) )
Pll

, equivalently(Pll d�
l +

Ñgl g(m(t+ 1) ;g(l � 1;t))) � 0. Together withd�
l � 0, we conclude thatg(m(t+ 1) ;g(l ;t)) � g(m(t+ 1) ;g(l � 1;t)) �

� 1
2Pll (d�

l )2 in this case.
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After all k inner iterations, we obtaing(t+ 1) . As we have shown, for eachl = 1; : : : ;k, updating

thel -th coordinate ofg reduces the value ofg by at least� 1
2Pll (d�

l )2. Therefore, considering all the

updates,

g(m(t+ 1) ;g(t+ 1)) � g(m(t) ;g(t))

= g(m(t+ 1) ;g(k;t)) � g(m(t+ 1) ;g(k� 1;t)) + � � � + g(m(t+ 1) ;g(1;t)) � g(m(t+ 1) ;g(0;t)) + g(m(t+ 1) ;g(t)) � g(m(t) ;g(t))

� �
1
2

Pkk(d�
l )2 �

1
2

Pk� 1;k� 1(d�
l )2 � � � � �

1
2

P11(d�
l )2 �

1
4

ait jt



 m(t+ 1) � m(t)





2

= �
1
4

ait jt



 m(t+ 1) � m(t)





2
�

1
2

k

å
l= 1

Pll (gl ;t � gl � 1;t)2:

�

Theorem 14. Supposef (m(t) ;g(t))g is the in�nite sequence generated by fair SMO with tolerance

t = 0, a limit point (m̄; ḡ) of f (m(t) ;g(t))g an optimal solution to(3.7).

Proof. Fair SMO solves the dual fair SVM formulation(3.7), where the objective functiong(m;g)

is smooth, and the constraint matrix is a1� (n+ k) matrix withyi in the �rst n indices and0 in the

remainingk indices. In iterationt, the working block isB(t) = f mit ;mjt g or B(t) = f gl g. Then along

the descent directiond(t) , fair SMO solves the subproblem(3.30)or (3.32)to �nd the optimal step

sizea (t) . In addition, fair SMO usesH(t) = Q̄ =

"
Q A

AT P

#

, the Hessian of the objective functiong,

for all t.

In iterationt, if B(t) = f mit ;mjt g, thenH(t)
B(t)B(t) =

"
Qit it Qit jt

Qit jt Q jt jt

#

andB B(t) =

" p
2=2

�
p

2=2

#

. If B(t) =

f gl g, thenH(t)
B(t)B(t) = Pll andB B(t) = 1. In both cases, we derive thatB T

B(t) H
(t)
B(t)B(t) B B(t) � 0. Together

with the de�nitions ofd(t) , we have veri�ed that fair SMO is a block coordinate descent algorithm as

stated in Theorem 13.

We next show thatf (m(t) ;g(t));B(t) ;H(t) ;d(t) ;a (t)g from fair SMO satis�es Theorem 13(a) and

(b). Since fair SMO applies a minimization rule to �nda (t) , which is at least as well as the Armijo

rule, we immediately conclude (a) is satis�ed. To verify (b), we observe that

g(m(t+ 1) ;g(t)) � g(m(t) ;g(t)) = Ñm
B(t) g(m(t+ 1) ;g(t))Td(t) +

1
2

d(t)T
diag(H(t))d(t) ;

g(m(t+ 1) ;g(l ;t)) � g(m(t+ 1) ;g(l � 1;t)) = Ñgl g(m(t+ 1) ;g(l � 1;t))Td(t) +
1
2

d(t)T
diag(H(t))d(t) :

Therefore, Lemma 1 implies that for allt, the LHS of(3.35) is negative. Moreover, the RHS of

(3.35) is no smaller than the LHS, as the maximal objective descent when allowing all indices to

change is at least as large as the maximal descent when onlyB(t) indices can change. Therefore, there

exists 0< v � 1 such that (3.35) holds for allt. Lastly, by de�nition ofH(t) , we easily conclude that

l � diag(H(t)) � l with l = maxf Qii ;Pll g andl = minf Qii ;Pll g.
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Therefore, Theorem 13 implies that a limit point(m̄; ḡ) of f (m(t) ;g(t))g is an optimal solution of

to (3.7). �

Another useful property is to show the �nite termination of fair SMO in this general case.

Extending the �nite termination proofs of standard SMO turns out to be insuf�cient for this purpose:

Chen et al. (2006) prove that standard SMO terminates in �nite iterations by using the continuity

of Ñmi h(m) and a counting argument to show that SMO will run out ofmindices to update. In fair

SMO, the counting technique is invalid because the gradientsÑmi g(m;g) are updated with bothmand

g value changes. In Tseng and Yun (2010), besides the asymptotic convergence result used above to

establish the asymptotic convergence of fair SMO, they also proved linear convergence for a working

set selection utilizing second order informationÑmi ;mj h(m(t)), which is computationally more costly

than the maximal violating pair rule we use but is more ef�cient in reaching the optimal solution.

One possible future step is to investigate fair SMO with this alternative working set selection rule,

and utilize the linear convergence result in Tseng and Yun (2010) to establish stronger convergence

guarantees, including �nite termination guarantees.

3.4.2 Linear convergence of coordinate descent for fair linear SVMs

Our algorithm for fair linear SVM is a standard coordinate descent method, with each iteration

updating one variable in the steepest descent direction. In fact, our algorithm can be viewed as a direct

extension of the coordinate descent method that Hsieh et al. (2008) proposed for training standard

linear SVMs. We therefore follow the proof techniques used in Hsieh et al. (2008) to establish

theoretical properties of our algorithm.

Theorem 15. Supposef m(t) ;g(t)g is an in�nite sequence generated by the coordinate descent algo-

rithm for fair linear SVMs, then the sequence globally converges to an optimal solutionm� ;g� with a

convergence rate that is at least linear. Namely, there exists0 < a < 1 and an iterationt0 such that

g(m(t+ 1) ;g(t+ 1)) � g(m� ;g� ) � a (g(m(t) ;g(t)) � g(m� ;g� )) for all t � t0.

Proof. In Luo and Tseng (1992), they proved the linear convergence of coordinate descent method

for the following convex optimization problems withLi 2 [� ¥ ;¥ ) andUi 2 (� ¥ ;¥ ]:

min
x

f (Ex)+ bTx s.t. Li � xi � Ui : (3.39)

The linear convergence holds when the following conditions are satis�ed: (a)E has no zero columns;

(b) The set of optimal solutions to(3.39)is nonempty; (c)f is strongly convex and twice differentiable

everywhere. We next show that the dual fair linear SVM problem satis�es all these conditions. Recall

from (3.7), fair linear SVM has the following dual formulation:

min
m;g

1
2

"
m

g

#T "
Q A

AT P

#"
m

g

#

�

"
e

d

#T "
m

g

#

s.t. 0� mi � C; 8i 2 [n];gl � 0; 8l 2 [k]:
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In the notation of(3.39), E =
h
y1x1 : : : ynxn p1 : : : pl

i
and f (E

h
m g

i T
) = 1

2



 E

h
m g

i 



2
.

We observe that (a) holds by our assumption that there is no all zeroxi or pl as both are trivial cases

that can be eliminated from consideration. (c) holds by the format off . In addition, (b) can be shown

with strong duality. In the primal problemminq;b;x f 1
2 kqk2 + Cå n

i= 1xi : xi � 1� yi(qTxi + b);xi �

0 8i;qT pl � el 8lg, we can �nd q;b andx > 0 that satis�es all constraints as strict inequalities,

namely, the Slater's condition is satis�ed. Therefore, strong duality holds for fair SVM with a linear

kernel, implying that the dual program has a nonempty optimal solution set and the optimal dual value

is equal to the optimal primal value.

Therefore, by (Luo and Tseng, 1992, Theorem 2.1), coordinate descent method on fair linear

SVMs converges linearly to an optimal solution. �

3.4.3 Finite termination of coordinate descent with shrinking for fair linear SVMs

The standard DCD from Hsieh et al. (2008) adopt the same shrinking technique used in standard

SMO, that is, removei from the current set of active indices ifm(t)
i = 0 or m(t)

i = C. In fair DCD,

since we have bothmandg variables, we can shrink the variables at bounds, namelymi = 0 or mi = C

andgl = 0, from both sets. We will show that fair DCD with this shrinking heuristic reaches the KKT

based termination criteria in �nite iterations. We begin by observing some properties of the optimal

solutions to fair linear SVM, and the objective descent in each iteration.

Theorem 16. Let m� ;g� be the limit point off m(i;t) ;g(l ;t)g generated by coordinate descent algorithm.

(a) If m�
i = 0 andÑmi g(m� ;g� ) > 0, then there exists ti such that8t � ti , 8s,ms;t

i = 0.

(b) If m�
i = C andÑmi g(m� ;g� ) < 0, then there exists ti such that8t � ti , 8s,ms;t

i = C.

(c) If g�
l = 0 andÑgl g(m� ;g� ) > 0, then there exists tl such that8t � tl , 8m,gm;t

l = 0.

(d) limt! ¥ maxf maxi ÑP
mi

g(m(i;t) ;g(0;t));maxl ÑP
gl

g(m(n;t) ;g(l ;t))g

= limt! ¥ minf mini ÑP
mi

g(m(i;t) ;g(0;t));minl ÑP
gl

g(m(n;t) ;g(l ;t))g = 0.

Proof. From the global convergence proved in Theorem 15,m� ;g� is an optimal solution to dual fair

linear SVM. By strong duality and optimality conditions,q � = å n
i= 1 m�

i yi

"
xi

1

#

� å k
l= 1g�

l

"
pl

0

#

is an op-

timal primal solution. Moreover,q � is the unique primal optimal solution since the primal problem has

a strictly convex objective function. For the sake of this proof, we re-assign the indices of the in�nite

sequencef m(i;t) ;g(l ;t)g asf m(t) ;g(t)g, where updatingm(t) ;g(t) to m(t+ 1) ;g(t+ 1) corresponds to solving

the sub-problem at one coordinate (either inm or g). Let q (t) = å n
i= 1 m(t)

i yi

"
xi

1

#

� å k
l= 1g(t)

l

"
pl

0

#

.

From the global convergence to optimality, we have

lim
t! ¥

n

å
i= 1

m(t)
i yi

"
xi

1

#

�
k

å
l= 1

g(t)
l

"
pl

0

#

= lim
t! ¥

q (t) = q � :
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This further implies

lim
t! ¥

Ñmi g(m(t) ;g(t)) = lim
t! ¥

yihq (t) ;

"
xi

1

#

i � 1 = yihq � ;

"
xi

1

#

i � 1 = Ñmi g(m� ;g� ); (3.40)

lim
t! ¥

Ñgl g(m(t) ;g(t)) = lim
t! ¥

�h q (t) ;

"
pl

0

#

i + dl = �h q � ;

"
pl

0

#

i + dl = Ñgl g(m� ;g� ): (3.41)

There existsti such that for allt � ti ,

Ñmi g(m� ;g� ) > 0 ! Ñmi g(m(t) ;g(t)) > 0; Ñmi g(m� ;g� ) < 0 ! Ñmi g(m(t) ;g(t)) < 0: (3.42)

Similarly, there existstl such that for allt � tl ,

Ñgl g(m� ;g� ) > 0 ! Ñgl g(m(t) ;g(t)) > 0; Ñgl g(m� ;g� ) < 0 ! Ñgl g(m(t) ;g(t)) < 0: (3.43)

When we updatem(t) ;g(t) to m(t+ 1) ;g(t+ 1) by changingmi , the KKT condition of the subproblem

implies:

Ñmi g(m(t+ 1) ;g(t+ 1)) > 0 ! m(t+ 1)
i = 0; Ñmi g(m(t+ 1) ;g(t+ 1)) < 0 ! m(t+ 1)

i = C: (3.44)

These relations imply, aftert � ti , mi is always0or alwaysC. We also note that withÑmi g(m(t+ 1) ;g(t+ 1)) 6=

0 for all t � ti , it is impossible thatmi 2 (0;C), because it will contradict the optimality condition.

Therefore,(3.42)and(3.44)imply (a) and (b). To obtain the exact statements, we need to switch back

to the original indicesf m(s;t)
i g wheres2 f 1; : : : ;ng.

Similarly, when updatingm(t) ;g(t) to m(t+ 1) ;g(t+ 1) changesgl , the KKT condition of the subprob-

lem implies:

Ñgl g(m(t+ 1) ;g(t+ 1)) > 0 ! m(t+ 1)
i = 0: (3.45)

After t � ti , gl is always0. We now conclude (c) from(3.43)and(3.45), and switching back to the

indexg(m;t)
l wherem2 f 1; : : : ;kg.

Moreover,(3.42)and(3.43)imply that fort � ti , if Ñmi g(m� ;g� ) 6= 0, thenÑP
mi

g(m(t) ;g(t)) = 0.

The other caseÑmi g(m� ;g� ) = 0 directly impliesÑP
mi

g(m(t) ;g(t)) = 0. Similarly, fort � tl , we conclude

thatÑP
gl

g(m(t) ;g(t)) = 0. Changing back to the original indices, we have shown (d). �

Lemma 2. Supposef (m(t) ;g(t))g is the sequence generated by coordinate descent algorithm. In the

outer iteration t,f m(i;t) ;g(l ;t)g is the sequence generated by the inner iterations. Then

g(m(i;t) ;g(0;t)) � g(m(i� 1;t) ;g(0;t)) � �
1
2

Qii (m
(i;t)
i � m(i� 1;t)

i )2; (3.46)
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g(m(n;t) ;g(l ;t)) � g(m(n;t) ;g(l � 1;t)) � �
1
2

Pll (g
(l ;t)
l � g(l � 1;t)

l )2: (3.47)

Proof. When updating(m(i� 1;t) ;g(0;t)) to (m(i;t) ;g(0;t)), we solve the subproblem(3.31). From the

KKT conditions of the subproblem, we have

Ñmi g(m(i;t) ;g(0;t)) > 0 ! m(i� 1;t)
i � m(i;t)

i � 0; Ñmi g(m(i;t) ;g(0;t)) < 0 ! m(i� 1;t)
i � m(i;t)

i � 0:

Therefore,

g(m(i;t) ;g(0;t)) � g(m(i� 1;t) ;g(0;t)) = Ñmi g(m(i;t) ;g(0;t))(m(i;t)
i � m(i� 1;t)

i ) �
1
2

Qii (m
(i;t)
i � m(i� 1;t)

i )2

� �
1
2

Qii (m
(i;t)
i � m(i� 1;t)

i )2:

Next, when updating(m(n;t) ;g(l � 1;t)) to (m(n;t) ;g(l ;t)), we solve the subproblem(3.32). From the

KKT conditions of the subproblem, we have

Ñgl g(m(n;t) ;g(l ;t)) > 0 ! g(l ;t)
l = 0; Ñgl g(m(n;t) ;g(l ;t)) = 0 ! g(l ;t)

l � 0:

Therefore,

g(m(n;t) ;g(l ;t)) � g(m(n;t) ;g(l � 1;t)) = Ñgl g(m(n;t) ;g(l ;t))(g(l ;t)
l � g(l � 1;t)

l ) �
1
2

Pll (g
(l ;t)
l � g(l � 1;t)

l )2

� �
1
2

Pll (g
(l ;t)
l � g(l � 1;t)

l )2:

�

We next prove the �nite termination of coordinate descent with the selected shrinking heuristic

amongmvariables on fair linear SVM.

Theorem 17. Algorithm 5 terminates in �nite iterations.

Proof. For the sake of contradiction, we assume Algorithm 5 does not terminate in �nite iterations.

Then the algorithm will generate an in�nite sequencef m(t) ;g(t) : t = 1;2; : : :g. Throughout the

algorithm, at an iteration, if the activemindices inI and all theg indices satisfy the stopping criteria

M � m� t ; jMj � t ; jmj � t , we will un-shrinkI back to allmindices and go through allmi in the

next outer iteration (withn+ k inner iterations). We collect all these outer iterations with un-shrinking

as a subsequencef m(t) ;g(t)gR.

We �rst claim thatf m(t) ;g(t)gR must be in�nite. Assumef m(t) ;g(t)gR is �nite, then we consider

the iterations after the last iteration in this set. Theorem 16(d) implies that these future iterations will

reach the stopping conditionsM � m� t ; jMj � t ; jmj � t at some point. Thus,f m(t) ;g(t)g will be a

�nite sequence, contradicting our assumption that Algorithm 5 does not terminate.

Next, consider a subsequenceR̄ � R such thatf m(t) ;g(t) : t 2 R̄g converges to(m� ;g� ). Lemma 2

has shown thatf g(m(i;t) ;g(l ;t))g with i 2 f 1; : : : ;ng andl 2 f 1; : : : ;kg is decreasing. From the proof
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of Theorem 13, we have thatf g(m(i;t) ;g(l ;t))g is lower bounded by the optimal dual value. Therefore,

we conclude

lim
t2R̄;t! ¥

g(m(i;t) ;g(0;t)) � g(m(i� 1;t) ;g(0;t)) = 0; lim
t2R̄;t! ¥

g(m(n;t) ;g(l ;t)) � g(m(n;t) ;g(l � 1;t)) = 0

Moreover, taking the limits of (3.46) and (3.47), we have

lim
t2R̄;t! ¥

(m(l ;t) ;g(0;t)) = lim
t2R̄;t! ¥

(m(l � 1;t) ;g(0;t)) = lim
t2R̄;t! ¥

(m(n;t) ;g(l ;t)) = lim
t2R̄;t! ¥

(m(n;t) ;g(l � 1;t))

= lim
t2R̄;t! ¥

(m(t+ 1) ;g(t+ 1)) = ( m� ;g� ):

We claim that the limit point(m� ;g� ) must be an optimal dual solution. Assume it is not optimal,

then there exists an indexs where we can solve the corresponding subproblem and obtain an optimal

descentd such thatg((m� ;g� ) + des) < g(m� ;g� ). Note that the variable at indexs can be eithermi or

gl . In each outer iterationt, the inner iteration at this indexssolves the subproblem(3.31)or (3.32)

to optimality. Suppose the variable at indexs is mi , theng((m(i;t) ;g(0;t)) + des) � g(m(i+ 1;t) ;g(0;t)).

Taking the limit on both sides givesg((m� ;g� ) + des) � g(m� ;g� ). We can derive the same inequality

whengl is the variable at indexs. Therefore, we have reached a contradiction. So the claim(m� ;g� ) is

an optimal dual solution must be true.

We have shown that any limit point off m(t) ;g(t)gR is a dual optimal solution. By Lemma 2, the

objective values are decreasing throughout all iterations, sof m(i;t) ;g(0;t)g for anyi andf m(n;t) ;g(l ;t)g

for anyl also converge to a dual optimal solution. We can apply the proof techniques used in Theorem

16 to conclude thatÑPg(m(i;t) ;g(0;t)) andÑPg(m(n;t) ;g(l ;t)) globally converges to0. Therefore, the

stopping conditionsM � m� t ; jMj � t ; jmj � t will be reached by Algorithm 5 in �nite iterations.

�

3.5 Numerical Experiments

We implement fair SMO and fair DCD to train SVMs constrained with covariance parity(3.10)and/or

true positive rate parity(3.11)constraints. We apply fair SMO to nonlinear SVMs with a Gaussian

RBF kernel, and fair DCD to linear SVMs. Our main goal is to demonstrate the practical potentials of

these specialized fair SVM algorithms. To this end, we compare the runtime of fair SVM algorithms

against their corresponding standard algorithms without fairness constraints. In addition, we also

compare the runtime of both fair SVM algorithms with an off-the-shelf quadratic program solver.

Both algorithms are coded in C++ using Visual Studio 16.11.10. In addition, we use the CVXOPT

QP solver with the default setting in Python as the off-the-shelf solver. All experiments are conducted

in Windows 10 Pro 64-bit on a machine with Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz processors

and 24 GB of RAM.
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3.5.1 Datasets

We run experiments on two real-world datasets that are suitable for training and testing fair classi�ca-

tion algorithms: the German credit dataset Hofmann (1994) and the Adult income dataset adu (1996).

As our implementations are based on LIBSVM/LIBLINEAR, we use both datasets in LIBSVM format

provided in Chang and Lin (2011). The German credit dataset consists of1000data points with24

features (transformed from20attributes), and the labely indicates whether a person has a good (y = 1)

or bad (y = � 1) credit risk. For this dataset, we choose the features of housing status as the group

attribute:z= 1 represents 'rent', andz= 0 represents 'own' or 'for free'; we respectively refer to them

as 'renters' and 'homeowners'. In the Adult income dataset, each point has123features (transformed

from 24 attributes), and the labely represents whether a person has income above50;000dollars

(y = 1) or not (y = � 1). We choose gender as the sensitive feature, and assignz= 1 for women and

z= 0 for men. From this dataset, we use the 'a4a' instance with 4781 data points.

3.5.2 Implementation Details

We implement fair SMO algorithm by modifying the SMO implementation in LIBSVM (Chang

and Lin (2011)), and fair DCD by modifying the standard DCD implemented in LIBLINEAR (Fan

et al. (2008)). For both algorithms, the main modi�cations include de�ning functions to compute

Q̄ (standard SVM only requires computing the submatrixQ), adding theg update subroutine and

replacing all gradient formulas used in the implementation. In addition, we keep the same caching

operations provided in the standard algorithms, and extend the shrinking steps in LIBLINEAR to

handle bothmandg.

On both datasets, we test fair SMO for a RBF kernel and fair DCD for a linear kernel. We

consider three fairness settings: (a) demographic parity with covariance parity constraints(3.10), (b)

equalized odds with true positive parity constraints(3.11), and (c) both conditions with(3.10)and

(3.11). For simplicity, we use the same thresholde for all fairness constraints in one instance. To

compare performances at fairness constraints of different strengths, we teste 2 f 0;0:01;0:05;0:1;1g

in each set of experiments. Since it is well known that the training performance of SVM is in�uenced

by hyper-parameters, for linear SVM instances, we test different values for the penalty parameter

C 2 f 0:1;1;10g. For nonlinear SVMs with a RBF kernel, we �xC = 1 and use different valuess in

the kernel function:s 2 f 0:02;0:1;1g. In each experiment instance, we use 5-fold cross validation

with a 80/20 train-test split and report the average statistics for accuracy and fairness.

3.5.3 Experiment Results

We focus on the training time, namely the runtime of an algorithm before returning an optimal solution,

as the main performance measure to compare the computational costs of specialized algorithms

with and without fairness constraints, and off-the-shelf QP solver. For completeness, we also

report accuracy and fairness statistics to verify that the tested fair SVM models provide reasonable
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(a) German credit dataset (b) Adult income dataset

Fig. 3.1 Runtime comparison between Fair SMO and CVXOPT: SVMs with a RBF kernel

performances. We provide brief discussions about accuracy and fairness performances on both

datasets in the captions of Tables 3.1-3.12.

Our Algorithms vs. Solver

In Figs. 3.1a and 3.1b, we compare the runtime of fair SMO versus the CVXOPT solver for training

a fair non-linear SVM with a RBF kernel on both datasets. Figs. 3.2a and 3.2b provide the same

comparisons between fair DCD versus the CVXOPT solver for training fair linear SVMs. We show the

runtime separately for different fairness settings and thresholds. We observe that fair SMO noticeably

outperforms the solver on all instances. In fact, when using the CVXOPT solver, we pre-compute and

input the complete kernel matrixQ to the solver, whereas we only input the feature vectors to fair

SMO; therefore, the effective advantages of fair SMO are greater than those shown in illustration. For

training linear SVMs, we observe that fair DCD has a shorter runtime than the CVXOPT solver on

all but the German dataset instances atC = 10 in Fig. 3.2a. Moreover, even in these instances, the

runtime gaps are smaller than the time needed to pre-generate the kernel matrix for the solver, so fair

DCD still has a shorter total runtime.
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Hyperparam. Fair. Const. No Fairness e = 0 e = 0:01 e = 0:05 e = 0:1 e = 1
C : 1:0;s : 0:02 Only DP. 0.74� 0.01 0.73� 0.00 0.78� 0.01 0.71� 0.01 0.73� 0.00 0.76� 0.00

Only TPP. 0.74� 0.01 0.73� 0.00 0.77� 0.00 0.72� 0.00 0.73� 0.00 0.77� 0.00
DP. and TPP. 0.74� 0.01 0.73� 0.00 0.78� 0.01 0.71� 0.01 0.73� 0.00 0.76� 0.00

C : 1:0;s : 0:10 Only DP. 0.76� 0.01 0.76� 0.00 0.78� 0.00 0.73� 0.00 0.75� 0.00 0.78� 0.00
Only TPP. 0.76� 0.01 0.76� 0.00 0.78� 0.00 0.74� 0.00 0.75� 0.00 0.77� 0.00

DP. and TPP. 0.76� 0.01 0.75� 0.00 0.78� 0.00 0.73� 0.00 0.75� 0.00 0.78� 0.00
C : 1:0;s : 1:00 Only DP. 0.71� 0.01 0.71� 0.00 0.76� 0.00 0.69� 0.00 0.69� 0.00 0.70� 0.00

Only TPP. 0.71� 0.01 0.71� 0.00 0.76� 0.00 0.69� 0.00 0.69� 0.00 0.69� 0.00
DP. and TPP. 0.71� 0.01 0.71� 0.00 0.76� 0.00 0.68� 0.00 0.69� 0.00 0.70� 0.00

Table 3.1 Predictive accuracy on test data using non-linear SVMs with a RBF kernel on German credit
dataset

Hyperparam. Fair. Const. No Fairness e = 0 e = 0:01 e = 0:05 e = 0:1 e = 1
C : 1:0;s : 0:02 Only DP. 0.15� 0.01 0.08� 0.03 0.13� 0.02 0.09� 0.02 0.11� 0.03 0.11� 0.02

Only TPP. 0.15� 0.01 0.13� 0.02 0.16� 0.02 0.11� 0.01 0.14� 0.03 0.14� 0.02
DP. and TPP. 0.15� 0.01 0.09� 0.03 0.13� 0.02 0.09� 0.02 0.10� 0.03 0.11� 0.02

C : 1:0;s : 0:10 Only DP. 0.14� 0.03 0.08� 0.02 0.12� 0.02 0.08� 0.00 0.07� 0.02 0.19� 0.02
Only TPP. 0.14� 0.03 0.11� 0.01 0.16� 0.01 0.08� 0.00 0.08� 0.01 0.22� 0.01

DP. and TPP. 0.14� 0.03 0.09� 0.02 0.12� 0.02 0.08� 0.00 0.07� 0.01 0.19� 0.02
C : 1:0;s : 1:00 Only DP. 0.03� 0.01 0.01� 0.00 0.01� 0.00 0.02� 0.01 0.04� 0.00 0.04� 0.01

Only TPP. 0.03� 0.01 0.01� 0.00 0.01� 0.00 0.02� 0.00 0.04� 0.00 0.06� 0.00
DP. and TPP. 0.03� 0.01 0.01� 0.00 0.01� 0.00 0.02� 0.00 0.04� 0.00 0.04� 0.01

Table 3.2 Demographic parity between renters vs. homeowners on test data using non-linear SVMs
with a RBF kernel on German credit dataset

Hyperparam. Fair. Const. No Fairness e = 0 e = 0:01 e = 0:05 e = 0:1 e = 1
C : 1:0;s : 0:02 Only DP. 0.19� 0.07 0.31� 0.06 0.07� 0.03 0.15� 0.02 0.09� 0.01 0.16� 0.02

Only TPP. 0.19� 0.07 0.40� 0.03 0.03� 0.01 0.18� 0.01 0.10� 0.02 0.18� 0.02
DP. and TPP. 0.19� 0.07 0.32� 0.05 0.07� 0.03 0.15� 0.02 0.10� 0.01 0.17� 0.02

C : 1:0;s : 0:10 Only DP. 0.16� 0.07 0.33� 0.04 0.07� 0.03 0.06� 0.01 0.18� 0.05 0.20� 0.01
Only TPP. 0.16� 0.07 0.39� 0.02 0.04� 0.02 0.06� 0.00 0.12� 0.04 0.20� 0.00

DP. and TPP. 0.16� 0.07 0.34� 0.04 0.07� 0.03 0.06� 0.01 0.18� 0.05 0.20� 0.01
C : 1:0;s : 1:00 Only DP. 0.07� 0.02 0.05� 0.00 0.13� 0.00 0.09� 0.01 0.09� 0.00 0.03� 0.01

Only TPP. 0.07� 0.02 0.05� 0.00 0.13� 0.00 0.07� 0.00 0.09� 0.00 0.01� 0.00
DP. and TPP. 0.07� 0.02 0.05� 0.00 0.13� 0.00 0.08� 0.01 0.09� 0.01 0.02� 0.01

Table 3.3 True positive rate parity between renters vs. homeowners on test data using non-linear
SVMs with a RBF kernel on German credit dataset

Hyperparam. Fair. Const. No Fairness e = 0 e = 0:01 e = 0:05 e = 0:1 e = 1
C : 1:0;s : 0:02 Only DP. 0.83� 0.00 0.83� 0.01 0.83� 0.01 0.83� 0.00 0.84� 0.01 0.84� 0.01

Only TPP. 0.83� 0.00 0.84� 0.01 0.84� 0.01 0.84� 0.01 0.84� 0.01 0.84� 0.01
DP. and TPP. 0.83� 0.00 0.83� 0.00 0.83� 0.01 0.83� 0.00 0.67� 0.17 0.84� 0.01

C : 1:0;s : 0:10 Only DP. 0.82� 0.00 0.83� 0.01 0.83� 0.01 0.83� 0.01 0.83� 0.01 0.83� 0.01
Only TPP. 0.82� 0.00 0.83� 0.01 0.83� 0.01 0.83� 0.01 0.83� 0.01 0.83� 0.01

DP. and TPP. 0.82� 0.00 0.83� 0.01 0.83� 0.01 0.83� 0.01 0.83� 0.01 0.83� 0.01
C : 1:0;s : 1:00 Only DP. 0.76� 0.00 0.76� 0.00 0.76� 0.00 0.76� 0.00 0.76� 0.00 0.76� 0.00

Only TPP. 0.76� 0.00 0.76� 0.00 0.76� 0.00 0.76� 0.00 0.76� 0.00 0.76� 0.00
DP. and TPP. 0.76� 0.00 0.76� 0.00 0.76� 0.00 0.61� 0.15 0.76� 0.00 0.76� 0.00

Table 3.4 Predictive accuracy on test data using non-linear SVMs with a RBF kernel on Adult income
dataset

Hyperparam. Fair. Const. No Fairness e = 0 e = 0:01 e = 0:05 e = 0:1 e = 1
C : 1:0;s : 0:02 Only DP. 0.19� 0.00 0.11� 0.01 0.11� 0.01 0.14� 0.01 0.15� 0.01 0.18� 0.01

Only TPP. 0.19� 0.00 0.13� 0.01 0.18� 0.01 0.18� 0.01 0.18� 0.01 0.18� 0.01
DP. and TPP. 0.19� 0.00 0.12� 0.01 0.11� 0.01 0.14� 0.01 0.12� 0.03 0.18� 0.01

C : 1:0;s : 0:10 Only DP. 0.21� 0.00 0.15� 0.01 0.16� 0.01 0.17� 0.01 0.18� 0.01 0.19� 0.01
Only TPP. 0.21� 0.00 0.16� 0.01 0.19� 0.01 0.19� 0.01 0.19� 0.01 0.19� 0.01

DP. and TPP. 0.21� 0.00 0.15� 0.01 0.16� 0.01 0.17� 0.01 0.18� 0.01 0.19� 0.01
C : 1:0;s : 1:00 Only DP. 0.07� 0.00 0.02� 0.00 0.02� 0.00 0.05� 0.00 0.06� 0.00 0.06� 0.00

Only TPP. 0.07� 0.00 0.06� 0.00 0.06� 0.00 0.06� 0.00 0.06� 0.00 0.06� 0.00
DP. and TPP. 0.07� 0.00 0.02� 0.00 0.02� 0.00 0.04� 0.01 0.06� 0.00 0.06� 0.00

Table 3.5 Demographic parity between female vs. male test data using non-linear SVMs with a RBF
kernel on Adult income dataset
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setting with true labelsf yig and predicted labelsf ŷig. They de�ne the utility function as a function

of yi ; ŷi , and the speci�c format is chosen to re�ect whetheri is risk averse, neutral or seeking, and

how close the predicted outcomeŷi is to i's desirable outcome. They then de�ne a utilitarian sum of

these individual utilities as the social welfare measure, and propose to add a constraint on this social

welfare value to standard ML models as an in-processing fair ML approach. Hu and Chen (2020)

study a similar utility de�nition without the risk component in a classi�cation setup. They evaluate the

overall welfare associated with classi�cation decisions through comparing a vector of welfare values,

which measure the utilitarian welfare by group. Also in a classi�cation setting, Corbett-Davies and

Goel (2018) suppose each group has �xed bene�ts and costs associated with classi�cation outcomes,

and these values are used as parameters in the utility functions. A group's utility aggregates the

bene�ts and costs that individuals of the group incur from their classi�cation outcomes. A more

re�ned view of utility is studied in Heidari et al. (2019): they partition one's actual utility into an

effort-based component and an advantage component. Utilizing this partition, they group individuals

by effort-based utilities and propose a fairness measure equivalent to the expected advantage utility of

the worst-off group.

4.2 The Basic Optimization Problem

The general problem of maximizing social welfare can be stated

max
xxx

�
W

�
UUU(xxx)

� �
� xxx 2 Sxxx

	
(4.1)

wherexxx = ( x1; : : : ;xn) is a vector of resources distributed across stakeholders1; : : : ;n, andSxxx is the set

of feasible values ofxxx permitted by resource limits and other constraints.UUU = ( U1; : : : ;Un) is a vector

of utility functions, whereUi(xxx) de�nes the utility experienced by stakeholderi as a result of the

resource distributionxxx. We can normally writeUi(xxx) asUi(xi), since a stakeholder's utility typically

depends only on the resources allotted to that stakeholder. Finally,W(uuu) is asocial welfare function

that measures the desirability of a vectoruuu of utilities. Problem(4.1)maximizes social welfare over

all feasible resource allocations.

In practice, it is often convenient to model the utility functionsUUU using constraints, because this

results in problems better suited for optimization solvers. One therefore writes (4.1) as

max
xxx;uuu

�
W0(uuu)

�
� (xxx;uuu) 2 Sxxxuuu

	
(4.2)

whereuuu is a vector of utilities, andSxxxuuu is de�ned so that(xxx;uuu) 2 Sxxxuuu impliesxxx 2 Sxxx anduuu = UUU(xxx).

The functionW0 is a possibly simpli�ed version ofW that yields an equivalent optimization problem

due to constraints de�ningSxxxuuu.

To simplify exposition, we assume that the original problem constraints that de�neSxxx consist

of (or can be approximated by) a system of linear inequalities and equations. Thus, for example,
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when we say that(4.1) is a linear programming (LP) problem for a givenW, we mean that(4.1)

can be formulated as an LP problem(4.2) whenSxxx is de�ned by a linear system. The linearity

assumption actually allows a great deal of modeling �exibility, becauseSxxxuuu can be approximated by

linear constraints wheneverSxxx is convex andUUU(xxx) is a concave function ofxxx. The latter occurs in the

common situation whereUUU is linear or represents decreasing returns to scale.

All of the SWFs considered here can be formulated as linear, nonlinear, or mixed integer pro-

gramming problems for whichadvancedsolution technology exists. An LP model optimizes a linear

function over continuous variables, subject to linear inequality constraints. The problem isextremely

well solved. Nonlinear programming (NLP) modelsoptimizea nonlinear function over continuous

variables, subject to linear or nonlinear inequality constraints. All the NLP models considered here are

relatively easy to solve. Mixedinteger/linearprogramming (MILP) models are LP problems except

that some variables must take integer values. They are combinatorial in nature, but state-of-the-art

software frequently solves industrial instances with thousands of discrete variables.

If some of the original problem variablesxi are discrete, an otherwise LP problem becomes an

MILP problem, and an NLP problem becomes a mixed integer/nonlinear programming (MINLP)

problem. The latter can be quite hard to solve. An MILP problem of course remains an MILP problem.

4.2.1 Advantages of Optimization

The optimization of social welfare functions offers several advantages as a framework for incorporating

fairness into AI.

• Social welfare functions provide abroader perspective on fairnessthan can be achieved by

focusing exclusively on bias and concepts of parity across groups. They not only have the

�exibility to represent a wide range of fairness concepts, but they encourage modelers to take

into account the overall welfare of those affected. While AI-based decision making already

strives to maximize predictive accuracy, a welfare perspective allows it to consider explicitly

the more general bene�ts that accurate predictions can deliver, as well as whether the bene�ts

are distributed justly.

• Social welfare functions allow one tobalance equity and ef�ciencyin a principled way. Where

equity is an issue, there is often a desire for ef�ciency as well. A social welfare approach

obliges one to consider how equity and utilitarian goals should be represented and balanced

when one chooses the function to be maximized. One can of course maximize ef�ciency subject

to a constraint on some measure of inequity, but this provides no principled way of regulating

the trade-off between the two.

• Optimization models allow one to harnesspowerful optimization methods, which have been

developed and re�ned over a period of 80 years or more. A wide variety of social welfare

functions can be formulated for solution by highly advanced linear, nonlinear, and mixed integer

programming solvers. We provide examples in Section 4.5.
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• Optimization models offer enormous �exibility toinclude constraints on the problem. Decisions

are normally made in the context of resource constraints or other limitations on possible options.

These can be represented as constraints in the optimization problem, as nearly all state-of-the-art

optimization methods are designed for constrained optimization. Also, a complex social welfare

function can often be simpli�ed by adding constraints to the optimization problem, resulting in

a problem that is easier to solve.

4.3 Example: Mortgage Loan Processing

We use mortgage loan processing as a running example, as it is a much-discussed application of

AI-based decision making. Issues of fairness arise when an AI system is more likely to deny loans to

members of certain groups, perhaps re�ecting minority status or gender. A frequently used remedy is

to apply statistical bias metrics to detect the problem and adjust the decision algorithms in an attempt

to solve it.

Yet bias is only one element of a broader decision-making context. For one thing, there is a clear

utilitarian imperative. The reason for automating mortgage decisions in the �rst place is to predict

more accurately who will default, because defaults are costly for the bank and devastating to home

buyers. The desire for accurate prediction is, at root, a desire to maximize utility. Furthermore, bias is

regarded as unfair in large part because it reduces the welfare of a segment of society that is already

disadvantaged. An aversion to bias is, to a great degree, grounded in a desire for distributive justice

in general. All this suggests that loan decisions should be designed to achieve what we really want:

ef�ciency and distributive justice, rather than focusing exclusively on predictive accuracy and group

parity.

The social welfare functionW in (4.1)should be selected to balance ef�ciency and equity in a

suitable fashion; we consider some candidate SWFs in Section 4.5. The stakeholders1; : : : ;n might

include the loan applicants, the bank, the bank's stockholders, and the community at large. For

simplicity, we focus on the loan applicants as stakeholders. The utility functionUUU converts a given

set of loan decisionsddd = ( d1; : : : ;dn) to a vector of expected utilitiesuuu = ( u1; : : : ;un) = UUU(ddd) that the

stakeholders experience as a result. Since granting a loan is a yes-or-no decision, we can de�nedi

to be a binary variable withdi = 1 if applicanti receives a loan. The utility measureui = Ui(di) for

applicanti could depend on the applicant's �nancial situation as well as the amount of the loan, as

for example when the marginal value of a loan dollar is greater for an applicant who is less well-off.

The SWF can re�ect a preference for granting loans to disadvantaged applicants even when they

have a somewhat higher probability of default, so as to ensure a more just distribution of utility. This

could have the effect of avoiding bias against minority groups, but as part of a more comprehensive

assessment of social welfare.

A bank can rely solely on a fully speci�ed social welfare optimization model to determine the

optimal loan decisions; this is the standard approach in the optimization literature. The welfare
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optimization model can also be integrated with other AI methods to support loan decision-making.

We specify several possible integration scenarios.

The loan decisionsddd and the associated utilitiesuuu may depend on predictions from machine

learning. Utilizing historical data on loan applications, approvals and defaults, the bank can train

machine learning models to predict whether an applicant is quali�ed for a loan or the likelihood

that an applicant will default if a loan were granted, which respectively require classi�cation and

regression models. In the former case, suppose applicanti has true labelyi = 1 if he/she is quali�ed

andyi = � 1 otherwise. The applicant's predicted label isŷi = 1 if he/she is classi�ed as a quali�ed

applicant, and̂yi = � 1 otherwise. One way to use these classi�cation outcomes is to consider granting

loans only for those labeled as 'quali�ed', namely the welfare optimization model requiresdi = 0 if

ŷi = � 1 anddi 2 f 0;1g if ŷi = 1. These constraints onddd also affect the set of feasible utilitiesuuu, thus

the corresponding welfare-optimizing decisions. In the latter case, we denote applicanti's true default

probability aspi and the predicted probability aŝpi . Suppose the bank associates different utilities for

when an applicant repays or defaults a loan, then the utility can be de�ned asui = p̂iu1
i + ( 1� p̂i)u0

i ,

whereu1
i is the utility that results ifi repays the loan andu0

i if i defaults. As shown, the ML-based

predictions are used to fully specify the bank's social welfare optimization problem. When confronted

with a batch of loan decisions, the bank will use machine learning models to generate the needed

predictions, then maximizeW(UUU(ddd)) subject to feasibility constraints, such as, a constraintå i cidi � B

on the funds available (whereci is the requested loan amount).

Another option is for the bank to solve the optimization problem in advance, before particular

applicants are considered. It would maximizeW(UUU(ddd)) over a set of hypothetical applicants corre-

sponding to various �nancial pro�les, again using ML-based default probabilities as input. In this

case, the utilityUk(dk) that accrues to a potential applicant type would depend in part on the estimated

number of applicants in the population that have the corresponding pro�le. Then when someone with

�nancial pro�le k applies for a loan, the bank would award the loan ifdk = 1 in the optimal solution

of the welfare maximization problem.

We will later refer to these mentioned options as examples ofpost-processingintegration of

social welfare optimization and AI, because the welfare-based fairness in injected after the learning

phase with AI tools. An alternative integration perspective is to incorporate welfare-based fairness

considerations into the learning components, and we refer to these asin-processingintegration. We

specify an example of in-processing integration for the case where the bank uses a classi�cation

model to predict whether an applicant is quali�ed, namely whether a loan application should be

approved. The standard training algorithm minimizes the predictive loss, or equivalently maximizes the

classi�cation accuracy. To incorporate welfare-based fairness, utilities need to be de�ned with respect

to classi�cation outcomes, namely,uuu = UUU(ŷyy). We consider a linear utility format,ui(ŷi) = bi + gi ŷi ,

wherebi ;gi respectively denotei's starting utility and additional utility gain/loss from classi�cation.

As we later illustrate in our case study, we can assignbi ;gi based on a person's true labelyi and other

features includingi's group membership. Note thatbi ;gi values should �t the classi�cation contexts.
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For example, we expect a true positive outcome to have a higher utility than a false negative outcome,

that is, whenyi = 1, the selectedbi ;gi should satisfyui(1) > ui(� 1).

4.4 Welfare-based Fairness: A General Framework

Drawing motivation from the running example, we now formalize a general framework for designing

AI systems with welfare-based fairness guarantees.

4.4.1 Step 1: Specify decision problem

We begin by specifying the needed components of the decision problem. This step is critical for the

success of later steps as it ensures we have a precise understanding of the problem scope and context.

We highlight some key components that commonly exist in problem instances. Note that additional

factors may be needed in speci�c problems.

• Task: the task speci�es the downstream actions and the involved resources to allocate. In our

running example, the bank's task is to decide whether to grant loans to applicants.

• Stakeholders: stakeholders are individuals or groups directly or indirectly affected by the

decisions, namely, they are the utility recipients in the problem.

• Goals: we characterize the desirable outcomes as goals of the decision problem. These goals

serve as the guiding principles for de�ning the social welfare objectiveW(uuu).

• Constraints: these are restrictions in the problem context that limit which actions are feasible,

namely, we specify constraints to de�ne the domainSd. A main source of restriction is the

scarcity of resources, for example, the bank is subject to a budget constraint. In addition, the

decision contexts may impose constraints on actions, for instance, the loan allocated to an

applicant should not exceed the requested amount.

4.4.2 Step 2: De�ne utility and social welfare functions

With a clear problem statement, we continue to de�ne utility functions and social welfare functions. As

we mention in the running example, it is useful to distinguish the de�nitions for different components

of an integrated decision-making framework. For the prediction component relying on machine

learning, we de�ne utility and social welfare with respect to the prediction results. For the decision

component utilizing optimization, utility and social welfare should re�ect the involved stakeholders'

well-beings from the decision outcomes.

4.4.3 Step 3: Develop decision models

Depending on decision contexts, we can integrate social welfare optimization with rule-based AI

systems and machine learning.
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Full Information: Integration with Rule-based AI

When there is full information on the social welfare optimization problem, it is suf�cient to solve the

fully speci�ed optimization model for the optimal decisions. The needed information may be available

from past data, or provided by experts utilizing their domain knowledge. This full information context

is suitable for integration by means of rule-based AI, which utilizes a set of rules to encode knowledge

relevant to the decision and to produce pre-de�ned outcomes. Rule-based systems are increasingly

recognized for their capacity to support principled and transparent AI in various application domains.

For instance, Brandom (2018) observes the trend in autonomous vehicle industry whereby “companies

have shifted to rule-based AI, an older technique that lets engineers hard-code speci�c behaviors or

logic into an otherwise self-directed system.” Moreover, Kim et al. (2021) demonstrate that ethical

principles can be precisely represented as rules to include in an AI system. In fact, they suggest that a

rule-based formulation is necessary for making ethical decisions.

We highlight two possible schemes to implement the integration of rule-based AI and optimization.

The �rst method is to use the optimization problem to guide the selection of rules to encode into

the AI system, then rely on the rule-based system to make decisions. As we have illustrated in the

mortgage example, the bank may pre-specify applicant classes and determine decision-rules for these

classes using a social welfare optimization model. Such a rule-based system is straightforward to

use: for a new loan applicant, the bank would �rst identify which class the applicant belongs to, then

approve the loan if the corresponding rule for the class says so and reject otherwise.

Alternatively, in an AI rule base, we can include rules that provide instructions for formulating the

optimization problem and for choosing actions based on the optimal solution. This is consistent with

the proposal from Bringsjord et al. (2006) that one could constrain AI systems with ethical principles

formalized as logic statements, such as if-then statements. For example, the bank may consider

rules that require applicants with certain features to receive reasonable prioritization, and these rules

can be captured as constraints or incorporated into the objective function in the optimization model.

Furthermore, when making the �nal loan decisions, the bank may de�ne rules about implementing

the allocation solution obtained from the optimization problem.

Partial Information: Integration with Machine Learning

A second type of context arises when a limited amount of information is required to formulate

the relevant optimization problem. The partial information case motivates a natural integration of

optimization with machine learning. In particular, we focus on supervised learning methods that train

predictive models from labelled data. Suppose a training data set isD = f (xxxi ;yi)gn
i= 1 wherexxxi is the

feature vector andyi is the true label, then a supervised learning method trains a predictor functionh

with the accuracy in the predicted labelsf h(xxxi)g as the primary goal. The ML literature has studied a

large number of formats forh, ranging from a simple functional form in logistic regression and support

vector machine to more complex structures like decision tree and neural network. Optimization, as a
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technique, is broadly used to train ML models, but our emphasis is to integrate optimization as the

fairness-seeking strategy.

We formalize two integration approaches that differ in the usage of social welfare optimization.

First, in apost-processingview, ML models are trained to predict the information needed to formulate

the welfare optimization model, then the social welfare optimization model is solved for decisions. As

shown below, the prediction step focuses solely on accuracy through the standard loss minimization,

then the decision step incorporates fairness considerations via the social welfare objective. It is notable

that all supervised learning methods are suitable for such post-processing integration, and the decision

maker has the �exibility to choose the ML methods �tting for the problem context and computational

requirement.

Prediction step: h� = argminhL (h;D );

Decision step: ddd� = argmaxdddf W(UUU(ddd)) : di = d(xxxi ;h� (xxxi))g:

The other approach is in-processing integration where social welfare optimization is directly

embedded into a machine learning model. We can consider this approach as a type of in-processing

fair ML method, and the key distinction with the majority of literature is that we encode fairness in

a social welfare function. More precisely, we implement the integration by modifying the standard

accuracy objective in a training model with a social welfare function. As we display below, one

convenient modi�cation is to use a weighted sum of the training loss and the negative social welfare.

Note that the choice ofW clearly affects the complexity of the learning model, hence the success of

this in-processing integration is contingent on whether the resulting training model could be solved

ef�ciently.

Prediction step: h� = argminhf L (h;D ) � l W(UUU(h))) : ui = U(h(xxxi);xxxi ;yi)g;

Decision step: ddd� = argmaxdddf W(UUU(ddd)) : di = d(xxxi ;h� (xxxi))g:

Remark 1. We brie�y discuss the integration potentials with two other core machine learning methods,

unsupervised learning and reinforcement learning (RL). Fairness has been studied in both methods, but

the progress is much more limited compared to fair supervised learning. Within unsupervised learning,

we focus on clustering methods. We can easily apply post-processing integration to clustering methods

and utilize the trained clusters as input to specify the optimization problem. For instance, in the loan

example, the bank can use clustering algorithms to decide a categorization of �nancial pro�les that will

play a role in the optimization formulation. Recent works in fair clustering, e.g.Abraham et al. (2019);

Deepak and Abraham (2020), have explored an in-processing strategy to extend K-means clustering

to include fairness considerations by adding a fairness component to the usual K-means objective

function. This indicates the potentials of in-processing integration, that is, we can de�ne social

welfare based fairness component to modify the usual clustering objective functions. In reinforcement

learning, the goal is to search for a reward-maximizing policy in a dynamic environment that is

typically modelled as a Markov Decision Process. De�ning and achieving fairness in RL is more
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challenging due to the sequential and dynamic structure. Siddique et al. (2020); Weng (2019) propose

a novel framework for fair multi-objective reinforcement learning based on welfare optimization. The

key component of their proposal is to replace the standard reward objective with a particular social

welfare function on the reward distribution. This exactly captures the perspective of in-processing

integration, hence demonstrates the potentials of social welfare optimization for seeking fairness in

RL. �

4.5 A Sampling of Social Welfare Functions

We brie�y review a collection of SWFs to illustrate how they can embody various conceptions of

equity. For each, we indicate the type of optimization model it yields, and whether it is appropriate

for our running example of mortgage loan processing. We classify the SWFs as pure fairness metrics,

functions that combine fairness and ef�ciency, and statistical fairness metrics.

4.5.1 Pure fairness measures

Social welfare functions that measure fairness alone, without an element of ef�ciency, are of two

basic types: inequality metrics and fairness for the disadvantaged.

Inequality metrics abound in the economics literature. Some simple ones are represented by the

following SWFs (which negate the inequality measure):

W(uuu) =

8
>>>>><

>>>>>:

� (1=ū)(umax� umin) for therelative range

� (1=ū)å
i

jui � ūj for therelative mean deviation

� (1=ū)
h
(1=n)å

i
(ui � ū)2

i 1
2 for thecoef�cient of variation

There is also the well-knownGini coef�cient, which is proportional to the area between the Lorenz

curve and a diagonal line representing perfect equality. It corresponds to the SWF

W(uuu) = 1�
1

2ūn2 å
i; j

jui � u j j

Although these SWFs are nonlinear, all but the coef�cient of variation have LP models. The coef�cient

of variation has a convex quadratic programming model with linear constraints, for which there are

very ef�cient specialized solvers.

Other fairness-based SWFs are concerned with the lot of the disadvantaged. TheHoover index

measures the fraction of total utility that would have to be transferred from the richer half of the

population to the poorer half to achieve perfect equality. The SWF is

W(uuu) = �
1

2nūå
i

jui � ūj
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The Hoover index is proportional to the relative mean deviation and can therefore be optimized using

the same LP model.

TheMcLoone indexcompares the total utility of individuals at or below the median utility to the

utility they would enjoy if all were brought up to the median utility. The index is 1 if nobody's utility

is strictly below the median and approaches 0 if there is a long lower tail. The SWF is

W(uuu) =
1

jI (uuu)jũ å
i2 I (uuu)

ui

whereũ is the median of utilities inuuu andI(uuu) is the set of indices of utilities at or below the median.

The McLoone index can be optimized in an MILP model.

The Hoover and McLoone indices measure only the relative welfare of disadvantaged parties,

and not their absolute welfare. Themaximincriterion addresses both. It is based on the Difference

Principle of John Rawls, which states that inequality should exist only to the extent it is necessary to

improve the lot of the worst-off (Freeman (2003); Rawls (1999); Richardson and Weithman (1999)).

It can be plausibly extended to a lexicographic maximum principle. The SWF is simply

W(uuu) = min
i

f uig

and has an LP model.

Purely fairness-oriented SWFs can be used when equity is truly the only issue of concern. In

particular, they are unsuitable for the mortgage problem, where overall utility is a prime consideration.

4.5.2 Combining fairness and ef�ciency

Several SWFs combine equity and ef�ciency, sometimes with a parameter that regulates the relative

importance of each. Perhaps the best known isalpha fairness, for which the SWF is

Wa (uuu) =

8
>><

>>:

1
1� a å

i
u1� a

i for a � 0; a 6= 1

å
i

log(ui) for a = 1

Larger values ofa imply a greater emphasis on equity, witha = 0 corresponding to a pure utilitarian

criterionå i ui , anda = ¥ to a pure maximin criterion. An important special case isa = 1, which

corresponds toproportional fairness, also known as theNash bargaining solution. It is widely used in

telecommunications and other engineering applications. Both proportional fairness and alpha fairness

have been given axiomatic and bargaining justi�cations (Binmore et al. (1986); Harsanyi (1977); Lan

et al. (2010); Nash (1950); Rubinstein (1982)). The alpha fairness SWF is irreducibly nonlinear, but

because it is concave for alla , it can be maximized with reasonable ef�ciency by NLP methods.

Alpha fairness is conceptually a reasonable choice for the mortgage problem, because the bank

can obtain any desired balance between utility and fairness by adjustinga . While it is dif�cult to
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justify to stakeholders any particular choice for the value ofa , a perceived bias against minorities can

always be addressed by increasinga . On the other hand, the presence of 0–1 variablesxi produces an

MINLP model, which can be hard to solve. Thus alpha fairness may be practical only for problems

with at most a few hundred applicants.

TheKalai-Smorodinsky(K–S) bargaining solution, proposed as an alternative to the Nash bar-

gaining solution, minimizes each person's relative concession. That is, it provides everyone the

largest possible utility relative to the maximum one could obtain if other players are disregarded,

subject to the condition that all persons receive the same fractionb of their maximum. In addition to

the bargaining justi�cation of Kalai and Smorodinsky (1975), this approach has been defended by

Thompson (1994) and is implied by the contractarian philosophy of Gauthier (1983). The SWF can

be formulated

W(uuu) =

(
å i ui ; if uuu = buuumax for someb with 0 � b � 1

0; otherwise

whereumax
i = max(xxx;uuu)2Sxuuu ui for eachi. It can be optimized by maximizingb subject touuu = buuumax

andb � 1, an easy LP problem.

The K–S criterion cannot be used for the mortgage problem, because the role of 0–1 variables in

the problem almost ensure that the optimization model will be infeasible. Sinceumax
i = ū1

i , we must

haveUi(xi) = bu1
i for all i. ButUi(xi) = v̄i +( ūi � v̄i)xi , which means that there must be a ratiob that,

for eachi, is equal to either̄vi=u1
i or ūi=u1

i (which correspond to settingxi = 0 or xi = 1, respectively).

It is very unlikely that the problem data will have this property.

Williams and Cookson (2000) suggest twothresholdcriteria for combining maximin and utilitarian

objectives in a2-personcontext. One uses maximin until the cost of fairness becomes too great,

whereupon it switches to utilitarianism, and the other does the opposite. Hooker and Williams (2012)

generalize the former ton persons by proposing the following SWF:

WD(uuu) = ( n� 1)D+
n

å
i= 1

max
�

ui � D;umin
	

whereumin = mini f uig. The parameterD regulates the equity/ef�ciency trade-off in a way that may

be easier to interpret in practice than thea parameter: parties whose utility is withinD of the lowest

utility receive special priority. Thus the disadvantaged are favored, andDde�nes who is disadvantaged.

As with thea parameter,D= 0 corresponds to a purely utilitarian criterion andD= ¥ to a maximin

criterion. Hooker and Williams provide an MILP model of the SWF and show that it is sharp (i.e., its

continuous relaxation describes the convex hull of its feasible set). Partly for this reason, they found

that the model solves rapidly in computational tests.

This threshold approach is a reasonable choice for the mortgage problem. Since the problem has

discrete variables regardless of the SWF used, the MILP-based threshold formulation adds relatively

little complexity to the problem. In addition, loan of�cers can specify in a meaningful way when an

applicant is to be considered disadvantaged, by selecting an appropriate value ofD.
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One weakness of the model is that the actual utility levels of disadvantaged parties other than

the very worst-off have no effect on the measurement of social welfare, as long as those utilities are

within D of the lowest. As a result, the socially optimal solution may not be as sensitive to equity as

one might desire. Chen and Hooker (2020a,b) address this issue bycombining utilitarianism with a

leximaxrather than a maximin criterion. A leximax (lexicographic maximum) solution is found by

�rst maximizing the lowest utility, then while holding it �xed, maximizing the second lowest utility,

and so forth. Chen and Hooker combine leximax and utilitarian criteria by maximizing a sequence

of threshold SWFs that have tractable MILP models. Their approach may yield more satisfactory

solutions of the mortgage problem.

4.5.3 Statistical bias metrics

While we argue that bias metrics afford an overly narrow perspective on fairness, they nonetheless

can be expressed as SWFs if desired. The utility vectoruuu becomes simply a binary vector in which

ui = 1 if individual i is selected for some bene�t, andui = 0 otherwise. In the mortgage example, the

bene�t is a mortgage loan. We set constantai = 1 when personi actually quali�es for selection (as

for example when personi in the mortgage training set repaid the loan), andai = 0 otherwise. Two

groups are compared, respectively indexed byN andN0. One is a protected group, such as a minority

subpopulation, and the other consists of the rest of the population.

For example,demographic parityhas the SWF

W(uuu) = 1�
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�
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1
jNj å
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�
�
�
�

Equalized oddscan be measured in two ways, one of which isequality of opportunity:

W(uuu) = 1�

�
�
�
�
å i2N aiui

å i2N ai
�

å i2N0aiui

å i2N0ai

�
�
�
�

Another SWF representsaccuracy parity:

W(uuu) = 1�
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and still anotherpredictive rate parity:

W(uuu) = 1�
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The computational challenge varies widely across the various bias-oriented SWFs. The �rst three

SWFs above give rise to linear models (which become MILP models due to the 0–1 restriction onui),

while the last produces an extremely dif�cult nonconvex MINLP model.



4.6 Case Study: Mortgage Loan Approval 93

Bias measures are inappropriate as social welfare objectives for the mortgage problem, because

they take no account of ef�ciency. One can, of course, maximize predictive accuracy subject to

constraints on the amount of bias, but this has a number of drawbacks:

• As previously argued, it provides a very limited perspective on the utility actually created by

decisions. Indeed, the utility vector consists only of 0–1 choices.

• There is no consensus on which bias measure is suitable in a given context, if any. Bias measures

were developed by statisticians to measure predictive accuracy, not to assess fairness.

• There is no principle for balancing equity and ef�ciency. If equity is one of theobjectives, it

should be part of theobjective function. The choice of that function obliges one to justify the

equity/ef�ciency trade-off mechanism in a transparent manner.

• Bias measurement forces one to identifya priori which individuals in a training set should be

selected for bene�ts (as indicated byai). In a social welfare approach, no prior decisions of this

kind are necessary.

• Bias measurement forces one to designate “protected groups” (as indicated by the index setN).

There is no clear principle for selecting which groups should be protected, unless one is content

simply to recognize those mandated by law.

4.6 Case Study: Mortgage Loan Approval

4.7 Conclusion

We formalize a general framework for using optimization to incorporate welfare-based fairness into AI

applications. The framework provides a guideline for formulating a decision task into a social welfare

optimization problem. In particular, we illustrate how optimization can be integrated with rule-based

AI systems and machine learning models. By expanding the fairness problem to the optimization

of social welfare functions, one can achieve a broader perspective on fairness that are driven by

the well-beings of stakeholders and characterize the broader fairness concepts in a principled way.

Optimization models also provide the �exibility of adding constraints on resources and other problem

elements, while harnessing the power of highly advanced optimization solvers.

We conclude the paper by outlining a research program to explore some key questions related to

the framework.

• There is a wide gap between the presented general formalization of integration strategies and

practical implementations of integrated methods. For integration with rule-based AI, one

important direction is to investigate how to build ethics-sensitive rule bases to �t into different

social welfare optimization scenarios. Previous works on formulating ethics principles into rules,
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e.g. Bringsjord et al. (2006); Kim et al. (2021), may provide guidance for this direction. For

integration with machine learning, future research could explore the in-processing perspective

and study how to de�ne social welfare functions to use as the objective in machine learning

models. The modi�ed objective functions need to have a format that can be ef�ciently trained,

and the trained models need to provide the desirable fairness and welfare guarantees.

• Although optimization solvers have been developed over decades, not all classes of optimization

models are readily solvable by state-of-the-art software. Among all classes, linear programming

and convex programming problems can be considered tractable up to reasonably large sizes,

but non-convex formulations including some mixed integer programming problems are more

restricted. For practical use of social welfare optimization models, one may need to apply

available computational strategies or design problem-speci�c heuristics to speed up solving the

optimization problems.

• The social welfare functions we consider are of a static nature, that is, a SWF does not attempt

to capture potential dynamics in the utilities. A SWF takes utility values as the input, and the

function values characterize the associated static utility distributions. While such a static view

is often suf�cient and reasonable for a one-shot decision problem, a dynamic perspective may

be required in sequential decision problems where decisions need to be made repeatedly and

the selected actions have incremental impacts on the long term social welfare. Future research

could explore how to extend the presented optimization based framework to �t a dynamic

view of welfare and fairness. Although this is not a trivial task, there are many well-developed

techniques to utilize, such as, stochastic optimization, Markov decision process, etc.



Chapter 5

Online Convex Optimization Perspective

for Learning from Dynamically Revealed

Preferences

5.1 Introduction

Preferences of an agent implicitly dictates his/her actions, and in�uence for example what a company

should offer as its products or how a company should personalize recommendations to an individual

customer (agent). This creates incentives for the company/central decision maker to learn the

preferences of their agents. Nevertheless, in reality, the true preferences of the agents are often

private to the individual agents and are only implicitly revealed in the form of their behaviors/actions

to the central decision maker. Such typical interactions for example include a streaming platform

suggesting a number of videos to a user and tracking whether the user watches or likes them. As

evident from such scenarios, inferring the agents' preference information through agent interactions

and observations of their behaviors is a critical task for the decision makers in such settings.

A common assumption adopted to formalize the problem of learning from revealed preferences

is that rational agents areutility maximizers, that is, they choose actions to maximize their utility

functions subject to a set of restrictions. The central decision maker interacting with the agents is

thelearner. An important learner-centric goal is to design schemes for the learner to extract useful

information on the agents' utility functions. This learning point of view of revealed preferences has

been explored in a broad range of literature from economics (e.g., Beigman and Vohra (2006); Varian

(2006)), machine learning (e.g., Balcan et al. (2014); Dong and Zeng (2020); Dong et al. (2018b))

and operations research (e.g., Ahmadi et al. (2020); Bärmann et al. (2017); Mohajerin Esfahani et al.

(2018)). Based on the type of learner-agent interactions and information feedback, such preference

learning schemes vary in information requirement, preference elicitation objective and learning

complexity.



96 Online Convex Optimization Perspective for Learning from Dynamically Revealed Preferences

In this chapter, we focus on a speci�c setup where the learner seeks to learn the utility function

of a non-strategic agent while receiving information about the agent's actions in an online fashion.

This setup �ts naturally in applications where the agents bene�t from effective learning of their true

preferences. For example this is the case when a streaming platform interacts with its users to learn

their preferences. In this example, in a typical interaction, the platform recommends videos to a user

and the user takes actions based on the recommendations. User actions, e.g., clicks, movie streaming,

etc., are fully observable to the platform and they re�ect the user's true preferences.

5.1.1 Our Approach and Results

We propose a novel modeling framework for learning from dynamically revealed preferences via

online data-driven inverse optimization. In our setup, the learner monitors a sequence of data signals

and observes the respective rational decisions of a non-strategic agent without noise over a �nite

time horizon ofT time steps. The learner operates and receives information in an online fashion, and

updates an estimateqt of qtrue using newly available information at each time step.

Our framework is enabled by the identi�cation of`sim, a loss function that is both simple in

structure and has practical connections with conventional loss functions from the inverse optimization

literature. Online inverse optimization based on`sim is a online convex optimization (OCO) problem,

which enjoys the �exibility to be handled by any deterministic OCO algorithm.

• In Section 5.2, we present a formal description of our problem setting. Section 5.2.1 introduces

the agent's problem and discusses a rather broad decomposable structure assumption on the

agent's utility functions that is capable of representing all of the utility functions studied in the

data-driven inverse optimization literature as well as other key utility functions. Section 5.2.2

describes the learner's inverse optimization problem that minimizes a givenloss functioǹ (�) to

obtain an accurate estimateq of the hidden parameterqtrue. We then state the online inverse

optimization framework in Section 5.2.3: we describe the sequence of events and de�ne regret

as the performance measure.

• In Section 5.3, we utilize our structural assumption on the agent's utility function to design a

new convex loss function, namelysimple loss̀ sim.

• We establish in Section 5.4 that in the noiseless setting, a bounded regret with respect to`sim

also guarantees a bounded regret with respect to all the other loss functions; see Proposition 5

and Corollary 1. We also brie�y discuss the noisy setting.

• Convexity and simplicity of̀ sim enables us to use an online convex optimization (OCO)

framework (see Section 5.5) that offers the �exibility to use different OL algorithms, such as,

online Mirror Descent (MD) utilizing a �rst-order oracle (Section 5.5.1) and implicit OL based

on a solution oracle (Section 5.5.2). In the noiseless setup, our framework equipped with online

MD coversall of the problem classes studied in the online data-driven inverse optimization
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literature, and matches the corresponding state-of-the-art regret bounds with respect toall of

the loss functions in auni�ed manner. In particular, our results immediately generalize the

customized algorithms from Bärmann et al. (2017) and completely bypass the requirement to

verify the rather technical assumptions of Dong et al. (2018a) and the need to use their expensive

MISOCP-based solution oracle; see Section 5.5.3 for a detailed comparison discussion.

• Our numerical study in Section 5.6 highlights that when compared to the` pre-based implicit OL

with an MISOCP solution oracle approach of Dong et al. (2018a),`sim-based OL algorithms

equipped with a �rst-order oracle or a solution oracle, particularly online MD, demonstrate

signi�cant advantages in terms of both the learning performance (i.e., regret bounds) and the

computation time. This is directly in line with our theoretical results. Moreover, these results

seem to be fairly robust with respect to changes in the structure of the agent's domain as well as

the noise in observations.

5.1.2 Related Literature

Varian (2006) is one of the earliest and most celebrated work for learning from revealed preferences in

the economics literature. They study constructing utility functions of the agent to explain a sequence

of her/his observed actions. Nevertheless, this approach has a main shortcoming—a utility function

capable of explaining past actions not necessarily also guarantees accurate predictions of the future

actions. Consequently, Beigman and Vohra (2006) have initiated a new line of research to learn

utility functions capable of predicting future actions with statistical performance guarantees. Beigman

and Vohra (2006) examine a statistical setup where the learning algorithm takes as input a batch of

observations and is evaluated by its sample complexity guarantees. Zadimoghaddam and Roth (2012)

focus on the setting where the agent has a linear or linearly separable concave utility function, and

propose learning algorithms with polynomially bounded sample complexity. Balcan et al. (2014)

identify a connection between the problem of learning a utility function and the structured prediction

problem of D-dimensional linear classes. Through this connection, Balcan et al. (2014) suggest

an algorithm for learning utility functions that is superior (in terms of sample complexity) than the

method from Zadimoghaddam and Roth (2012) in the case of linear utility functions and is also

applicable for learning separable piecewise-linear concave functions and CES functions with explicit

sample complexity bounds.

As an alternative to this statistical view, Balcan et al. (2014) study a query-based learning model,

where the learner aims to recover the exact utility function by querying an oracle for the agent's

optimal actions. The query-based models consider an online feedback mechanism where the learner

receives one observation of the agent's action at a time. When the learner has the power to choose

which observation to receive from the query oracle, Balcan et al. (2014) give exact learning algorithms

for several classes of utility functions. There is a recent research stream onlearning to optimizethe

learner's objective function based on information from revealed preferences of the agents. In this

stream it is often assumed that the learner has similar power on the selection of the observations. For
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example, Amin et al. (2015) and Ji et al. (2018) propose algorithms for �nding the pro�t-maximizing

prices for a seller, who has price controlling power and learns buyer preferences by observing the

buying behavior at different price levels. Roth et al. (2016) and Dong et al. (2018b) consider the

learning task as Stackelberg games, where the leader player is the learner and a follower player is a

strategicagent with incentive to manipulate actions and hide information.

We note two restrictions with the problem setup in these fore-mentioned papers. First, the

assumption that the learner can choose observations is not always achievable in practice. A more

realistic setup is accommodated by the data-driven inverse optimization view where the learner does

not control the sequence of observations. Second, when the learner is optimizing an objective function

that does not explicitly measure how well s/he is learning about the agent, the approaches that are

effective for choosing the learner's objective-optimizing action provide no guarantees on the quality

of the learned agent information.

Inverse optimization generalizes the query-based view and offers a natural abstraction of learning

from revealed preferences. This approach is typically used in settings with non-strategic agents, in

which the agents have no incentive to hide information from the learner, and thus an agent's decisions

reveal her/his true preferences. In this setting, the learner's goal is to recover unknown parameters of

an agent's utility function from the observations of her/his true optimal solution. Chan et al. (2021)

provides a comprehensive review of inverse optimization. We next summarize key developments in

the literature, with an emphasis on two topics that are more relevant to this paper: data-driven inverse

optimization and online inverse learning.

Early studies on inverse optimization examine the setting where the agent's optimization problem

is �xed, see e.g., Ahuja and Orlin (2001); Heuberger (2004); Iyengar and Kang (2005); Schaefer (2009).

Unfortunately, this classical setup is limited in its practical applicability as it ignores uncertainty in

the environment. A new thread of research on data-driven inverse optimization studies a �exible setup,

where the learner observes the agent's optimal or sub-optimal decisions corresponding to varying

external data signals. In the noiseless case, that is, when observations of optimal solutions/agent

actions are available, Keshavarz et al. (2011) show that data-driven inverse optimization of convex

programs is polynomial time solvable. In the case of noisy observations, Aswani et al. (2018) proves

that such problems are NP-hard in general.

Data-driven inverse optimization is further categorized based on whether observations are given

as a batch upfront or in an online manner. In the batch setup, Keshavarz et al. (2011) study the inverse

optimization of identifying the unknown af�ne weights in a convex objective function that is an

af�ne combination of pre-selected basis convex functions. Recent work of Aswani et al. (2018) and

Mohajerin Esfahani et al. (2018) in the batch setup investigates the inverse optimization of general

convex programs without the basis function structure. Aswani et al. (2018) adopt theprediction loss

` pre, which measures the difference between the observed agent action and the predicted agent action

through squared norm distance, as the inverse optimization objective. They formulate the inverse

problem into a bilevel program using Lagrangian duality, and present two heuristic algorithms with

approximation guarantees for solving the bilevel formulation. Mohajerin Esfahani et al. (2018) use



5.2 Problem Setting 99

suboptimality loss̀sub, which is de�ned as the difference between objective values at the observed

agent action and the predicted action, as their loss function and provide a distributionally robust

formulation of the inverse problem. Batch setup requires that the learner receives observations of the

agent's actions all at once. However, obtaining a large batch of observations all at once as well as

learning from such a batch often presents operational and computational challenges. In practice, such

strong batch feedback is rare as the learner often interacts with the agent repetitively in a dynamic

environment.

A recent stream of research Bärmann et al. (2017); Dong et al. (2018a) adopts a dynamic

information acquisition setup and studies the online data-driven inverse optimization where the learner

observes a stream of the agent's actions one by one in an online fashion. Both Bärmann et al. (2017)

and Dong et al. (2018a) suggest OL algorithms and measure their performance via theregret, i.e.,

the difference between the losses incurred from online estimates of the unknown parameters in the

agent's utility function and the of�ine optimal estimate. Bärmann et al. (2017) consider the problem

of learning the linear utility function of an agent given the noiseless online observations of the agent's

actions in a dynamic environment. They propose two specialized OL algorithms with �rst-order

oracles that both achieve a bound ofO(
p

T) on the sum of the suboptimality loss`suband the estimate

loss`est afterT periods but lacks regret guarantees with respect to the prediction loss` pre. Dong

et al. (2018a) consider the setup, where the learner wishes to learn an unknown linear component

of an agent's quadratic objective function from noisy observations. By utilizing the implicit OL

framework of Kulis and Bartlett (2010) equipped with a Mixed Integer Second Order Cone Program

(MISOCP)-based solution oracle, they provide a regret bound ofO(
p

T) with respect to the prediction

loss` pre afterT periods whenever̀pre is convex. Dong et al. (2018a) present a number of rather

technical assumptions that guarantee the convexity of` pre, however these assumptions are not only

dif�cult to verify but also quite restrictive. In fact, in Dong et al. (2018a), these were shown to hold

only for a speci�c class of convex quadratic problem.

Notation. We letRn
+ be the set of nonnegativen-dimensional vectors. For a given vectorv, we

usevi to denote itsi-th element. We let[n] := f 1; : : : ;ng, and we usef aigi2 [n] to represent a collection

of entries, such as vectors, functions, etc., indexed withi 2 [n]. For a differentiable functionf , we use

Ñ f (x) to denote the gradient off at x. For a nondifferentiable functionf , we use¶ f (x) to denote the

subdifferential off at x.

5.2 Problem Setting

In our setting, the learner monitors a sequence of external signalsf utgt2 [T] � Rk and observations

f ytgt2 [T] � Rn of the agent's respective optimal decisions over a �nite time horizon ofT time steps.
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the agent's problem is given byminf minxf x : x 2 [� 1;1];x 6= 0g; 0+ q � (� 1)g = minf� 1; � qg.

Then, we deduce that the agent's optimal solution will satisfy the following:

• Whenq < 0, agent's optimal solution isx(q) = � 1;

• Whenq > 0, x(q) = � 1 if q < 1, andx(q) = 0 if q � 1 (note that in the case of alternative

optima, we assume that the solver will break ties by selecting the solution with smaller norm);

• Whenq = 0, x(q) = � 1.

To summarize, in the given domainQ, whenq 2 [� 3;1), x(q) = � 1 andc(x(q)) = 0; whenq 2 [1;3],

x(q) = 0 andc(x(q)) = � 1.

We next show that implicit OL based on` pre with a solution oracle may lead to an unbounded

regret. Suppose we chooseht = 1
t for all t. Then, at time stept, based on the implicit OL based

on ` pre, we updateqt+ 1 by solving the following optimization problem: in this example,` pre
t (q) =

kx(qtrue) � x(q)k2 = ( � 1� x(q))2, hence

qt+ 1 = argmin
q2[� 3;3]

1
2

(q � qt)2 +
1
t
(� 1� x(q))2:

If we initialize q1 = 3, then the above update will generateq2 = argminq2[� 3;3]
1
2(q � 3)2 +

1
t (� 1� x(q))2. To decide the optimal solution, we need to compare three scenarios: whenq = q1,

the objective value is0+ 1
t (� 1 � x(q1))2 = 1

t (� 1 � 0)2 = 1
t ; whenq < 1, the objective value is

1
2(q � q1)2+ 1

t (� 1� x(q))2 = 1
2(q � 3)2+ 0 � 1

2(1� 3)2 = 2> 1
t (where we usedx(q) = � 1 for q �

1); when1� q < q1, the objective value is12(q � q1)2+ 1
t (� 1� x(q))2 = 1

2(q � 3)2+ 1
t (� 1� 0)2 > 1

t .

Therefore, we haveq2 = q1, and by the same derivation, later iterations will always stay at the same

estimateqt = q1. This means the implicit OL algorithm will generateqt = 3 for all t, and each iteration

the learner incurs prediction loss as` pre
t (qt) = kx(qtrue) � x(qt)k

2 = kx(0) � x(3)k2 = 1. Therefore,

the associated regret with respect to` pre is unbounded asT ! ¥ :

RT(f ` pre
t gt2 [T]; f qtgt2 [T]) = å

t2 [T]

` pre
t (qt) � å

t2 [T]

` pre
t (qtrue) = T:

We note that this example does not invalidate the regret convergence in Theorem 20. With the

contrived de�nition ofc(x), the loss functioǹ pre does not satisfy the Lipschitz continuity assumption

needed for regret convergence guarantees given in Theorem 20. To be more speci�c,` pre
t (q) =

(x(qtrue) � x(q))2: considere > 0, q1 = 1; q2 = 1+ e > 1, we concludè pre
t (q1) = ( � 1� (� 1))2 = 0

and` pre
t (q2) = ( � 1� 0)2 = 1. Ase ! 0, there is no �niteG as a valid Lipschitz constant for` pre

t .

We also examine the use of online Mirror Descent (MD) based on`sim in the same setup. Let

Euclidean distance be the distance generating function in Bregman distance, then online MD simplies

to projected gradient descent. We again chooseht = 1
t for all t, then at time stept we updateqt+ 1 via

qt+ 1 = proj[� 3;3]

�
qt �

1
t

�
c(x(qtrue)) � c(x(qt))

�
�

:
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frameworks for solving robust convex optimization in Ben-Tal et al. (2015); Ho-Nguyen and K�l�nç-

Karzan (2018); Ho-Nguyen and K�l�nç-Karzan (2019). For our particular application, in Section

5.3, we design linear functionsf `sim
t (q)gt2 [T] to which we apply OCO algorithms. While using

non-arbitrary classes of loss functions does not invalidate any guarantees from deterministic OCO

methods such as online MD, more caution is needed for OCO algorithms which involve randomness

and provide guarantees onexpected regretsuch as stochastic gradient descent. This is due to the fact

that the design of the loss functions in speci�c applications may create undesirable dependence among

random variables and invalidate certain steps used in the analysis of stochastic OCO algorithms.

Hence, here we will focus on deterministic OCO algorithms. �

5.3 Loss Functions

Loss functioǹ (q) plays a key role in the formulation of the inverse problem(5.3). Since the learner's

goal is to mimic the agent's true action with the estimated preferenceq, the appropriate loss functions

should re�ect how close the predictionx(q;u) is to x(qtrue;u) at a given signalu. The following

are common loss functions used in inverse optimization context (recall thatf is the agent's forward

objective in (5.1) andx(q;ut) is the optimal solution to (5.2) for givenq, ut):

• Prediction loss:̀ pre(q;x(q;ut);yt ;ut) := kyt � x(q;ut)k
2,

• Suboptimality loss:̀ sub(q;x(q;ut);yt ;ut) := f (yt ;q;ut) � f (x(q;ut);q;ut), and

• Estimate loss:̀est(q;x(q;ut);yt ;ut) := f (x(q;ut);qtrue;ut) � f (yt ;qtrue;ut).

These functions use the observationyt as a proxy of the true actionx(qtrue;ut). Under perfect

information withyt = x(qtrue;ut), ` pre directly compares the distance between the true action and

the predicted action.̀sub and`est utilize the agent's objective function:`sub measures how muchyt

would affect the agent's optimal objective value at estimateq, `est measures how muchx(q;ut) would

change the observed agent's objective value. Under imperfect information, due to the noises present

in yt , the loss values can be split into two components, one re�ects the difference betweenx(q;ut)

andx(qtrue;ut), and the other one is dependent on the noise shiftingx(qtrue;ut) to yt .

Within data-driven inverse optimization in a batch setup,` pre is used in Aswani et al. (2018) and

`sub is used in Mohajerin Esfahani et al. (2018) (see Section 5.1.2). In the online inverse optimization

setup,̀ sub and`est are studied by Bärmann et al. (2017) under the assumption thatf is linear inx, and

` pre by Dong et al. (2018a) when the forward problem is a quadratic program with a special structure.

The OL algorithms from these latter two papers are customized for the chosen loss functions and

forward problem structure, indicating the lack of a uni�ed general framework.

We introduce the following shorthand notation.

` pre
t (q) := ` pre(q;x(q;ut);yt ;ut); `sub

t (q) := `sub(q;x(q;ut);yt ;ut); `est
t (q) := `est(q;x(q;ut);yt ;ut):
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Assumption 2 ensures that`sim
t is a convex function ofq, and thus any deterministic OCO

algorithm will be applicable for regret minimization with respect tof `sim
t gt2 [T]. Then, as a consequence

of Proposition 5 (and Corollary 1), such algorithms will also be minimizing regret with respect to the

loss functions̀ sub
t ; `est

t (and` pre
t ), as well.

Remark 4. The regret bounds with respect to these loss functions have the following implications

under perfect information. A sublinear regret bound with respect to`sim implies that the average

loss incurred by the estimatesf qtg approaches the of�ine optimal loss over time. Sublinear regret

bounds with respect tòsub and`est indicate that the learner is able to generate estimatesf qtg that

lead to vanishing errors in the predicted agent's objective function values. A sublinear regret bound

with respect tò pre additionally indicates that the averagek�k2-norm distance between the predicted

agent's action and her/his true action decreases to zero over time. Note that none of these regret

guarantees in particular ensures that thef qtg generated from the online learning process are good

approximations ofqtrue. In general, this is an overly ambitious task as (Bärmann et al., 2017, Example

3.2) has shown a simple case where the exact recovery ofqtrue cannot be guaranteed. We note that

stronger performance guarantees, such as1
T å t2 [T] kqt � qtruek ! 0 may be possible for special cases,

for example, whenx(q;ut) has a closed form expression as a continuous function inq. In addition, in

certain cases the optimal actions from the forward problem may be non-unique, our framework is not

aiming to predict the chosen actionx(qtrue;ut), instead, we measure the learning performance with

regret values based on the objective value of the agent. �

5.4.2 Imperfect Information

The case when the learner has access to only imperfect information about the agent's actions is of

natural interest as well. Mohajerin Esfahani et al. (2018) identify two types of noisy information as of

interest: (i)measurement noise, that is, for allt 2 [T], the learner observesyt = x(qtrue;ut) + et with

et denoting a random noise, and (ii)bounded rationality, which means for allt 2 [T], the agent may

choose a sub-optimal action instead ofx(qtrue;ut). Such imperfect information does not affect the

convexity property of loss functions, and so both`sub and`sim remain convex (see Lemma 3 and 4)

still enabling the use of OCO algorithms for regret minimization with respect to these loss functions.

For instance, we can still apply a`sim-based OCO algorithm to minimize regret with respect to`sim.

However, sinceyt is no longer guaranteed to be a minimizer of(5.1)with u = ut , Proposition 5

does not hold in general, and consequentlyRT(f `sim
t gt2 [T]; f qtgt2 [T]) is not guaranteed to bound the

regrets with respect to the other loss functions. In addition, due to the noises inyt , for any of the

four loss de�nitions, its associated regretRT(f ` tgt2 [T]; f qtgt2 [T]) can no longer accurately measure

learning performance with respect to the agent's true actions and objective values.
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• w-center: qw := argmin
q2Q

w(q).

• Set width: W:= max
q2Q

Vqw (q) � max
q2Q

w(q) � min
q2Q

w(q).

When functionsf `sim
t (q)gt2 [T] are convex inq, online MD as stated in (Ho-Nguyen and K�l�nç-Karzan,

2019, Algorithm 1) is applicable to guarantee a sublinear regret bound onRT(f `sim
t gt2 [T]; f qtgt2 [T]),

which further bounds regrets with respect to the other loss functions as discussed in Section 5.4.

Theorem 18. (Ho-Nguyen and K�l�nç-Karzan, 2019, Theorem 1) SupposeQ is convex and̀t : Q 7! R

is a convex function fort 2 [T]. Suppose there existsG 2 (0;¥ ) such that all the subgradientsst of ` t

are bounded, i.e.,maxst2¶` t (q) kstk� � G for all q 2 Q andt 2 [T]. Let the step sizeht be chosen as

ht = 2W
G2T . At time step t, using the online Mirror Descent algorithm, we generateqt+ 1 as

qt+ 1 := Proxqt (htst) = argmin
q2Q

fhhtst ;qi + Vqt (q)g; (5.5)

where st 2 ¶` t(qt). Then the sequencef qtgt2 [T] satis�es RT(f ` tgt2 [T]; f qtgt2 [T]) �
p

2WG2T.

In applying Theorem 18 to the loss functionsf `sim
t gt2 [T], we have the subgradientst = c(yt) �

c(x(qt ;ut)) . So, it suf�ces to setG � 2maxf kc(x)k� : x 2 X g. The set widthWdepends onQ only

and can be computed for a givenQ and Bregman distance explicitly.

5.5.2 Implicit Online Learning with a Solution Oracle

We next review the implicit OL with a solution oracle from Dong et al. (2018a). This algorithm was

�rst introduced in its general form in Kulis and Bartlett (2010).

Theimplicit online learningalgorithm computes

qt+ 1 := argminq2QLt(q); (5.6)

whereLt(q) = Vqt (q)+ ht` t(q) andVq (q0) is the Bregman distance,ht is a step size. This approach

does not rely on the �rst-order oracle on` t , but rather assumes the existence of asolution oracleto

solve(5.6). Kulis and Bartlett (2010) establish the following regret bound on the OL using implicit

update (5.6).

Theorem 19. (Kulis and Bartlett, 2010, Theorem 3.2.) SupposeQ is convex, and̀t : Q7! R is a convex

and differentiable function fort 2 [T]. Letq � be the of�ine optimal solution tominq2Q å t2 [T] ` t(q).

For any0 < at � Lt (qt+ 1)
Lt (qt )

for t 2 [T], for any step sizeht > 0, an implicit OL algorithm with the update

rule (5.6)attains

RT(f ` tgt2 [T]; f qtgt2 [T]) � å
t2 [T]

1
ht

�
(1� at)ht` t(qt) + Vqt (q

� ) � Vqt+ 1(q
� )

�
: (5.7)
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When` t is a convex and Lipschitz continuous function ofq and the domainQ has a �nite width

with respect to the selected Bregman divergence, the regret bound(5.7) further results in aO(
p

T)

bound onRT(f ` tgt2 [T]; f qtgt2 [T]).

Theorem 20. SupposeQ is convex, and for eacht 2 [T], ` t : Q 7! R is a convex function ofq that

is uniformly Lipschitz continuous with parameterG, and supposemaxq1;q22QVq1(q2) � bW. Then, by

choosinght =
p

bW
G

1p
t

for t 2 [T], an implicit OL algorithm with the update rule(5.6)attains

RT(f ` tgt2 [T]; f qtgt2 [T]) � 2
p

bWG2T: (5.8)

To apply Theorem 20, we can choose the Lipschitz parameterG by de�nition. For instance, with

the loss functionsf `sim
t gt2 [T], we havej`sim

t (q) � `sim
t (q

0
)j = jhq � q

0
;c(yt) � c(x(qt ;ut)) ij � k q �

q
0
kkc(yt) � c(x(qt ;ut))k, henceG � 2maxf kc(x)k� : x 2 X g suf�ces. Alternatively, withf ` pre

t gt2 [T],

j` pre
t (q) � ` pre

t (q
0
)j = jhx(q

0
;ut) � x(q;ut);2yt � x(q

0
;ut) � x(q;ut)ij � k x(q

0
;ut) � x(q;ut)kk2yt �

x(q
0
;ut) � x(q;ut)k, so we need additional information aboutx(q;ut) to decide a suitableG. The set

width Ŵonly depends onQ and the Bregman distance de�nition.

5.5.3 Comparison with the Existing Approaches

Bärmann et al. (2017) study online inverse optimization under perfect information where the agent's

objective f is a bilinear function ofq andx, i.e., f (x;q) = hq;xi . They suggest using the online

gradient descent and the Multiplicative Weights Update (MWU) algorithms to generatef qtgt2 [T]

estimates and show via separate analysis that the resulting estimates have vanishing average losses

with respect tò est and`sub (at the rateO(1=
p

T)) but do not present their regret bounds or analyze

` pre loss. Note that both online gradient descent and MWU algorithm are simply special cases of

the online MD algorithm customized to the geometry of the problem domain. Moreover, the setting

studied in Bärmann et al. (2017) clearly satis�es our Assumption 2 and the perfect information

assumption, hence we can utilize our`sim-based OL framework equipped with online MD and directly

derive average regret bounds ofO(1=
p

T) on `sim, `sub and`est. In addition, as opposed to the simple

bilinear form of f considered in Bärmann et al. (2017), our framework can handle more general

functions f in the forward problem whenf1(x;u) and/or f2(q;u) are nontrivial. In this respect, it is of

interest to study the case of strongly convexf1(x;u), where through Corollary 1, our framework also

leads to regret bound with respect to` pre.

Dong et al. (2018a) study the following problem wheref is linear inq and strongly convex inx

min
x

� 1
2x> Px�h qtrue;xi : x 2 X (u)

	
: (5.9)

Here,P is a positive de�nite matrix andX (u) is the agent's feasible domain determined by the

external signal �xed asu. In this setting, Dong et al. (2018a) propose a regret minimization algorithm

utilizing the implicit OL method (Kulis and Bartlett (2010)) with a nonconvex MISOCP oracle. They
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focus on the prediction loss` pre, and establish aO(
p

T) bound onRT(f ` pre
t gt2 [T]; f qtgt2 [T]) whenever

` pre
t (q) is a convex function ofq. A main limitation of their approach is that the convexity of` pre

does not hold in general. Although they identify a technical suf�cient condition (Dong et al., 2018a,

Assumption 3.3) that can guarantee convexity of` pre, they also remark that this condition is restrictive

and very hard to verify in practice even for the simplest form of problem classes. In fact, the only

example they identify as satisfying their assumption is when the agent's optimization problem is

(5.9)and the setX (u) mustalwayscontain the minimizer of the unrestricted objective minimization

problem, i.e.,P� 1qtrue 2 X (u) for all possibleu.

When the agent's problem has the speci�c form of(5.9), the algorithm from Dong et al. (2018a)

updatesqt+ 1 as the optimal solution of the following bilevel program:

qt+ 1 := argmin
q2Q

�
1
2

kq � qtk
2 + ht kyt � x(q;ut)k

2 : x(q;ut) 2 argmin
x

�
1
2

x> Px�h q;xi : x 2 X (ut)
��

:

It was shown in Dong et al. (2018a) that when the feasible domainX (ut) is polyhedral, this bilevel

program can be represented as a MISOCP. Consequently, the implicit OL algorithm of Dong et al.

(2018a) utilizes an MISOCP based solution oracle to generatef qtgt2 [T]. The main convergence result

(Dong et al., 2018a, Theorem 3.2) proves that under their assumptions by choosing the step size

ht µ 1=
p

t, the sequence of estimatesf qtgt2 [T] generated with the above update yields aO(
p

T) bound

on the regretRT(f ` pre
t gt2 [T]; f qtgt2 [T]).

Note that the format off in (5.9)satis�es our Assumption 2, and consequently`sim
t is guaranteed

to be convex for anyX (u). Therefore, our OCO framework based on minimizing regret for loss

functionsf `sim
t gt2 [T] is applicable to(5.9). In addition, in the perfect information setting, through

Proposition 5 and Corollary 1, our framework can provide regret bounds with respect toall of `sim, `est,

`sub and` pre, without further structural assumptions on the agent's domain. In contrast, the implicit

OL approach of Dong et al. (2018a) for minimizing regret with respect to` pre requires additional

conditions on the agent's domain (see (Dong et al., 2018a, Assumptions 3.1, 3.2, 3.3)) in order to

guarantee a regret bound. In particular, it is speci�cally focused on` pre and provides no insight on

other performance measures of interest captured by`est and`sub either. Moreover, online MD in

our framework uses a much simpler (and computationally faster) �rst-order oracle in contrast to the

expensive MISOCP oracle in the implicit OL approach of Dong et al. (2018a). One aspect that Dong

et al. (2018a) emphasize is the noise in observations: they prove theoretical expected regret bounds

with respect tò pre whenyt is a noisy observation ofx(qtrue;ut), but the theoretical guarantees of our

framework based oǹsim do not readily extend to the imperfect information setup. We caution that

their analysis for the noisy setup is subject to the restrictive conditions needed to ensure convexity of

` pre
t (q), so it might not provide meaningful performance guarantees in general.
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5.6 Computational Study

We perform numerical experiments on a practical application that is motivated by a company (learner)

seeking to learn about its customer's (agent's) preferences in a changing market. We assume the

customer is a rational decision maker, and in any given market situation, her/his action re�ects

accurately her/his optimal preferences. These experiments do not aim to provide structural insights

on speci�c instances, rather, our main purpose is to demonstrate the performance of`sim based OCO

algorithms from various aspects and the comparison with an alternative` pre-based approach in Dong

et al. (2018a).

We �rst focus on the case when perfect information is available, i.e., there is no noise in learner's

observations of the agent's optimal actions, and address three main questions. First, are there notable

performance differences among OL algorithms based on different oracles? Second, how do the

algorithm performances vary in terms of different loss functions? Third, does the structure of the

agent's feasible region affect complexity of the learning problem and the algorithm performances?

While discussing these questions, we also compare against existing algorithms from the literature.

In the second part of our numerical study, we examine the robustness of these OL algorithms

under imperfect information, i.e., when there is random noise to the learner's observations of the

agent's optimal actions. Recall that in the imperfect information setup, our OL based approach is

not guaranteed to provide low regret guarantees, so these experiments essentially shed light to their

empirical performance in the noisy setup. Despite the lack of theoretical bounds, we can analyze the

OL algorithms to explain the observed empirical trends in losses and regrets (see Appendix B.4).

All algorithms are coded in Python 3.8, and Gurobi 8.1.1 with default settings is used to solve the

mathematical programs needed for the subproblems associated with the corresponding oracles. We

limit the solution time of each mathematical program to be at most 3600 seconds. We have not hit

this imposed time limit in any of our experiments. All experiments are conducted on a server with 2.8

GHz processor and 64GB memory.

5.6.1 Problem Instances

We consider a market withn products that evolves over a �nite time horizonT, e.g., the product

prices change. These changes consequently impact the agent's feasible actions; in this case, agents

are customers interested in purchasing the products. For eacht 2 [T], we letut denote the market

parameters relevant to the agent's decisions at periodt. When constraint parameters are �xed as

ut , an agent's actionx(qtrue;ut) is an optimal solution to an optimization problem parametrized by

ut andqtrue, whereqtrue captures the agent's preferences over the products. We model the agent's

optimization problem as a maximization of her/his utility function subject to feasibility constraints.

The learner knows the agent's decision problem up to the parameter vectorqtrue, and the learner's goal

is to estimateqtrue using observations of the agent's actionsyt in response to the market conditionsut

at each periodt 2 [T].

We study two different forms for the agent's utility function.
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(a) For direct comparison with Dong et al. (2018a), we examine the case where the agent's utility

function has the quadratic form (5.9), i.e., the agent's actionx(qtrue;ut) is given by

x(qtrue;ut) := argmax
x

�
�

1
2

x> Px+ hqtrue;xi : x 2 X (ut)
�

; (5.10)

whereP 2 Sn
++ is a �xed positive de�nite matrix known by both the learner and the agent

andX (ut) represents the domain for the agent's feasible actions determined by the market

parametersut .

(b) We also examine a second setup where the agent has a CES utility function withr = 2. Hence,

in periodt, the agent's actionx(qtrue;ut) is given by

x(qtrue;ut) := argmax
x

(

å
i2 [n]

� (qtrue) ix2
i : x 2 X (ut)

)

: (5.11)

Note that this setup with a CES utility has not been previously studied in an OL framework.

These particular forms of utility functions in(5.10)and(5.11)imply that the dimensions ofq and

x are the same, i.e.,p = n. Moreover, observe that both of the objective functions in(5.10)and(5.11)

satisfy Assumption 2, and thus in both cases`sim
t (q) is convex inq.

To identify the impact of agent's feasible region on the complexity of the problem and on the

performance of the learning algorithms, we experiment on a variety of settings forX (ut).

(i) Continuous knapsackdomain: in this setting, we impose only a budget constraint on the agent:

X (ut) = X ck(pt ;bt) := f x 2 Rn
+ : hpt ;xi � btg, where the parameterspt 2 Rn

+ correspond to

the product prices andbt 2 R+ is the budget available to the customer during time periodt.

Note that bothpt andbt can vary in each time periodt 2 [T].

(ii) Continuous polytopedomain: here, we generalize the continuous knapsack domain and

model general resource constraints resulting in a polytope as the feasible regionX (ut) =

X cp(At ;ct) = f x 2 Rn
+ : Atx � ctg, where all the parameters are nonnegative.

(iii) Binary knapsackdomain: in this case, we again impose a single budget constraint, but also

require that the agent's action is a binary vector:X (ut) = X bk(pt ;bt) := f x2 f 0;1gn : hpt ;xi �

btg.

(iv) Equality constrained knapsackdomain: that is,X (ut) = X eck(pt ;bt) := f x 2 Rn
+ : hpt ;xi =

btg.

We ran experiments with the utility function(5.10)where we choose the matrixP to be a positive

de�nite diagonal matrix and generate each of its diagonal entriesPii by �rst drawing a number from

[1;21] uniformly and then normalizing the drawn vector(P11; : : : ;Pnn) to have a unit̀ 1-norm, and we
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also set the domain to beX ck(pt ;bt), X cp(At ;ct), or X bk(pt ;bt). In the case of CES utility function

(5.11), for implementation simplicity, we use instances with the domainX eck(ut).

In all of our experiments, we consider a market withn = 50goods. We compare OL algorithms

by runningT = 500iterations on a batch of50 randomly generated instances for each setting. The

domainQ is set be a unit simplex, i.e.,Q =
�

q 2 Rn
+ : å i2 [n] qi = 1

	
. We follow the same instance

generation methodology used in (Bärmann et al., 2017, Section 4.1) for generating the true parameter

qtrue and the agent's domainX (ut). In each instance,qtrue is obtained by drawing a random sample

from a uniform distribution over[1;1000]n and then normalizing the sampled vector to have a unit

`1-norm. In the case ofX ck(pt ;bt); X bk(pt ;bt), andX eck(pt ;bt), for all t 2 [T], the constraint

parameterspt ;bt are generated randomly as follows:pt is set asqtrue+ 100� 1n + r, wherer is an

integer vector sampled from adiscrete uniformdistribution over the collection of integer vectors in

[� 10;10]n (numpy.random.randintfunction is used). The budgetbt is selected uniformly random

from the range[1;å n
i= 1(pt) i ]. In the case of continuous polytope domainX cp(At ;ct), we chooseAt

as anm� n matrix withm= 10, where each row ofAt is generated in the same way aspt , and each

coordinatei in the vectorct is drawn uniformly random from[1;å m
j= 1(At) ji ].

In the OL setup, at time stept, the learner observes the signalut and the agent's action, and

uses the information revealed so far to construct the estimateqt+ 1. Under perfect information, we

haveyt = x(qtrue;ut) for all t; under imperfect information, we assumeyt = x(qtrue;ut) + et , where

et denotes the random noise. In the noisy setup, each coordinate inet is randomly drawn from a

uniform distribution over a given range. We consider two ranges to simulate small and large noises,

and we choose the range bounds based on the averaged := 1
T å t2 [T] kx(qtrue;ut)k: the small noises

are generated with the range[� d=n;d=n], and the large noises are generated with[� d;d].

5.6.2 Implementation Details

In order to compute the estimatesf qtgt2 [T], we implement three OL algorithms and compare their

performances. By taking advantage of the convexity of`sim, we design two OL algorithms minimizing

regret with respect tòsim: one equipped with a �rst-order oracle and one with a solution oracle. In

addition, for comparison with the literature, we implemented another implicit OL algorithm with a

solution oracle aimed to minimize the regret associated with` pre, i.e., the one from Dong et al. (2018a)

that utilizes an MISOCP solution oracle. We provided precisely the same dynamic observations, i.e.,

the realizations of signalsut along with the agent's optimum actionx(qtrue;ut) in each iterationt 2 [T]

to all of these OL algorithms.

In the case of OL with the �rst-order oracle, becauseQ is a unit simplex, we use the negative

entropy functionw(q) = å n
i= 1qi ln(qi) as the distance generating function in the de�nition of Bregman

distanceVqt (q). Then, the update rule(5.5) for the OL with �rst-order oracle is given explicitly by

the following formula, wherest(qt) is a subgradient of̀sim
t (q) atqt .

(qt+ 1) i =
(qt) i exp(� ht(st(qt)) i)

å n
j= 1(qt) j exp(� ht(st(qt)) j )

; for all i 2 [n]:
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The main challenge in the implementation of implicit OL algorithm with a solution oracle is

whether one can design a computationally tractable solution oracle. When the loss function` t(q) used

in the implicit OL involvesx(q;ut), as is the case in all loss functions from Section 5.3 except`sim
t (q),

(5.6) is a bilevel program. Bilevel programs are dif�cult to solve in general, but can be reformulated

into a single level problem using KKT conditions of the inner level problem whenever the inner

level is a convex problem. In contrast to this, when`sim
t is used as the loss function in an implicit

OL algorithm,(5.6)becomes a single level optimization problem inq and thus the solution oracle

becomes much simpler. Consequently, we study two variants of the implicit OL algorithm based on

`sim and` pre that are necessarily equipped with different solution oracles.

In the �rst variant, we design an implicit OL algorithm to minimize the regret with respect to`sim.

Using the squared Euclidean norm as the d.g.f., we arrive at the implicit OL algorithm with a solution

oracle that updatesqt+ 1 as the optimal solution to

qt+ 1 := argmin
q2Q

1
2

kq � qtk
2 + ht`sim

t (q):

Under Assumption 2,̀sim
t (q) is convex inq, and when the domainQ is convex, the above problem

is a convex program. Therefore, the implementation requires only a convex solution oracle; see

Appendix B.3 for the explicit formulations of these oracles.

For comparison purposes, we implement a second variant of the implicit OL algorithm minimizing

regret with respect to the loss function` pre. By following the same approach taken in Dong et al.

(2018a), we use the squared Euclidean norm as the d.g.f., and the resulting solution oracle updates

qt+ 1 with the following bilevel program, where the inner level computesx(q;ut) used iǹ pre
t (q):

qt+ 1 := argmin
q2Q

1
2

kq � qtk
2 + ht`

pre
t (q):

When the agent is maximizing a concave objective function over a polyhedral domainX (ut), we can

reformulate the above bilevel program into a mixed integer program (MIP).

Consequently, at timet, this ` pre-based implicit OL algorithm requires a nonconvex oracle given

by the MIP formulation to obtainqt+ 1. In the case of(5.10), it was demonstrated in Dong et al.

(2018a) that when the domainX (ut) is polyhedral, the MIP reformulation admits a nice MISOCP

structure due to the quadratic objective. For completeness, we provide the MISOCP reformulation

of this solution oracle in Appendix B.3. Note that due to the advanced capabilities of modern MIP

solvers, the resulting MISOCP still remains computationally tractable whenever the scale of the

agent's problem is relatively small.

On the other hand, when the domain of the inner problemX (ut) is nonconvex, e.g., when we

considerX bk(pt ;bt) that involves binary variables, or when the agent maximizes a nonconcave

function over a convex domainX (ut) as in the case of(5.11)for q =2 Rn
+ , we no longer have access to

KKT based optimality certi�cates for the inner problem. Consequently, in such cases, we do not know
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how to design a computationally tractable solution oracle, and this is an open question. Therefore, we

did not experiment with thèpre-based implicit OL algorithm in these cases.

5.6.3 Perfect Information Experiments

In this section, we discuss our numerical results along with plots that highlight our key observations

pertinent to the questions of interest to the perfect information case listed at the beginning of Section

5.6.

Learning a Quadratic Utility Function

In this case, we assume that the agent's utility function is of form(5.10). We �rst compare the

performance of the three OL approaches in terms of both average regret performance and the solution

time. Figures 5.1 and 5.2 display the means of average (expected) regret performance of the iterates

f qtgt2 [T] returned by the OL algorithms with respect to all �ve loss functions of interest for the

instances where the agent's domain is of continuous knapsack and polytope type, respectively; the

shaded areas indicate 95% con�dence interval for the means. These means are computed based on

all 50 random instances generated in the experiment. In Figures 5.1 and 5.2 (and all the later ones

as well), the scale of loss functions naturally differ because the associated regret and loss values are

evaluated with respect to different terms present in their corresponding loss de�nitions. In terms of the

rate at which the average regret converges, in the case of the continuous knapsack instances, Figure 5.1

shows that regardless of the loss function used to evaluate the performance, all three OL algorithms

have quite similar performances. This empirical observation is in line with the theoretical regret

guarantees given in Section 5.5; recall that this particular domain type was the focus of Dong et al.

(2018a), and their analysis presents some restrictive assumptions guaranteeing convergence of their

approach on this type of instances. For the continuous polytope instances, Figure 5.2 demonstrates

similar performances from the two OL algorithms based on`sim, but highlights the drastically different

performance of the implicit OL with thèpre-minimizing solution oracle, which now leads to average

regrets converging to non-zero values. Recall from Section 5.5.2, the regret convergence of an implicit

OL algorithm with a solution oracle requires the convexity of the selected loss function. In fact, Dong

et al. (2018a) adopt further strong assumptions onX (ut) to guarantee that` pre is a convex function

of q when the agent's problem is of form(5.10)with X (ut) = X ck(pt ;bt). Our empirical results

indicate that these assumptions are indeed hard to satisfy in general and our randomly generated

continuous polytope instances do not necessarily satisfy their required assumption. In contrast, since

`sim is guaranteed to be a convex function ofq when the agent's problem is of form(5.10)regardless of

the structure of the agent's domainX (ut), the average regrets of the`sim-based implicit OL algorithm

with the solution oracle converge to zero for instances with polytope domain as well. Furthermore,

we note that the regret convergence of the`sim-based implicit OL algorithm with the solution oracle is

slightly better than the OL with the �rst-order oracle in both types of instances.
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Fig. 5.1 Means of average regret with respect to different loss functions overT = 500iterations for
continuous knapsack instances; the shaded region is 95% con�dence interval for the means.

Fig. 5.2 Means of average regrets with respect to different loss functions overT = 500iterations for
continuous polytope instances; the shaded region is 95% con�dence interval for the means.

In our numerical study, we observe almost no variation in terms of the solution time of the OL

algorithms across different random instances generated from the same setting. We thereby report

the time spent by all three OL algorithms on a randomly selected instance from our problem set.

When computing the solution time at iterationt, we always ignore the time taken to �ndx(qtrue;ut).

In iterationt of the OL with the �rst-order oracle, we account for the time to computex(qt ;ut) and

generateqt+ 1 using the �rst-order oracle. Lastly, in each iteration of both of the`sim- and` pre-based

implicit OL algorithms with a solution oracle, we account for the time used by the corresponding

solution oracles in updatingqt+ 1. For an arbitrary instance with the continuous knapsack domain,

OL with the �rst-order oracle �nishes in about 0.08 seconds,`sim-based implicit OL with the solution

oracle takes 2.03 seconds, and` pre-based implicit OL with the solution oracle takes 146 seconds.

These highlight that, by a signi�cant margin, our OL algorithms minimizing regret with respect

to the loss functioǹsim and utilizing the �rst-order oracle and the solution oracle are much more

computationally ef�cient than thèpre-based implicit OL with the MISOCP solution oracle one from

Dong et al. (2018a).

We next analyze whether the agent's domain structure has any visible effect on the overall regret

performance of the OL with the �rst-order oracle. From Figures 5.1 and 5.2, we observe that the

superiority of the OL with �rst-order oracle in terms of the average regret is slightly more obvious in

the continuous knapsack setting than in the polytope setting. In Figure 5.3, we compare the means

of average regrets for the continuous knapsack instances versus the binary knapsack instances. The

regret performances with respect to the loss functions`sub and`est seem to vary only slightly when
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Fig. 5.3 Means of average regret with respect to different loss functions contrasting continuous
knapsack instances with binary knapsack instances, when OL with the �rst-order oracle is used.

Fig. 5.4 Means of average regret (on a logarithmic scale) with respect to different loss functions
overT = 500iterations for (a) continuous knapsack instances, (b) continuous polytope instances, (c)
binary knapsack instances, when OL with �rst-order oracle is used.

the agent's domain type changes from continuous knapsack to binary knapsack; yet these differences

are slightly more noticeable in the case of loss functions` pre and`sim.

Lastly, we examine the regret performance of OL with the �rst-order oracle with respect to

different loss functions̀(q). From the experiment results from continuous knapsack and continuous

polytope instances (respectively Figures 5.1 and 5.2), we observe that the average regret with respect

to any of the four loss functions convergences roughly at the same rate, but the corresponding regret

bounds differ in their scales. This is not surprising, as the corresponding regrets are based on different

terms, e.g., norms of solutions or objective function values, etc. Moreover, recall from Section 5.4

that in the perfect information case the following relationship among the regret bounds with respect to

different loss functions (here for simplicity in notation, we denoteRsim
T := RT(f `sim

t gt2 [T]; f qtgt2 [T]),

etc.) holds:Rsim
T � Rsub

T + Rest
T � g

2Rpre
T � 0; whereg is the strong convexity parameter of the quadratic

objective function in(5.10). Recall that our instance generation guaranteesP 2 Sn
++ , i.e., its smallest

eigenvaluel min(P) > 0, and then by the de�nition of strong convexity, we deduceg= l min(P). Figure

5.4 displays (on a logarithm scale) the means of the average regrets for different loss functions forqt

estimates generated from the OL with the �rst-order oracle on instances in which the agent's domain

is either a continuous knapsack, polytope, or a binary knapsack type. These results also con�rm

the theoretical relationship among the regrets for different loss functions we have established in

Section 5.4.
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Fig. 5.5 Means of average regrets with respect to different loss functions overT = 500iterations for
equality constrained knapsack instances; the shaded region is 95% con�dence interval for the means.

Learning a CES Utility Function

Here, we examine the case when the agent's utility function is of form(5.11)and summarize our

�ndings on the average regrets in Figure 5.5. We note that the OL with the �rst-order oracle has a quite

noticeable advantage over the implicit OL with a solution oracle in terms of the regret convergence.

In this case, on a typical instance, OL with the �rst-order oracle takes0:12seconds to complete and

`sim-based implicit OL with the solution oracle takes 2:02 seconds.

5.6.4 Imperfect Information Experiments

We next study the performance of the two`sim-based OL algorithms when the observations are

corrupted with random noise. We test this imperfect information setup on two types of instances

where (1) the agent is maximizing a concave quadratic utility function on a continuous knapsack

domain, and (2) the agent is maximizing a CES utility function over an equality constrained knapsack

domain. We observed that the impact of the noises on the solution time of the OL algorithms was

negligible in both of these instance types.

We plot the outcomes differently from the perfect information case. We still show the average

regret with respect tòsim to illustrate that thèsim-based OL algorithms remain valid under noises. For

`sub and`est, we report the difference between the average loss incurred fromf qt ;x(qt ;ut)g and the

average loss fromf qtrue;x(qtrue;ut)g, where the latter evaluates the loss due to imperfect information.

Lastly, we plot the average squared norm distance betweenf x(qt ;ut)g andf x(qtrue;ut)g as a measure

of prediction loss.

We report the results for when the agent's problem has the form(5.10)with the domainX (ut) =

X ck(ut) in Figures 5.6 and 5.7. First, we observe that under small noises, the average regret with

respect tò sim has a similar convergence trend as in the perfect information experiment results plotted

in Figure 5.1, and the convergence appears to be slower under large noises. For the three loss based

measures, both OL algorithms lead to decreasing trends; in particular, the decreasing average squared

norm distance between the predicted actions and the true actions indicates that these OL algorithms'

predictions of the agent's actions are becoming more accurate asT increases. Not surprisingly,
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Fig. 5.6 Learning a quadratic utility function under small noises: means of selected performance
measures overT = 500 iterations for continuous knapsack instances; the shaded region is 95%
con�dence interval for the means.

Fig. 5.7 Learning a quadratic utility function under large noises: means of selected performance
measures overT = 500 iterations for continuous knapsack instances; the shaded region is 95%
con�dence interval for the means.

the effects of large noises on performances are more noticeable, and it is worth noting that the OL

algorithm with �rst order oracle outperforms the one with solution oracle under large noises.

We next discuss results in the CES setup, i.e., when the agent's problem has the form(5.11)with

the equality constrained knapsack domain, i.e.,X (ut) = X eck(ut), under small noises in Figure

5.8, and under large noises in Figure 5.9. Similar to the instance of learning a quadratic utility

function, both̀ sim-based OL algorithms lead to converging average regrets with respect to`sim and

decreasing average loss gaps, which are consistent with our above theoretical analysis. We note that

the magnitudes of noises appears to have much smaller effects on the learning performance, as both

�gures show similar output.

We study the online preference learning task, where a learner wishes to learn a non-strategic

agent's private utility function through observing the agent's utility-maximizing actions in a changing

environment. We adopt an online inverse optimization setup, where the learner observes a stream of

agent's actions in an online fashion and the learning performance is measured by regret associated with

a loss function. Due to the inverse optimization component, attaining or proving convexity is dif�cult

for all of the usual loss functions in the literature. We address this challenge by designing`sim, a loss

function that is convex under relatively mild assumptions. We establish that the regret with respect to

`sim also bounds the regret with respect to the three classical loss functions,`sub; `est; ` pre, commonly

used in the inverse optimization literature. This allows us to design a �exible OL framework that
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Fig. 5.8 Learning a CES utility function under small noises: means of selected performance measures
overT = 500iterations for equality constrained knapsack instances withn = 50; the shaded region is
95% con�dence interval for the means.

Fig. 5.9 Learning a CES utility function under large noises: means of selected performance measures
overT = 500iterations for equality constrained knapsack instances withn = 50; the shaded region is
95% con�dence interval for the means.
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enables a uni�ed treatment of loss functions without restrictive technical assumptions and supports

a variety of online convex optimization algorithms. We demonstrate with theoretical and empirical

evidence that our framework based on the new loss function (coupled in particular with the online

Mirror Descent) has signi�cant advantages in terms of regret performance and solution time over

other OL algorithms from the literature.





Chapter 6

Modeling and Inferring Dynamic Ethical

Judgments Around High-stakes

Allocations

6.1 Introduction

AI and ML tools are permeating various facets of life in modern society. These powerful technologies

are applied in numerous policy domains to inform or make consequential decisions impacting

people's lives. In particular, they increasingly inform or automate high-stakesallocationdecisions

in domains such as lending, employment, education, and healthcare. The past decade has witnessed

an overwhelming body of evidence establishing the need for AI and ML to re�ect social values and

moral ideals, such as justice and fairness. However, translating these principles into computationally

tractable and veri�able forms has proven to be challenging. As an example, consider outcome fairness

through ML-based decisions. Existing mathematical formulations of fairness for ML (e.g., statistical

parity) have primarily treated it as astatic, one-size-�t-all concept–captured in terms of ad hoc

predictive parity conditions across socially salient groups. The algorithmic interventions designed

to guarantee these notions are similarlymyopicandone-shot. These mathematical treatments fail to

account for thecontext-dependentnature of moral ideals and the incremental, local remedies often

needed to ensure justice.

A growing body of work has called on the AI-ethics community to bring stakeholders' judgments

into the process of formulating moral values and principles for AI. Following this human-centric view

toward ethics, we �rst observe that people's1 moral judgments are seldom invariable across situations

and contexts. In particular, they are often informed by numerous consideration, including but not

limited to:
1Unless otherwise stated, we use the term `people' to refer tostakeholders, not thepublic.
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• Who stands to receive harm/bene�t as a result of the allocation and what is the extent of the

harm/bene�t?

• What is the policy's historical backdrop (e.g., does the decision impose additional burdens on

historically under-served individuals and groups?)

• What are the future implications of various policy alternatives (e.g., will incurring an extra

burden today improve the society's overall welfare and prosperity tomorrow?)

Even absent of disagreement regarding the true answer to the above questions, how they inform

allocations could be a genuine point of normative disagreement. So an ethically-minded social planner

in charge of the allocation will need to understand and aggregate stakeholders' moral judgments.

Additionally, allocational policies are often sequential in nature. Through the decision-making policies

the planner enacts today, he/she can impact and shift the above determinants of moral judgments,

giving rise to a different state tomorrow. Understanding such dynamics allows the planner to design

effective interventions that stir society toward a desirable social state over time.

We consider a setting in which a social planner or policymaker has to make asequenceof decisions

regarding theallocationof scarce resources in high-stakes social domains. Our goal is to understand

stakeholders' moral judgments regarding suchallocational policies. In particular, we aim to evaluate

the sensitivity of these judgments to the context/history of allocations and their perceived future

impact on various socially salient groups. As a concrete example, consider a central agency in charge

of allocating scarce medical resources (e.g. vaccines, hospital beds) to patients during a viral epidemic.

The allocation decisions shape the overall environment by affecting the welfare of patients, and the

urgency and the demand for the particular resources. A patient is associated with many attributes

which describe his/her demographic backgrounds, medical characteristics, lifestyle, etc. Depending

on the social context, particularly how severe the health issue is and how scarce the needed healthcare

resource is, people may have different opinions about which of these attributes should be considered

in the policy making process. As we have observed during the current COVID-19 pandemic, age and

underlying medical conditions are critical factors to consider to prioritize more vulnerable people. We

can imagine that as vaccines roll out and treatment improves, people's emphasis on these factors may

reduce; this is an example of external factors changing the social context, which further in�uences

people's moral judgments.

6.1.1 Our Approach and Results

We propose a mathematical model to capture and infer stakeholders' potentially-dynamic moral

preferences. Our model utilizes a Markov Decision Process (MDP) to represent the sequential

decision making context, more speci�cally, the sequential allocation of scarce resources. We suppose

the reward function of the MDP re�ects a stakeholder's moral preferences on the resource distribution

decisions, then an allocation policy viewed as more ethically/morally acceptable will have a higher

reward. Based on this moral preference model, we can infer a stakeholder's ethical/moral judgments
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Moral principles from bioethics. There is a robust history of debate in bioethics about norma-

tive principles for the distribution of scarce medical resources across a variety of contexts Cohen

et al.[2009], Bayer et al.[2011], Wertheimer and Emanuel[2006]. These contexts can range from

non-emergency contexts, such as organ donation and hospital triage, to emergency contexts, such as

natural disasters and pandemics (where the health of an entire population is impacted). One solution

to this problem is to simply distribute resources randomly by either a lottery or other randomization

policy Peterson[2008]. There is an Egalitarian justi�cation for these principles, and they are commonly

implemented in non-emergency contexts under “�rst come, �rst served.” However, in emergency

contexts, the policies of hospitals and governments will almost always favor certain groups over

others. As Savulescu et al [2020] declare: “there are no egalitarians in a pandemic.” We are interested

in the normative principles which are used to justify these types of emergency policies.

We group these normative principles for fair distribution into three broad categories:

• Prioritarian:

This approach favors the most vulnerable members of a population, such as those who are

sickest, youngest, or oldest, regardless of how and why one is vulnerable. The concern is only

about those who are most likely to be impacted severely by a lack of resources (low probability

of survival, given no treatment)

• Consequentialist:

This approach attempts to maximize the overall bene�ts and minimize overall losses, which

might mean favoring those who have “most to lose” (high expected value, given treatment),

with these impacts existing at a local (family) or global (society) level.

• Desert:

This approach favors those who are owed compensation or reward because of their eligible

features, usually some form of qualifying past behavior like lifestyle choices and effort.

The �rst two categories will often converge on allocating resources to the most vulnerable, so long as

the consequences of patient deaths are roughly comparable, and the probability of survival without

treatment is usually inversely proportional to the probability of survival with treatment. However, these

assumptions can and do come apart. For instance, in an in�uential article in the New England Journal

of Medicine from early in the COVID-19 pandemic, Emmanuel et al. [2020] provide Consequentialist

recommendations which go against a purely Prioritarian focus on vulnerability:

Operationalizing the value of maximizing bene�ts means that people who are sick but

could recover if treated are given priority over those who are unlikely to recover even if

treated and those who are likely to recover without treatment. Because young, severely ill

patients will often comprise many of those who are sick but could recover with treatment,

this operationalization also has the effect of giving priority to those who are worst off in

the sense of being at risk of dying young and not having a full life . . .
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are relevant does change over time. In the famous case-study of Memorial Medical Center in New

Orleans, when not all patients could be evacuated from the storm-ravaged hospital, the staff changed

their normative principles over the course of several days from a Prioritarian to a Consequentialist

approach. It is crucial to understand the ways in which not only static but also dynamic features of a

situation play a role in the development of policies for resource allocation.

6.2 Problem formulation

We consider a Markov Decision Process (MDP) model representing the sequential allocation of scarce

resources. For simplicity, we work with a single type of resource, such as, hospital beds during an

epidemic. We suppose the allocation policy proceeds in phases: in each phase, the policy prioritizes

people with certain features, such as speci�c age ranges, medical histories, and occupations. A

stakeholder's moral preference is re�ected via her/his opinions on who should be prioritized next. As

the allocation unfolds over time, stakeholders' moral preferences may shift in line with the evolving

societal context.

6.2.1 MDP Model

A standard MDP is de�ned with a tuple,M = hS ;A ;P;Ri , whereS is the set of states,A is the

set of actions,P : S � A � S ! [0;1] is the transition probability function, withP(s0js;a) denoting

the probability of transitioning to states0 from states by taking actiona, R: S ! R is a state-based

reward function.

A statest 2 S in our running example describes the current state of affairs—that is, the current

pro�le of immunity and vulnerability to the virus across variousgroups. Groups are de�ned as

follows:. We considern ethically relevant features, and uses these features to assign people to groups.

We de�nest with the group features:st = ( st;1; : : : ;st;n), wherest;i is a vector representing the pro�le

of groupi at stept. Note that we do not require mutually exclusive features, namely, a person may

have multiple features, thus belonging to multiple groups simultaneously. In our running example,

st;i = ( xt
i ;v

t
i ;d

t
i ), which respectively are the proportion of groupi that, at stept, have received the

resource and thus immune to the virus, are susceptible to infecting the virus, and have passed away

from contracting the virus. As we are not aiming to use the most ef�cient state representations, it may

be possible to reduce the size ofS with alternative state de�nitions.

An actionat 2 A represents the current time step's resource allocation decision, that is, how

resources will be distributed across then groups at timet. Similar to the state notation, we can

de�ne at with the group based action features:at = ( at
1; : : : ;at

n), whereat
i is theproportionof the

current step's available resources allocated to groupi. For the special case when the policy assigns all

available resources to groupi, we will haveat
i = 1 andat

j = 0 for all j 6= i.

Next, to de�ne the transition probabilities, we suppose the MDP model is deterministic, namely

P(s0js;a) 2 f 0;1g for all s0;sanda. The deterministic assumption �ts the resource allocation setting
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Fig. 6.2 Piecewise linear rewards for group 1 (left) and group 2 (right)

importance ranking among groups remain unchanged throughout state shifts. Therefore, the simple

linear reward is insuf�cient for modeling changing priorities across groups over time.

A more �exible alternative is to use a spline reward function (i.e. a piece-wise polynomial

function) to model changes in priorities as the result of changes to the underlying state of the world.

Suppose a spline reward functionR consists ofm piecesR1; : : : ;Rm. Each piece represents a different

type of moral preference in its corresponding domain. The domain boundary points therefore indicate

shifts in preferences. The complete feature space considered in de�ning rewards is split into these

disjoint domains. In our running example, we de�ne a piece-wise linear reward functionR with

respect to the resource allocation featuresxi . For each groupi, the interval[l i ;ui ] for possiblexi

values is covered bymordered, disjoint subintervals[l i = c(0)
i ;c(1)

i ]; [c(1)
i ;c(2)

i ]; : : : ; [c(m� 1)
i ;ui = c(m)

i ].

In addition, we havem slope vectorsw(1) ; : : : ;w(m) characterizing all pieces. Fork = 1; : : : ;m,

when(x1; : : : ;xn) 2 [c(k� 1)
1 ;c(k)

1 ] � : : : � [c(k� 1)
n ;c(k)

n ], the reward de�nition follows thek-th piece and

prioritizes the groups with weightsw(k) . We next show an example of a 3-piece reward function with

two groups: we illustrate the reward of each group separately for clarity.

Based on this general spline reward, we focus on a simple two-piece case where the �rst piece

is linear and the second piece is constant. We select this particular reward de�nition to reduce the

needed number of parameters.

R(s;w;c) := R(x1; : : : ;xn; (w1; : : : ;wn); (c1; : : : ;cn)) :=
n

å
i= 1

wi minf xi ;cig (6.1)

In this reward function, we skip the piece index inw(k) ;c(k) to simplify notations. We can interpret

the reward as follows. Throughout the allocation process, groupi's featurexi increases as the group

receives more resources. In the beginning, allocations to groupi are rewarded linearly with the weight

of wi . After xi increases to exceedci , the cumulative reward will stay �xed atwici , namely, further

allocations to groupi gain 0 additional rewards. We can interpretci as the resource level that is

considered suf�ciently high for groupi so that additional resources given to the group will not be
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rewarded. Using the two-piece reward function, we can model changes in the importance ranking

among groups.

Based on the MDP model, we use a trajectoryt = ( s0;a0; : : : ;sT� 1;aT� 1;sT) to denote a sequence

of allocation decisions and the resulting state changes. The trajectory reward is a discounted sum of the

immediate reward gained at each state of the trajectory, namely,R(t ;w;c) = å T
t= 1gtr(st+ 1;st ;w;c) =

å T
t= 1gt(R(st+ 1;w;c) � R(st ;w;c)) with g > 0 as the discount factor.R(t ;w;c) represents a stake-

holder's perceived gain from shifting the societal context froms1 to sT+ 1 through a sequence of

allocation policiesa1; : : : ;aT overtime.

6.2.2 Fairness Preference Model

We take the perspective of a policy planner who wishes to infer a stakeholder's preference by learning

her/his reward function. We follow the framework of preference-based reward learning studied in

literature, e.g. B�y�k et al. (2019); Sadigh et al. (2017). The reward learning involves an interactive

process where the planner asks a stakeholder to answer a sequence of queries, and uses the query

answers to iteratively update the estimates ofw andc. Each query is a comparison between two

trajectories both starting from the same initial state and of equal length/number of phases. Again,

example from the tutorial could help. We next show a sample query in the setting of our running

example.

Fig. 6.3 A query of trajectories of three future phases starting from the same initial state

We use the Bradley-Terry model, a standard human choice model Luce (2012), to represent a

stakeholder's moral preference model. Suppose a query asks to compare trajectoriest 1 andt 2. If a

stakeholder preferst 1 to t 2, we denote it witht 1 � t 2. A stakeholder with reward functionR(s;w;c)

will chooset 1 as more preferable, namely, more ethically acceptable with probability:

P(t 1 � t 2jw;c) =
expR(t 1;w;c)

expR(t 1;w;c)+ expR(t 2;w;c)
: (6.2)
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approximation.

Jt = argmaxQ2Q H(W;C) � Eu� Uw� ;c� (Q)H(W;Cju)

= argmaxQ2Q � E (w;c)� P(W;C) logP(w;c)+ E (w;c)� P(W;C);u� Uw� ;c� (Q) logP(w;cju)

= argmaxQ2Q E (w;c)� P(W;C);u� Uw� ;c� (Q) [logP(w;cju;Q) � logP(w;c)]

= argmaxQ2Q E (w;c)� P(W;C);u� Uw� ;c� (Q) [logP(u;Qjw;c) � logP(u)]

= argmaxQ2Q E (w;c)� P(W;C);u� Uw� ;c� (Q)

"

logP(u;Qjw;c) � log

 
1
M å

(wi ;ci )2W

P(u;Qjwi ;ci)

!#

= argmaxQ2Q
1
M å

(w j ;c j )2W

Eu� Uw� ;c� (Q)

"

P(u;Qjw j ;c j ) log

 

M
P(u;Qjw j ;c j )

å (wi ;ci )2WP(u;Qjwi ;ci)

!#

:

(6.4)

6.4 Experimental Design

We carry out human-subject experiments on Amazon Mechanical Turk to understand people's moral

assessments of allocation policies in the hypothetical scenario. We apply the active learning frame-

work introduced in Section 6.3 to elicit our participants' moral preferences regarding the sequential

allocation of scarce medical resources in a hypothetical epidemic.

6.4.1 Scenario and Setup

The participant �rst receives basic information about the study, including study background and

goals, the hypothetical decision-making context, and the type of questions they need to respond to

if they decide to participate. Then the participant answers a questionnaire consisting of 20 queries.

Each question/query consists of comparison between two trajectories each representing a different

allocation policy.

The following information is presented to participants who wish to participate in our study.
�

�

�

�

Background and Task Description
The goal of this survey is to understand your moral judgments regarding the sequential allocation of scarce
medical resources.

�

�

�

�

Hypothetical Scenario
Imagine a viral epidemic that has infected millions of people around the world leading to a disease with a
very high mortality rate. There is currently only a single highly effectivecure for the disease—those who
receive the cure will fully recover (if currently infected) and become immune to the virus in the future. Un-
fortunately,the number of cure doses that can be produced and administered every month is limited, so
public health of�cials need to decide which groups should be prioritized at any given time. In the ques-
tionnaire that follows, we will present you with additional information about several possible states of the
epidemic and ask you to choose your preferred allocational policy between two cure allocation policies.
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(a) Means of group rewards (b) Response distribution of top priority group

Fig. 6.5 Rewards based on estimatesw;c from survey responses

viewed as suf�ciently cured. The medically vulnerable and essential workers have similar reward

trends as the elderly. Lastly, the military personnel group has slightly higher rewards than the

medically vulnerable and essential workers in the beginning of cure allocation, but drops to the least

prioritized for majority of the allocation process.

We also analyze the aggregate preferences on a more re�ned level. In Fig. 6.5b, we focus on the

top priority group throughout the cure allocation process. Each stacked bar shows the distribution of

responses prioritizing each group when all groups have the same given cured proportion. We observe

the same preference dynamics as in Fig. xx. Caregivers are the most common top priority at lower

cured levels. As more people are cured, it becomes increasingly ethical to prioritize essential workers,

public-health compliant and elderly groups.

To explore further, we compare groups pairwise to understand the ethical position of each group

against another group at different cured levels. We highlight observations from three pairs: elderly

vs. medically vulnerable, caregivers vs. essential workers, public health compliant vs. military

personnel. As we discuss in Section??, prioritizing either group in these groups respectively re�ect

prioritarianism, restorative justice and distributive justice. Comparing each pair could provide further

insights on how these ethical values play out in people's ethical judgments. Between the elderly and

the medically vulnerable, the respondents are roughly equally split in preferring either group and

the prioritization trend is stable at all cured levels. This indicates that when stakeholders care about

favoring the worse off in allocation, they may be indifferent to the different reasons leading people to

the disadvantaged positions. Between caregivers and essential workers, more respondents prioritize

the former throughout the cure allocation process, but the gaps are small. After the cured proportion

reaches 40% in both groups, essential workers receive slightly stronger prioritization. Lastly, the

public-health compliant are noticeably prioritized over military personnel at all cured levels, and the

gaps grow wider as more people receive cures. These comparisons for the latter two groups indicate
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(a) Elderly vs.
Medically vulnerable

(b) Caregivers vs.
Essential workers

(c) Public-health compliant vs.
Military personnel

Fig. 6.6 Number of responses prioritizing each group in a pair

that the distinctions among what contribute to people's instrumental values and desertness could

impact a stakeholder's moral judgments.

Discussion.In a number of surveys, respondents mention at least once that they prefer a policy

because it bene�ts multiple groups at once. Recall that we illustrate the impacts of each three-phase

allocation policy with a stacked bar plot, and each phase the proportion of people receiving cures is

highlighted in all the groups. Due to the overlaps among groups, as we explain previously, the cure

allocation to one group effectively affects all groups through the overlaps. In our experiment instance,

the six groups have different overlapping pro�les. For example, the public-health compliant group

has a larger overlap with the medically vulnerable group than the essential worker group. Suppose

a respondent views curing the medically vulnerable as the most ethical action, he/she is likely to

�nd curing the public-health compliant in a phase more ethically acceptable than curing the essential

worker, as the former would lead to a more prominent cured effect for the medically vulnerable.

Our current experiment design does not prompt people to state their thresholds explicitly. When

asked to explain their choices, respondents could easily indicate their weight preferences for the

groups by indicating which groups they believe should be prioritized. On the contrary, it is more

dif�cult for respondents to specify the exact cure thresholds that would make a group suf�ciently

protected so that further prioritization is unnecessary. Nevertheless, we receive answers mentioning

that a policy is or is not preferred due to a certain group already has a relatively high cured level,

which demonstrate that respondents use thresholds implicitly when formulating ethical judgments.

6.6 Conclusion
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Appendix A

Appendix to Chapter 3

A.1 Pseudocode

A.1.1 Fair Sequential Minimal Optimization for Fair General SVM

Algorithm 1 Fair SMO
Input: Training datasetD = f xi ;yi ;zigi2 [n], fairness constraints parametersf pl ;cl ;el gl2 [k], kernel functionK, stopping

criteria tolerancet .

Output: m;g satisfying KKT conditions (3.26) up to tolerancet .

1: Initialize m(0) ;g(0) to all 0

2: Initialize gradientsG, with Gmi = Ñmi g(m;g) = � 1 for all i 2 [n] andGgl = Ñgl g(m;g) = � (el � cl ) for all l 2 [k].

3: for t = 0;1;2; : : : do

4: if m(m(t) ;g(t)) � M(m(t) ;g(t)) + t and jg(t)
l Ggl j � t for all l 2 [k] then

5: Returnm(t) ;g(t) and terminate.

6: else

7: Choose working set(i; j) = SelectB(m(t) ;g(t) ; I ;G).

8: if j 6= � 1 then

9: Update working set variables(m(t+ 1)
i ;m(t+ 1)

j ) = U pdatem(m(t) ; f i; jg;G).

10: UpdateG using (3.33).

11: end if

12: Updateg variables and obtain corresponding gradientsg(t+ 1) ;G = U pdateg(g(t) ;G).

13: end if

14: end for
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Appendix to Chapter 5

B.1 Convexity Status of̀ pre and `est

In this appendix, we examine the convexity status` pre and`est under our Assumption 2. Recall that

we already establish in Lemma 3 that under Assumption 2`sub(q) is convex inq. On the other hand,

` pre and`est are not guaranteed to be convex inq even under Assumption 2 and even when agent's

problem is a one dimensional optimization problem.

Example 1.SupposeQ = [ � 1;1] andqtrue = 1, and an agent's forward problem isminxf qx : x 2 X g.

We consider a convex domainX = [ � 1;1]. Let x(q) := argminxf qx : x 2 X g, i.e., the set of

optimizers of the agent's problem for givenq. Then, we easily deduce that the agent's optimal

action(s) at a givenq are:x(q) = � 1 if q > 0, x(q) 2 X if q = 0, andx(q) = 1 if q < 0. Speci�cally,

this impliesx(qtrue) = � 1.

Considerq1 = 1, q2 = � 1 andl = 1
4, thenq̃ = lq 1 +( 1� l )q2 = � 1

2. By the format ofx(q) in

this problem and the de�nition of̀est, we observe that

`est(q1) = qtrue(x(1) � x(qtrue)) = 0;

`est(q2) = qtrue(x(� 1) � x(qtrue)) = 2;

`est(q̃) = qtrue(x(� 1=2) � x(qtrue)) = 2:

Therefore, we deducèest(q̃) > l `est(q1)+( 1� l )`est(q2) that shows that̀est is not a convex function

of q. Similarly, in the case of̀pre, we arrive at

` pre(q1) = ( x(1) � x(qtrue))2 = 0;

` pre(q2) = ( x(� 1) � x(qtrue))2 = 4;

` pre(q̃) = ( x(� 1=2) � x(qtrue))2 = 4:

Similarly, we arrive at̀ pre(q̃) > l ` pre(q1) + ( 1� l )` pre(q2) and hence concludèpre is not convex.

�
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(a) quadratic utility function, con-
tinuous knapsack

(b) quadratic utility function, con-
tinuous polytope

(c) CES utility function, equality
constrained knapsack

Fig. B.1 Means of average SP regrets overT = 500iterations; the shaded region is 95% con�dence
interval for the means.

average regret with respect to`sub follows a similar convergence trend as the average SP regret. Even

though the online SP algorithm appears to be suf�cient to guarantee the convergence of the average

regret with respect tòsub in this case, we observe that there is still a lack of convergence guarantees

for the other regrets, in particular,Rsim
T andRpre

T are increasing throughout all iterations.

B.2.2 OCO with Solution Oracle

To apply the implicit OL algorithm with respect tòsub, we need a solution oracle for solving

minq2QVq (qt) + ht`sub
t (q). Even though̀ sub

t (q) is convex inq, the required solution oracle may be

computationally intractable, because the format of`sub
t (q) makes the underlying optimization model

a bilevel program with bothq andx as the decision variables. Recall from Appendix B.3, the solution

oracle for`sim-based implicit OL algorithm is naturally a convex program inq with the convenient

structure of̀ sim. The` pre-based solution oracles are bilevel programs, which may not be tractable in

general, as we have discussed for the case of learning a CES utility function.

Similar computational dif�culties occur for using̀sub-based solution oracles. We again suppose

that the squared Euclidean norm is used as the distance generating function in the solution oracle,

then thè sub-based implicit OL algorithm updatesqt+ 1 by solving the following bilevel program:

qt+ 1 = argmin
q2Q

1
2

kq � qtk
2 + ht (hq;c(yt) � c(x(q;ut)) i � f1(x(q;ut);ut))

where

x(q;ut) 2 argmin
x

f f (x;q;ut) : g(x;ut) � 0; x 2 X g:

To obtain a single-level reformulation, we can again apply the KKT conditions to the inner problem to

representx(q;ut) in the constraints. We demonstrate the following reformulations for our experiment

instances to further illustrate where the computational challenges rise. First, when the agent's problem

has the form(5.10)with a continuous polytope domain,X (ut) = X cp(At ;ct), the`subbased solution



B.3 Formulations for the Solution Oracles Used in the Implicit OL Algorithms 171

oracle simpli�es to the following single level model.

qt+ 1 = argmin
q;x;w;v;y;z

1
2

kq � qtk
2 + ht(hq;x� yi �

1
2

xTPx)

s.t. Atx � ct ; x 2 Rn
+

wi � Myi ; i 2 [n]

� xi � � M(1� yi); i 2 [n]

v j � Mzj ; j 2 [m]

(At)>
j x� (ct) j � � M(1� zj ); j 2 [m]

Px� q + A>
t v� w = 0

v 2 Rm
+ ;w 2 Rn

+ ; y 2 f 0;1gn; z2 f 0;1gm

q 2 Q:

For the other case, when the agent's problem has the form(5.11)with an equally constrained knapsack

domain,X (ut) = X eck(pt ;bt), the`sub based solution oracle is equivalent to:

qt+ 1 = argmin
q;x;w;v;y

1
2

kq � qtk
2 + ht(hq;x� yi �

1
2

xTPx)

s.t. ptx = bt ; x 2 Rn
+

wi � Myi ; i 2 [n]

� xi � � M(1� yi); i 2 [n]

2qixi + v(pt) i � wi = 0; i 2 [n]

v 2 R;w 2 Rn
+ ; y 2 f 0;1gn

q 2 Q:

We note that the reformulated objective functions contain the bilinear termhq;xi , which means the

objectives are not guaranteed to be convex in general. As a result, the`sub-based implicit OL algorithm

would require an expensive general purpose nonconvex solution oracle.

B.3 Formulations for the Solution Oracles Used in the Implicit OL

Algorithms

In this section, we give the solution oracles used in implicit OL algorithms based on`sim and` pre for

two forms of agent's utility functions corresponding to the ones used in our numerical experiments.

We includè pre-based implicit OL in our discussion for the sake of comparison between`sim-based OL

framework and the previous work Dong et al. (2018a). In our computational study, we implemented

the following solution oracles when they can be readily solved by standard optimization software.
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B.3.1 Solution Oracle for`sim-based Implicit OL Algorithm

Suppose that the squared Euclidean norm is used as the distance generating function in the implicit

OL algorithm with the solution oracle. Recall from De�nition 1 that`sim has the following form under

Assumption 2:

`sim(q;x(qt ;ut);yt ;ut) := hq;c(yt) � c(x(qt ;ut)) i + hqtrue;c(x(qt ;ut)) � c(yt)i :

Since the constant term in`sim(q) has no impact wheǹsim
t (q) is used in the objective function of an

optimization problem, it can be ignored in the solution oracle formulation. Then, we deduce that the

solution oracle for thèsim-based implicit OL algorithm updatesqt+ 1 as

qt+ 1 = argmin
q2Q

1
2

kq � qtk
2 + hthq;c(yt) � c(x(qt ;ut)) i :

In particular, when the agent's problem has the form(5.10)we havef (x;q;u) = 1
2x> Px�h q;xi , i.e.,

c(x) = � x. Thus, in this case, the solution oracle for the`sim-based implicit OL algorithm updates

qt+ 1 as

qt+ 1 = argmin
q2Q

1
2

kq � qtk
2 + hthq; � yt + x(qt ;ut)i :

In the case of CES utility function, i.e., when the agent's problem has the form(5.11), we have

f (x;q;u) = å i2 [n](q) ix2
i , and in this case the solution oracle for the`sim-based implicit OL algorithm

updatesqt+ 1 as

qt+ 1 = argmin
q2Q

1
2

kq � qtk
2 + ht å

i2 [n]

qi
�
(yt)2

i � x(qt ;ut)2
i

�
:

B.3.2 Solution Oracle for` pre-based Implicit OL Algorithm

Suppose that the squared Euclidean norm is used as the distance generating function in the implicit OL

algorithm with the solution oracle. Then, the solution oracle for the` pre-based implicit OL algorithm

updatesqt+ 1 by solving the following bilevel program:

qt+ 1 = argmin
q2Q

1
2

kq � qtk
2 + ht kyt � x(q;ut)k

2 ;

where

x(q;ut) 2 argmin
x

f f (x;q;ut) : g(x;ut) � 0; x 2 X g:

Recall that when the agent's problem has the form(5.10)with a continuous polytope domain, i.e.,

X (ut) = X cp(At ;ct), we have

x(q;ut) := argmax
x

�
�

1
2

x> Px+ hq;xi : Atx � ct ; x 2 Rn
+

�
;
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whereP 2 Sn
++ is a �xed positive de�nite matrix known by both the learner and the agent. Using the

KKT optimality conditions for the inner problem, and then introducing binary variables to linearize

the resulting nonlinear relations, it is possible to reformulate this bilevel problem into a single level

optimization problem with binary variables. In particular, in this case, following these outlined steps,

Dong et al. (2018a) proposed the following reformulation of this bilevel problem into a single level

MISOCP:

qt+ 1 = argmin
q;x;w;v;y;z

1
2

kq � qtk
2 + ht kyt � xk2

s.t. Atx � ct ; x 2 Rn
+

wi � Myi ; i 2 [n]

� xi � � M(1� yi); i 2 [n]

v j � Mzj ; j 2 [m]

(At)>
j x� (ct) j � � M(1� zj ); j 2 [m]

Px� q + A>
t v� w = 0

v 2 Rm
+ ;w 2 Rn

+ ; y 2 f 0;1gn; z2 f 0;1gm

q 2 Q:

Here,M is the so-called big-M constant. The variablesv2 Rm
+ ;w2 Rn

+ are the variables corresponding

to the Lagrangian multipliers, the binary variablesyi 2 f 0;1g for all i 2 [n] are used to linearize the

KKT conditionwixi = 0, andzj 2 f 0;1g for all j 2 [m] are introduced to linearize the KKT relation

v j ((At)>
j x� (ct) j ) = 0. Therefore, the big-M constants must be selected so that they upper bound the

components in the bilinear expressions, e.g.,xi andwi for the complementarity constraintwixi = 0

as well as(At)>
j x� (ct) j andv j for the constraintv j ((At)>

j x� (ct) j ) = 0. Because in our instances

the agent's domain forx is bounded, we can easily obtain bounds onxi and(At)>
j x� (ct) j terms.

It is also possible to derive an upper bound for the Lagrange multipliers under a Slater condition

assumption on the primal problem. Nevertheless, it is well known that using big-M formulations

signi�cantly degrade the optimization solver performance, and instead it is encouraged in Gurobi

solver that such big-M constraints are encoded as indicator constraints, which is a form of logical

constraints supported by Gurobi. In our experiments, we follow this approach and use the indicator

constraint feature of the Gurobi solver. Note that this alternative implementation is possible because

the big-M constraints essentially represent a complementarity type logical condition.

Note that the continuous knapsack domainX ck(pt ;bt) is a special case of the continuous polytope

domainX cp(At ;ct), and thus the same reformulation also holds in that case.
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Finally note that when the agent's problem has the form(5.11) with an equally constrained

knapsack domain, i.e.,X (ut) = X eck(pt ;bt), we have

x(q;ut) := argmin
x

(

å
i2 [n]

qix2
i : p>

t x = bt ; x 2 Rn
+

)

:

In this case, the bilevel program corresponding to the solution oracle in the` pre-based implicit OL

algorithm has the following single level reformulation.

qt+ 1 = argmin
q;x;w;v;y

1
2

kq � qtk
2 + ht kyt � xk2

s.t. ptx = bt ; x 2 Rn
+

wi � Myi ; i 2 [n]

� xi � � M(1� yi); i 2 [n]

2qixi + v(pt) i � wi = 0; i 2 [n]

v 2 R;w 2 Rn
+ ; y 2 f 0;1gn

q 2 Q:

Unfortunately, this nonconvex mixed integer program contains the bilinear termsqixi , where both

x andq are continuous variables, in a general constraint, not of a complementarity type constraint.

Note that the primal domain is equality constrained continuous knapsack, and thus we can �nd an

upper bound onx variables. Moreover, forq 2 Q and whenQ is bounded like the Euclidean ball or

the simplex case that we focus on in this paper, we can �nd a bound onq as well. However, because

this bilinear term ofqixi is appearing in a general constraint and not in a complementary constraint,

there is no technique to reformulate this nonconvexity as linear constraints by introducing new

binary variables. Hence, in this case the` pre-based implicit OL algorithm requires a computationally

expensive general purpose nonconvex solution oracle.

B.4 `sim-based Online Inverse Optimization under Imperfect Informa-

tion

In this appendix, we look into the learning performance in the imperfect information setup under

Assumption 2. Recall that for any of the four loss de�nitions, the loss value` t(q) can be split into

a component measuring the difference betweenx(q;ut) andx(qtrue;ut), and another one re�ecting

the noise shiftingx(qtrue;ut) to yt . For instance, we can writèpre(qt) = kyt � x�
t + x�

t � xtk
2 =

kyt � x�
t k2+ kx�

t � xtk
2+ 2hyt � x�

t ;x�
t � xt i . Moreover, this means̀t(qtrue) = `(qtrue;x(qtrue;ut);yt ;ut)

can be viewed as an imperfect information loss.

In Section 5.6.4, we consider a different collection of performance measures, consisting of the

average regret with respect to`sim, the difference between the average loss incurred fromf qt ;x(qt ;ut)g
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and the average imperfect information loss fromf qtrue;x(qtrue;ut)g with respect tò sub and`est, and

the average squared norm distance betweenf x(qt ;ut)g andf x(qtrue;ut)g. We next show that the

average regret with respect to`sim can be used to bound the other three loss-based measures.

For notation ease, we denotext := x(qt ;ut) andx�
t := x(qtrue;ut) for all t.

Proposition 6. Suppose Assumption 2 holds and the observations contain noise, namely, in each time

step t, yt = x(qtrue;ut) + et for some nonzeroet . For any sequencef qtgt2 [T], we have

(a) å
t2 [T]

`sub
t (qt) � å

t2 [T]

`sub
t (qtrue) � RT(f `sim

t gt2 [T]; f qtgt2 [T]);

(b) å
t2 [T]

`est
t (qt) � å

t2 [T]

`est
t (qtrue) = å

t2 [T]

f (xt ;qtrue;ut) � f (x�
t ;qtrue;ut)

� RT(f `sim
t gt2 [T]; f qtgt2 [T]) + å

t2T
hqtrue � qt ;c(yt) � c(x�

t )i ;

Proof. (a) By de�nition of `sub, we have

å
t2 [T]

`sub
t (qt) � å

t2 [T]

`sub
t (qtrue) = å

t2 [T]

f (yt ;qt ;ut) � f (xt ;qt ;ut) � f (yt ;qtrue;ut) + f (x�
t ;qtrue;ut)

= å
t2 [T]

hqt ;c(yt) � c(xt)i � f1(xt) � h qtrue;c(yt) � c(x�
t )i + f1(x�

t )

= å
t2 [T]

hqt � qtrue;c(yt) � c(xt)i + å
t2 [T]

f (x�
t ;qtrue;ut) � f (xt ;qtrue;ut)

� å
t2 [T]

`sim
t (qt) � min

q2Q
å

t2 [T]

`sim
t (q)+ min

q2Q
å

t2 [T]

`sim
t (q)

� RT(f `sim
t gt2 [T]; f qtgt2 [T]) + å

t2 [T]

`sim
t (qtrue) = RT(f `sim

t gt2 [T]; f qtgt2 [T]);

where the initial three equations follow from de�nition and simple algebra, the �rst inequality

follows from the fact thatx�
t minimizes f given qtrue;ut , and the last equation is due to

`sim
t (qtrue) = 0 for all t.

(b) The equation is a direct consequence of the loss de�nition.

å
t2 [T]

`est
t (qt) � å

t2 [T]

`est
t (qtrue) = å

t2 [T]

f (xt ;qtrue;ut) � f (yt ;qtrue;ut) � f (x�
t ;qtrue;ut) + f (yt ;qtrue;ut)

= å
t2 [T]

f (xt ;qtrue;ut) � f (x�
t ;qtrue;ut):
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To derive the inequality, we observe that Lemma 5 still holds under imperfect information,

hence we can apply Lemma 5 (b) and (c) to rewrite the loss difference.

å
t2 [T]

`est
t (qt) � å

t2 [T]

`est
t (qtrue) = å

t2 [T]

`sim
t (qt) � å

t2 [T]

`sub
t (qt) + å

t2 [T]

`sub
t (qtrue)

= å
t2 [T]

`sim
t (qt) + å

t2 [T]

(hqtrue � qt ;c(yt) � c(x�
t )i + f1(xt) � f1(x�

t ) + hqt ;c(xt) � c(x�
t )i )

= å
t2 [T]

`sim
t (qt) + å

t2 [T]

hqtrue � qt ;c(yt) � c(x�
t )i + å

t2 [T]

f (xt ;qt ;ut) � f (x�
t ;qt ;ut)

� RT(f `sim
t gt2 [T]; f qtgt2 [T]) + å

t2 [T]

hqtrue � qt ;c(yt) � c(x�
t )i ;

where the equations follow from de�nition and algebra, then the inequality uses the fact thatxt

minimizes f givenqt ;ut .

�

Under imperfect information, (Mohajerin Esfahani et al., 2018, Proposition 2.5) remains valid for

a strongly convexf , namely,̀ sub
t (q) � g

2` pre
t (q) for all t and for allq 2 Q, with g being the strong

convexity parameter off . Therefore, we can further derive bounds with respect tof ` pre
t gt2 [T].

Corollary 2. Suppose Assumption 2 holds and the observationsf ytgt2 [T] contain noises. Suppose

further that f is a strongly convex function ofx for everyq with a constantg > 0, i.e., f (x;q;u) �

f (y;q;u) � h sy;x� yi + g
2 kx� yk2, wheresy is a subgradient off (y;q;u) with respect toy. Then, for

any sequencef qtgt2 [T] � Q we have:

(a)
g
2

 

å
t2 [T]

` pre
t (qt) � å

t2 [T]

` pre
t (qtrue)

!

� RT(f `sim
t gt2 [T]; f qtgt2 [T]) � g å

t2 [T]

kx�
t � ytk

2 � å
t2 [T]

hsyt ;x
�
t � yt i ;

(b)
g
2 å

t2 [T]

kxt � x�
t k2 � RT(f `sim

t gt2 [T]; f qtgt2 [T]) + å
t2T

hqtrue � qt ;c(yt) � c(x�
t )i :

Proof. The strong convexity off has a few implications that we will use to derive the desirable

statements.

f (yt ;qt ;ut) � f (xt ;qt ;ut) � h sxt ;yt � xt i +
g
2

kxt � ytk
2 �

g
2

kxt � ytk
2 (B.2)

f (x�
t ;qtrue;ut) � f (yt ;qtrue;ut) � h syt ;x

�
t � yt i +

g
2

kx�
t � ytk

2 (B.3)

f (xt ;qtrue;ut) � f (x�
t ;qtrue;ut) � h sx�

t
;xt � x�

t i +
g
2

kxt � x�
t k2 �

g
2

kxt � x�
t k2 : (B.4)
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(a) We apply (B.2) and (B.3) to bound the loss gap.

g
2

 

å
t2 [T]

` pre
t (qt) � å

t2 [T]

` pre
t (qtrue)

!

=
g
2 å

t2 [T]

kxt � ytk
2 �

g
2 å

t2 [T]

kx�
t � ytk

2

� å
t2 [T]

f (yt ;qt ;ut) � f (xt ;qt ;ut) �
g
2 å

t2 [T]

kx�
t � ytk

2 = å
t2 [T]

`sub
t (qt) �

g
2 å

t2 [T]

kx�
t � ytk

2

� RT(f `sim
t gt2 [T]; f qtgt2 [T]) + å

t2 [T]

`sub
t (qtrue) �

g
2 å

t2 [T]

kx�
t � ytk

2

= RT(f `sim
t gt2 [T]; f qtgt2 [T]) + å

t2 [T]

( f (yt ;qtrue;ut) � f (x�
t ;qtrue;ut)) �

g
2 å

t2 [T]

kx�
t � ytk

2

� RT(f `sim
t gt2 [T]; f qtgt2 [T]) � g å

t2 [T]

kx�
t � ytk

2 � h syt ;x
�
t � yt i ;

where the �rst inequality uses(B.2), the second inequality follows from Proposition 6(b), and

the last inequality uses (B.3).

(b) We �rst use (B.4) to bound the squared distance, then apply Proposition 6 (b).

g
2 å

t2 [T]

kxt � x�
t k2 � å

t2T
f (xt ;qtrue;ut) � f (x�

t ;qtrue;ut)

� RT(f `sim
t gt2 [T]; f qtgt2 [T]) + å

t2T
hqtrue � qt ;c(yt) � c(x�

t )i :

�

In the imperfect information case, a sublinear bound onRT(f `sim
t gt2 [T]; f qtgt2 [T]) has similar

implications as in the perfect information, that is, it indicates a vanishing gap between the average`sim

incurred by estimatesf qtg and by the of�ine optimal estimate. For the other three loss functions, we

focus on the difference between the total losses fromf qtg and fromqtrue, namely the total imperfect

information losses. By Proposition 6(a), with a sublinear`sim-based regret bound, the difference

between the averagèsub incurred byf qtg and the average imperfect information loss vanishes

overtime. This means the generated estimates eventually perform at least as well asq true with respect

to `sub.

For `est and` pre, we have weaker results. Proposition 6(b) shows that the average loss difference

betweenf qtg and qtrue decreases overtime to be below a noise-dependent limit1
T å t2Thqtrue �

qt ;c(yt) � c(x�
t )i . Lastly, in the special case of a strongly convex forward objectivef , Corollary 2(a)

bounds the prediction loss gap withRT(f `sim
t gt2 [T]; f qtgt2 [T]) and additional noise-dependent terms.

Corollary 2(b) proves that the same bound on the average loss difference based on`est applies to the

average squared norm distance between the predicted actions and the true actions.

Note that the experiment results from learning a quadratic utility function given in Section 5.6.4

illustrate these theoretical bounding relations. Moreover, as we next show, the results from learning a

CES utility function demonstrate similar patterns.
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