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Abstract

This dissertation examines data-driven decision-making in crucial areas of public ser-

vice operations management, with a specific focus on liver allocation and child welfare

operations.

Chapter 1 provides an overview of the research background and describes the common

challenges in public service resource allocation as well as context-specific operational

complexities.

Chapter 2 introduces a decision support model for split liver transplantation (SLT)

to enhance efficiency and fairness in liver allocation. Through a multi-queue fluid sys-

tem model, optimal matching procedures are identified, demonstrating the potential

benefits of increased SLT utilization.

Chapter 3 explores learning-informed algorithms for SLT resource allocation, utilizing

a multi-armed bandit (MAB) model to balance exploration and exploitation in surgi-

cal team selection. Novel algorithms, L-UCB and FL-UCB, are developed and shown

to exhibit superior performance in allocating organs while incorporating experience-

based learning and fairness concerns.

Chapter 4 studies the impact of workload on the screening of child maltreatment re-

ports, highlighting the need for load-aware risk protocols in human-AI collaborations.

Chapter 5 concludes the dissertation by outlining future research avenues and poten-

tial operational improvements in public service.
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Chapter 1

Introduction

Data-driven decision-making in public service operations management has emerged as

a vital approach that leverages data analysis and insights to inform strategic, tactical,

and operational decisions within the public sector. By harnessing data from various

sources such as government databases, surveys, and administrative records, public

service organizations can gain valuable insights into clients’ needs, service delivery

performance, and resource allocation.

Several common challenges persist across various areas within public services. One

significant challenge is the efficient allocation of limited resources amidst demand

and budget constraints. Whether allocating organs for transplant procedures or dis-

tributing social welfare resources, public service organizations often face the dilemma

of balancing competing needs and priorities within capacity and budget. Addition-

ally, ensuring fairness and equity in resource allocation presents a constant challenge.

Whether working to provide equitable access to healthcare services or distributing

social assistance programs, public service organizations must navigate complex socio-

economic factors to try to ensure a fair and unbiased resource allocation.

Another common challenge in public services is improving service delivery processes

to meet evolving expectations and regulatory requirements. This includes challenges

such as reducing wait times for critical services (e.g., deceased-donor organs for trans-

plants), improving the quality of care in healthcare facilities, or enhancing respon-

siveness and accuracy in child welfare services. Public service organizations must

1



Chapter 1. Introduction

continuously adapt their operations to address technological advancements, chang-

ing demographics, and legislative mandates while maintaining service quality and

efficiency. Overall, addressing these challenges requires innovative approaches, strate-

gic planning, and collaboration across multiple stakeholders to ensure effective and

sustainable public service delivery.

This dissertation examines two critical areas within public services: liver allocation

and child welfare operations. We explore strategies aimed at the efficient and equi-

table allocation of scarce resources, including deceased-donor livers and child welfare

resources. Additionally, we delve into the dynamics of human and technology collab-

oration geared towards enhanced decision-making processes.

Chapter 2 studies a decision support model for split liver transplantation (SLT). SLT

is a procedure that can save two lives using one liver, increasing the total benefit

derived from the limited number of donated livers available. SLT may also improve

equity, by giving transplant candidates who are physically smaller (including children)

increased access to liver transplants. However, SLT is rarely used in the US. To help

quantify the benefits of increased SLT utilization and provide decision support, we

introduce a deceased-donor liver allocation model with both efficiency and fairness

objectives. We formulate our model as a multi-queue fluid system, incorporating the

specifics of donor-recipient size matching and patients’ dynamically changing health

conditions. Leveraging a novel decomposition result, we find the optimal matching

procedure for the overloaded liver allocation system, enabling us to benchmark the

performance of different allocation policies against the theoretical optimal. Numerical

results, utilizing data from the Organ Procurement and Transplantation Network,
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show that increased utilization of SLT can significantly increase total quality-adjusted

life years, reduce patient deaths, and improve fairness among different patient groups.

Chapter 3 discusses medical learning in SLT and proposes learning-informed algo-

rithms for resource allocation. Proficiency in many sophisticated tasks is attained

through experience-based learning, in other words, learning by doing. For example,

transplant centers’ surgical teams need to practice difficult surgeries to master the

skills required. Meanwhile, this experience-based learning may affect other stakehold-

ers, such as patients eligible for transplant surgeries, and require resources, including

scarce organs. To ensure that patients have excellent outcomes while expanding the

base of qualified surgeons, the organ allocation authority needs to quickly identify and

develop medical teams with high aptitudes. This entails striking a balance between

exploring surgical combinations with initially unknown full potentials and exploit-

ing existing knowledge based on observed outcomes. We formulate this problem as a

multi-armed bandit (MAB) model, in which parametric learning curves are embedded

in the reward functions to capture endogenous, experience-based learning. In addi-

tion, our model includes provisions ensuring that the choices of arms are subject to

fairness constraints to guarantee equity. To solve our MAB problem, we develop the

L-UCB and FL-UCB algorithms, variants of the upper confidence bound (UCB) al-

gorithm that we prove attain the optimal O(log t) regret on problems enhanced with

experience-based learning and fairness concerns. We demonstrate our model and al-

gorithms on the SLT allocation problem, showing that our algorithms have superior

numerical performance—arriving at better allocations faster—compared to standard

bandit algorithms in a setting where experience-based learning and fairness concerns

exist. From a methodological point of view, our proposed MAB model and algorithms
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are generic and have broad application prospects.

Chapter 4 studies the workload effect and human-artificial intelligence (AI) teaming

in the screening of child maltreatment reports. Child welfare organizations regularly

receive a significant number of calls alleging child neglect or abuse. Due to limited re-

sources available for investigations and services, it is crucial to accurately assess and

screen these allegations before further investigation or intervention, to maintain a

sustainable workload. Furthermore, investigations initiated based on unsubstantiated

allegations can lead to harmful consequences for the family involved. To aid these

essential screening decisions and enhance overall efficiency, a Predictive Risk Model

(PRM), essentially an AI tool, has been deployed by our research partner. However,

the PRM is load-agnostic and cannot adapt to fluctuating workloads. We empiri-

cally investigate the impact of system load on the screening decisions made via the

human-PRM collaboration. Our results indicate that the probability of screening-in

allegations is inversely correlated with the system load. Moreover, we find that human

workers appear to informally incorporate workload information in their screening de-

cisions, tending to deviate more often from the PRM tool recommendation when the

system load is either very high or low. We discuss strategies to enhance the collabo-

ration between human workers and the PRM by adopting load-aware risk protocols.

More broadly, our work contributes to the discussion on human-AI teaming in high-

stakes decision-making.

Chapter 5 concludes the dissertation and discusses avenues for future research. Three

primary directions are outlined: exploring effective operational strategy designs in-

corporating human and organizational learning, studying operational improvements
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in child welfare organizations, and investigating sequential decision-making under un-

certainty in the nonasymptotic regime. These promising research paths, informed by

this dissertation’s findings, offer valuable opportunities to enhance decision-making

and enable operational improvements in public services.
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Chapter 2

Split Liver Transplantation: An Analytical
Decision Support Model

2.1 Introduction

Liver transplantation is the only effective treatment for patients with end-stage liver

diseases (ESLD). In this paper we focus on the matching of deceased-donor livers

and potential recipients, as more than 95% of US liver transplant surgeries use a

deceased donor liver; the remaining 5% transplant living-donor livers, using a different

matching procedure. In the US, the number of patients waiting for a liver transplant

far exceeds the number of available donated livers: A total of 9528 liver transplants

were performed in 2022, while 13179 ESLD candidates were added to the waiting

lists. Moreover, 1043 candidates died while waiting in 2022. As of September 2023,

there are 10081 candidates on the US liver transplant waitlists, and 615 waitlisted

candidates have died before receiving a transplant. As liver shortages persist despite

countless efforts to bridge this gap between supply and need, it is crucial to allocate

the livers we have as efficiently and fairly as possible (OPTN & UNOS, 2022a).

Split liver transplantation (SLT) is a procedure that can save two lives using one do-

nated liver: It is widely accepted that splitting qualified livers for suitable patients is

appropriate, as SLT yields outcomes comparable to the traditional whole liver trans-

plantation (WLT) in transplant centers (TCs) with adequate experience (OPTN &

UNOS, 2016). There are two splitting methods: the adult-child split and the adult-

adult split, according to to (OPTN & UNOS, 2016). SLT is possible because liver
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cells have very high regenerative capability: When a partial liver is used for trans-

plantation, it will grow to the proper size within months if the transplant is successful.

Moreover, as transplant candidates of smaller sizes usually have longer expected wait-

ing times, SLT could potentially increase the supply of smaller liver allografts and

therefore provide more equitable access for smaller candidates. In fact, 92% of SLTs

are performed for children in the US. Usually, fairness and efficiency are framed as

trade-offs; SLT offers a unique opportunity to simultaneously improve both.

Sadly, despite SLT’s potential to ameliorate the acute shortage of donated livers and

improve equity, it is rarely used in the US. More than 10% of all deceased-donor

livers in the US are of sufficiently high quality to be deemed medically splittable

according to OPTN-specified criteria, yet less than 1.5% of livers are split (OPTN

& UNOS, 2016). Barriers to increased SLT utilization include logistical difficulties,

surgical expertise, geography, and the complexities of donor-recipient matching.

The Organ Procurement and Transplantation Network (OPTN) oversees all organ

procurement and allocation in the US. When a deceased donor liver becomes avail-

able, the organ is sequentially offered to appropriate ESLD patients on the waiting

list according to a ranked list; patients may accept or reject the organ offer. These

ranked lists incorporate information about the potential recipients’ sizes, geographical

locations, blood types, and health conditions measured by their Model of End-stage

Liver Disease (MELD) scores for adults, or Pediatric End-stage Liver Disease (PELD)

scores for children. MELD scores take integer values from 6 to 40; some critically sick

children or adults may be listed as status 1A, and children who meet specific criteria

may be listed as 1B instead of getting an integer score (Kamath & Kim, 2007). The
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MELD and PELD scores are frequently updated and measure medical urgency based

on lab tests: The higher the MELD/PELD score a patient has, the lower the expected

survival rate of this patient in the next 90 days without a transplant. The US allo-

cation policy prioritizes patients with the highest MELD/PELD scores, when other

factors such as sizes, geographical locations, and blood types are compatible (OPTN

& UNOS, 2022b). By default, livers are allocated as a whole to the sickest patients;

only in exceptional cases where a highly ranked child or small adult requires a partial

liver will a liver be split and used for SLTs, if medically safe.

In contrast to the policy in the United States, the UK adopts an “all-split” liver

allocation policy, where all splittable-livers are split, except in exceptional circum-

stances. Procedure-wise, livers are evaluated and deemed to be split (or not split),

and then recipients are chosen to get transplanted (NHS, 2022). By decoupling the

liver-splitting decision and recipient choices, many logistical hurdles are alleviated.

Our analysis indicates that based on current US data, splitting all splittable livers

and then allocating the whole/partial livers according to our model performs nearly

optimally in terms of maximizing total quality-adjusted life years (QALY) and min-

imizing the total number of patient deaths (TNPD). Moreover, under the current

“sickest first" allocation priority, splitting all livers alone consistently improves the

system performance under various transplantation objectives. These findings suggest

that an adapted strategy analogous to the UK’s “all-split" policy could work well in

the current US liver allocation system.

We analytically model the deceased-donor liver allocation and matching problem in-

corporating the use of SLT for the first time; one of our main contributions is a
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novel SLT decision support module/subroutine. We use a fluid model as a first-order

approximation of the dynamic liver allocation problem. Our fluid model provides

us with analytical tractability while yielding a faithful approximation, owing to the

overloaded nature of liver transplant waitlists. We divide patients into groups with

different static features (physical sizes) and dynamically changing health conditions

(MELD/PELD scores). Our primary patient welfare objectives are maximizing pa-

tients’ total QALY, and minimizing the number of patient deaths while waiting for a

transplant (NPDWT).

As size matching and equity is an important concern related to who has access to

donated livers—and as SLT involves physically splitting larger liver grafts into smaller

parts—we explicitly quantify the effects of SLT on transplant access among patient

size groups. We do so by incorporating explicit equity constraints among different

groups’ average probabilities of getting transplants (PGT). To properly address the

equity concerns, we need to strike a delicate balance: We want to improve access for

smaller patients—often children—but do not want excess utilization of SLT to lead

to some patient groups facing unfairly low access to liver transplants - for example,

overweight or critically sick candidates typically not qualified for SLT. Our fluid

model/analysis helps provide insights regarding dynamic liver allocation in realistic

settings, incorporating fairness concepts from philosophy, some of which have been

applied to the SLT setting (T. W. Kim et al., 2021).

To summarize, we provide the first organ allocation model incorporating SLT. We

show that incorporating our SLT decision support module can improve both utility

and equity, compared to the current OPTN policy as well as other benchmark policies.
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The policy implications and methodological improvement are academic contributions

toward improving practice. We hope our work may inspire a more detailed clinical

analysis of the barriers to, and benefits of, increased SLT utilization in the US.

Methodologically, we advance the accuracy and reduce the computation complexity

of the organ allocation matching problem by finding an explicit solution to our fluid

model through a novel fluid limit decomposition. We also prove that our solution is

globally optimal in the interior of the fluid queue state space. To our knowledge, pre-

vious work using fluid queues to model organ allocation has relied on heuristic-based

solutions that involve high complexity and large search spaces. Our decomposition

method is not only efficient and exact in scenarios when queues are nonempty, but it

also allows us to perform sensitivity analysis and shed insight into how different fac-

tors affect the optimal organ allocation policies and the objective values. For example,

incorporating waitlisted candidates’ endogenous, strategic accept/reject decisions in

an optimal organ allocation problem has been considered intractable; our fluid decom-

position method helps dissect the convoluted problem into simpler modules that are

much more solvable. The methodological contribution of the proposed fluid decompo-

sition goes beyond organ transplantation—it solves transient optimal dynamic control

in multi-class queues formulated with fluid approximation before the steady state is

reached in the interior of the fluid queue state space. Our fluid decomposition method

sheds insights for other queueing control problems, for example, optimal scheduling

of proactive service with dynamic patient health conditions (Hu et al., 2021), resource

sharing among multiple queueing classes with customer abandonment (Larranaga et

al., 2013), and hospital patient flow management (Dong & Perry, 2020).
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The rest of the chapter is organized as follows. In section 2.2 we provide a literature re-

view on related work from both the transplantation community and the management

science/operations research (MS/OR) community; in section 2.3 we present our fluid

model formulation, fairness metric and discuss the trade-offs between efficiency and

fairness. In section 2.4, we introduce our fluid limit decomposition result and present

structural properties of the optimal fluid control policy as well as new insights. In

section 2.6 we present major numerical results and managerial insights for our prob-

lem. Finally, in section 4.7, we conclude with some discussions of the contributions of

this chapter and future directions.

2.2 Literature Review

There are four streams of literature that are most relevant to our work: a) MS/OR

work on organ transplantation; b) SLT papers in the transplantation community; c)

fluid model literature; and d) literature on fairness.

OR/MS Literature on Organ Transplantation: OR/MS researchers have stud-

ied organ allocation over the past two decades. Some researchers use simulation mod-

els to evaluate and compare the effect of various organ allocation policies on the

system’s performance (e.g. Zenios et al., 2000b); the majority of the papers on the

optimal allocation of organs—most commonly kidneys—focus on maximizing welfare

across the entire system. More specifically, researchers typically solve the optimal

matching problem that pairs organs and patients to maximize utilitarian objectives,

e.g. total QALY, average 1/3/5-year patient survival probability, or quality of the

prospective matches. For example, Su and Zenios, 2006 studied the impact of infor-

mation asymmetry and mechanism design in a system where patients indicate their
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preference for kidney offers upon joining the waiting list. Ata et al., 2021 used a fluid

model to find the ranking policy that optimizes the efficiency-fairness tradeoff among

all policies that take patients’ strategic choices into account, in equilibrium. Kidney

allocation is in some ways more straightforward than liver allocation, as in kidney

transplantation, priority in getting a kidney offer is usually given to patients who

have waited for the longest on the list within the same geographic region, similar to

a first-come-first-serve (FCFS) rule. This is reasonable as if a kidney transplant is

unavailable, patients can often survive on dialysis for several years.

However, as there is no therapy comparable to dialysis for ESLD patients, these

patients’ conditions may be quite volatile. Thus, the ranking of candidates in liver al-

location is more dependent on patients’ dynamically changing health conditions; while

a lot of work has been done on kidney allocation, fewer papers have addressed the

typically more complex allocation and decision-making for livers. Sandıkçı et al., 2008

formulated a Markov decision process (MDP) model to solve the optimal decisions

for one patient in a stochastic environment, and to determine the price of privacy,

i.e. the life days lost due to lack of information. Closer to our work, Akan et al.,

2012 analytically modeled the whole liver transplantation (WLT) allocation system

using a fluid model with utilitarian objectives (e.g. QALY and NPDWT) incorporat-

ing dynamically-changing MELD/PELD scores; however, they did not consider either

SLT or fairness. Methodologically, Akan et al., 2012 relied on solving complex dual

controls for the interior of the state space and heuristic solutions for the dynamic

indexes and the boundary case. In contrast, we provide an explicit solution to the ex-

tended fluid optimization problem through our novel fluid limit decomposition result.

We also prove the optimality of our proposed decomposition method in the interior
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of the fluid queue state space. We show that the optimal policy greedily optimizes

dynamic indexes that can be written in explicit form without solving the dual control

in the interior. This enables us to accurately quantify the impact of, and offer insights

for, the incorporation of SLT.

Table 2.1 summarizes the MS/OR literature applying fluid models to organ trans-

plantation. Although we do not explicitly consider patient choices in our main model,

we discuss ways to incorporate them as an extension in Subsections 2.5.3 and A.2.3.

Paper/Feature Organ SLT Explicit Structural Fairness Patient

Solution Properties Choice

Zenios et al., 2000b Kidney ✓ ✓

Su and Zenios, 2006 Kidney ✓ ✓ ✓

Akan et al., 2012 Liver ✓

Ata et al., 2021 Kidney ✓ ✓ ✓

Our Chapter Liver ✓ ✓ ✓ ✓

Table 2.1: Comparison of Relevant Literature Using Fluid Models to Study Organ Allo-
cation Policies

SLT Literature: SLT papers in the transplantation community are mostly com-

prised of retrospective reviews of TCs that have performed SLT, sharing their SLT

experiences—both outcome statistics and medical techniques—in major transplanta-

tion journals (Emre & Umman, 2011). The rest include ethics discussions (Vulchev

et al., 2004), statistical analysis using open data (Perito et al., 2019), clinical and

medical research on SLT techniques and postoperative effects, and discussions of SLT

policy making (OPTN & UNOS, 2016). Recent studies show that the outcomes of

SLT can be as good as WLT in major TCs with sufficient experience in SLT (Perito
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et al., 2019).

Fluid models: The fluid approximation has been widely accepted as a standard

method to model overloaded queueing systems. Fluid models have been used in mod-

eling organ allocation, hospital patient flow, proactive service scheduling, and many

other healthcare operations problems (Akan et al., 2012; Hu et al., 2021; Shi et al.,

2016; Zenios et al., 2000b). By properly scaling time and space, the fluid limit gives

a first-order approximation of a complex queueing system, with the goal of stripping

away details to reveal essential features. The validity of fluid approximation is based

on the functional law of large numbers (FLLN): The FLLN states that the fluid limits

characterize the first-order dynamics of queueing systems under mild regularity condi-

tions (Whitt, 2006). Fluid models have been shown to be appropriate stylized models

in the context of organ transplantation (Akan et al., 2012; Zenios et al., 2000b).

Although the optimal control of fluid models in steady state has been well-studied,

the exact optimal control in the transient state has not yet been solved. Hu et al., 2021

derived the optimal control for a two-queue fluid model with customer transitions and

performed detailed transient analysis. Our work studies explicit allocation policies for

the transient fluid-model optimal control problem with a finite number of server and

customer classes and proves its optimality in the interior of the state space.

Fairness: Equity of access in organ allocation has received increasing attention within

the transplantation and MS/OR community. For instance, OPTN introduced the

acuity circles policy in 2019, which is designed for a more geographically equitable

allocation of livers (Mogul et al., 2020). Similarly, Bertsimas et al., 2020 introduced

a more accurate priority scoring system that allows for more boundaryless, broader,
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and smoother liver allocation. Specifically to SLT, T. W. Kim et al., 2021 addressed

the question of when splitting a large, medically-splittable liver is ethically desirable

and why a sophisticated, dynamic allocation policy is crucial to the ethics of SLT.

There are several alternative definitions of fairness in organ transplantation, and thus

far, there is no single standard accepted by both practitioners and academics (Bert-

simas et al., 2013; Committee et al., 2009). In this chapter, we focus on a type of

fairness analogous to the fairness concept proposed by Rawls, 1999; specifically, we

enforce a lower bound on the likelihood of transplant for each group of patients. We

use the price of fairness (POF) concept to understand the efficiency-fairness trade-

off (Bertsimas et al., 2011b).

2.3 Model Formulation

Figure 2.1: Thin black edges indicate a valid whole liver transplantation (WLT) liver-
candidate size match, while teal edges indicate a plausible SLT liver-candidate size match.
Thick black edges indicate a plausible size match for both WLT and SLT.

This section analytically models the deceased-donor liver allocation system (WLT

and SLT) incorporating both efficiency and fairness concerns. We formulate a multi-
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queue fluid system with abandonment, including the specifics of donor-recipient size

matching and dynamically changing MELD or PELD scores. Our primary metrics are

maximizing QALY and minimizing NPDWT, potentially subject to equity constraints

that specify the minimal probabilities of getting transplants (PGT) by patient class.

Our formulation and results directly extend to other well-known liver allocation objec-

tives such as minimizing the total number of patient deaths (TNPD) and minimizing

the number of patient deaths after transplant (NPDAT).

The fluid model and patient grouping in this section focuses exclusively on the size-

matching and dynamic health conditions. We consider size as a static attribute in the

primary model, grouping candidates into four patient classes: small (S), medium (M),

medium-large (ML), and large (L). Patient health conditions are captured by patients’

dynamic MELD or PELD scores. In this chapter, all boldfaced lower-case letters

denote vectors; boldface upper case are matrices, and scalars are in regular/non-

bold typeface. We consider a continuous time horizon T := [0, T ]. Patients of class

(i, j), with sizes i ∈ I := {S, M, ML, L} (for convenience, I := |I|, is an alternative

notation for I’s size/cardinality) and MELD/PELD scores j ∈ J : {1, 2, . . . , J}

where J ∈ N∗ arrive at rate λij(t) ∈ R+ at time t ∈ T ; each λij(t) is calibrated to

OPTN data. λ(t) ∈ R|I|×|J |
+ denotes the patient arrival rate vector at t ∈ T , and

λ ∈ R|I|×|J |
+ × T . With slight abuse of notation, in this chapter, the subscript ij

indicates the corresponding static class-i and dynamic class-j patient group’s index

in a vector; the double subscript ij, i′j′ is the corresponding index of a matrix or

vector of a patient pair consisting of a patient of class ij and another patient of class

i′j′.
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Patients may renege from the lists due to a) death; b) improving health conditions

(to lower MELD or PELD score) removing the need for a transplant; or c) worsening

health conditions (to higher MELD or PELD scores) rendering them ineligible for a

transplant. Let dij ∈ R+ be the death rate of queue ij per unit queue length and unit

time, and d ∈ RI·J
++ be the death rate vector; αij′,ij be the rate of patient transitioning

from queue ij to queue ij′, j′ ̸= j. Note that a patient’ static class (i.e., size) is

constant in time, only their dynamic class (i.e. health condition) may be time-varying,

therefore, αij,i′j′ = 0,∀i ̸= i′. By definition of the transition probabilities, αij,ij′ ≥ 0,

∀i, j, j′ ̸= j. Patients leave the waitlists, due to improved health condition in which a

liver transplant is no longer needed, with probability β ∈ RI·J ; or conversely, patients

are removed from the waitlists when they become too sick to receive a transplant,

with probability γ ∈ RI·J . Including transitions capturing reneging, the following

holds: ∑︁j′ ̸=j αij′,ij + dij + βij + γij = 1; and αij,ij = −dij−βij−γij−
∑︁

j′ ̸=j αij′,ij,∀i, j.

The queueing transition matrix, Ψ, satisfies: (Ψ)ij,i′j′ = 1(i′ = i)αij,i′j′ .

On the liver supply side, we assume that livers of size ℓ ∈ L := {S, M, ML, L} (and

splittable livers of size ℓ) arrive to the system at rate µℓ(t) (and µ̄ℓ(t)) at t ∈ T , where

the µℓ(t), µ̄ℓ(t) are again calibrated to data. We denote µ, µ̄ ∈ L × R|I|×|J | × T . We

incorporate liver quality as an attribute as our extension in the Appendix. Figure 2.1

shows a schematic of valid liver allocations, by size, in our model.

We denote the fluid queue length at time t ∈ T as x(t) ∈ R|I|×|J |, and x ∈ R|I|×|J |×T .

The initial fluid queue length is greater than 0, i.e., x(0) > 0. For each ℓ ∈ L,

let (uℓ, sℓ) ∈ R|I|×|J | × T × R|I|2×|J |2 × T be the decision variable, i.e., the liver

allocation, where uℓ denotes the allocation rate of liver type ℓ for WLT and sℓ for
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SLT. For convenience, define U = [u1 u2 · · · u|L|]⊤ ∈ |L| × R|I|·|J | × T and S =

[s1 s2 · · · s|L|]⊤ ∈ |L| × R|I|2×|J |2 ×T . Thus, (U, S) would be the allocation policy

during the planning horizon T . Naturally, uℓ(t) ∈ R|I|·|J |, sℓ(t) ∈ R|I|2·|J |2 denote

the decision rules of allocating type ℓ livers for WLT and SLT uses at time t ∈ T ;

and U(t) ∈ R|I|×|J |×|L|, S(t) ∈ R|I|2×|J |2×|L| are the decision rules of all-liver-type

allocation for WLT and SLT uses at time t ∈ T , respectively. Similarly, for each

ℓ ∈ L, let Pℓ ∈ [0, 1]|I||J |×|I||J |, P̄ℓ ∈ [0, 1]|I||J |×|I|2|J |2 be the expected WLT and SLT

liver offer acceptance probability matrices, respectively: P ℓ
ij denotes the probability

of a type ℓ liver eventually being accepted by a type-ij patient during its match

run; while P̄ ℓ
ij,i′j′ denotes the probability of a type ℓ liver eventually being accepted

by a type-ij patient and a type-i′j′ patient during its match run. In other words,

P̄ ℓ
ij,i′j′ = P̄ ℓ

ij,(ij,i′j′) = P̄ ℓ
i′j′,(ij,i′j′). In a liver’s match run, the whole or partial liver is

offered sequentially to a list of candidates; if it is not accepted by any one on the

list during the cold ischemia time (which lasts for at most 12 ∼ 18 hours), the organ

expires and has to be discarded. In this chapter, we assume that a liver is offered

sequentially to patients of the same type. For example, medium-sized adults with

MELD scores greater or equal to 35 within 500 nautical miles of the UCSF transplant

center. Note that for a whole or partial liver to be successfully transplanted, first the

liver has to be accepted by a candidate, and then the transplant surgery has to be

successful. In Subsection A.2.6, we show that retransplantation can be easily included

in our framework.
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2.3.1 The Base Model: Optimize over a Single Utility Objective with

Hard Fairness Constraints

In the base case, we consider a single utility objective (e.g. NPDWT, QALY, etc.) and

hard fairness constraints, i.e., a predefined proportion of arrivals of each class must

be offered a transplant before leaving the wait lists. The fluid optimization problem

with the sole objective of minimizing NPDWT subject to the equity constraint (2.6)

is:

min
(U,S)

OBJNPDWT :=
∫︂ T

0
d⊤x(t)dt (2.1)

s.t. x(t) ≥ 0, ∀t ∈ [0, T ) (2.2)

uℓ(t), sℓ(t) ≥ 0 ∀ℓ, t ∈ [0, T ] (2.3)

1I·Juℓ(t) + 1I2×J2sℓ(t) ≤ µℓ(t) ∀ℓ, t ∈ [0, T ] (2.4)

1I2·J2sℓ(t) ≤ µ̄ℓ(t) ∀ℓ, t ∈ [0, T ] (2.5)∑︂
ℓ

uℓ(t) +
∑︂

ℓ

Zsℓ(t) ≥ Θλ(t) ∀t (2.6)

ẋ+(t) = λ(t)−
∑︂

ℓ

Pℓuℓ(t)− P̄ℓsℓ(t) + Ψx(t) ∀t ∈ [0, T ) (2.7)

In our fluid optimization problem (2.1) ∼ (2.7): The objective (2.1) minimizes the

cumulative patient deaths across all patient groups before transplants. The inequal-

ity constraint (2.2) mandates that the fluid limits should be non-negative, which is

equivalent to require ẋij(t) ≥ 0, if xij(t) = 0, for any i, j and t. Note that due to

the properties of the patient transition matrix Ψ, the constraint (2.2) is imposed

on the allocation policy (U, S), not on the patient queue length process x(t). To

see why this is the case, recall that Ψ is the queueing transition matrix. All Ψ’s
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diagonal elements are negative (describing the rate of patients leaving the queue

due to deaths, improved health, or transitioning to other queues); i.e., Ψij,ij < 0.

Still, non-diagonal variables are non-negative (describing the rate of patients tran-

sitioning from other queues to this queue), i.e., Ψij,i′j′ ≥ 0 for i = i′, j ̸= j′ and

Ψij,i′j′ = 0 if i ̸= i′. When the queue for patient type ij (i.e., static class i and dy-

namic class j) becomes empty, i.e., xij(t) = 0, we have (Ψx(t))ij = Ψij,ij · xij(t) +∑︁
(i′,j′ )̸=(i,j) Ψij,i′j′ · xi′j′(t) = Ψij,ij · 0 + ∑︁

(i′,j′) ̸=(i,j) Ψij,i′j′ · xi′j′(t) ≥ 0. If our con-

trol variables (uℓ
ij(t), sℓ

ij,:(t)) = (0, 0) for ℓ, then when xij(t) = 0, we have ẋ+
ij(t) =

λij(t)−
∑︁

ℓ Pℓ
iju

ℓ
ij(t)−

∑︁
i′,j′

(︂
P̄ℓ

ij,i′j′sℓ
ij,i′j′(t) + P̄ℓ

i′j′,ijs
ℓ
i′j′,ij(t)

)︂
≥ λij(t) + (Ψx(t))ij =

λij(t)− 0− 0 + (Ψx(t))ij ≥ 0. In other words, the queue lengths x(t) have a natural

tendency to stay at or go above 0 unless our allocation policy (U, S) imposes a down-

ward force. The constraint x ≥ 0 is essentially restricting the feasible set of control

variables (U, S).

The inequality constraint (2.3) requires that the amount of allocated whole or partial

livers are non-negative as well. Equation (2.4) restrains the total amount of whole

and split liver to not exceed the amount of available livers, while (2.5) says that

the amount of assigned split livers should not be more than the total amount of

medically-splittable livers. (2.6) requires that Θij of all arrivals at queue ij at time

t gets a transplant offer, where Z ∈ RIJ×IJ ·IJ satisfies (Z)ij,(i1j1,i2j2) = 1(i = i1, j =

j1) + 1(i = i2, j = j2). (Multiplying Z is necessary due to the differences in dimen-

sionality between uℓ and sℓ.) Note that Θ is a predefined diagonal matrix. Thus,

fairness is modeled as hard class-specific constraints (because Θij’s can be differ-

ent for each patient group ij). Alternative forms of fairness constraints can be used

to replace (2.6); we discuss fairness soft constraints in Section 2.3.2, and cumulative
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maxmin probabilistic fairness constraints in Subsections A.2.1. Finally, (2.7) captures

the evolution of the fluid process. Note that zero values in P ℓ
ij and P̄ ℓ

ij,i′j′ imply “bad

matchings” and thus size constraints are incorporated.

Besides NPDWT, quality-adjust life years (QALY) is another important utilitarian

measure of interest. Define qij as the expected QALY per unit queue length per unit

time for a waiting patient of class ij, and let Hℓ
ij/H̄ℓ

ij denote the expected additional

QALY a successful WLT/SLT earns for recipient(s). For convenience, q ∈ R|I|×|J |,

Hℓ ∈ R|I||J |, and H̄ℓ ∈ R|I||J | are the matrix forms of the scalar notations above. The

QALY-maximizing version of the fluid control problem can be written as follows:

max
(U,S)

OBJQALY :=
∫︂ T

0

{︄
q⊤x(t) +

∑︂
ℓ

HℓPℓuℓ(t) + HℓP̄ℓsℓ(t)
}︄

dt (2.8)

s.t. (2.2) ∼ (2.7) (2.9)

Specifically, in (2.8) we accumulate total waiting patient QALY (i.e.,
∫︁ T

0 q⊤x(t)dt)

and total transplanted patient additional QALY (i.e. ∑︁∫︁ T
0 HℓPℓuℓ(t) + H̄ℓP̄ℓsℓ(t)).

Let ζ ∈ [0, 1]|I|×|J |×|L|, ζ̄ ∈ [0, 1]|I|2×|J |2×|L| denote the post transplant death vector

for WLT and SLT, respectively. We can also write out explicit expressions for the

TNPD and NPDAT objectives:

min
(U,S)

OBJTNPD :=
∫︂ T

0

(︄
d⊤x(t)dt +

∑︂
ℓ

ζℓPℓuℓ(t) + ζ̄ℓP̄ℓsℓ(t)
)︄

dt (2.10)

min
(U,S)

OBJNPDAT :=
∑︂

ℓ

∫︂ T

0

(︂
ζℓPℓuℓ(t) + ζ̄ℓP̄ℓsℓ(t)

)︂
dt (2.11)

The objective NPDAT (2.11) captures the post-transplant deaths explicitly, while

QALY (2.8) includes post-transplant adjusted life years and NPDWT (2.1) only con-
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siders pre-transplant deaths. TNPD (2.10) includes both pre- and post-transplant

deaths. In practice, NPDWT and QALY are mostly commonly used transplant ob-

jectives (Akan et al., 2012). While we demonstrate our proposed methods mainly

using NPDWT and QALY in Section 2.4, all insights and techniques directly general-

ize to other transplantation objectives (see Section A.1 in Appendix) and all objectives

mentioned above are tested in our numerical experiments (see Section 2.6).

2.3.2 Optimizing over a Single Utility Objective with Soft Fairness Con-

straints

For some situations, applying hard constraints may render the optimization problem

infeasible. In such cases, we may formulate fairness as soft constraints. Specifically,

we rewrite (2.6) as ∑︁ℓ uℓ(t)+∑︁ℓ sℓ(t) ≥ Θλ−ξ(t) ∀i, j, t. In scalar form it becomes

∑︂
ℓ

uℓ
ij(t) +

∑︂
ℓ

∑︂
i′,j′

sℓ
ij,i′j′(t) + sℓ,i′j′,ij(t) ≥ Θijλij(t)− ξij(t) ∀i, j, t (2.12)

where ξij(t) ≥ 0 is the maximum allowable “fairness deficit” for queue ij; ξ is the

fairness deficit in vector form. The larger the deficit at time t, the easier (2.12) is to

be satisfied. At the same time, we replace the objective (2.1) with

min
(U,S),ξ∈F

OBJNPDWT +
(︂
wNPDWT

)︂⊤ ∫︂ T

t=0
ξ(t) (2.13)

s.t. (2.2) ∼ (2.5), (2.7), (2.12) (2.14)

where F ⊆ R|I|×|J |
+ is the set of all feasible fairness deficit vectors, ξ ∈ F is the

vector of permissible “fairness deficits” for all patient groups, and wNPDWT ∈ R|I|×|J |
+

is the weight for the fairness objective, or in other words, the predefined penalty
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rate for deviating from the fairness constraints in the objective function (2.13). We

can replace minimizing NPDWT with other optimization objectives, e.g. maximizing

QALY. However, when we are maximizing a utility function, the corresponding weight

for the fairness objective should be non-positive.

2.3.3 A Multi-Objective Optimization Framework

At times we may wish to optimize over multiple utility objectives; in such cases,

the multi-objective fluid optimization problem can be solved to give a solution that

balances these different and potentially conflicting objectives. For example:

max
(U,S),ξ∈F

OBJMulti := −OBJNPDWT + ηOBJQALY −
(︂
wNPDWT − ηwQALY

)︂⊤ ∫︂ T

t=0
ξ(t)dt

(2.15)

s.t. (2.2) ∼ (2.5), (2.7), (2.12) (2.16)

Above, η ∈ R+ is the weight for the QALY objective.

2.4 Fluid Limit Decomposition and Exact Solutions to the

Fluid Models in the Interior Case

This section presents one of the main results of this work: our fluid limit decomposi-

tion. This decomposition gives the explicit optimal solution to the fluid optimization

problem (2.1) ∼ (2.7) (we call this the “fluid optimal,” or “optimal split, optimal

allocation" policy) in the interior of the state space: We only need to solve a stan-

dard LP at each time t ∈ [0, T ], e.g., we find the solution that greedily maximizes

the index UNP DW T
ℓ,t in (2.20) for each ℓ at t (see Proposition 1 below). Our solu-
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tion confirms that the fluid solution is a “dynamic index policy”— a key finding in

Akan et al., 2012. However, instead of solving the complex dual fluid optimization

problem to approximate the optimal solution to the primal problem as Akan et al.,

2012 did, our solution is analytical and exact, giving the explicit dynamic index that

each decision is trying to optimize, e.g., UNP DW T
ℓ,t in (2.20). We show that our solu-

tion through decomposition is optimal in the interior of the state space, i.e., when

x(t) > 0, ∀t ∈ T \ {T}.

2.4.1 Fluid Limit Decomposition for the Base Model

We first note that a queue ij’s fluid limit xij satisfies one of the following condi-

tions: xij(t) = 0 or xij(t) > 0 at any time t ∈ T , because of the non-negativity

constraint (2.2).

The interior case: Consider a scenario where no nonzero fluid limit hits zero in

any interval [t, t + δ], i.e., xij(t) > 0, ∀t ∈ T , ∀δ ∈ [0, T − t], and ∀i ∈ I, j ∈ J .

Dropping (2.2) in the fluid optimization problem (2.1) ∼ (2.7), and recognizing that

the differential equation (2.7) is a first-order, non-homogeneous, constant parameter

differential equation, we can explicitly write x(t) as a function of (u, s) and the initial

condition x(0):

x(τ) = exp[τΨ]x(0) +
∫︂ τ

0
exp[(τ − t)Ψ]F (U(t), S(t))dt ∀τ ∈ [0, T ], (2.17)

where the matrix exponential function is defined as eΨ := ∑︁∞
k=0

1
k!Ψ

k. We also define:

F (U(τ), S(τ)) := λ(t)−
∑︂

ℓ

(︂
Pℓuℓ(τ) + P̄ℓsℓ(τ)

)︂
. (2.18)
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Although we focused on a specific functional form of F (·), i.e., (2.18), in Section 2.4,

our decomposition technique applies to any general-form, integrable function F (·)

(please refer to Sections 2.5.3 and A.2.3 for detailed discussions). Written in scalar

form, (2.18) becomes

Fij(U(τ), S(τ)) := λij(t)−
∑︂

ℓ

⎛⎝P ℓ
iju

ℓ
ij(τ) +

∑︂
i′,j′

(︂
P̄ ℓ

ij,i′j′sℓ
ij,i′j′(τ) + P̄ ℓ

i′j′,ijs
ℓ
i′j′,ij(τ)

)︂⎞⎠ .

(2.19)

Please see Section A.3 for discussions on the interior case and sufficient conditions

for our original fluid optimization problem (2.1) ∼ (2.7) to stay in the interior of the

state space.

Proposition 1. In the interior case, the optimal decision at any t ∈ T in the optimal

solution to the fluid optimization problem (2.1) ∼ (2.7) is equivalent to the solution

to the following LP:

max
(U(t),S(t))

U NPDWT
t := d⊤

{︄∫︂ T

t
exp[(τ − t)Ψ]dτ

}︄(︄∑︂
ℓ

Pℓuℓ(t) + P̄ℓsℓ(t)
)︄

(2.20)

s.t. (2.3) ∼ (2.6), (2.26) (2.21)

The optimal allocation policy with the pure objective to minimize queueing deaths

solves (2.20) ∼ (2.21) for each t ∈ T and ℓ ∈ L. U NPDWT
t (U(t), S(t)) represents the

utility of the current decision (U(t), S(t)) on reducing patient deaths from now on to

the end of horizon.

In other words, we allocate livers as much as possible (subject to constraints) to the

patient groups with the largest index(es) specified by the objective function.
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Proof. (a) Plugging in the explicit expressions for the fluid limit vector x (2.17) ∼

(2.18):

min
(U,S)

∫︂ T

τ=0
d⊤ exp[τΨ]x(0)dτ +

∫︂ T

τ=0
d⊤

∫︂ τ

0
exp[(τ − t)Ψ]

(︄
λ(t)−

∑︂
ℓ

Pℓuℓ(t)− P̄ℓsℓ(t)
)︄

dtdτ,

(2.22)

this objective written in the vector form is equivalent to

min
(U,S)

∫︂ T

τ=0

∑︂
i,j

dij (exp[τΨ])ij,i′j′ xi′j′(0)dτ (2.23)

+
∫︂ T

τ=0

∑︂
i,j

dij

∑︂
i′,j′

∫︂ τ

0
(exp[(τ − t)Ψ])ij,i′j′ λi′j′(t)dtdτ

−
∫︂ T

τ=0

∑︂
i,j

dij

∑︂
i′,j′

∫︂ τ

0
(exp[(τ − t)Ψ])ij,i′j′

(︄∑︂
ℓ

P ℓ
i′j′uℓ

i′j′(t)

+
∑︂

i′′,j′′
P̄ ℓ

i′j′,i′′j′′sℓ
i′j′,i′′j′′(t) + P̄ ℓ

i′′j′′,i′j′sℓ
i′′j′′,i′j′(t)

)︄
dtdτ.

Dropping the constants, it can be further simplified to

min
(U,S)

∫︂ T

τ=0

∑︂
i,j

dij

∑︂
i′,j′

∫︂ τ

0
(exp[(τ − t)Ψ])ij,i′j′

(︄
−
∑︂

ℓ

P ℓ
i′j′uℓ

i′j′(t)

−
∑︂

i′′,j′′
P̄ ℓ

i′j′,i′′j′′sℓ
i′j′,i′′j′′(t)− P̄ ℓ

i′′j′′,i′j′sℓ
i′′j′′,i′j′(t)

)︄
dtdτ.

Recall that in the interior case patient buffers are always non-empty. Thus, decisions

decompose, and the expression above can be further decomposed into

max
(U,S)

∫︂ T

τ=0

∑︂
i,j

dij

∑︂
i′,j′

∫︂ τ

0
(exp[(τ − t)Ψ])ij,i′j′

(︄∑︂
ℓ

P ℓ
i′j′uℓ

i′j′(t)

+
∑︂

i′′,j′′
P̄ ℓ

i′j′,i′′j′′sℓ
i′j′,i′′j′′(t) + P̄ ℓ

i′′j′′,i′j′sℓ
i′′j′′,i′j′(t)

)︄
dtdτ.

26



Chapter 2. Split Liver Transplantation: An Analytical Decision Support Model

Now, we use a transformation to obtain a simple, myopic objective. More specif-

ically, we look at the decision rule at each t ∈ [0, T ]: The term gℓ,ij,i′j′(τ, t) :=

(exp[(τ − t)Ψ])ij,i′j′

(︂
P ℓ

i′j′uℓ
i′j′(t) + P̄ ℓ

i′j′sℓ
i′j′(t)

)︂
appears for all T ≥ τ ≥ t, but not

for 0 ≤ τ ≤ t; therefore,

∫︂ T

τ=0

∫︂ τ

t=0
gℓ,ij,i′j′(τ, t)dtdτ =

∫︂ T

t=0

∫︂ T

τ=t
gℓ,ij,i′j′(τ, t)dτdt. (2.24)

Note that the RHS of (2.24) is an integration over decisions at t for all t ∈ T , and the

expected influences of all decisions are fully extracted (looking forward), thus we do

not see carry-over effects (we only have u and s variables in the expression); whereas

in the original objective function (2.1), x appears and thus we couldn’t decompose de-

cision rules for each time t. Furthermore, because of the way we characterize capacity

constraints ((2.4) ∼ (2.5)) in the fluid approximation, decisions at time t to optimize

over
∫︁ T

τ=t gℓ,ij,i′j′(τ, t)dτ are independent. This is reasonable because in general livers

deteriorate quickly, and they are allocated as soon as they become available. In other

words, we extract the exact expected “impact” or influence of our decision at time t

explicitly, and we can then solve the fluid optimal policy by directly optimizing over

this impact at each time t:

max
(U(t),S(t))

∑︂
ℓ

∑︂
i,j

dij

∑︂
i′j′

{︄∫︂ T

t
(exp[(τ − t)Ψ])ij,i′j′ dτ

}︄(︄∑︂
ℓ

P ℓ
i′j′uℓ

i′j′(t)

+
∑︂

i′′,j′′
P̄ ℓ

i′j′,i′′j′′sℓ
i′j′,i′′j′′(t) + P̄ ℓ

i′′j′′,i′j′sℓ
i′′j′′,i′j′(t)

)︄
(2.25)

Writing (2.25) in vector form we arrive at (2.20).

Note that in the decomposed optimization problem, we only have simple constraints
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(i.e. (2.3) ∼ (2.6), capacity and non-negativity constraints) at time t on u and s; cru-

cially, there is no differential equation for fluid dynamics (i.e., (2.7) is not a constraint

of the decomposed optimization problem, as we have incorporated the fluid evolution

into the objective).

Although the liver transplant waitlists are overloaded, for theoretical completeness,

we also discuss the boundary case:

The boundary case: Consider the more general case where xij(t) ≥ 0, ∀t ∈ T

and i ∈ I, j ∈ J . When xij(t) = 0, the right hand side (RHS) of (2.7) has to be

non-negative, t ∈ [0, T ); otherwise, (2.2) is violated at time t + δ, where δ −→ 0+.

More specifically, the following inequality must hold when xij = 0 for a particular ij

patient group:

λij(t)−
∑︂

ℓ

(︄
P ℓ

iju
ℓ
ij(t) +

∑︂
i′,j′

(︂
P̄ ℓ

ij,i′j′sℓ
ij,i′j′(t) + P̄ ℓ

i′j′,ijs
ℓ
i′j′,ij(t)

)︂)︄
+
∑︂
i′,j′

Ψij,i′j′xi′j′(t) ≥ 0

∀i, j, t, if xij(t) ≤ 0

(2.26)

Note that we can recapture (2.2) by enforcing (2.26) on zero-valued fluid limit(s)

at each time t, if any. Our next decomposition result is closely related to the above

explicit expression for x and (2.26):

In the boundary case: For each queue ij and t ∈ [0, T ) such that xij(t) = 0, inequality

constraint (2.26) guarantees that the first-order derivative of xij(t) be non-negative;

in other words, limδ−→0+
xij(t+δ)−xij(t)

δ
≥ 0. Thus, limδ−→0+ xij(x + δ) ≥ xij(t) ≥ 0.

Therefore, inequality constraint (2.26) is a sufficient condition for (2.2). Moreover,
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because for each t ∈ [0, T ), (2.26) consists of only U(t), S(t), and x(t), and does not

involve any t′ ∈ (t, T ], we can directly add it as a constraint in our decomposed LP

for t. With (2.26) in the constraints, the solutions to our decomposed optimization

problem give decision rules subject to (2.2) and other constraints. With these decision

rules at t’s, we have a fluid-model policy that is compact and explicit. However, since

(2.26) are linking constraints; our greedy policies may not always be optimal.

A similar formulation and the same decomposition techniques can be applied to the

QALY objective version of the problem. Recall that q ∈ R|I|·|J | denotes the vec-

tor of expected QALYs of patients on the waitlists, and Hℓ ∈ R|I||J |×|I||J |, H̄ℓ ∈

R|I||J |×|I|2|J |2 are the matrices of expected QALYs of patients transplanted with type-

ℓ livers in WLT and SLT, respectively.

Proposition 2. The fluid optimization problem (2.8) ∼ (2.9) can be decomposed

into the following optimization problem:

max
U(t),S(t)

U QALY
t := −

∑︂
ℓ

q⊤
{︄∫︂ T

t
exp[(τ − t)Ψ]dτ

}︄(︄
Pℓuℓ(t) + P̄ℓsℓ(t)

)︄

+ HℓPℓuℓ(t) + H̄ℓP̄ℓsℓ(t)
(2.27)

s.t. (2.3) ∼ (2.6), (2.26) (2.28)

In the interior case, the optimal allocation policy with the objective to maximize

QALY solves (2.27) ∼ (2.28).

The matrix Ψ, when estimated from real-world data with limited precision, is non-

singular with very high probability; and it is indeed non-singular in our estimation

using OPTN data from 2009 - 2019 (see Section 2.6 for more information.) Specifically,
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Ψ is singular with probability 0 if we have infinite precision; and in the unlikely case

that Ψ is singular, we can add a noise matrix ϵ ∈ R|I||J |×|I||J | −→ 0 so that (Ψ + ϵ)

is non-singular and limϵ−→0 Ψ + ϵ = Ψ. Below we present the simplification for our

decomposed optimization problems (2.20) ∼ (2.21) and (2.27) ∼ (2.28) when Ψ is

non-singular; in Subsection A.5, we present the simplification results with singular

Ψ’s, for theoretical completeness.

Proposition 3. When Ψ is non-singular, U NP DW T and U QALY can be simplified

to

U NPDWT
t = d⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

Pℓuℓ(t) + P̄ℓsℓ(t)
)︄

(2.29)

U QALY
t = −q⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

Pℓuℓ(t) + P̄ℓsℓ(t)
)︄

+
∑︂

ℓ

OℓPℓuℓ(t) + ŌℓP̄ℓsℓ(t)
(2.30)

Proof. Proof: When Ψ is non-singular, it is invertible, i.e., Ψ−1 exists. The following

always holds (Van Loan, 1978):

∫︂ T

τ=t
eτΨdτ = (exp(TΨ)− exp(tΨ)) Ψ−1 (2.31)

Plugging (2.31) into (2.20) and (2.27) gives (2.29) and (2.30), respectively.

2.4.2 Fluid Limit Decomposition with Fairness as Soft Constraints

Note that at any time t ∈ T , all soft fairness constraints only constrain (U(t), S(t))

and penalize the objective; therefore, we can directly borrow the previous decomposi-

tion results and write the decomposed fluid optimization problem with the NPDWT/QALY
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objective at each time t:

max
(U(t),S(t)),ξ(t)∈F

U NPDWT/QALY
t +

(︂
wNPDWT/QALY

)︂⊤
ξ(t) (2.32)

s.t. (2.2) ∼ (2.5), (2.7), (2.12) (2.33)

2.4.3 Fluid Limit Decomposition for the Multi-Objective Framework

Collecting all cases from our results above, we can explicitly write the decomposed de-

cision rule optimization problem for the multi-objective fluid optimization framework

(2.15) ∼ (2.16), as stated in Theorem 2.4.1.

Theorem 2.4.1. The exact solution to the fluid optimization problem (2.15) ∼ (2.16)

is a greedy policy, with all future impacts of current actions summarized in our explicit

dynamic indices; the optimal decision rule at time t ∈ T is the solution to the following

linear optimization problem:

max
(U(t),S(t)),ξ(t)∈F

U Multi
t := U NPDWT

t + ηU QALY
t +

(︂
wNPDWT + ηwQALY

)︂⊤
ξ(t)

(2.34)

s.t. (2.3) ∼ (2.5), (2.12), (2.26). (2.35)

2.4.4 Optimality in the Interior Case and Dynamic Index Monotonicity

We have solved for the optimal policy π∗ directly by finding its optimal decision rules

at each t ∈ T through standard LPs, using our fluid limit decomposition method

described above. The solutions to the decomposed LPs, if they exist (i.e. if all the
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LPs are feasible), are the exact, globally optimal decision rules; any optimal policy

we obtain from specifying its decision rules at all t ∈ T is globally optimal. Because

we give the explicit LPs to solve at each t ∈ T , it is clear that there exists at least

one optimal policy for each single- or multi-objective fluid optimization problem with

soft fairness constraints with sufficiently large fairness deficit ξ (i.e. ξ ≥ Θλ(t)) and

no fairness constraints (i.e. Θ = 0). When formulated with hard fairness constraints,

there is a possibility that some decomposed LPs are infeasible, which directly implies

that there is no feasible decision rules or policy attaining the prescribed level of

fairness.

At each t ∈ T , our optimal decision rule optimizes over the objective U i
t , i ∈

{NPDWT, QALY, TNPD, NPDAT, Multi}. The dynamic index U i
t can be inter-

preted as the cost or benefit of a certain decision rule (U(t), S(t)). For example,

U NPDWT
t summarizes the expected aggregate reduction in patient deaths while wait-

ing for transplants during [t, T ] as a result of choosing (U(t), S(t)) at this moment

t. U QALY
t encapsulates the expected sum of QALYs increases of all the waiting and

transplanted patients during [t, T ] under the decision rule (U(t), S(t)).

For notational convenience, denote U NPDWT
t ’s coefficient vector for WLT D(t) :=

d⊤ (exp((T − t)Ψ)− I) Ψ−1∑︁
ℓ Pℓ, U NPDWT

t ’s coefficient vector for SLT: D̄(t) :=

d⊤ (exp((T − t)Ψ)− I) Ψ−1∑︁
ℓ P̄ℓ. Similarly, we denote U QALY

t ’s coefficient vector

for WLT Q(t) := −q⊤ (exp((T − t)Ψ)− I) Ψ−1∑︁
ℓ Pℓ, and U QALY

t ’s coefficient vector

for SLT Q̄(t) := −q⊤ (exp((T − t)Ψ)− I) Ψ−1∑︁
ℓ P̄ℓ. Proposition 4 below shows that

the coefficient vectors are monotonic functions in t:

Proposition 4. The time-varying coefficient vectors in the fluid optimization prob-
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lems and dynamic indexes are monotonic functions in t: (a) D(t) and D̄(t) are non-

increasing in t, and (b) Q(t) and Q̄(t) are nondecreasing in t.

Because, D(t) > 0, D̄(t) > 0, Q(t) ≤ 0, and Q̄(t) ≤ 0, for any t ∈ T (see Sub-

section A.6.4 for a formal proof). The derivatives of these time-varying coefficient

vectors are in the opposite direction of their sign. Proposition 4 essentially tells us

that the absolute impacts of earlier allocations are greater than later allocations in the

overall transplantation objective values, which equal the cumulative sum of dynamic

indices plus other decision-invariant constants. This new finding highlights the special

properties of the fluid control problem for liver allocation with patient health condi-

tion transitions. The proof for Proposition 4, involving matrix calculus, is deferred to

Subsection A.6.4.

2.5 Structural Properties and Extensions

2.5.1 New Insight on SLT: Supply and Fairness

This section studies the marginal benefits of having more livers, the impact of fairness,

and when splitting as many livers as possible is an optimal strategy, in the interior

case. For the sake of brevity, all proofs for Section 2.4.5 are deferred to the Appendix

Section A.6.

Definition 2.5.1. f(µ1, ...,µ|L|, µ̄1, . . . , µ̄|L|,Θλ,λ) is the optimal objective function

value in (2.15) as a function of the right hand side (RHS) vectors µℓ, µ̄ℓ,Θλ,λ,∀ℓ ∈ L.

Proposition 5. f(µ1, ...,µ|L|, µ̄1, . . . , µ̄|L|,Θλ,λ) is jointly concave.
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Proposition 5 implies that the marginal benefit of resources (i.e. the cumulative multi-

objective utility improvement gained from an additional unit of resources) is mono-

tonically non-increasing. The marginal benefit of an additional liver is greater when

the available livers are scarce, and the marginal benefit is smaller when there is an

abundance:

Corollary 2.5.1. The marginal benefit of an additional liver is monotonically non-

increasing in µ and µ̄.

Figure 2.2 illustrates the concave, increasing objective function values in µ and µ̄.

While it is straightforward that increasing µ or µ̄ relaxes the feasible set, and therefore

improves the objective value in (2.15), the effect of increasing λ is less clear. Specifi-

cally, the optimal objective function value f may not be monotonic in λ. Recall that

f may be a weighted sum of two objectives: Increasing λ increases the expected ag-

gregate QALY (as more patients imply more QALY) but may increase the expected

NPDWT (which has a negative weight in f) at the same time. We do know, though,

that the effect of λ is concave.

Finally, when λ is fixed, increasing Θ reduces the feasible set, thus lowering the

optimal objective function value. To study the impact of fairness constraints in more

detail, we introduce the price of fairness concept. To assure that our price of fairness

is well-defined, when there is no imposed fairness (i.e. Θ = 0), we may choose to add

a constant to the f function so that f(µ1, ...,µ|L|, µ̄1, . . . , µ̄|L|, 0,λ) > 0.

Definition 2.5.2. The price of fairness, denoted as PoF, is the relative utility loss

due to the imposed fairness constraint. With fairness parameter Θ,
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Figure 2.2: Sensitivity analysis of parameters µ and µ̄, based on OPTN data. Here we
consider the fairness matrix to be of the following form: Θ = θIIJ,IJ , where θ ∈ [0, 1) is a
scalar fairness level, and IIJ,IJ is an identity matrix of dimension IJ × IJ . The objective
function value of (2.15) is a non-decreasing, concave function of µ and µ̄. On the left, dif-
ferent base liver supplies µ-OPTN and 100 ·µ-OPTN contribute to differences in intercepts,
while fairness level θ has a relatively smaller impact on the objective function values. On the
right, fairness level θ’s determine the intercept; slopes are higher with larger θ and larger
base. The objective functions are concave in the SLT proportion multiplier n.

PoF(Θ) = f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,0,λ)−f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,Θλ,λ)
f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,0,λ) .

Corollary 2.5.2 describes the first- and second-order properties of PoF.

Corollary 2.5.2. With λ fixed, PoF(Θ) is monotonically non-decreasing and convex

in Θ, over (2.15) ∼ (2.16)’s feasible range.

Corollary 2.5.2 shows that PoF’s increase accelerates when Θ is higher; this implies

that it is crucial for policy makers to be prudent considering mandated fairness levels:

Increases in fairness come at greater and greater costs with respect to efficiency. Figure

2.5b in Section 2.6 illustrates the monotonicity and convexity of PoF.
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2.5.2 New Insight on When and When Not to Split

Proposition 6 presents conditions when the optimal policy in the interior case splits

a medically-splittable liver. Corollary 2.5.3 describes a scenario in which splitting all

splittable livers (subject to capacity and fairness constraints) is the optimal strategy.

For convenience, denote em
l as an m-dimensional real vector where, except for the

element corresponding to the lth element being 1, all other elements are 0. Consis-

tent with our subscript conventions in this chapter, eIJ
ij,i′j′/eIJ∗IJ denotes a I2 · J2-

dimensional real vector where the element corresponding to the type-ij and type-i′j′

patient pair is 1 while all other elements are 0.

Proposition 6. For each splittable liver type ℓ, only split an incoming liver of this

type if ∃ i, i′ ∈ I, j, j′ ∈ J , s.t. (a) D̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Dℓ
i′′j′′(t)eIJ

i′′j′′ , and b)

Q̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ + (H̄ℓ
ij + H̄ℓ

i′j′)P̄ ℓ
ij,i′j′eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Qℓ
i′′j′′(t)eIJ

i′′j′′ + Hℓ
i′′j′′P ℓ

i′′j′′eIJ
i′′j′′ ,

the optimal policy (w.r.t (2.15), for any κ) tends to split as the incoming ℓ liver at t

(subject to (2.5), (2.6), and (2.26)).

Proposition 6 states that splitting is optimal when there exists a patient type pair

to whom, if the liver is split and transplanted into, will result in a higher positive

impact on the waitlist system, than keeping the liver for the best WLT match. Our

explicit dynamic indices summarize the impacts of SLT and WLT allocations.

Proposition 6 can also be used to analyze the optimal use of SLT splitting methods.

There are currently two common liver-splitting methods: The “child-adult" split and

the “adult-adult" split. It is possible that the “child-adult" split dominates the “adult-

adult" split if we can calibrate corresponding parameters and see if they meet the
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explicit conditions in Proposition 6.

Corollary 2.5.3. If for every liver type ℓ that is medically safe to be used for

SLT, ∃ i, i′ ∈ I, j, j′ ∈ J , s.t. (a) D̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Dℓ
i′′j′′(t)eIJ

i′′j′′ , and b)

Q̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ + (H̄ℓ
ij + H̄ℓ

i′j′)P̄ ℓ
ij,i′j′eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Qℓ
i′′j′′(t)eIJ

i′′j′′ + Hℓ
i′′j′′P ℓ

i′′j′′eIJ
i′′j′′ ,

the optimal policy (w.r.t (2.15), for any κ) splits all splittable liver at t (subject to

(2.5), (2.6), and (2.26)), ℓ ∈ L.

Corollary 2.5.3 presents some fairly restrictive (sufficient) conditions that ensure all-

split is optimal: The probability of acceptance and the gain in objective of splitting

must dominate. Fortunately, given that there are two SLT patients versus a single

WLT, these conditions may be satisfied, in practice.

Our formulation also yields some additional results: Appendix Section A.7 demon-

strates that our fluid limit decomposition yields policy insights analogous to Propo-

sitions 1 and 2 in Akan et al., 2012. Corollary A.7.1 describes a sufficient condition

where the “sickest-first” policy is optimal; and Corollary A.7.2 provides sufficient

conditions under which giving priorities to certain static classes is optimal.

2.5.3 New Insight on Organ Allocation with Strategic Accept/Reject De-

cisions

In Section 2.3, we formulated the expected candidate acceptance and transplant suc-

cess probabilities P (for WLT) and P̄ (for SLT) as known constants independent of our

allocation policy, in line with previous fluid models used for organ allocation (Akan et

al., 2012; Zenios et al., 2000b). But our decomposition technique also applies to cases

where P and P̄ are functions of (U(t), S(t)), in other words, patients’ accept/reject
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decisions could be endogenous. Please refer to Section A.2.3 for detailed discussions

on incorporating endogenous choices. In an example discussed in A.2.3, we solve the

optimal control for an endogenous scenario where P and P̄ can be expressed as a

linear function of (U(t), S(t)).

Optimal organ allocation with endogenous accept/reject choices has been viewed as

a challenging problem: Existing analytical papers studying candidate’s endogenous,

strategic choices either assume the allocation policy to be exogenous (Alagoz et al.,

2007a; Tunç et al., 2022) or use game-theoretic analysis to get a stable equilibrium

for systems in which patients do not change classes (due to dynamic patient health

conditions), and not based on queue length vectors as ours do (Ata et al., 2021; Su

& Zenios, 2006). Akshat et al., 2023 builds a structural model which is simulation-

based. S.-P. Kim et al., 2015 developed a module for the simulated allocation models

that helps predict whether each potential recipient will accept an offered organ. The

classifiers were trained using machine-learning methods (e.g., logistic regression, sup-

port vector machines, boosting, etc.) and evaluated using 2011 liver match-run data.

Compared to existing work, our methodologies can be applied to optimize the organ

allocation with (potentially) endogenous accept/reject choices in a transient/non-

stationary, fully overloaded system using a fluid model.

2.6 Numerical Method and Results

We conduct two sets of experiments: First, we compare the objective values of our

“fluid optimal” policy, with other policies within the fluid model framework. Second,

we simulate the national liver allocation system and evaluate the performances of

our fluid model solution against the benchmarks, moving from the fluid solution in a
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deterministic environment to a simulation that captures second-order dynamics.

We base our experiments on data from the Standard Transplant Analysis and Re-

search (STAR) files and the Potential Transplant Recipient (PTR) dataset provided

by the United Network of Organ Sharing (UNOS), the Scientific Registry of Trans-

plant Recipients (SRTR) data. Specifically, we use transplant and candidate data

from January 2009 to September 2019 for the fluid model parameter estimation and

the liver allocation simulation. We focus on the NPDWT and QALY objectives; we

can easily extend the framework to include other objectives. Consistent with the lit-

erature, we estimate QALY using the Cox proportional hazards model (Akan et al.,

2012; Cox & Oakes, 2018; Zenios et al., 2000b), while other parameters are estimated

directly from STAR files and the PTR dataset.

We explore five policies. The first one is our “fluid optimal” policy, which is also

called “optimal split, optimal allocation”. The second one assumes all splittable livers

are split as long as a patient meets the liver-split criteria and all whole and split

livers are allocated optimally; we call this the “all-split, optimal allocation” policy;

the “all-split, optimal allocation” policy is the solution to the fluid control problem

with (2.5) replaced with 1I2·J2sℓ = µ̄ℓ,∀ℓ. The third policy is the “no-split, optimal

allocation” policy, where no livers are split, and all WLT matching is optimal; the

“no-split, optimal allocation” policy is the solution to the fluid control problem with

(2.5) replaced with 1I2·J2sℓ = 0,∀ℓ. While there are many allocation policies that

either split all livers or do not split any liver, we only compare with the “optimal”

ones and (and later the “sickest first” ones) in the fluid model. By comparing with

“optimal allocation” policies, we eliminate the influences from other variables (such
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as suboptimal matching of livers and patients), highlighting the value of splitting

livers optimally in a comparable and explicit manner. The fourth policy is the “all-

split, sickest first” policy; in which all splittable livers are used for SLT and allocated

to the sickest patient class. “All-split, sickest first” helps demonstrate the benefit

of increased splitting without changing the current liver allocation priority rules in

the US (i.e., “sickest first”). The fifth policy is “few split, sickest first,” where the

sickest patients get the highest priority, and livers are split only if the sickest patient

requires an SLT. Currently, in the US, the liver allocation system is most similar to

the “few split, sickest first” policy, and OPTN splits livers only in exceptional cases

(only around 1% of all livers are actually split in the US according to OPTN and

UNOS, 2016). Recipients of split livers are selected based on simple decision rules

where sick children are prioritized.

While the Liver Simulated Allocation Model (LSAM) software created by the SRTR

has been developed to support studies of alternative organ allocation policies, LSAM

only supports threshold-based, open-loop policies whose thresholds/parameters are

set at the beginning of the simulation. Our optimal fluid-model policy is a closed-

loop policy that depends on the waitlist lengths, patient health transitions, etc. Thus,

we simulate the liver allocation system without using LSAM, setting our parameters

based on UNOS and SRTR data. In the simulation study, we use a discrete-time

day-to-day simulation environment and run for one year. The allocation policy it

uses, “optimal split, optimal allocation,” is solved by decomposed LP: when the organ

arrives, we input the simulated queue lengths x(t) into the decomposed LP and output

the solution of the LP (decision rules) to the simulation model. Similarly, we use the

fluid model with simulation input (e.g., actual queue lengths as x(t)) to get the “all-
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split, optimal allocation” and “no-split, optimal allocation” policies. Please refer to

A.9 for a detailed description of the experimental settings and a link to access the

code.

We first discuss the results of the fluid optimization with the NPDWT (2.1) and QALY

objectives (2.8). Numerical results of the continuous, deterministic fluid-control prob-

lem (see Figures 2.3 and 2.4) show that our proposed matching solution achieves

significantly better objective values compared against the “no-split, optimal alloca-

tion,” “all-split, sickest first”, and “few split, sickest first” policies. The performances

of “sickest-first” policies are significantly worse than “optimal allocation” policies,

yet “all-split, sickest first” has consistent advantages over the ‘few-split, sickest first”

policy, an approximation of the current system.

Using the current UNOS/OPTN data, “all-split, optimal allocation” performs virtu-

ally as well as the “optimal split, optimal allocation” policy, confirming the effective-

ness of the UK liver allocation strategy, where the decision to split all splittable livers

is made first, before considering who we assign the liver/partial livers. We highlight

that “optimal split, optimal allocation” outperforms “few-split, sickest first” when

θ = 0 by more than 4.5% for the NPDWT objcetive, and “no-split, optimal alloca-

tion” by 1.35% when θ = 0.8, respectively. If sticking to “sickest first” priority rules,

splitting all splittable livers can still bring consistent benefits.

With the expanded use of SLT in “optimal split, optimal allocation” and “all-split,

optimal allocation” we bypass the efficiency-fairness tradeoff, as SLT increases both

utility and equity, when compared to other policies.
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Figure 2.3: Comparisons of five policies under the maximizing QALY objective. The “opti-
mal split, optimal allocation” is the solution of the fluid model; “all-split, optimal allocation”
and “no-split optimal” are solutions to fluid models with additional constraints: all split-
table livers are split, and no livers are split, respectively. “Few-split, sickest first” splits
all splittable livers assume 10% of all donated livers are splittable, and allocate to the pa-
tient(s) with the highest MELD/PELD scores. The “few-split, sickest first” policy is a fair
approximation of the current OPTN policy, allocating livers to the sickest patient(s) while
splitting 10% of splittable livers. In this experiment, (Θ)i4,i4 = θ for any i ∈ {0, 1, 2, 3},
meaning that the sickest patient group are guaranteed θ-probability of getting a liver at
any time. (Θ)ij,ij = 0.05θ, for ∀i, j ̸= 4.

Figure 2.5a illustrates the net benefit of SLT, i.e., the objective values of (2.15) under

the “optimal split, optimal allocation” subtracting those under the “no-split, optimal

allocation”; positive slopes indicate that the net benefits of using SLT are increasing

in θ, under different multi-objective weights (κ) and potential split liver capacities

(µ̄). Turning to Figure 2.5b, the price of fairness (PoF) under our “optimal split,

optimal allocation” policy is moderate (less than 17.5% utility loss with a quite high

hard fairness level of 0.6 across all patient groups), although the PoF curve is indeed

convex (confirming our theoretical result in Section 2.5.1. These results shed insight

on the potential utility and equity improvements with expanded SLT use and suggest

the decision to split livers upon acquisition, and the choice of recipients can likely be

decoupled in practice. In other words, the OPTN is recommended to decide to split

a splittable liver first, start the procurement, and then select the recipients for the

partial livers.
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Figure 2.4: Comparisons of five policies under the minimizing NPDWT objective.

(a) The net benefit of SLT. (b) Price of fairness

Figure 2.5: The net benefit of SLT increases as µ̄ increases, and is non-decreasing in θ;
the price of fairness (PoF) is a monotonically increasing, convex function of fairness level θ,
where (Θ)ij,ij = θ, ∀i, j. Θ is a matrix whose non-diagonal elements are 0.
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Figure 2.6: Simulation results based on OPTN data: The comparisons of five policies. For
MULTI κ = 0.01 and QALY objectives, the most desirable policy maximizes the objective
values; conversely, the best policies with respect to the NPDWT objective minimize the
objective values. The fairness matrix Θ = 0. The reject thresholds capture patients’ strategic
accept/reject decisions: When the number of livers allocated to the patient class is greater
or equal to the reject threshold, any SLT offer is rejected.
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Figure 2.6 gives a summary of our simulation results and the performance compar-

isons among the four policies we used in the experiment (Θ = 0). The reject thresholds

capture patients’ strategic accept/reject decisions; in this simulation, P and P̄ are

endogenously affected by the allocation policy. Specifically, we define the reject thresh-

olds such that when ∑︁
ℓ P ℓ

iju
ℓ
ij(t) is greater or equal to the chosen reject threshold,

any SLT offers are rejected. Figure 2.6 shows that while patient strategic behaviors

negatively affect many policies in all objectives, the “all-split, sickest first” policy

is most sensitive to reject threshold changes. Nevertheless, even incorporating endo-

geneity, wider use of SLT still improves the system objective function values, and

our “optimal allocation” policies still outperform “sickest first” policies. Numerical

results confirm that our optimal fluid-model policy outperforms all benchmarks (and

is closely followed by “all-split, optimal allocation”) in all objectives. In the simula-

tion, more than 94% of all livers are transplanted to the sickest patients, and 10% of

splittable livers are actually split in “few-split, sickest first.” “Few-split, sickest first”

policies myopically offer livers to the sickest patients to prevent immediate deaths,

while the “optimal split, optimal allocation” and “all-split, optimal allocation” achieve

lower NPDWT, QALY, and MULTI objectives, thanks to their proactivity and in-

creased use of SLT. “All-split, sickest first” also performs consistently better than

“few-split, sickest first” in all objectives. This shows that offering livers to the sickest

patients does not even minimize waitlist deaths.

The fact that “optimal split, optimal allocation” and “all-split, optimal allocation”

policies both perform better than no-split and “sickest-first” (in terms of NPDWT,

MULTI, and QALY) demonstrate the value of expanding the SLT use in the US. The

current OPTN policy is approximated by the “few split, sickest first” policy above.
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In Section A.9.2, we present numerical results for the multi-objective fluid model

performance comparison and additional reject thresholds for the simulation study.

2.7 Concluding Remarks

We provide theoretical and experimental results indicating that the expanded utiliza-

tion of SLT can both improve utility and fairness in liver transplantation. We provide a

simple yet powerful solution methodology using decomposition techniques that could

be easily implemented as a subroutine or module in any allocation algorithm, possibly

leading to SLT policy modifications.

Our fluid model framework is built on the fluid models in Zenios et al., 2000b and Akan

et al., 2012; we advanced fluid model analysis by deriving the exact decision rules of

the optimal policy in the interior of the state space. Our decomposition results show

that the fluid model-optimal policy’s decision rules in the interior case are solutions to

standard linear programs—this finding significantly reduces the complexity of solving

the fluid control problem with ODEs in the constraints (i.e., we removed the ODEs by

applying the decomposition technique). It improves solution quality (i.e., we find the

exact solution instead of giving a heuristic). The exact decomposed optimal decision

rules also imply and corroborate the structural properties found in Akan et al., 2012.

We also provide new insights on the impact magnitude of earlier decisions versus

later decisions on the values of the cumulative objective. It is worth noting that

our explicit solutions illuminate the full potential and inherent properties of the fluid

approximation and fluid model-based optimization of an overloaded queueing system.

Finally, our fluid limit decomposition makes it possible to encapsulate the first-order
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queueing dynamics as a modular building block that can be added to other analyt-

ical frameworks and to incorporate patients’ strategic accept/reject choices in fluid

models.

We expect that the insights developed here will inspire further detailed numerical

analysis (including cost-benefit analysis) - indeed, some are already underway - and

foster discussion within the transplant community about further incorporating fair-

ness into their allocation rules and encouraging the wider use of SLT. More broadly,

we hope that our methodological contributions advance the ability of operations re-

searchers to study other models of optimal control of multi-class overcrowded queuing

systems.
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Chapter 3

Multi-Armed Bandits with Endogenous Learning
Curves: An Application to Split Liver
Transplantation

3.1 Introduction

Experience-based learning is everywhere. For example, young surgeons need to learn

difficult medical procedures by performing them, staff in a call center need to han-

dle customer calls to improve their ability to resolve customer issues efficiently and

courteously, new franchisees learn to operate smoothly over time. Such human and

organizational learning, while necessary and important in the long term, may come

with a short-term cost and affect other stakeholders. For example, an inexperienced

surgeon may only be able to perform certain surgeries in their learning phase, and

may have a lower success rate. As a result, certain patients requiring a more intricate

surgery may not be eligible for surgery with the surgeon, and expected outcomes may

be worse even if a patient is eligible. Callers to a new customer-service agent may

face longer wait times before a call is answered and may find the call unproductive.

Customers patronizing a new franchisee restaurant may feel its products or service to

be below expectations, or wait times overlong.

At the same time inexperienced surgeons, new call centers, and new franchisees learn

by doing/operating, their supervisors learn about their aptitude/potential and may

adjust strategies or allocate resources to achieve larger objectives. For example, the or-

gan allocation authority needs to quickly identify and nurture enough young, promis-
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ing surgeons to learn sophisticated surgeries to treat patients nationwide into the

future. Call center networks need to route customer calls and schedule personnel

to avoid significantly increased delays and lower service quality while building their

employee base; food franchises need to determine the marketing/operation support

for a new franchisee while maintaining the overall quality of the franchise as it ex-

pands. Crucial to efficiently learning and identifying the potentials of these surgeon-

s/agents/businesses is to evaluate the results of experience-based learning in its early

stages. Further complicating the problem, organizations may also seek to incorporate

other customer-centered metrics into their decision-making, such as fairness, vari-

ety, and market breadth. We develop a methodology to solve these sorts of dynamic

learning problems, focusing on one of the three scenarios described above for illustra-

tion purposes: Allocating livers for expanded utilization of split liver transplantation

(SLT) in the US. We describe this problem in greater detail below.

SLT is a procedure that potentially saves two lives using one donor liver, by splitting

the donor liver into two partial livers and transplanting each of them into a size-

appropriate recipient (Emre & Umman, 2011). This is in contrast to traditional liver

transplantation, also known as whole liver transplantation (WLT), which transplants

one whole liver into a single recipient. SLT thus provides a unique opportunity to

save more lives with the existing pool of livers—despite years of effort to increase

organ donation in the United States, there remains a grievous shortage: As of July

2023, there are 10215 candidates on the liver waiting list; and the median waiting

time on the list before receiving a liver was 1026.7 days. In the year 2022 alone, there

were 13179 new additions to the waiting list, while only 9528 liver transplants were

performed. However, despite the acute liver shortage, less than 1.5% of medically
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splittable livers are actually used for SLT in the US (Perito et al., 2019).

Besides increasing the total number of transplants, SLT can potentially reduce treat-

ment disparities based on size among patients with end-stage liver diseases (ESLD),

whose only chance to survive is liver transplantation. Generally speaking, ESLD

patients of smaller physical size face longer wait times and overall lower access to

transplants, because there are fewer size-appropriate donated livers. (In WLT liver-

recipient size matching, a recipient may receive an organ of the relatively same or

slightly smaller size.) In fact, in the US, SLT is currently used primarily to increase

liver availability for pediatric patients; resulting outcomes of SLT for children are com-

parable to those of WLT (Hackl et al., 2018). Liver transplant allocation in the US is

managed by a central planner—the Organ Procurement and Transplantation Network

(OPTN). Their allocation rule can be essentially described as “sickest first": ESLD

patients’ health conditions evolve dynamically, and their position on the national

waitlist, and consequent probability of getting a transplant, change over time (Akan

et al., 2012; Emre & Umman, 2011).

Surgeons’ aptitudes for performing different types of transplant surgeries are affected

by the coordination and expertise of their whole medical team, or even the entire

transplant center. In fact, it is not uncommon for the expertise levels of surgeons and

medical teams on complicated surgeries to be significantly influenced by the trans-

plant centers (TCs) they belong to. This is because new surgeons are usually matched

to TCs based on overall surgical skills, and usually, surgeries are performed by med-

ical teams which involve supporting staff that may assist multiple surgeons in a TC.

Moreover, new surgeons likely have the chance to observe, assist, and learn from
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experienced surgeons of their TC during actual SLT surgeries, and these hands-on

experiences are crucial in achieving their full potential. For all these reasons, TCs re-

port transplant outcomes on the aggregate center level, not on the individual surgeon

level. Therefore, we focus on transplant center level proficiency: We divide transplant

centers into several classes based on their features, such as surgical experience, perfor-

mance history, geographical regions, etc. Henceforth, we use “surgeon,” “transplant

center,” “center,” and “medical teams” interchangeably.

Like many complicated and potentially risky medical procedures, gaining SLT exper-

tise requires a learning process. This process is not only arduous but also may involve

a lower initial transplant success rate, as the medical team acquires skills (Perito et al.,

2019). To encourage more transplant teams to learn SLT, and reduce surgical risks,

policymakers might consider accommodating their learning, for example by allocating

them high-quality organs. To evaluate the benefits of helping TCs acquire the skills

needed to perform SLTs while quickly identifying the most suitable medical teams

to specialize in SLT and the best surgical combinations, we model organ allocation

in a centralized transplantation network using a multi-armed bandit (MAB) model.

We then develop novel variants of the upper confidence bound (UCB) algorithm to

find allocation policies that balance the exploitation of existing knowledge and the

exploration of surgical combinations that might have high aptitudes but whose full

potentials are initially unknown.

Within our MAB model we explicitly incorporate the following features:

• Endogenous learning curves: Transplant centers’ SLT expertise increases

as they accumulate experience. In our MAB formulation, arms’ rewards are

51



Chapter 3. Multi-Armed Bandits with Reward Curves

parametric functions (with unknown scalar or vector parameters) of previous

arm choices, capturing increasing proficiency with practice.

• Fairness: A UNOS public comment proposal (OPTN & UNOS, 2016) states

that “...increased utilization of split liver transplantation could increase access

to transplants,” and “The Committee affirms that optimal allocation policies in-

volving whole livers or split liver allografts should reflect a balance between the

principles of equity and utility.” We propose two fairness notions: best-K prob-

abilistic fairness (BK-fairness) and arbitrary arm fairness (AA-fairness). These

notions seek to expand the number of facilities equipped with SLT capabilities,

and/or address equity concerns by imposing rules that diminish disparities in

access to transplants.

The incorporation of these model features significantly complicates the MAB model;

nevertheless, we propose the L-UCB and FL-UCB frameworks, which solve a broad

class of MAB problems where endogenous, nonstationary reward curves and fairness

constraints exist. We prove that our L-UCB and FL-UCB algorithms achieve the

optimal O(log t) regret, where t denotes the number of transplants, under benign

conditions.

We note that our problem could also be captured using a reinforcement learning

(RL) model. We choose not to formulate a general RL model because of our problem’s

special structure: The more SLTs performed by a medical team, the more experienced

the medical team becomes. By exploiting this structure, we can use an enhanced MAB

with learning curves embedded in its non-stationary rewards to fully characterize the

structured RL problem, while maintaining parsimony and tractability.
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Our methodology could potentially be applied to help evaluate strategies to increase

the proliferation of SLT and other medically-difficult procedures, for example how to

effectively and fairly develop a base of skilled practitioners. Moreover, our model and

algorithms can be applied to any resource allocation problem where learning exists,

including the call center and franchisee examples mentioned previously.

This chapter is organized as follows: Section 2 discusses the literatures relevant to our

work. Section 3 introduces the SLT learning problem and the MAB model formula-

tion with learning curves embedded in the arm reward functions. Section 4 describes

the L-UCB algorithm and analyzes its regret bound for the MAB models. Section 5

introduces our novel fairness notions, and describes our FL-UCB algorithm with its

O(log t) regret bound. Section 3.6 discusses extensions to our MAB model and sum-

marizes relevant findings. Section 3.7 presents the results of numerical experiments

based on real-world SLT data. Section 3.8 summarizes the conclusions and contribu-

tions of this chapter and discusses the limitations and potential directions for future

work. An appendix, containing more details about the extensions, simulations, and

all proofs, can be found in the appendix.

3.2 Literature Review

This work is closely related to six streams of literature: a) exploration and exploita-

tion trade-off; b) dynamic learning; c) organ transplantation; d) MAB with delayed

feedback; e) experience-based learning; and f) fairness.

Exploration and exploitation trade-off. A classical model for the exploration-

exploitation dilemma used in statistics, artificial intelligence (AI), and MS/OR is the
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multi-armed bandit (MAB), first introduced by Thompson, 1933 for clinical trials.

In this chapter, we formulate a stochastic bandit with parameterized, endogenously

non-stationary reward functions. Researchers have also studied contextual bandits,

adversarial bandits, and linear bandits extensively (Lattimore & Szepesvári, 2020).

In the vanilla stochastic MAB problem, arm rewards are stationary; however, to

model endogenous experience-based learning and its resulting improved proficiency

as experience accumulates, we embed a learning curve in each arm’s reward function.

Specifically, we consider parametric learning curve functions with unknown scalar or

vector parameters. Nonstationary rewards, i.e., a reward distribution that can evolve

over time, in MABs have primarily been studied when nonstationarity comes from

the exogenous environment (Besbes et al., 2019; Cheung et al., 2020; Garivier &

Moulines, 2011), making arm rewards independent of policy history. Cheung et al.,

2020 also studied endogenous reward nonstationarity using a discrete-time Markov

decision process (MDP), where both the discrete reward and discrete state-transition

distributions depend (solely) on the current state and action. We consider an infinite-

horizon, continuous-time formulation where nonstationarity can be fully characterized

by a parametric learning curve. Our formulation of parametric nonstationary rewards

is significantly different from existing work, and has advantages in terms of parsimony

and extending the upper confidence bound algorithm class.

Dynamic learning. Dynamic learning problems in an endogenously or exogenous

changing environment have been studied in different contexts, e.g., online search and

consumer lending. In endogenously changing environments, den Boer and Keskin,

2022 studied a dynamic pricing problem where demand is influenced by the current
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selling price and also by customers’ hidden reference prices that may endogenously

evolve over time. The seller needs to learn customers’ true reference price through

price exploration and balance the tradeoff between demand learning and earning.

In exogenously changing environments, Keskin and Zeevi, 2017 studied a dynamic

pricing problem where a seller faces an unknown demand model that can exogenously

change subject to some finite variation “budget”; their variation metric allows for a

broad spectrum of temporal behavior. Keskin and Li, 2021 considered heterogeneous

customers and exogenous Markovian market transitions and analyzed a firm’s optimal

pricing policy and its structural properties. In this chapter, we study an MAB variant

where the reward curves following parametric functions and the expected rewards

of arms change endogenously as a function of historical pulls. This parsimoniously

captures our motivating applications.

Our work is also relevant to recent work on feature-based rewards and high dimen-

sionality in dynamic learning problems (see Section 3.6.2). Ban and Keskin, 2021

proved bounds for expected regret in a personalized demand model with customers’

characteristics encoded as a potentially high-dimensional feature vector, where a seller

learns the relationship between customer features and product demand through sales

observation. Keskin et al., 2023 considers an electric utility company serving retail

electricity customers over a discrete time horizon, where the company observes cus-

tomers’ consumption, high-dimensional customer characteristics, and exogenous fac-

tors, and dynamically adjusts price at the customer level. They jointly optimized

spectral clustering and feature-based pricing and show their proposed policy achieves

near-optimal performance.
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Organ transplantation. While much work has been done on kidney allocation (Zenios

et al., 2003), fewer papers have addressed the allocation problem for livers (Akan

et al., 2012; Bertsimas et al., 2020), and those have only studied whole liver al-

location. Akan et al., 2012 analytically modeled the liver allocation problem as a

fluid model with utilitarian objectives incorporating patients’ dynamically-changing

MELD/PELD scores. Their work did not consider medical learning, the practice of

SLT, or any fairness concerns. Bertsimas et al., 2020 proposed a novel continuous

distribution model that balances efficiency and fairness in liver allocation. None of

these papers considered SLT or experience-based learning. Our chapter concentrates

on the selection of transplant centers, surgical techniques, and livers for specialized

procedures in their initial phases of expanding uses, specifically, SLTs.

In the transplantation community, most SLT papers are retrospective reviews, in

which transplant centers share their SLT experiences. Other topics covered include

ethics (Vulchev et al., 2004), statistical analysis using open data (Perito et al., 2019),

and policy guidelines (OPTN & UNOS, 2016). Recent studies show that the outcomes

of SLT can be as good as WLT in big TCs, for example, the transplant center at the

University of California, San Francisco (UCSF).

MAB with delayed feedback. In many healthcare applications, including organ

transplantation, the outcomes may only be observed after some delay (Anderer et

al., 2022; Kantidakis et al., 2020). For example, 90-day survival labels are only ob-

tained 90 days after the surgery, and quality-adjusted life years (QALY) may not be

fully observed until many years later, but some transplant objectives can be observed

right away or within days after transplant, e.g., postoperative outcomes, including
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graft function/dysfunction/failure and cellular rejection. There is a stream of re-

search specifically discussing using such early-on intermediate indicators or surrogate

outcomes for medical decision-making. For example, Anderer et al., 2022 study al-

gorithms that use surrogate and true outcomes to improve decision-making within a

late-phase clinical trial. We adopt a similar approach to extend our base algorithm

to accommodate a delay in observing true rewards: We consider using estimated

(expected) rewards (based on demographic features and clinical metrics) available

immediately after surgery as temporary/surrogate outcomes. When true rewards are

observed, the estimates are replaced with the true outcomes. We show in Section 3.6.1

that we obtain the same O(log t) regret for our problems under mild assumptions.

Delayed feedback arises in multi-armed bandit applications beyond healthcare, such

as searching over fast-charging policies for electrochemical batteries to maximize bat-

tery lifetime (Grover et al., 2018; Joulani et al., 2013). Joulani et al., 2013 found that

the delayed feedback inflates the regret in an additive fashion in stochastic MAB prob-

lems, and developed modifications of UCB algorithms. Grover et al., 2018 considered a

setting where partial feedback is available (analogous to our surrogate outcomes) and

proposed an extension where an agent can control a batch of arms. Chick et al., 2022

studied non-covariate bandits with delay with one arm compared with a standard and

shed insights on a unified policy defining the experiment regions and stopping bound-

aries for sequential sampling, incorporating the size of the delay. Chick et al., 2022

considered multiple arms with delay and took an in-depth look at intriguing issues of

randomization and finding useful prior distribution via empirical Bayes methods and

pilot data. Alban et al., 2022 studied the sequential allocation of sample observations

for personalized treatment strategies, motivated by the design of adaptive clinical
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trials that learn the best treatment as a function of patient covariates. Compared

with these works, our contributions differ in the following ways: We show that in an

expanded class of MAB problems where the expected rewards are endogenous and

nonstationary. If we have temporary estimates of the delayed rewards that satisfy

mild conditions, we obtain the same optimal regret upper bound scale: O(log t).

Experience-based learning. For transplant surgeons, many procedures involve the

same repetitive tasks; thus it is appropriate to use learning curves with a focus on

increases in success rate to represent learning and improvement in performance over

time. Several functional forms have been used in the literature to capture human learn-

ing, such as S-curves (Sigmoid curves), diminishing-returns curves, and increasing-

returns curves. We primarily use the Sigmoid functional form for our SLT numerical

study, which nicely captures the features of learning complicated surgeries, such as

a slow learning rate at the beginning and stable long-term performance (Le Morvan

& Stock, 2005; Pusic et al., 2015). In the call center literature, Arlotto et al., 2014

studied the hiring and retention of heterogeneous agents who learn over time and

formulated it as an infinite-armed bandit with switching costs. Arlotto et al., 2014

also computationally investigated families of curves indexed with one random variable

and presented the optimal curves. Discussions on learning in other applications are

deferred to B.8.

Fairness. Concerns about the fairness of access to medical care and resources have

existed for centuries. We study a fairness notion that is not based entirely on a

meritocratic basis but on some protected features (e.g., patient physical size, age,

geographical region, etc.). Similar to Schumann et al., 2019, we define our notion of
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fairness probablistically. However, instead of equal or proportional group probability,

we use max-min group probability, a notion adapted from Rawls, 2001, where the

arms within the group (corresponding, for example, a specific group of patients) are

guaranteed to be selected with no less than certain probabilities. To characterize the

efficiency-fairness trade-off, we adapt the price of fairness definition from Bertsimas

et al., 2011a, that is, the ratio of total reward loss to the optimal total rewards.

3.3 Problem Formulation and Model Setup

In this chapter we focus on the SLT problem where medical teams need to learn

SLT by actually performing SLT surgeries on patients. Meanwhile, a central planner

learns which combinations of surgical teams, liver types, and recipient types have

the highest long-term rewards (i.e., 1-year graft survival). We aim to develop a novel

bandit algorithm to accelerate learning the highest full-potential combinations under

stochastic (and potentially delayed) observations.

We explicitly model each type of surgery as an “arm” in the vocabulary of bandit

problems: Each arm, or surgery, incorporates information about the features of the

transplant center(s), the liver(s) to be transplanted, and the patient(s) associated

with the surgery.

3.3.1 SLT Learning Problem Formulation

Consider a discrete-time horizon T := {1, 2, . . . , T}. We group transplant centers into

classes. Let D denote the set of transplant center classes comprising centers (with

no, little, or some prior SLT experience) yet who are willing to learn and practice

SLT. Throughout the planning horizon, each transplant center of class d is capable
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of learning and performing SLTs, provided there is a medically appropriate patient

and liver pair. We assume that there are significantly more patients than the number

of transplant centers and livers. In other words, at least one or one pair of ESLD

patients of each defined patient class is always available so that any transplant center

can perform any surgery in each period. This assumption is reasonable because the

liver waitlists are overloaded (patient arrival rates are greater than liver arrival rates)

and a large transplant center typically consists of more than six surgeons and tens of

supporting staff so at least one medical team is on duty at any time.

The set of liver types is L, where a liver type is determined by its quality, the geo-

graphical location of the donor, and compatibility requirements; let L = |L|. A fixed

portion of all deceased-donor livers are eligible for splitting. To focus on the SLT

problem, we consider only livers that are medically splittable, assuming non-splittable

livers are assigned by another process. Moreover, we assume that all information on

transplant centers’ experiences prior to the planning horizon, which are publicly avail-

able (UNOS, 2020), are summarized in the shapes and structures (intercept, slopes,

etc.) of their SLT learning curves. Patients who are medically compatible with a liver

of type ℓ might have different health conditions, e.g., some might be critically sick

while others are healthier; we denote the set of these patient classes as Pℓ.

When a splittable liver is split, the two partial grafts can be allocated to two recipients

in different transplant centers at different times. At each time stamp t ∈ T there is

exactly one (partial) liver arrival: ℓt, which can be transplanted into one recipient.

Let Pt be a potential recipient, i.e. Pt ∈ P . The action space at time t is to choose an

allocation, defined as an eligible center-recipient(s)-type pair (d, Pt) ∈ D × P .
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We define the arm set of the MAB problem At. For presentation clarity, we focus

on the case where livers are homogeneous (i.e., L = {ℓ}, and At = A := D × P);

the heterogeneous-liver case is a direct extension and is discussed in Sections B.5.2.

Henceforth, we use the term “arm” and “surgery” interchangeably. Each arm is as-

sociated with a known accumulated experience level sa,t, a ∈ A, sometimes written

as sa(t), for t ∈ {1, . . . , T}, and with an unknown aptitude/full potential αa ∈ U ,

i.e., the highest possible mastery level. The experience level indicates the efforts and

experience of the surgeon or medical team, corresponding to a value on the x-axis of

the learning curves. Depending on sa,t, and the learning curve structure, we obtain a

θa(s) value, denoting the current mastery or proficiency level of the arm.

Figure 3.1 illustrates three learning curves. The variable s on the x-axis represents

learning efforts, or the number of attempts, while θ on the y-axis represents the

proficiency or mastery of a specific arm. A higher proficiency level is associated with

a higher survival probability or a better expected outcome of a surgery. All curves

are Sigmoid curves (the “S”-curves), i.e., θi(s) := αi

1+exp(−s+ωi) , i = 1, 2, 3, with α1 =

0.5, ω1 = 1 (blue), and α2 = 0.85, ω2 = −6 (orange), and α3 = 0.8, ω2 = −1

(green). We assume that we know the structures and form of the arms’ learning

curves (e.g., a Sigmoid curve parameterizing a Bernoulli variable, which represent the

values of surgical outcomes). Still, we do not know the parameter α of the curve. This

assumption can be relaxed; please refer to Section 3.4.6 for more detail about learning

multiple unknown parameters. Specifically, ωi, i = 1, 2, 3, can be known parameters

(describing the existing experience) or unknown in which case they need to be learned

along with αi, i = 1, 2, 3 (see Section 3.4.6).
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Figure 3.1: An example with three learning curves. All are Sigmoid functions with different
full potentials, shape parameters, and starting experience levels.

Let Ta,t−1, sometimes written as Ta(t − 1), denote the number of times that arm

a (or a’s corresponding surgery) has been chosen (practiced) up to and including

time t − 1 (this may be different from sa,t−1 in models with arm correlation, see

Section B.5). We define the state of the SLT learning problem as (ℓt, St) where ℓt ∈ L

and St := (Ta,t−1, sa,t−1)a∈A ∈ (N+ × R+)|A|. Let σt be the decision rule at time t,

i.e. at = σt(St). A policy π (π(t)) is a series of decision rules, i.e. π = {στ}T
τ=1

(π(t) = {στ}t
τ=1). Given at ∈ Aℓt , we obtain a random reward r(ℓt, at, St), e.g., 1-

year graft survival. When L = {ℓ}, for simplicity, we denote ra,sa,t := r(ℓ, at, St).

We assume that the reward is a discrete Bernoulli variable, with the mean being the

hidden expertise or mastery level of the participating medical team(s) for a certain

type of surgery, i.e. θa(sa,t−1), where a ∈ Aℓt is the surgery type/arm and sa,t−1 is a’s

experience level prior t.

The objective of the SLT learning problem is to find the policy which maximizes the

objective function, e.g., the 1-year graft survival, for large T:

max
π

E
T∑︂

t=1
r(ℓt, aπ

t , Sπ
t ). (3.1)
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3.3.2 The Multi-Armed Bandit Model

Here, we summarize important notation and explain how we map the SLT liver al-

location problem to a MAB model with endogenously nonstationary reward curves.

At each time t, we choose an arm at ∈ Aℓ (i.e., allocate a liver for an SLT surgery)

and receive a random reward r(ℓ, at, St), that is, the outcome of the SLT surgery. A

strategy π is a series of allocation actions or choices of arms; π(t) denotes the series

of actions from time 1 up to t. We call π(t) the policy history at t.

Let θπ(t−1)
a be an SLT arm a’s unknown SLT performance level at time t, under a

policy history π(t−1), and Ta,t or Ta(t) denotes the number of times that arm a ∈ Aℓ

was chosen prior to and including time t. Recall that sa,t−1 or sa(t − 1) denotes the

experience level of arm a prior to time t. As we assume that arms are independent,

sa,t−1 = Ta,t−1, and the hidden performance level of an SLT arm can be rewritten

as θa(Ta,t−1). The outcome of action a is a Bernoulli random variable with mean

θa(Ta,t−1).

3.3.3 Regret

We define the offline policy/the optimal full-information policy π∗
t which achieves the

highest cumulative rewards, i.e., π∗
t := argmaxπ

∑︁t
τ=1 r(ℓτ , aπ

τ , Sπ
τ ). To evaluate the

utility loss due to lack of information on TC aptitudes where learning curves exist,

we use a common objective in the bandit literature — minimizing total expected

regret, that is, the expected deficit suffered relative to the optimal full-information
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policy. For any fixed turn t ∈ T , the regret is defined as

Rt =
t∑︂

τ=1
r(ℓτ , aπ∗

t
τ , Sπ∗

t
τ )−

t∑︂
τ=1

r(ℓτ , aπ
τ , Sπ

τ ). (3.2)

When arms are independent of each other and arms’ aptitude parameters αa,∀a ∈ A

are known, the optimal policy as t grows large is trivial, always selecting the arm with

the highest long-term aptitude; in other words, it always chooses a∗ := argmaxa∈A αa.

For any given t, full-information dynamic programming can solve the offline policy,

which may not be trivial for small t.

3.4 L-UCB Algorithm and Regret Bounds

In this section we study the MAB problem with learning curves embedded in the

reward functions, as shown in Figure 3.2. Each transplant center has an unknown

true aptitude that determines its hidden (unobservable) expertise or proficiency level

θa(sa,t−1) when a center’s experience level is sa,t−1. The observable variables are its ex-

perience level sa,t−1 at time t, and past and current outcome variables rt := r(ℓ, at, St)

(e.g., 1-year graft survival). Note that the outcomes are also affected by environmental

variables et ∈ P×L (patient health condition, liver quality, etc.); these environmental

variables are taken into account in our formulation of MAB.

In Section 3.4.1, we introduce the classical, vanilla UCB algorithm; in Section 3.4.2,

we present the L-UCB algorithm; in Section 3.4.3, we prove L-UCB’s regret bounds; in

Section 3.4.4, we provide a generic method of moments (MoM) approach to construct

unbiased L-UCB estimators; in Section 3.4.5, we discuss the use of biased estimators

in L-UCB; in Section 3.4.6, we present a general approach using maximum likelihood
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Figure 3.2: A graphical representation of the SLT learning MAB problem. The observable
outcome of surgery, r, is a random function of the hidden proficiency level θ. For a specific
arm, when its experience with a certain type of SLT surgery is s and s′, its hidden proficiency
levels would be θ and θ′, while the observable (stochastic) outcomes are r and r′, respectively.

estimation (MLE) and maximum a posteriori probability (MAP) to construct esti-

mators for α and/or multiple unknown parameters; finally, in Section 3.4.7, we study

the scenarios where the parametric form of learning curves may be unknown, and

propose nonparametric algorithms within the L-UCB framework.

3.4.1 Upper Confidence Bound (UCB) Algorithms

The upper confidence bound (UCB) method is a class of algorithms for the MAB that

give an asymptotically optimal solution achieving an O(log t) regret (Lattimore &

Szepesvári, 2020). To illustrate this method, we start with a simplified scenario where

θa(s) = αa,∀s, a; i.e., there is no learning present.

The standard, or vanilla UCB algorithm uses Hoeffding’s inequality to derive upper

confidence bounds on the unknown aptitudes; these bounds are greater than their de

facto values with high probabilities. It then selects the arm with the maximal upper
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bound. For any surgery a with unknown aptitude αa that has been chosen n times

and yielded random rewards r(1)
a , . . . , r(n)

a , the vanilla UCB uses α̂a,n := 1
n

∑︁n
i=1 r(i)

a as

the estimator of αa, the empirical or sample mean. Recall that Ta(t− 1) denotes the

number of times surgery a has been chosen prior to time t. Define the upper bound

for the estimate of αa as

Ba,t,Ta(t−1) := α̂a,Ta(t−1) + δa,t,Ta(t−1), where δa,t,n :=
√︄

2 log η(t)
n

.

We choose η(t) = t in the vanilla UCB; then the algorithm is formally defined as

at =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
argmaxa Ba,t,Ta(t−1) if t > |A|

t if t ≤ |A|
(3.3)

3.4.2 The L-UCB Algorithm

Now we describe the L-UCB algorithm for MAB problems with learning curves em-

bedded in the reward functions. Similar to the notation used in the vanilla UCB, we

denote by α̂a,n the estimator of αa after arm a has been chosen n times. But instead

of being restricted to the empirical mean, the estimator α̂a,n can be any function of n

random rewards (r(τ)
a )n

τ=1 and the corresponding n experience levels (sa,τ )n
τ=1 to the

estimate of the value of αa, where r(τ)
a denotes the random reward obtained the τth

time arm a was chosen, when the experience level was sa,τ . Thus in the L-UCB algo-

rithm α̂a,n can utilize a broad class of mapping functions and estimators, including

the empirical mean. Some other potential estimators are method of moments (MoM)

estimators, maximum likelihood estimation (MLE) estimators, and maximum a pos-
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teriori probability (MAP) estimators, which we discuss more in Section 3.4.4 ∼ 3.4.6.

The estimator α̂a,n in L-UCB takes n additional arguments—the experience levels—

compared to the estimator used in the vanilla UCB. In this section, the experience

level sa,τ = τ − 1, for all τ = 1, 2, . . . , n, i.e., the experience level is equivalent to the

number of historical pulls. In Section 3.6.2 we discuss an extension in which arms are

correlated; in such scenarios, sa,τ−1 and Ta(τ − 1) may not be equivalent. Note that

the estimator α̂a,n can incorporate the parametric forms of learning curves, if such in-

formation is available. Alternatively, α̂a,n can be chosen without any knowledge of the

learning curves’ parametric form; we discuss nonparametric methods in Section 3.4.7.

Because α̂ might be a more complicated function than the empirical mean, we define

the following properties over this function class.

Definition 3.4.1 (Bias of an estimator). The bias of an estimator α̂ of parameter α

is the difference between the expected value of the estimator and the true value of α;

that is, E[α̂]− α.

Definition 3.4.2 (Unbiased estimator). Estimator α̂ is unbiased if its bias is zero.

It should be noted that many widely used estimators are biased; for example, the

MLE estimator of the Gaussian variance is biased.

Definition 3.4.3 (Gap of a sub-optimal arm a). The gap of arm a is ∆a := maxa′∈A αa′−

αa.

Remark: In our SLT learning problem, because all αa’s take values from a bounded set

U := [0, 1], the sub-optimal gaps are also bounded throughout the planning horizon.
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Definition 3.4.4 (Per-coordinate difference bound). Suppose X is a sample space

and φ : X n → R. If there exists w1, . . . , wn ≥ 0 such that

sup
x1,...,xn,x

′
i∈X
|φ(x1, . . . , xi−1, xi, xi+1, . . . , xn)− φ(x1, . . . , xi−1, x

′

i, xi+1, . . . , xn)| ≤ wi

(3.4)

for i ∈ {1, 2, . . . , n}, then (wi)n
i=1 is said to be a per-coordinate difference bound for

φ.

Equation (3.4) states that any modification of the value of the ith coordinate changes

the value of φ by at most wi whatever values the other coordinates take. This φ can

be any function including any aforementioned estimator α̂a,n. For any φ, the per-

coordinate difference bound doesn’t have an upper bound (as wi =∞ satisfies (3.4))

but does have an infimum which varies with φ. When φ is independent of the ith

coordinate, that is, changing the value of the ith coordinate solely never changes the

value of φ, the infimum of wi is zero. In this case, the ith coordinate is obsolete.

Definition 3.4.5 (Per-coordinate difference bound parameter). If mapping function

φ : X n → R has per-coordinate difference bound w1, . . . , wn, then we say φ has a

per-coordinate difference bound with parameter Cw
n := 1

n
∑︁n

i=1 w2
i

.

Remark: For any function φ, Cw
n is not unique and doesn’t have a positive lower

bound, i.e., Cw
n can be arbitrarily small, because w1 = w2 = · · · = wn = +∞ is a

per-coordinate difference bound of φ with parameter Cw
n = 0. However, as wi has an

infimum, Cw
n does have a supremum, which depends on the nature of φ.
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Now we present pseudo-code of the L-UCB algorithm. Assume α̂a,n, the estimator

of α after arm a has been chosen n times, has a per-coordinate upper bound with

parameter Cw
a,n(> 0). Similar to the vanilla UCB, we define

δa,t,n :=
⌜⃓⃓⎷2 log t

nCw
a,n

and Ba,t,Ta(t−1) := α̂a,Ta(t−1) + δa,t,Ta(t−1).

For simplicity, Ba,Ta(t−1) := Ba,t,Ta(t−1). Denote by ba,n the bias of α̂a,n, and assume

there exists an ma ∈ T for arm a such that |ba,n| ≤ 1
10

√︃
2 log n
nCw

a,n
for all n ≥ ma (we

discuss ma below).

Procedure 1: L-UCB Algorithm Pseudo Code
1: Initialization: Select each arm a ma times

2: Update statistic: Ba,Ta(t−1) ← α̂a,Ta(t−1) +
√︃

2 log t
Cw

a,Ta(t−1)Ta(t−1) , ∀a ∈ A

3: Select arm: at ← argmaxa Ba,t,Ta(t−1), and update Tat,t

4: Increment t and Go to Step 2

Now, we discuss the behaviors of ma when the bias |ba,n| shrinks at different rates and

when Cw
a,n has a positive lower bound, i.e. Cw

a := infn∈N+ Cw
a,n > 0. When estimator

α̂a,n is unbiased for all n, we select arm a exactly once in the initialization, just as the

vanilla UCB. When the bias |ba,n| decays at O
(︂√︂

1
n

)︂
rate, i.e. there exists a constant

Kb
a such that |ba,n| ≤ Kb

an−1/2 for any n, we can set ma = ⌈exp(50(Kb
a)2Cw

a )⌉. If the

bias doesn’t decay we need to choose an alternative estimator with zero or decaying

bias, unless the bias is known and can be corrected.

3.4.3 L-UCB Regret Bounds

In this subsection we derive the upper bound on the regret of the L-UCB algorithm.
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Proposition 3.4.1 (Upper and lower bounds of the supremum of the per-coordinate

difference bound). Suppose X is a sample space, φ : X n → R is a function whose

image set is [0, 1], and {ωi}n
i=1 is any per-coordinate bound defined over X . Then

the supremum of the per-coordinate difference bound of φ over all possible values of

ω1, . . . , ωn, denoted by C∗
n := supω1,...,ωn

Cw
n , satisfies 1

n2 ≤ C∗
n ≤ 1.

To prove the left inequality we note that w1 = 1, . . . , wn = 1 is a per-coordinate

difference bound of φ with parameter Cw
n = 1

n2 . Because C∗
n is the supremum of all

feasible Cw
n , we know C∗ ≥ 1

n2 . The proof of the right inequality uses Chebyshev’s

sum inequality (Hardy et al., 1952). Please refer to Section B.1.2 for proof details.

Lemma 3.4.1 (Bounded Difference Inequality). Suppose X is a sample space, and

function φ : X n ↦→ R has per-coordinate difference bound w1, . . . , wn with parameter

Cw
n , i.e. w1, . . . , wn > 0 satisfy Cw

n = 1
n
∑︁n

i=1 w2
i

and

sup
x1,...,xn,x

′
i

|φ(x1, . . . , xi−1, xi, xi+1, . . . , xn)− φ(x1, . . . , xi−1, x
′

i, xi+1, . . . , xn)| ≤ wi

(3.5)

for i ∈ {1, . . . , n}. Then,

P (φ− E[φ] > ε) ≤ exp
(︄
−2ε2∑︁n
i=1 w2

i

)︄
= exp

(︂
−2nCw

n ε2
)︂

, (3.6)

P (φ− E[φ] < −ε) ≤ exp
(︄
−2ε2∑︁n
i=1 w2

i

)︄
= exp

(︂
−2nCw

n ε2
)︂

. (3.7)

For proof details, readers are referred to McDiarmid, 1998 (see their Theorems 1 and

2 and references therein). Lemma 3.4.1 states that the probability of the value of φ
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being close to its expectation is higher when φ is less sensitive to its arguments, i.e.,

the upper bounds of the above probabilities are smaller if the wi’s are smaller and

Cw
n is larger.

When φ is the empirical mean used in the vanilla UCB, we have w(i)
a = 1

n
for any

i. Because the empirical mean achieves the maximum Cw
n = 1, we take it as the

standard and compare other functions’ behaviors with it. In this sense, nCw
n can be

thought of as a reduced number of samples: For the empirical mean, nCw
n is precisely

n, which is the number of samples governing the rate of decay of the bound. When

the estimator φ has larger w(i)
a s, we have Cw

n less than 1, and then the probabilistic

bounds on φ − E[φ] are as tight as the corresponding bounds of the empirical mean

with nCw
n < n samples, i.e., the estimator with Cw

n achieves the same accuracy with

fewer samples compared to the empirical mean estimator, as Cw
n < 1.

For example, suppose rt ∼ Bernoulli( αt
t+1) for t ∈ {1, . . . , T}, the higher the aptitude

α and/or the proficiency level st := t, the more likely that a surgery is successful. The

value of α is hidden, but t is known in each round. The estimator α̂ := 1
T

∑︁T
t=1

t+1
t

rt

is an unbiased estimator of α. This α̂ can be thought of as a weighted empirical mean

(although the weights don’t sum to one), so, similar to the empirical mean, this α̂ has

per-coordinate difference bound w1 = 1
T

, . . . , wt = t+1
tT

, . . . , wT = T +1
T 2 with parameter

Cw
T = T

T +2
∑︁T

t=1 t−1+
∑︁T

t=1 t−2 ; this Cw
T is less than 1 at any finite T and approaches 1 as

T approaches infinity.

Theorem 3.4.1. Denote the reward of choosing arm a for the nth time by r(n)
a .

Suppose r(1)
a , r(2)

a , . . . are independent of each other conditioned on the latent aptitude

αa. For each n ∈ T , suppose estimator α̂a,n has a per-coordinate difference bound
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w(1)
a,n, . . . , w(n)

a,n with parameter Cw
a,n, i.e. w(1)

a,n, . . . , w(n)
a,n ∈ R+ satisfy Cw

a,n := 1
n
∑︁n

i=1(w(i)
a,n)2

and

sup
r

(1)
a ,...,r

(n)
a ,r′

|φ(r(1)
a , r(2)

a , . . . , r(i−1)
a , r(i)

a , r(i+1)
a , . . . , r(n)

a )

− φ(r(1)
a , r(2)

a , . . . , r(i−1)
a , r′, r(i+1)

a , . . . , r(n)
a )| ≤ w(i)

a,n, ∀a ∈ A, i ∈ {1, . . . , n}

(3.8)

Let t ∈ T be any timestamp. When Cw
a,n has a positive lower bound, i.e. Cw

a :=

infn∈N+ Cw
a,n > 0, and when the bias of α̂a,n satisfies |ba,n| ≤ 1

10

√︂
2 log n
nCw

a
, each sub-

optimal arm is pulled in expectation at most

E[Ta(t)] ≤ 8 log t

Cw
a ∆2

a

+ 2ζ(1.24) (3.9)

times, where ζ(1.24) ≈ 4.76, and ζ(s) is the Riemann zeta function, i.e. ζ(s) =∑︁∞
i=1 i−s.

The expected cumulative regret of the L-UCB algorithm is bounded by

E[R(t)] ≤
∑︂

a̸=a∗
(r̄a∗ − ra)

(︄
8 log t

Cω
a ∆2

a

+ 2ζ(1.24)
)︄

. (3.10)

Our proof adapts some techniques from the proof of bounds for vanilla UCB algo-

rithms, but our results are applicable to a more general class of bandits. The primary

differences/improvements of our result are: a) our regret bounds apply in a broader

class of UCB algorithms that use any estimators φ that satisfy certain benign crite-

ria in the L-UCB algorithms; b) our proof allows these estimators to be biased, up
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to 1
10

√︂
log nCw

a,n

n
, where n is the sample size and is adequately large. Taken together,

these innovations significantly expand the scope of MAB regret bounds, including

those with embedded learning curves and a broad class of estimators; examples and

discussions in Section 3.4.4 illustrate these benefits.

3.4.4 A Generic Method of Moment (MoM) Estimator: An Explicit For-

mula

For learning curves that satisfy the following θ(s) = αgω(s) + f(s), e.g., the learn-

ing curves in Example 3.4.1 and Section 3.7, a generic Method of Moments (MoM)

estimator can be α̂MoM
n = 1

n

∑︁n
s=1,gω(s) ̸=0

r(s)−f(s)
gω(s) . (We assume not all gω(s) = 0; if

so, αMoM
n = 0.) Note that αMoM is unbiased, because EαMoM

n = E 1
n

∑︁n
s=1

r(s)−f(s)
gω(s) =

1
n

∑︁n
s=1

Er(s)−f(s)
gω(s) = 1

n

∑︁n
s=1

αgω(s)
gω(s) = α, assuming gω(s) ̸= 0. (If for certain s′, gω(s′) = 0,

we drop s′ when taking the average.) Cw,MoM
n = 1

n
∑︁n

s=1(1/gω(s))2 . αMoM , as r(s) ∈ {0, 1}.

In cases where ω is unknown (see Example 3.4.3 in Section 3.4.6), we can use estimates

ω̂s to replace ω, i.e. Cw,MoM
n = 1

n
∑︁n

s=1(1/gω̂s (s))2 .

Example 3.4.1 illustrates constructing an MoM estimator and applying L-UCB.

Example 3.4.1 (Incorporating information about the learning curve). Consider a

bandit with two independent arms, whose reward curves are illustrated in Figure

3.3a. Arm 1 has a learning curve θ1(α1, s) = α1
s

s+1 where α1’s unknown true value is

0.7, while arm 2’s learning curve is θ2(α2, s) = α2
s

s+20 while α2’s unknown true value is

0.9. Suppose the random outcome r(i)
a,s is a Bernoulli variable with parameter θa(αa, s).

We use the unbiased MLE estimators α̂1,n = 1
n

∑︁n
i=1

i+1
i

r
(i)
1,i and α̂2,n = 1

n

∑︁n
i=1

i+20
i

r
(i)
2,i

in the L-UCB algorithm. The estimator for the vanilla UCB is α̂1,n = 1
n

∑︁n
i=1 r

(i)
1,i.
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In Figure 3.3c, it is clear that the L-UCB algorithm has significantly lower numerical

regret when t is large enough (i.e., t > 194) because L-UCB incorporates the learning

curve information in the early stages to identify the “best” arm in the long-term more

efficiently.

It might be counterintuitive that the L-UCB’s regret curve increases before decreasing;

however, this is possible when the offline policy (i.e., the optimal policy solved by a

clairvoyant who knows all parameters) is nonstationary in t. In Example 3.4.1, the

“best" arm to play is dependent on the time horizon: If we only consider t ≤ 194,

the “optimal" strategy is always pulling arm 1, but in the long term (t ≥ 195), the

“optimal" policy is always pulling arm 2. The optimal offline policy may not be trivial

for any given t, and in general, can be tricky to solve and sometimes intractable. The

non-asymptotic regime is important for general MAB problems (Garivier et al., 2019).

Nevertheless, in Example 3.4.1 and the SLT problem, we focus on identifying the best

long-term arm, which is a special scenario in dynamic learning in which constantly

pulling the arm with the highest full potential (α) is the optimal policy asymptotically.

For smaller t the vanilla UCB does the “correct" thing by playing the (temporally)

more valuable arm 1. The “optimal" cumulative reward for each t in Figure 3.3b is the

optimal cumulative reward obtained by a clairvoyant who knows the true parameters

(including α1, α2) of all arms’ learning curves. Because our L-UCB policy is designed

to identify the best long-term arm (i.e., arm 2), in the short term (t ≤ 194) where

the short-term “optimal" policy is pulling arm 1, L-UCB may incur more temporal

regret, as seen in Figure 3.3c.

It is possible in applications where learning is present that the vanilla UCB, without
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(a) Learning curves (b) Expected cum. rewards
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Figure 3.3: Illustrations for Example 3.4.1. The regret results shown are averaged over 20
instances.

information on learning curves, may still result in O(log t) regret. However, this is

typically not the case in general dynamic learning problems. Performances of the

UCB and L-UCB are more extensively compared numerically in Sections 3.4.6 ∼

3.4.7 and in Section 3.7.

3.4.5 Biased Estimators

We further illustrate the benefit of Theorem 3.4.1 by allowing the estimators to be

biased.

Example 3.4.2 (Estimator bias). Consider a bandit problem where rewards (r(i)
a )n

i=1

are i.i.d. Bernoulli random variables with parameter p. To reduce the estimator’s

variance, people often use a MAP estimator with a Beta prior. Mathematically, the

MAP estimator with prior Beta(α, β) is α̂n := h+α−1
n+α+β−2 , where h is the number of

ones in rewards. With n samples, the bias of this MAP estimator is (1−p)(α−1)−p(β−1)
n+α+β−2 ,

which is nonzero for most combinations of α, β, and p. As we obtain more samples,

i.e., as n increases, the bias decays at O( 1
n
) rate. Hence, Theorem 3.4.1 is applicable

to this case and guarantees an O(log t) regret. In contrast, the vanilla UCB cannot

be guaranteed to work with this estimator.
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This flexibility with respect to estimators yields one further advantage of the L-UCB

algorithm: The vanilla UCB cannot guarantee identifying the “best” arm when the

empirical mean is not an appropriate estimator for the metric of interest, for example,

the variance or standard deviation of a random variable. In contrast, in the L-UCB

algorithm, we can use any estimator, and if the premises of Theorem 3.4.1 are met,

we immediately have that the regret is bounded by O(log t), thus providing much

greater freedom in the choice of metric.

In cases where the bias is initially large but decays quickly, i.e., |ba,n| ≤ Cb
a

√︂
1
n

for

some large constant Cb
a ∈ R+, the bounds on Ta(t) and R(t) in the theorem may

not hold for small t, because the bias condition |ba,n| ≤ 1
10

√︂
2 log n
nCw

a
may not hold for

n = t in this case. Nevertheless, these bounds hold for any adequately large t. Because

Theorem 3.4.1 is intended to show the scale of how many times we choose sub-optimal

arms and the scale of the regret, we omit discussions of issues around these cases,

such as the minimum t where the bounds hold for a given Cb
a.

In Theorem 3.4.1’s premise, we assumed |ba,n| ≤ 1
10

√︂
2 log n
nCw

a
. The biases of many stan-

dard estimators, e.g., the MLE estimator of logistic regression, is O( 1
n
). Thus, the

premise of Theorem 3.4.1 holds for most common estimators (Lehmann & Casella,

2006). Note that in rare cases, verifying the bias conditions for some algorithm in-

stances within our proposed L-UCB framework may be nontrivial; one may skip

verifying the bias conditions, apply the L-UCB algorithms and see if they have loga-

rithmic regrets empirically. See Section 3.4.6 for a detailed discussion about ways to

verify the bias conditions for L-UCB with MLE and MAP.
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3.4.6 MLE and MAP for Estimating Unknown Vector Parameters

When the parametric forms of the learning curves are known, but one or more param-

eters are unknown, a systematic approach for finding unknown parameters is to use

the MLE or MAP. So far, we have illustrated several examples where we obtain ex-

plicit formulas for α̂MoM . More generally, one may write down the likelihood function

(for MLE) or posterior probability (for MAP) and apply optimization algorithms,

such as gradient descent (Goodfellow et al., 2016), to get point estimates.

For general parametric learning curves, standard results for the MLE imply that it will

satisfy the bias condition (assuming typical identification and regulatory conditions);

see section 6.5 of Lehmann and Casella, 2006. We may also numerically verify the bias

condition by taking the log scale in both the number of pulls (n) and the absolute

values of empirical biases |bα| and |bω| and fit the curves using linear regression,

assuming the empirical biases are observable. The bias condition in Theorem 3.4.1, i.e.,

|ba,n| ≤ 1
10

√︂
2 log n
nCw

a
, is equivalent to log |ba,n| ≤ −0.5 log n + log 1

10

√︂
2 log n

Cw
a

. A sufficient

condition of the bias condition is that the slope of the fitted line is lower than -0.5.

Note that the result of empirical verification of the bias conditions is instance specific.

In Example 3.4.3, we show the steps of estimating α and ω simultaneously using MLE

and compare: (i) the regret of L-UCB with MLE estimators for both α and ω, (ii)

UCB, and (iii) L-UCB with an MLE estimator for α and known ω. Comparing L-UCB

estimating two unknown parameters with L-UCB with only α unknown shows that

knowing ω reduces regret.

Example 3.4.3 (Estimate multiple unknown parameters.). Consider a 2-armed ban-
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dit with two “S"-shaped learning curves embedded in the reward function, respec-

tively. Both learning curves share the parametric form: θα,ω(n) = α
1+exp(−0.01n−ω) . The

true parameters for this example are α1 = 0.5, ω1 = −2 and α2 = 0.7, ω2 = −4.

In Figure 3.5 and Figure B.1, we empirically verify that the MLE estimators’ biases

of αMLE
n and ωMLE

n are both o
(︃√︂

log n
n

)︃
. Specifically, the biases of αMLE

1,n and ωMLE
1,n

are O(n−0.97) and O(n−1.28), and the biases of αMLE
2,n and ωMLE

2,n are O(n−0.67) and

O(n−1.80). Therefore, MLE estimators of the parameters meet the bias conditions

in Theorem 3.4.1. We show the empirical verification figures for α̂MLE
i,n , i = 1, 2 in

Figure 3.5; figures illustrating bias scales for ω̂MLE
i,n are deferred to the appendix.
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(b) Regret comparison

Figure 3.4: The two learning curves (left). On the right, we compare the regrets (averaged
over five runs) of the L-UCB with MLE estimators where both parameters are unknown
(blue), L-UCB with α̂MLE where ω is known (orange), and vanilla UCB (purple). The L-
UCB: MLE with only α unknown plateaus to regret of approximately 100 after about 1000
trials, with α and ω unknown plateaus to regret of approximately 150 after 1200 trials, and
the vanilla UCB plateaus to approximately 250 after about 2000 trials. Thus we see the
benefit of utilizing the learning curves’ parametric forms and knowing ω, respectively.

Our L-UCB algorithm for the SLT problem only uses α̂a,n’s for arm selection, while

estimates of ω help construct the α̂a,n’s and Cw
a,n’s and verify α̂a,n’s bias conditions
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Figure 3.5: Verifying the bias scales of αMLE
1,n and αMLE

2,n , MLE estimators for arm 1 and

arm 2’s learning curves. The bias scales are both o

(︃√︂
log n

n

)︃
, satisfying the bias condition

in Theorem 3.4.1.

for Theorem 3.4.1 to hold. In general, dynamic learning algorithms may use vec-

tor parameter estimates for arm selection; in such cases, our Theorem 3.4.1 may be

applied element-wise to obtain theoretical bounds. In rare scenarios when verifying

Theorem 3.4.1’s premises is tricky, L-UCB with MLE or MAP is still applicable and

can provide guidance for finding the optimal online policy.

3.4.7 L-UCB with Unknown Learning Curves

In order to apply MLE and MAP estimators, we assumed the parametric forms of

the learning curves are known. When such information is not available, our L-UCB

method can still be applied with an estimator α̂ that does not exploit the parametric

form. For example, the vanilla UCB (a special case of L-UCB) is a nonparametric

method, as it does not use any knowledge about the parametric form (or even that the

expected rewards are non-stationary). There are other nonparametric estimators that

adapt more quickly to nonstationary expected rewards: Instead of using an empirical
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Figure 3.6: Same numerical setup as Example 3.4.1. The regret results shown are averaged
over 20 instances. L-UCB obtains the lowest long-term regret, and reweighted UCB performs
better than UCB in this instance.

mean where all historical observations are given the same weight 1
n
, we can assign more

recent observations greater weight. For example, we may discount past observations,

i.e., α̂disc
a,n := (∑︁n

s=1 δn−s
a r(s)

a )/1−δn
a

1−δa
, where δa ∈ (0, 1). We may also make the weights

a function of n, e.g., α̂rew
a,n := (∑︁n

s=1 sr(s)
a )/n(n+1)

2 . Similar ideas have been studied

in Garivier and Moulines, 2011, see their D-UCB and SW-UCB, for example. In

Section B.8 we discuss the differentiation.

Figure 3.6b shows a comparison between L-UCB with MLE, vanilla UCB, discounted

UCB (α̂disc
a,n := (∑︁n

s=1 δn−s
a r(s)

a )/1−δn
a

1−δa
and δ = 0.9 in this example), and reweighted

UCB (α̂rew
a,n := (∑︁n

s=1 sr(s)
a )/n(n+1)

2 ); the latter two are special cases of L-UCB where

the nonparametric estimators α̂i
a,n (i = {disc, rew}) do not utilize the parametric

form of learning curves. The numerical setup is the same as those in Example 3.4.1

except that in Figure 3.6, we show a wider range of t.

Discounted UCB and reweighted UCB may be particularly useful when we know
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the expected rewards are nonstationary because they put more weight on recent

observations. Reweighted UCB assigns recent observations more weight than UCB,

therefore may respond more quickly to the nonstationary environment. Interestingly,

discounted UCB has lower regret than reweighted UCB initially (t ≤ 1500), but ac-

cumulates more regret than all other three algorithms once t > 1500 before it shows

signs of potentially converging around t = 3000. This could result from assigning too

much, constant weight to recent observations and discounting the past too aggres-

sively, therefore, not efficiently using all the historical data (e.g., the weight assigned

to the oldest observation is δn−1, which decays fast and can become very close to 0).

Reweighted UCB is more sample efficient because all the sample weights are between[︂
2

n(n+1) ,
2

n+1

]︂
. All of the nonparametric UCB algorithms perform much worse than the

L-UCB, again because the latter exploits the parametric forms of the reward curves.

3.5 Fairness and the FL-UCB Algorithm

In this section we introduce probabilistic fairness definitions within the SLT context.

We add constraints that require specific arms to be chosen with no less than certain

predefined probabilities; one can interpret probabilistic fairness as long-term average

max-min fairness. By properly configuring a set of fair probabilities, we guarantee

that donor livers are equitably distributed to a broader range of recipients, rather

than being offered continuously to a very narrow group.

Our first type of probabilistic fairness we call best-K θ-fairness, or BK-fairness, where

we require the best K(≤ |A|) arms be chosen with probability greater than or equal

to a vector of predefined levels, θBK . Note that the choices of θBK are constrained to

render the BK-fairness concept well-defined, i.e. |θBK |1 ≤ 1 and θBK ≥ 0, where |X|1
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is the L1 norm of vector X.

Definition 3.5.1 (Best-K θ-Fairness/BK-fairness). Any a in the set of the best-K

arms, ABK , has to be chosen with probability no less than θBK
a − ϵ when t −→∞, for

any ϵ ∈
(︂
0, mina∈ABK

{θBK
a }

)︂
, where ∑︁a∈ABK

θBK
a ≤ 1 and θBK ≥ 0.

We are interested in BK-fairness because more widespread use of SLT could bring

benefits in practice. For example, if more transplant centers are capable of performing

SLT, it could be easier to schedule surgeries and potentially facilitate logistics and

reduce organ wastage.

The second type of fairness we define is arbitrary arm fairness, or AA-Fairness, which

prioritizes a set of arbitrary arms, independent of surgeons’ aptitudes or expertise.

This could ensure that certain populations have access to organs, even if their out-

comes are not among the K-best.

Definition 3.5.2 (Arbitrary-Arm θ-Fairness). For a set of arbitrarily-selected arms,

AA, the vector of probabilities of being chosen is no less than θA ∈ [0, 1]|AA|, where⃓⃓⃓
θA
⃓⃓⃓
1
≤ 1.

3.5.1 The FL-UCB Algorithm

We define a linear optimization program, FL-LP, as follows (A,ABK , θBK ,AA, θA are

inputs):

max
∑︂
a∈A

αaza (3.11)

s.t. za ≥ θA
a ∀a ∈ AA (3.12)
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za ≥ θBK
a ∀a ∈ ABK (3.13)∑︂

a∈A
za = 1 (3.14)

za ≥ 0 ∀a ∈ A (3.15)

The solution to LP (3.11) ∼ (3.15), z∗, gives the true optimal fair policy in an offline

setting. In an online setting where α is not known, we use Ba,t,Ta(t−1) instead of αa,

replacing (3.11) with

max
∑︂
a∈A

Ba,Ta(t−1)za. (3.16)

Procedure 2: The FL-UCB Algorithm Pseudo Code
1: Initialization: Select each arm ma times

2: Update statistic: Ba,Ta(t−1) ← α̂a,Ta(t−1) +
√︂

2 log t
Cw

a Ta(t−1) , ∀a ∈ A

3: Select arm:

4: Sort {Ba,Ta(t−1)}|A|
a=1 : B(1),T(1)(t−1) ≥ B(2),T(2)(t−1) ≥

. . . , B(K),T(K)(t−1), . . . , B(|A|),T(|A|)(t−1)

5: ABK ← {B(1),T(1)(t−1), B(2),T(2)(t−1), . . . , B(K),T(K)(t−1)}

▷ Construct a set (ABK) that contains the top-K indexes

6: z∗ ← SolveFLLP(A,ABK , θBK ,AA, θA)

▷ The objective of SolveFLLP is (3.16); the solution satisfies BK- and

AA-fairness

7: Choose arm a ∈ A with probability z∗
a

8: Increment t and Go to Step 2

Above is the pseudo code for our proposed FL-UCB algorithm, where the optimization
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of FL-LP is called as a subroutine. The objective function of SolveFLLP in step 6 is

(3.16).

3.5.2 The FL-UCB Regret Bounds

When θA ̸= 0, the difference between the offline (optimal) policy without fairness

constraints and an optimal fair policy is, in general, O(t), by the definition of BK-

fairness and AA-fairness. (Only when ABK and AA contain only the optimal arm

does this fail to hold.) We therefore define the price of fairness in the SLT context.

Definition 3.5.3. The price of fairness, or PoF, is the gap between the total reward

of the optimal policy and the optimal fair policy.

We thus define the difference between the objective value of the optimal fair policy

and a given fair policy, which we call the F-regret; it is incurred solely due to a lack of

information about the arm parameters. Specifically, in the original definition of regret,

π∗
t is defined as the offline policy over all possible policies; now, we are restricting the

feasibility set by imposing fairness constraints. Since the price of fairness causes an

inevitable linear loss, we focus on lowering the additional loss by efficiently using

information, i.e., controlling the F-regret. When appropriate, we may alternatively

use the terms F-regret and regret without ambiguity.

Next, we analyze the regret upper bound for the proposed FL-UCB algorithm. The re-

gret lower bound for FL-UCB is O(log t) because the vanilla bandit is a special case,

and its regret lower bound is O(log t) (Lai & Robbins, 1985). For convenience, we

denote a(i), i ∈ [|A|], and α(i) as the i-th best arm and its aptitude parameter, respec-

tively, and let ∆a(i),a(j) := α(i)−α(j), i, j ∈ [|A|]. Recall that r(ℓ, a, (Ta,t−1, sa,t−1)) is the
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random reward of pulling arm a ∈ A with experience level sa,t−1 (when arms are mu-

tually independent, sa,t−1 = Ta,t−1). We further define r̄a = supt r(t)
a and ra = inft r(t)

a .

Theorem 3.5.1 establishes bounds on the FL-UCB regrets.

Theorem 3.5.1. When LP (3.11) ∼ (3.15) has a unique solution:

(a) The expected number of times that the (non-degenerate) solution of the LP with

objective (3.16) is different from that of (3.11) ∼ (3.15), satisfies

∑︂
a̸=a∗

E[Ta] ≤
⎛⎝∑︂

a̸=a∗

8 log t

Cw
a ∆2

a

+
K∑︂

k=2

|A|−K∑︂
i=1

8 log t

Cw
a ∆2

a(k),a(K+i)

+ 8 log t

Cw
a ∆2

a(k−1),a(k)

⎞⎠
+ (2|A| −K)(K + 1)ζ(1.24)

(b) The F-regret is bounded by

E[R(t)] ≤
K∑︂

k=1

|A|−k∑︂
i=1

(︂
r̄a∗ − ra(i)

)︂⎛⎝ 8 log t

Cw
a ∆2

a(k),a(k+i)

+ 2ζ(1.24)
⎞⎠

Parameter Value Comment

BK-Fairness (K, θBK) = (10, 0.02) Uniform for every group

AA-Fairness θA = 0.001 Uniform for every group

Queueing κ = 0.5 Equal weight

Table 3.1: Experiment Parameters.

Rates\OPO Regions Region 4 Region 5

Liver arrival rates (1.24, 2.32, 2.98, 3.12) (1.54, 2.43, 2.78, 3.32)

Table 3.2: Experiment Setup: Livers Arrival Rates.
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Parameter\Team type Average Better Note

Sg. Aptitude (A) [0.6, 0.95] [0.8, 0.99] α = supt r(lt)

Sg. Base Perform. (B) [0.05, 0.2] [0.15, 0.3] Uniformly drawn; inft r(lt)

Sg. Learning Rate (Ω) {5, 6, . . . , 50} {5, 6, . . . , 20} Uniformly drawn; slope

Table 3.3: Experiment Setup: Medical Teams.

3.6 Extensions

This section discusses extensions of our model to incorporate delayed feedback and

arm correlation.

3.6.1 Delayed Feedback

Some SLT outcomes are not immediately observed after the surgery, e.g., 1-month

and 1-year survival. When the true outcome r(i)
a is only observed after some delay,

we may use perioperative data and clinical metrics to provide an initial outcome

estimate, r̂(i)
a , and replace it with the true outcome r(i)

a when it becomes available.

Corollary 3.6.1. Let ka := O(1) be the maximum number of true rewards that

haven’t been revealed yet for arm a. Assume ∃ ne > 0, and the estimated outcome

r̂(i)
a and estimator function ϕ satisfy the property:

ea,n := ϕ(r̂(n)
a , . . . , r̂(n−ka+1)

a , r(n−ka)
a , . . . , r(1)

a )− ϕ(r(n)
a , . . . , r(1)

a ) ≤ 1
40

√︄
log n

nCw
a

, ∀n > ne

(3.17)

When all premises in Theorem 3.4.1 hold; then, even when feedback is delayed by ka
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for each arm a, each sub-optimal arm is pulled in expectation at most

E[Ta(t)] ≤ 8 log t

Cw
a ∆2

a

+ 2ζ(1.063) (3.18)

times, where ζ(1.063) ≈ 16.45, and ζ(s) is the Riemann zeta function, i.e. ζ(s) =∑︁∞
i=1 i−s. The expected cumulative regret of the L-UCB algorithm when feedback

may be delayed is bounded by

E[R(t)] ≤
∑︂

a̸=a∗
(r̄a∗ − ra)

(︄
8 log t

Cω
a ∆2

a

+ 2ζ(1.063)
)︄

. (3.19)

The proof is shown in Section B.3.

Note that the estimator error bound in (3.17) is relatively mild: It is much looser than

the error decay rate of taking a sample average while having ka delayed, unobserved

outcomes, which is at the scale of O
(︂

1
n

)︂
. For learning curves of the form: θ = αgω(s)

and an MoM estimator α̂MoM
n = 1

n

∑︁n
s=1,gω(s)̸=0

r(s)

gω(s) , the decay rate of the MoM es-

timator’s ea,n is also O
(︂

1
n

)︂
which satisfies (3.17). Our assumption that ka does not

scale with n (the number of arm pulls of arm a) is reasonable in the SLT application

because, in practice, only a finite number of livers become available within any fixed

period; that is, there are a finite number of arm pulls during the survival period (e.g.,

one-year).
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3.6.2 Incorporating Feature-Based Rewards and Arm Correlation

Each transplant surgery outcome/bandit reward is determined by the surgical team’s

proficiency (that is unknown and needs to be learned), the patient’s clinical (e.g.,

serum bilirubin, creatinine, and the international normalized ratio) and demographic

information (e.g., age, BMI), and the donated liver’s compatibility (e.g., size match-

ing, ABO compatibility) and quality (e.g., donor age and health, cold ischemia time.)

Thus, a natural extension of our MAB model is to formulate feature-based rewards

for each transplant surgery: Each arm is fully characterized by a potentially high-

dimensional vector consisting of known patient and liver attributes, and the central

planner learns the relationship between surgical teams’ experience and transplant out-

comes. Moreover, we can further decompose surgical proficiency to capture overlaps in

required skills across surgeries. Feature-based rewards and high dimensionality in dy-

namic learning problems have been studied in revenue management contexts (Ban &

Keskin, 2021; Keskin et al., 2023). Exploring the salient surgery features and surgical

teams’ experience could be a promising direction and facilitate detailed characteriza-

tion of likely correlated expected rewards for different arms.

In the appendix, we discuss a special type of arm correlation: Linear correlation,

and discuss its impact on the optimal policy compared to a clairvoyant policy, and

L-UCB/FL-UCB performances.

3.7 Numerical Study

We run numerical experiments based on real-world data to test the performance of

our proposed algorithms. Specifically, we consider the training and selection of med-
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ical teams as part of an SLT expansion effort coordinated by the OPTN, the central

planner overseeing organ allocation in the US. We estimate parameters and generate

outcomes based on Standard Transplant Analysis Research (STAR) files and Potential

Transplant Recipient (PTR) dataset provided by Organ Procurement and Transplant

Networks (OPTN) to capture current SLT practice. The “true" optimal cumulative

reward for t is E
∑︁t

τ=1 r(ℓτ , a
π∗

t
τ , S

π∗
t

τ ), where π∗
t := argmaxπ

∑︁t
τ=1 r(ℓτ , aπ

τ , Sπ
τ ). In Sec-

tion 3.7.2 we show that our proposed algorithms converge rapidly and demonstrate

asymptotic advantages. The problem of showing theoretical bounds for small-t sce-

narios is beyond the scope of this chapter, as the offline policy may change as t grows,

as we illustrated in Example 3.4.1.

3.7.1 Numerical Experiment Setup

The time horizon in this experiment is {1, 2, . . . , 3600}; each time step corresponds

to an arrival of a split liver graft and marks the beginning of a matching run (that

may last for hours after the donor dies and donates their liver). Recall that more

than 10% of all deceased-donor livers in the US are medically safe to split; there were

14905 deceased donors in total during 2022. We consider a geographical region that

includes OPTN regions 2, 9, 10, 11, and Wisconsin and Illinois (see Section B.6 for

details about allocating heterogeneous livers as parallel MABs). Around 8000 livers

are donated annually, and 10 large transplant centers locate in the 500NM Circle.

While in theory, all medically-safe livers can be split, in conversations with UCSF

transplant surgeons, they suggested it would be helpful to consider a more gradual

rollout in the initial phase of SLT expansion to accommodate surgical learning. Thus,

if we assume that 150 or ∼ 2% of the total deceased-donor livers will be split for 300

surgeries in a year for the first two years, and 500 or ∼ 6% livers to be used for 1000
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SLT surgeries annually in the third to fifth years, the time horizon {1, 2, . . . , 3600}

would be around five years at the typical deceased liver donation level in the US. We

focus on identifying the arm(s) with the highest aptitude(s) such that they would

perform the best in the long term, i.e., expanding the base of SLT among transplant

teams with the highest potential. We investigate how we can accelerate bandit learning

by incorporating information about the learning curve structure via our proposed FL-

UCB algorithms.

SLT has been primarily practiced in a few big TCs in the US since its development

in the 1980s (Duke Health, 2021; Ge et al., 2020); thus, there is no historical data

for widespread SLT learning. Nevertheless, based on findings from existing studies on

medical learning and the nature of SLT surgeries (involving repetitive tasks such as

dividing and connecting blood vessels), the medical teams’ learning curves likely fol-

low an ‘S’-shaped structure (Le Morvan & Stock, 2005; Pusic et al., 2015). The bandit

rewards or SLT outcomes are 1-year graft survivals, primarily dependent on surgeon

proficiency and experience; 1-year graft survival may also correlate with donor and re-

cipient age and the recipients’ health conditions. These factors and surgical expertise

collectively determine the MAB asymptotic rewards or the arm’s full potential/apti-

tude. There has been ongoing research investigating how survival outcomes depend

on TC expertise, high-dimensional demographics, and perioperative clinical metrics;

unfortunately, there are no exact mappings from these factors to the outcomes. As

discussed in Section 3.6.2, high-dimensional feature-based dynamic learning in SLT

is a potential research direction. Here, we simulate the arm parameters and outcome

distributions based on historical data without specifying the exact feature mapping.
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Specifically, we formulate the reward functions of arms following the Sigmoid curve;

each with hidden aptitude parameter, where the bounds of the range are estimated

directly from the STAR files. Except for few big TCs that already perform SLTs regu-

larly, most TCs need to learn SLT with limited existing experience/initial proficiency

and overcome barriers in the initial phase of surgical learning (characterized by ω).

Since we do not have a direct data source, as SLT has not been widely learned or prac-

ticed, we consulted UCSF surgeons, and they believe the range ω ∈ [1, 14] is realistic:

Typically, after performing 6 ∼ 15 SLT surgeries, a medical team can be considered

sufficiently experienced and the proficiency starts to stabilize. Factoring in existing

experience and skills transferred from similar surgeries, we arrive at ω ∈ [1, 14]. We

assume that the ranges of α’s that we draw from are the same as the ranges of long-

term expected outcomes in historical data containing mostly traditional WLT and

limited SLT surgeries, (0.3, 0.95); recent findings show that SLT outcomes can be

comparable to those of WLT (Hackl et al., 2018). The parameters are specified in

Table 3.4, where the learning curves follow (3.20):

θ(α, s) = α

1 + exp(−s + ω) (3.20)

In one set of the simulation, we assume the true rewards, 1-year graft survivals, are not

observed immediately after the surgery. Since the time horizon is {1, . . . , 3600} and

we consider an approximately five-year, gradual rollout of SLT expansion. The delay

in observing our true rewards are 300, 300, 1000, 1000, and 1000, for SLT surgeries

performed in the 1st to 5th year, respectively. In other words, the true rewards, i.e.,

1-year graft survival, is delayed 300-time steps if an arm pull takes place in the first

two years and 1000-time steps in the third to fifth years. Before the true rewards are
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Parameter Value Comment

Number of arms 50 Each arm has a learning curve

BK-Fairness (K, θBK) = (1, 0.05) K = 1 implies no BK constraint

AA-Fairness θA = 0.001 Uniform for every arm; AA = A

Aptitude/Full potential α ∈ (0.3, 0.95) α unknown

Initial setup cost ω ∈ [1, 14] Known, existing skills

Table 3.4: Experiment Parameters. More details can be found in Section B.6.

observed, we have 1-year survival estimates based on perioperative clinical metrics

and demographic information. The prediction accuracy for 1-year graft survival can

be as good as around 85% (Kantidakis et al., 2020; Nitski et al., 2021); we choose to

be more conservative in this simulation and assume the accuracy for the estimates is

0.6. See Section B.6 for more details.

Given the experimental configurations above, we compare the performances (i.e.,

regrets) of the FL-UCB algorithm with MLE against seven other bandit algorithms

— vanilla UCB, discounted UCB, reweighted UCB, ϵ-greedy, explore-then-commit

(ETC), vanilla Thompson sampling (TS), and learning-enhanced Thompson sampling

(L-TS) where we infuse learning-curve information into the TS posterior updating

function.

Vanilla UCB, discounted UCB, and reweighted UCB can be viewed as special cases

of FL-UCB; they do not assume knowledge of the parametric form of learning curves,

see Section 3.4.7. In our setting, the parametric forms of medical learning are known;

FL-UCB with MLE can leverage this knowledge and accelerate bandit learning and

achieve faster convergence compared to these nonparametric methods. Nevertheless,
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in scenarios where either the existence of endogenous learning or the parametric

form is unknown, FL-UCB with nonparametric estimators can usually generalize well.

As our chapter focuses on FL-UCB with MLE and nonparametric estimators we

do not elaborate on L-TS; nevertheless, numerical results show that L-TS performs

consistently better than canonical TS when endogenous learning is present and is

second only to FL-UCB when the true feedback is delayed. For all bandit algorithms,

we start with 20 round robins and report regrets/rewards that are averages over

five runs. We also provide numerical results on how the offline reward (i.e., optimal

cumulative reward) and PoF (i.e., price of fairness) grow as functions of t.

3.7.2 Numerical Results

Figures 3.7 and 3.8 show the total regret of each algorithm as a function of t, the total

number of surgeries performed; while figure 3.9 illustrates the optimal cumulative re-

ward, PoF, and PoF percentage as a function of t. Specifically, Figure 3.7 demonstrates

that when surgical learning occurs, FL-UCB outperforms the benchmarks as it has

the lowest regrets and converges rapidly, whether the fairness constraints are imposed

or not. Figure 3.8 shows that when the true rewards are delayed and 60%-accurate

reward estimates are available, the advantage of FL-UCB is preserved: FL-UCB with

the MLE estimator still outperforms other bandit algorithms and achieves similar re-

grets, while UCB and nonparametric L-UCB variants incur greater regrets compared

to the no-delay simulations, regardless of the presence of fairness constraints.

Figure 3.9 shows that the PoF, the loss in utility in optimal fair solutions relative to

optimal solutions without fairness constraints, is small (although it is still O(t), as the

PoF / Optimal cumulative reward ratio remains constant as t grows). In figure 3.10
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Figure 3.7: Comparing FL-UCB regret against benchmarks when medical learning exists
and assuming no delay in observing true rewards. FL-UCB with MLE estimation has the
lowest regrets and converges rapidly.

0 500 1000 1500 2000 2500 3000 3500
t

0

500

1000

1500

2000

Re
gr

et
: A

ve
ra

ge
d 

ov
er

 5
 ru

ns

UCB
FL-UCB: MLE
Discounted UCB
Reweighted UCB
ETC
-greedy

TS
L-TS

(a) Regret w/o fairness

0 500 1000 1500 2000 2500 3000 3500
t

0

500

1000

1500

2000

Re
gr

et
: A

ve
ra

ge
d 

ov
er

 5
 ru

ns

UCB
FL-UCB: MLE
Discounted UCB
Reweighted UCB
ETC
-greedy

TS
L-TS

(b) F-regret w/ fairness

Figure 3.8: Comparing FL-UCB regret against benchmarks when medical learning exists
and rewards (i.e., 1-year graft survival) are delayed. We assume estimates based on demo-
graphics and perioperative clinical metrics are available and are 60% accurate. FL-UCB
with MLE estimation learns efficiently in the initial round-robin exploration phase (where
each arm observes 12 true outcomes and 8 estimated outcomes) and still has the lowest
regret and converges fast. Meanwhile, UCB regrets are much higher when the true feedback
is delayed.

we illustrate the breakdown of data points available at time t, t ∈ {1, . . . , 3600}.

For the first 300 time steps, all available information comes from outcome estimates,
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Figure 3.9: [PoF / Optimal cumulative re-
ward] is constant, i.e., PoF is O(t); when
t < 200, the ratio could be subject to nu-
merical instability.
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Figure 3.10: The delay in observing rewards.
For each t, the true rewards are not revealed
until after some delay and can only be esti-
mated using a 60% accurate surrogate.

while in later stages, only a dwindling proportion of cumulative rewards is delayed

and requires prediction. Specifically, the number of delayed rewards is t for t ≤ 300,

300 for t ∈ [301, 900], and min{1000, t− 600} when t ≥ 900.

3.8 Concluding Remarks

To address the trade-off between exploration versus exploitation in SLT allocation, we

formulated an MAB variant with endogenous learning curves embedded in the arm

reward functions. Our model also enables the incorporation of learning curves, fairness

constraints, and nonparmetrics (i.e., UCB variants that do not assume knowing the

parametric forms). We propose UCB variants—the L-UCB and FL-UCB algorithms,

which converge to the optimal offline policy incurring optimal total regret: O(log t)

scale. Application of our model can potentially shed insights on strategies (e.g. liver

allocation, transplant center/surgery selection) to expand SLT use in the US, as well

as in other settings characterized by decision-making with experience-based learning,

95



Chapter 3. Multi-Armed Bandits with Reward Curves

such as call centers and franchising. Methodologically, our formulation and proposed

UCB variants significantly extend the canonical UCB to bandit problems where the

estimates of the unknown parameters can be different from the empirical mean.

There are several potential directions for future work that will generalize and deepen

the conclusions of this chapter. Methodologically, we developed non-parametric meth-

ods, discounted UCB and reweighted UCB, and compared them against parametric

L-UCB; results show that we can leverage the parametric forms of learning curves

through MoM or MLE or MAP estimators in L-UCB to achieve lesser regrets. In

scenarios where the parametric form is unknown, reweighted UCB and discounted

UCB and vanilla UCB can be used, and the former two may sometimes perform

better than vanilla UCB, but not always. An intriguing future direction is to study

the selection of good nonparametric estimators under the FL-UCB framework and

estimators’ robustness in various applications. Another promising direction is to in-

corporate feature-based rewards that explore the correlation between the expected

rewards of different arms, please refer to Section 3.6.2 for more details. Moreover, our

proposed L-TS algorithm has fair numerical performance as shown in Section 3.7, it

is possible that L-TS has theoretical regret bounds. One could investigate this in a

separate paper. On the application side, an important extension is to include candi-

dates’ strategic accept/reject decisions when offered organs. Observable dynamics in

patient queues can also be factored into the definition of the bandit rewards and sub-

routines of the L-UCB algorithm. Specifically, rewards can be redefined to penalize

queueing delays and, more generally, account for any hidden cost not captured with

surgical outcomes of surgeries. And incentives to practice SLTs are intentionally left

to future research: The discussion on incentive compatibility is beyond the scope of

96



Chapter 3. Multi-Armed Bandits with Reward Curves

this chapter; the solution to this likely requires a package of policies.
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Chapter 4

Human-Artificial Intelligence Teaming and Effects
of System Load on the Screening of Child
Maltreatment Reports

4.1 Introduction

4.1.1 Child Welfare Services

The Centers for Disease Control and Prevention estimates that at least 1 in 7 children

in the US have experienced child abuse or neglect in the last decade. In 2020, 1,750

children in the US died from abuse and neglect, and the total lifetime economic burden

of child abuse and neglect was estimated at $592 billion in 2018. This economic burden

rivals the costs of other high-profile public health problems, such as heart disease and

diabetes. Abused or neglected children may suffer immediate physical injuries and are

more likely to experience emotional and psychological problems later in their lives,

such as anxiety or post-traumatic stress. In the long term, maltreated children are

at a higher risk of future violence victimization and perpetration, substance abuse,

delayed brain development, lower educational attainment, and limited employment

opportunities (CDC, 2023).

Child welfare organizations are tasked with protecting children from abuse and ne-

glect; their responsibilities include investigating child maltreatment allegations and

providing services to children and families in need. However, not all allegations are

substantiated, and unnecessary investigations may harm the families involved. More-
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over, child welfare organizations need to prioritize scarce resources and efforts towards

substantiated and serious referrals. Therefore, it is crucial that allegations are care-

fully screened before initiating formal investigations to ensure the overall welfare of

children, families, and the community (Slaugh et al., 2024).

A child maltreatment report or call is designated as a referral; one referral may involve

more than one child and several allegations. Referrals are categorized into two types:

child protective service (CPS) and general protective service (GPS). CPS reports are

made by mandated reporters, i.e., adults who are required by law to report suspected

child neglect or abuse. Mandated reporters are those adults who work or volunteer

with children, including school employees, healthcare professionals, foster parents,

and employees at other public services organizations. Many US states (e.g., Michi-

gan, Pennsylvania) established laws that mandate CPS referrals to be investigated

within 24 hours (Michigan HHS, 2023; Pennsylvania DHS, 2023a). In contrast, GPS

referrals are only investigated by an assigned caseworker if screened in—accepted for

investigation. Child abuse may take various forms; common abuse types include physi-

cal abuse, sexual abuse, emotional abuse (i.e., behaviors that harm a child’s self-worth

or emotional well-being, e.g., name-calling, shaming, and threatening), and neglect

physically or emotionally (CDC, 2023).

4.1.2 Operations in a Child Welfare Organization

We partner with a child welfare organization (CWO) in a northeastern US county. Fig-

ure 4.1 illustrates the workflow of the CWO. Specifically, their operations have three

main stages: screening, investigation, and intervention. In the screening stage, all in-

coming GPS calls or reports are screened by call screeners at the CWO’s intake office.
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Social workers at the intake office are tasked with answering calls, assessing child mal-

treatment reports, and investigating CPS referrals. GPS referrals, if screened-in, will

be investigated by one of the five regional offices located in five different geographic

regions in the county. CPS referrals are mandatorily investigated by social workers,

often at the intake office. When an investigation determines that a referral is in need

of services, a case for the referral is opened, and a social worker is assigned to inter-

vene, offer protection, provide service, and work toward a long-term solution for the

children and family involved.

Figure 4.1: CWO workflow diagram.

A predictive risk model (PRM) has been designed and implemented to enhance the

screening decision-making process within the CWO’s child welfare system. The PRM

harnesses the power of hundreds of data elements to generate the PRM score, which

quantifies the likelihood of a child being placed out-of-home (OOH): The PRM score

takes integer values ranging from 1 to 20, with a higher value indicating a higher prob-

ability of OOH placement within two years (Pennsylvania DHS, 2023b). The PRM is

designed to complement clinical judgment by offering additional vital information to

aid child welfare workers in making informed call-screening decisions. The PRM tool

is generated and viewed only by call screeners and their supervisors when making
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call-screening decisions; caseworkers who conduct investigations and provide services

are not able to see any information from the PRM.

Stage 1: Screening. Figure 4.2 illustrates the workflow of the screening stage. If

someone in the community has concerns about suspected child maltreatment, they

may report it to the CWO’s hotline. When a call comes in, a call screener at the

intake office answers and records information into the computerized system, follow-

ing established protocols. For all calls—those falling within a protocol or not—the

screener runs the PRM on their computer, which will take the input of historical

data (including demographics and past interactions with the CWOs) and the call

information, and output the assessed risk score. After obtaining the PRM risk score,

a field screen might be conducted if the call screener or their supervisor would like

to gather more information about the children, the household, and the allegations

before making the screening decision1.

Some referrals with specific characteristics (i.e., having a PRM score greater than 17

and involving a child aged 16 or under) fall into the high-risk protocol and, therefore,

are designated by the PRM to be screened in. In contrast, a small percentage of

referrals fall into the low-risk protocol (i.e., having a PRM score no greater than 11

and no children under 12) and are designated to be screened out. Many other referrals

fall into neither high-risk nor low-risk protocols. For a referral that follows a high-

risk protocol, the human-system interface displays “High-Risk Protocol: High Risk

1A field screen is typically conducted if one or more of the following conditions are met: a) The
child maltreatment report involves children three years old and younger who are directly impacted
by the allegations. (b) If a report is the fourth referral associated with the same household within two
years, yet there has not been any previous investigation into the household. And (c) a report involving
children who receive education (through homeschooling, distance learning, or remote learning) at
home.
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and Children Under 16 on Referral.” Similarly, for a referral that follows a low-risk

protocol, the human-system interface displays “Low-Risk Protocol: Low Risk and All

Children Aged 12+ on Referral” and “recommended screen out.”

While the risk protocols guide screening decision-making, intake office supervisors can

override the protocol-suggested screening outcomes at their discretion; this requires

they complete override documentation. The computer information system shows the

PRM score to the call screener and their supervisor only when a referral does not fall

into either risk protocol.

Call screeners recommend screening in or screening out referrals based on their as-

sessment, the risk protocols or PRM risk scores, and field screens when necessary.

All call screeners’ recommendations go through their supervisors, who make the final

screening decisions based on the risk protocols, PRM scores, relevant data, their own

assessment, and call screener recommendations. The call screeners and supervisors of-

ten discuss the evidence and screening rationale and then jointly make the screening

decisions. On average, 48.05% of incoming referrals are screened in for investigation.

Stage 2: Investigation. All screened-in GPS referrals and occasionally some CPS

referrals are investigated by one of the five regional offices in different geographical

regions within the US county. (Recall that the intake office investigates most CPS

referrals.) Caseworkers must conclude any investigation within 60 days, though best

practice encourages a 30-day completion of any CPS investigation. The investigation

determines whether a CPS report is founded (i.e., there is a court action), indicated

(i.e., there is substantial evidence that maltreatment occurred), unfounded (i.e., ex-

isting evidence does not meet the criteria for maltreatment), or pending (i.e., the
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CWO investigation cannot be concluded in 60 days because criminal or juvenile court

action is initiated). GPS investigations conclude with whether allegations are valid or

not based on collected evidence. If the caseworker(s) and their supervisor(s) believe

there is an ongoing risk of child maltreatment in the household, then the referral may

be accepted for service, and a child welfare case will be opened. If a child welfare case

is not opened for the family, other community-based resources might still be offered

to assist the household if needed.

Stage 3: Intervention. Upon opening a case (or equivalently, being accepted for

service), a child welfare case worker will arrange a conference meeting with the family

and their identified support (e.g., friends and other family members). At the confer-

ence meeting, they will discuss the family goals and devise a plan for services so the

child can remain safely within the household. Subsequent meetings are held with the

same stakeholders to ensure that the family is making acceptable progress toward

the goals. The investigation caseworker who conducts the investigation often remains

with the family to provide service.

The CWO and other supervising bodies periodically review ongoing cases. In scenarios

where they believe a child can no longer safely remain in their current household, an

out-of-home placement or removal from the home will be considered.

4.1.3 Research Overview

In this project, we examine the interplay between human workers and the PRM,

specifically assessing the influence of system load on child welfare screening recom-

mendations and decisions. Recent research underscores the benefits of human-artificial
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Figure 4.2: Workflow diagram: the screening step.

intelligence (AI) collaboration in diminishing disparities and errors. For example,

Fogliato et al., 2022 highlights how human discretion in high-stakes contexts like child

welfare can counterbalance algorithmic inaccuracies and reduce disparities. However,

operational challenges have received scant attention in the existing literature. Our

study fills this gap: We explicitly focus on the role of system load in human-AI

collaboration in a high-intensity service environment with capacity constraints. Our

empirical evidence suggests that human workers are more likely to deviate from load-

agnostic PRM recommendations when the workload level is either very high or low.

Our findings reveal that human workers adeptly recognize the implications of system

load on both organizational efficiency and service quality, thereby making screen-

ing choices informed by clinical judgment and PRM’s risk scores to ensure workload

sustainability.

The rest of this chapter is organized as follows: Section 4.2 summarizes relevant pa-

pers and positions our work in the existing literature. Section 4.4 presents our main

analysis results. Section 4.5 explores the impact of workload in the downstream in-
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vestigation stage and demonstrates the importance of managing the system load.

Section 4.6 discusses our approaches to alleviate endogeneity concerns and demon-

strates the robustness of our main results. Section 4.7 details the roadmap for this

ongoing project and enumerates our next steps.

4.2 Literature Review

This work is relevant to two main streams of literature: the child welfare system and

human-AI teaming.

Child welfare systems. The child welfare system in the United States is comprised

of a network of services and policies aimed at protecting children from maltreatment

such as abuse and neglect. Recent literature discusses its structure while highlighting

the challenges and areas that could be improved; see Slaugh et al., 2024.

The U.S. child welfare system is decentralized. Each state has its own system, though

all under federal laws and guidelines. Essential aspects of the child welfare system

in the US include child protective services, general protective services, family sup-

port services, prevention programs, legal system involvement, foster care, and adop-

tion (Olberg et al., 2021). One significant challenge in the US child welfare system

is the overrepresentation of children of color, particularly Black children. Literature

on racial disproportionality and disparities sheds light on the systemic and societal

factors contributing to this issue and calls for targeted reforms (Doe & Clark, 2020).

Additionally, aging out of foster care without adequate support leads to higher risks

of homelessness and unemployment among young adults (Wilson, 2019). Other chal-

lenges include capacity constraints, worker stress, and high turnover rates among
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caseworkers (Slaugh et al., 2024).

Existing literature underscores the complexity of the U.S. child welfare system, the

myriad challenges it faces, and the importance of responsible policy-making. However,

research focusing on operational improvement for the upstream services (e.g., call

screening and investigation) in child welfare organizations is sparse (Slaugh et al.,

2024). This chapter helps fill this gap by conducting a detailed empirical study of

call screening at a child welfare agency serving a northeastern US county with an

approximate population of 1.23 million.

Human-AI teaming. Many US states have implemented algorithms to assist child

welfare operations (Saxena et al., 2020). Child welfare operations adopted these algo-

rithms to reduce costs and, ideally, improve operational efficiency, equity, and service

quality. Cheng et al., 2022 showed that screening decisions are more equitable when

combining the strengths of AI algorithms and humans’ clinical judgement. Fogliato

et al., 2022 showed that call workers adjust their behaviors after the deployment of

the AI tool. Call workers are capable of integrating complementary AI recommenda-

tions with their own judgment: Evidence shows that they are less likely to adhere to

erroneous AI recommendations. However, existing work on human-AI collaboration

in a child welfare context does not consider vital operational factors such as workload,

worker stress, and capacity.

In a different context, Snyder et al., 2022 conducted a behavioral study investigat-

ing humans’ algorithm understanding and reliance under different pressure levels. The

authors implemented laboratory experiments for a large-scale personalized recommen-

dation context. Results show that greater time pressure increases human reliance on
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algorithms in general. Considering heterogeneous algorithm performances, humans

rely more on superior algorithms as their ability to discern algorithm performance

also improves under high load. To the best of our knowledge, we are the first to study

human-AI teaming under various workload conditions, utilizing real-world datasets

for public service operations.

4.3 Empirical Setting and Data Description

This section presents the research setting, dataset, summary statistics, and the data

processing procedure. We describe the key variables, dependent variables, control

variables, and outcome labels in detail.

4.3.1 Research Setting

We focus our analyses on the screening stage of CWO operations. Specifically, we

examine when human screeners’ decisions align with or deviate from AI recommen-

dations, and how call screening decisions are influenced by system workload. To study

these research questions, we conduct empirical analyses on the referral level using the

general form shown in Equations (4.1) and (4.2):

Screening Decision ∼Workload + Controls (4.1)

Deviation from AI ∼Workload + Controls (4.2)

In particular, we would like to see how workload influences screening decisions and

deviation from AI. Below, we introduce the data and preprocessing procedures (Sec-

tion 4.3.2), the workload variables (Section 4.3.3), the dependent variables (Sec-
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tion 4.3.4), the outcome labels (Section 4.3.5), and controls (Section 4.3.6).

4.3.2 Data Description

Our collaborating CWO granted us access to their private datasets, which are stored

on a secure remote server hosted by a large research institution in the US. The datasets

contain referral-level data from January 1, 2017 to November 11, 2022. For each in-

coming child maltreatment report, the datasets record the following information: the

number of children involved and the child(ren)’s ID(s) in the system, demographic

information about the household, zip code, allegation type(s), alleged abuse or ne-

glect type(s), and the reporter’s relationship to the household. From an operational

standpoint, the system also records the date and time of receiving the report, the call

screener’s ID, and the supervisor’s ID. The call screener assesses the safety concerns

and risks associated with each referral, and they document their individually assessed

initial risk evaluations in three categories: High risk, medium risk, and low risk. Call

screeners run the PRM tool after entering information about the child maltreatment

report, and the system automatically outputs and stores the PRM score. Based on

the PRM score, risk protocols, and risk evaluation (which sometimes involves a field

investigation), the screener makes a screening recommendation and enters it into the

database. A supervisor then authorizes a final screening decision, which may differ

from a screener’s recommendation, after reviewing all the referral information men-

tioned above.

Besides referral information, our datasets also include investigation and case details.

Recall that screened-in GPS referrals are investigated and often assigned to another

caseworker at a regional office. We have an assignment table that includes the case-
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worker IDs and times of investigation assignments. Investigation outcomes are sum-

marized in service decisions: “accept for service,” which will be followed by opening a

case and providing services by the CWO and community partners, or “do not accept

for service,” closing the investigation without providing services. While our analysis

focuses on the screening stage and screening decisions’ impact on the investigation

stage, our datasets contain additional details regarding the services provided to cases

and case assignments.

Table 4.1 describes the summary statistics of relevant variables in the datasets.

Table 4.1: Summary Statistics.

N Mean Median Max Min SD

Case load (per day) 2140 1898 1637 2129 1028 167.45

Investigation load (per day) 2140 1047 1156 1468 530 164.54

Case load per worker 2140 9 9.1 10.2 7.6 0.7

Inv. load per worker 2140 4.6 4.6 5.9 2.6 0.7

Referral load (per day) 2140 41.93 45 109 4 20.41

Screening workforce 2140 13.94 15 18 3 4.74

Calls per screener 2140 2.85 2.88 5.5 1 0.66

Investigation workforce 2140 135.8 137 173 15 17.71

Case workforce 2140 305.3 306.5 366 29 28.17

PRM score 64870 13.95 15 20 1 4.57

Number of children 64870 5.14 5 22 1 2.06

Minimum child age 64870 6.29 5 18 0 5.33
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4.3.3 Key Variables

The key variables of our analyses are the workload at the screening, investigation,

and service stages. The workload at the intake office is described in the variable

“referral load.” “Referral load” describes the number of incoming calls/referrals that

are received by the intake office. We also track the “number of screeners” that received

at least one call on a given day; there is always more than one screener on duty within

our time window. Based on the contacts made by investigation and case workers, we

estimate the daily “investigation load” and “case load” in the CWO, respectively.

4.3.4 Dependent Variables

The dependent variables of our main analyses include the “screen-in” decisions by

supervisors and “deviation,” whether the final screening decisions differ from those

implied by PRM scores. In the main analyses, we define “deviation” as the follows:

If the PRM score is equal or above 15, but the referral is screened out, then we

label the screening decision a deviation from PRM recommendation. Similarly, if the

PRM score is less than 15, but the referral is screened in, then the screening decision

also deviates from PRM. Otherwise, there is no deviation. Note that the definition

of deviation is used for our analyses of human behaviors; it is different from that of

PRM high or risk protocols which are implemented by the CWO and are applicable

to only a fraction of referrals. On average, 36.03% of the time, the final screening

decisions deviate from PRM at our collaborating CWO.
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4.3.5 Referral Outcome Labels

Consistent with CWO’s most recent documentation (Allegheny County DHS, 2024),

we define the outcome of referrals as follows:

• True positive: If a referral is screened in (i.e., positive), and the investigation

concludes that it requires service, i.e., “service decision” is true, then the initial

screening decision outcome is labeled as true positive or TP.

• False positive: If a referral is screened in (i.e., positive), and the investigation

determines that no service is necessary, i.e., “service decision” is false, then the

initial screening decision outcome is labeled as false positive or FP.

• True negative: If a referral is screened out (i.e., negative), and no child on the

referral is removed from the household in the next 90 days, then the initial

screening decision outcome is labeled as true negative or TN.

• False negative: If a referral is screened out (i.e., negative), and at least one child

on the referral is removed from the household in the next 90 days, then the

initial screening decision outcome is false negative or FN.

The ultimate goal of the CWO is to provide services to families in need; this means

the CWO aims to have a low FN rate. Meanwhile, the CWO strives to reduce FP rate,

the reasons are twofold: First, investigating unsubstantiated and unfounded claims

might cause unnecessary hardship and even harm to families. Second, the actual

workload per caseworker at CWOs often exceeds the ideal levels; CWOs are therefore

incentivized to reduce the number of investigations that do not lead to services.
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The CWO must strike a delicate balance at the screening stage: If screening in all

referrals, the FN rate will be zero, but this is likely infeasible due to capacity and

budget constraints and will increase the FP rate, which means a higher level of unnec-

essary inconvenience or even interference to families involved. If screening out more

referrals, the likelihood of having a FN outcome increases. The PRM tool is designed

to help making informed screening decisions by providing the percentile catogories

of predicted OOH placement likelihood. As a result of deploying PRM and other ac-

cumulative effort, the CWO has maintained a remarkable FN rate of 2.28%. (Note

that the initial screen-out decision for an FN referral could actually be accurate, as

many things can change in 90 days.) However, the FP rate is 18.74%, which is higher

than our collaborating CWO’s expectation. There is an incentive within the CWO to

reduce the FP rate while maintaining the low FN rate.

4.3.6 Control Variables

Our CWO datasets enable us to use a comprehensive set of control variables in our

empirical analyses. We describe our control variables below. The summary statistics

for these control variables are presented in Table 4.1.

Demographics: We control for the demographics of the reporter of child maltreat-

ment, child(ren), and perpetrator associated with referrals. If a child is suspected of

being maltreated, then entire household which the child belongs to is included in the

referral. A household includes the victim(s) and all children with the same mother,

as well as other adults living with the mother or children. All victims, children, re-

porters, and perpetrators are given unique IDs. Their demographic data, as well as

their current and historical interactions with the CWO and other governmental agen-
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cies, are recorded in CWO’s database. Specifically, we account for the number of

children in the household, the child(ren)’s age(s), race(s), household zip code(s), and

the reporter’s relationship with the victim(s).

Allegations and risks: For each referral, we control for the allegation type(s) and

the PRM score, which estimates the risk of at least one child being removed from the

household in the next two years. We also flag families that are linked to an active

case with the CWO with the variable “active family.” About 16.13% of all referrals

are linked to active families. These control variables together with the PRM scores

help account for the nature of allegations and overall risks.

Organization workload and workforce: To better capture the organization’s

workforce and capacity, we include the “number of screeners” as a control. Simi-

larly, based on how many workers are actively working on investigations and cases,

we track the “investigation workforce” and “case workforce” on daily levels using data

gleaned from the contact records.

Time and holidays: We control for the year, month, day of the week (DoW), and

holidays in our main analyses. We also present additional robustness checks, for which

we additionally account for weekends as well as winter and summer vacations.

4.4 Empirical Investigation on Workload’s Impact in Call-

Screening

This section discusses the main analyses of workload effects on call screening decisions.

Section 4.4.1 describes the model specification, and Section 4.4.2 presents the main
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regression results and their implications on human-AI teaming in the CWO’s multi-

stage operations.

4.4.1 Model Specification

In our primary empirical analyses, we investigate the effects of workload levels—

both during the call-screening phase and across the entire system—on call-screening

decisions and the collaboration between screeners and PRM. These analyses focus

on GPS referrals, where call screeners and their supervisors have decision-making

discretion. (Recall that CPS referrals are mandated to be investigated.) Our main

regression specifications for the referral-level analyses are as follows: Let Yj denote

the supervisor-approved call screening decision for referral j arriving at time t (1 for

screened-in and 0 for screened-out).

logit(Yj) =α + β1Investigation_Loadt + β2System_Loadt

+ Referral_Controls + Time_Controls + Screener_FE + ϵj.

(4.3)

Let Zj represent the deviation from the PRM suggested screening decision (1 for

deviation and 0 for alignment).

logit(Zj) = κ + γ1Investigation_Loadt + γ2Investigation_Load2
t

+ γ3System_Loadt + γ4System_Load2
t

+ Referral_Controlsj + Time_Controlst + Screener_FEi + ϵj.

(4.4)

We incorporate comprehensive controls across referral characteristics, time, and screener

dimensions; see details in Table 4.2.
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4.4.2 Main Regression Results

In the main analyses, we focus on GPS referrals for children no younger than seven

years old, filed between January 2018 and March 2022. Screen-in rates for reports

involving older children are more subject to workload effects. Children under seven

years old are often given priority, as they have fewer means to defend themselves in

the face of danger.

Table 4.2 presents the workload’s impact on the probability of call screening deci-

sions and deviations from AI recommendations. The screen-in rates are negatively

correlated with workload at all three stages, suggesting that call screeners adjust

their screening decisions on incoming traffic and downstream congestion. Moreover,

we observe a U-shape relationship between deviation and case load. In particular,

human agents are more likely to diverge from the AI recommendations when the case

load is either high or low, rather than moderate. This might seem counter-intuitive

at first. Yet a closer look reveals that while the AI tool does not adjust for vary-

ing workloads, human agents seem to factor in the workload when making screening

decisions. Specifically, we conjecture that they lean toward admitting more low-risk

cases when the case load is low and rejecting more high-risk cases when the case load

is high. We reason that this behavior has the potential to enhance overall system

performance, as it helps maintain a sustainable system workload. Meanwhile, results

suggest that human screeners are more likely to deviate from AI recommendations

when the investigation load increases.

This finding is intriguing because call screeners and their supervisors do not receive

workload information while making call-screening decisions. Although they could infer
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system congestion levels based on the time of year, we have already controlled for these

factors in our analysis. Additional channels for accessing workload information include

informal conversations with downstream caseworkers and, for supervisors only, logging

into a separate system to check the number of ongoing investigations and cases.

4.5 Empirical Evidence on the Importance of Managing Down-

stream Workload

So far, our results imply that call screeners incorporate workloads into their decision-

making. This could potentially enhance the system’s overall performance, underscor-

ing the value of a collaborative decision-making process between humans and AI

rather than relying solely on AI. We delve further into this by examining why it is

important to manage screen-in based on workload.

We first analyze the workload’s impact on each individual investigation’s duration.

To study the impact of workload and capacity at the investigation stage, we use a

linear model and control for the investigation’s characteristics. Table 4.3 shows that

the logged investigation duration is positively correlated with the logged investigation

duration, and negatively correlated with the case load.

Moreover, we analyze how increased downstream workload may adversely affect the

quality of the subsequent investigation stage on a system level. We evaluate the ef-

ficiency of this phase using two system performance metrics: “investigation through-

put,” which refers to the number of closed investigations averaged over the last 30

days for each day recorded in our dataset; and “investigation duration,” which refers

to the duration of newly closed investigations averaged over the last 30 days for each
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Table 4.2: Workload’s Impact in Call-Screening.

Screen-In Deviation

Key Variables:

Case load −0.037∗∗∗ (0.005) −0.292∗∗ (0.141)

Case load (sq) 0.001∗∗ (0.0004)

Investigation load −0.003∗∗∗ (0.003) 0.024 (0.024)

Investigation load (sq) −0.0001 (0.0001)

Referral load −0.006∗∗∗ (0.002) 0.0002 (0.004)

Controls:

Case workforce 0.005 (0.003) 0.014∗∗ (0.006)

Investigation workforce 0.011∗∗ (0.006) −0.031∗∗∗ (0.011)

Screening workforce 0.022∗∗ (0.009) −0.002 (0.014)

PRM score 0.147∗∗∗ (0.005) 0.297∗∗∗ (0.011)

Number of Child 0.055∗∗∗ (0.013) 0.021 (0.020)

Active family 2.568∗∗∗ (0.074) −1.438∗∗∗ (0.099)

Child minimum age −0.058∗∗∗ (0.007) 0.011 (0.011)

Race YES YES

Zip code YES YES

Allegation YES YES

Call screener ID YES YES

Reporter relationship YES YES

Holidays YES YES

Year, month, DoW YES YES

Observations 18,093 18,093

Note. “Investigation load” and “case load” are measured by the numbers of all active investigations and active
cases (divided by 10) on a day, respectively. “Investigation load (sq)” and “caseload (sq)” are the squared terms of
“investigation load” and “case load,” respectively. “Referral load” is measured by the number of referrals received by
the CWO on a day. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.3: Workload Impact on Investigation Duration from an Individual Investigation’s
Perspective

Dependent variable:

Logged investigation duration

Logged investigation load 0.088∗ (0.050)

Case load −0.470∗∗∗ (0.171)

PRM score −0.013∗∗∗ (0.001)

Investigation workforce 0.0004 (0.0004)

Case workforce −0.0005 (0.0005)

Child minimum age 0.005∗∗∗ (0.001)

Number of children 0.011∗∗∗ (0.002)

Race YES

Zipcode YES

Allegation YES

Call screener ID YES

Relationship YES

Year, month, DoW YES

Holidays YES

Observations 21,357

R2 0.041

Adjusted R2 0.034

Note. “Logged investigation load” refers to the logged number of active investigations on a day
averaged over the last thirty days. We utilize a linear model to study how the overall investi-
gation load impacts each individual investigation’s duration. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.4: Workload’s Impact on Investigation Efficiency from the System’s Perspective

Dependent variable: Investigation throughput Investigation duration (logged)

(1) (2)

Investigation workforce 0.013∗∗ (0.006) -0.002∗ (0.001)

Investigation load 0.094∗∗∗ (0.002)

Investigation load (logged) 0.255∗∗∗ (0.054)

Observations 1,195 1,195

R2 0.883 0.476

Adjusted R2 0.880 0.467

Note. “Investigation workforce” refers to the number of active investigation workers on a day averaged over the
last thirty days. “Investigation load” refers to the number of active investigations divided by 5 on a day averaged
over the last thirty days. In column (1), we utilize a linear model to compare estimation results against Little’s
Law, aiming to investigate how load impacts the extent of system congestion. In column (2), we implement a log
transformation on both the investigation load and investigation duration to address the skewness present in both
variables. Additional controls incorporated into the model include the day of the week, month, and year. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01

day. (To mitigate daily fluctuations, we employ a 30-day rolling average for these

metrics.)

Table 4.4 shows that the throughput increases as the number of investigation workers

or the number of screened-in referrals (i.e., incoming investigation volume) increases.

However, for every additional incoming investigation in a day, the average number of

closed investigations on that day only increases by 0.47 (significantly lower than 1),

suggesting an increased number of investigations in the system (i.e., congestion) and

increased investigation load. Column (2) shows that an increased incoming investi-
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gation volume is often associated with a longer investigation duration. Interestingly,

an increase in the investigation workforce only leads to a slightly decreased duration.

There are several possible explanations: An increased workforce could mean that case-

workers can afford to be more thorough with each investigation while having more

capacity to complete investigations. Also, an increased workforce allows casework-

ers to work on those less urgent investigations with timelines that are not as tight.

(Nevertheless, Table 4.3 shows that increased workload delays individual investigation

completion, while investigation workforce does not significantly impact the duration,

controlling for investigation characteristics.)

4.6 Robustness Analysis

In our primary empirical analyses, as presented in Equation 4.3, it is important to

address concerns related to endogeneity. One element of particular concern is the

referral load. The underlying reason is that there could be confounding variables

influencing both the incoming referral volume and their screening decisions since both

are directly associated with the focal reports. It is crucial to ensure that these external

factors do not inadvertently bias our findings. The investigation load and case load

may not be directly connected to the focal referral j under screening and, therefore,

may be less problematic. Below, we discuss the approaches taken to alleviate potential

endogeneity concerns associated with the referral load, as well as the investigation and

case loads.

First, in Section 4.4, we intentionally employ the shift-level workload (i.e., the daily

average for all call-screeners) as our primary measure for the “referral load” instead of

the workload for individual call screeners. This is because individual workload might
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be subject to potential endogeneous assignment rules and practices. For instance,

call screeners could be assigned to certain types of referrals: Some might specialize in

high-complexity (high-risk) reports while others focus on low-risk ones. If screeners for

low-risk referrals consistently handle more cases due to their simpler nature, we could

see a trend where increased individual workloads correlate with decreased screen-in

rates. However, this does not imply that a system-wide increase in referrals leads to

lower screen-in rates. To avoid this endogeneity concern arising from assignments, the

shift-level load is chosen to serve as a more reliable measure.

Nevertheless, even under the shift-level measure, there could be other endogeneity

challenges. For example, a public awareness campaign or a traumatic event in the

community may lead to an increased number of child abuse/neglect calls. This would

increase the overall shift-level load, but on average these reports might be of lower

risks in nature.

To further alleviate such concerns, we consider using matching and weighting methods

for call screening, investigation, and case workload. This is an ongoing effort, and

preliminary results are promising. In addition, we also run the main analyses by

controlling or excluding weekends, summer and winter vacations, as well as excluding

holidays. Preliminary results suggest that our main findings are robust.

4.7 Conclusion and Future Directions

This work studies the collaboration between human agents and the PRM in call

screening decision-making. Our findings reveal that human agents are more likely to

deviate from AI recommendations when faced with high or low workloads. Interest-
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ingly, while the PRM does not adjust for varying workloads, human agents appear

to consider workload when making screening decisions, resulting in a U-shaped re-

lationship between deviation and workload. Moreover, we study the impact of an

increased investigation load on the completion of investigations on a system level.

Results suggest that human workers effectively complement the AI’s recommenda-

tions by incorporating important operational considerations such as maintaining a

sustainable workload.

We have conducted extensive robustness checks which demonstrate that our main

findings on the workload effect and the U-shape deviation patterns are robust. We

are exploring causal relationships between workload and screening decisions as well

as human-AI collaborations through matching and weighting.

We aim to build upon our findings to offer recommendations to enhance the collabora-

tion between human workers and AI by: (i) Incorporating measures of workload; and

(ii) Proposing strategies to effectively improve load-aware screening decisions as well

as the screening-investigation workflow; in order to (iii) Maintain screening accuracy

while ensuring a sustainable system load. We are working on providing evidence to

support that, by incorporating workload, call screeners can improve system welfare.

Specifically, we plan to enrich this analysis by considering load-aware screening pro-

tocols and how they might influence not only efficiency but also screening accuracy.

Preliminary simulation results show that optimizing the risk protocol thresholds for

default screen-ins and screen-outs can reduce the rate of screen-ins while maintaining

or reducing false positive and false negative rates. This improvement requires minimal

changes to the existing information system at the CWO. Other promising avenues to
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effectively incorporate load in screening decisions include displaying downstream traf-

fic, average workload per caseworker, investigation load, and average case durations

to better inform call screeners of the actual congestion levels. Alternatively, the AI

output could include ranking the risks and urgency of the incoming referral compared

to incoming and existing referrals/investigations/cases in the system. However, these

approaches require a greater amount of changes to the existing system and intricate

analysis of caseworkers’ mental models in making screening decisions.

Broadly speaking, our work contributes to the discussion on human-AI teaming

in high-stakes decision-making within organizations with budget and capacity con-

straints. Like the PRM used in our partner organization, many deployed AI tools

are programmed for a prediction task and cannot identify or address important op-

erational constraints. Human workers can complement AI tools by accounting for

critical operational considerations (e.g., managing a sustainable workload). This find-

ing again emphasizes the significance of effective human-AI collaboration and points

to directions to enhance AI tools designed for use in high-stakes contexts.
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Chapter 5

Conclusion and Future Directions

This dissertation focuses on the operational challenges encountered in liver allocation

systems and the screening of child maltreatment reports. Through thorough analysis

utilizing data-driven models, our study provides insightful observations and practi-

cal recommendations for effectively addressing these challenges. Key themes explored

include dynamic resource allocation amidst capacity constraints and the interaction

between human decision-making and technology (e.g., sophisticated surgical proce-

dures, decision support algorithms, and AI tools).

Effective solutions to operational challenges in public service operations require a

deep understanding of methodologies and practical needs for each specific context.

Below, I summarize three primary directions for future research.

First, one could explore effective operational strategy designs that incorporate human

and organizational learning in decision-making. Experience-based learning is ubiqui-

tous. Besides medical learning in SLT, surgical teams need to learn nonconventional

procedures such as robot-assisted surgeries by performing them, staff members in a

call center need to handle customer calls to improve their ability to resolve customer

issues efficiently and courteously, and new franchisees learn to operate smoothly over

time by serving customers. Such human and organizational learning, while necessary

and important in the long term, may come with a short-term cost and affect other

stakeholders as well as the overall system performance. It is worthwhile to further

study service systems where human or organizational learning is present. For exam-
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ple, improve facility planning and operating room scheduling by considering the var-

ied and evolving experience levels of surgeons and supporting staff when performing

conventional and unconventional surgeries.

Second, it would be helpful to study operational improvements in child welfare or-

ganizations. Through our conversations with practitioners in child welfare services,

we learned they also hope to optimize staffing decisions and downstream assignment

of social workers to cases. In particular, the organization is interested in the one-

caseworker model, i.e., one worker is in charge of all investigations, services, and the

placement of each child abuse case: Assigning a single worker for each case enables

consistent support for the family and may reduce overhead, for example, from case

transfers. On the flip side, the one-caseworker model may fail to capitalize on workers’

specialized skills and create conflicting incentives for workers. To fully leverage the

benefit of the one-caseworker model and overcome its inherent challenges, one may

adopt a data-driven model to jointly optimize workforce planning and caseworker

assignment as well as supervision. Such efforts could both improve child welfare and

reduce staff turnover.

Third, exploring the nonasymptotic regime and addressing the challenge of “small

data” present compelling opportunities for future research. An intriguing avenue in

this regard is examining sequential decision-making under uncertainty within the

nonasymptotic framework. More specifically, it is worth exploring whether the insights

gained from Chapter 3, particularly those related to Multi-Armed Bandit (MAB)

scenarios featuring endogenously nonstationary reward curves, extend beyond the

bounds of the asymptotic regime. Such investigations hold promise for aiding decision-
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makers navigating dynamic environments, particularly in scenarios requiring resource

allocation over shorter to medium-term horizons. Moreover, in contemporary data-

driven applications, while vast quantities of data are often available at an aggregate

level, the granularity of data or its relevance to specific decision-making categories

may be limited. For example, the PRM tool described in Chapter 4 relies on child-

specific data to predict the out-of-home placement risks associated with each referral.

For some children, limited data is available to the PRM tool to output a well-informed

prediction. Therefore, an exciting area for future exploration involves devising strate-

gies to effectively leverage knowledge and insights from data-rich contexts to address

challenges posed by “small data” situations.
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Appendix A

Appendix for Chapter 2

A.1 Alternative Transplantation Objectives

This section presents the analytical results/formulation for three alternative

transplantation objectives: minimizing the total number of patient deaths (TNPD),

minimizing the number of patient deaths after transplant (NPDAT), and

minimizing organ wastage (OW).

A.1.1 TNPD and NPDAT

While we focused on NPDWT and QALY objectives in the main text, our fluid limit

decomposition method can be applied to other commonly used transplantation

objectives. For TNPD (2.10) and TNPDAT (2.11) objectives defined in Section 2.3,

Proposition A.1.1 presents the closed-form objective functions U T NP D, U NP DAT

which are parts of the decomposed LPs that give optimal decision rules, respectively.

Proposition A.1.1. When Ψ is non-singular, U T NP D and U NP DAT can be

simplified to

U TNPD
t = d⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

Pℓuℓ + P̄ℓsℓ

)︄
+
∑︂

ℓ

ζℓPℓuℓ + ζ̄ℓP̄ℓsℓ

(A.1)

U NPDAT
t =

∑︂
ℓ

ζℓPℓuℓ + ζ̄ℓP̄ℓsℓ (A.2)
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Note that U TNPD
t = U NPDAT

t + U NPDWT
t , because by definition, the total number of

patient deaths equals the number of patient deaths while waiting for transplants

plus the number of patient deaths during and after transplants.

A.1.2 Minimizing Organ Wastage

Another important transplantation objective is to minimize organ wastage (OW).

min
(U,S)

OBJOW :=
∑︂

ℓ

∫︂ T

0

(︂
(1−Pℓ)uℓ(t) + (1− P̄ℓ)sℓ(t)

)︂
dt (A.3)

Solving a fluid optimization problem with (A.4) as the objective is equivalent to

maximizing the dynamic index U OW
t for all t ∈ T :

U OW
t :=

∑︂
ℓ

Pℓuℓ(t) + P̄ℓsℓ(t) (A.4)

A.1.3 Multi-Objective Framework with More Than Two Objectives

When we have m ∈ N (m > 2) objectives in a multi-objective framework, we assign

each maximizing objective a non-positive weight and each minimizing objective a

non-negative weight. Denote η1, . . . ,ηm as the weights for objectives

OBJ1, . . . , OBJm. Let w1, . . . , wm be the weight of penalties for violating (soft)

fairness constraints. If we set one of wk, k ∈ [m] to be positive infinity, then we have

a hard fairness constraint. The soft-constraint multi-objective fluid optimization

problem is as follows:

min
(U,S),ξ∈F

OBJMulti :=
m∑︂

k=1
ηkOBJk +

(︄
m∑︂

k=1
ηkwk

)︄⊤ ∫︂ T

t=0
ξ(t)dt (A.5)
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s.t. (2.2) ∼ (2.5), (2.7), (2.12) (A.6)

In liver transplantation, reducing (pre-transplant, post-transplant, and total)

patient deaths and maximizing QALY are well-accepted objectives. However, these

transplantation objectives are not often aligned. When using the multi-objective

formulation, it is important to adjust the scale accordingly, which entails estimating

the QALY equivalent of saving sick patients from dying. Moreover, this formulation

allows us to incorporate input from the transplantation community in choosing the

weight parameters.

A.2 Extensions to the Fluid Models in Section 2.3

This section discusses extensions to the fluid optimization problems we studied in

the main texts. Our fluid model is generic and compatible with various extensions.

A.2.1 Probability of Getting Transplants and Alternative Fairness For-

mulation

In Sections 2.3 and 2.4, we adopt the max-min fairness concept from Rawls, 1999

and enforce fairness by lower-bounding the probabilities of getting a transplant

(before leaving the queue) for patients from different groups. Our fluid limit

decomposition method works as well with alternative fairness formulations in Zenios

et al., 2000b based on different fairness notions (e.g. envy-freeness). More generally,

our fluid decomposition method works for any fairness constraints that are linear in

(U(t), S(t)) and x(t), or any fairness objective function that is polynomial in

(U(t), S(t)) and x(t).
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Generally speaking, the choices of fairness concepts (e.g. max-min, envy-free, etc.)

depend on how well they suit the problem context. Some fairness concepts may not

be of the first-order importance in our liver transplantation contexts: for example,

an adult patient may not mind if a child gets a liver before she does, as long as she

knows that she has a good chance of getting a satisfactory liver offer for transplant

before too long. Thus, max-min fairness may be more appropriate in liver allocation.

We confirmed this conjecture through conversations with transplant surgeons: The

key fairness concern is a reasonable chance of getting a transplant for EVERY

candidate group in liver allocation. Thus, we choose the max-min fairness notion

and choose linear soft/hard constraints to incorporate fairness on a group level.

Another commonly used fairness formulation is the cumulative max-min fairness.

Specifically, we may use the following constraints instead of (2.6):

∫︂ T

t=0

∑︂
ℓ

uℓ(t) +
∑︂

ℓ

Zvℓ(t) ≥ ΘλT.

In the interior case, the optimal solution to the original fluid optimization problem

(2.1) ∼ (2.7) is equivalent to:

min
(U,S),ξ∈F

∫︂ T

t=0
d⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

Pℓuℓ(t) + P̄ℓsℓ(t)
)︄

(A.7)

s.t. uℓ(t), sℓ(t) ≥ 0 ∀ℓ, t ∈ [0, T ] (A.8)

1I·Juℓ(t) + 1I2×J2sℓ(t) ≤ µℓ(t) ∀ℓ, t ∈ [0, T ] (A.9)

1I2·J2sℓ(t) ≤ µ̄ℓ(t) ∀ℓ, t ∈ [0, T ] (A.10)∫︂ T

t=0

∑︂
ℓ

uℓ(t) +
∑︂

ℓ

Zvℓ(t) ≥ ΘλT (A.11)

142



Appendix A. Appendix for Chapter 2

Because (A.11) requires the cumulative livers allocated to each patient class to be

greater than some predefined proportions, we cannot directly decompose the fluid

optimization problem to greedy decision rules. Nevertheless, the transformed fluid

optimization problem (A.7) ∼ (A.11) contains only one linking constraint (A.11)

while the others are standard nonnegative and capacity constraints. Moreover, we

can still find a boundary case allocation policy by adding (2.26) to the constraints.

We concentrate on the interior case in this paper, yet it is likely in some special

scenarios in the boundary case, (A.7) ∼ (A.11) plus (2.26) gives an optimal

solution to the original fluid optimization problem (2.1) ∼ (2.7). The same analysis

applies to alternative transplantation objectives.

The cumulative max-min fairness constraint formulation is indeed practical, mainly

because most organizations periodically review system performance on efficiency

and fairness. Given the same fairness levels, solutions satisfying our stricter fairness

constraints automatically meet the cumulative fairness requirement. Moreover, when

the review period in the cumulative constraint is small enough, our fairness

definition becomes very close to the cumulative fairness constraint.

In any case, the objective values obtained under our any-t fairness formulation are

lower bounds for maximization problems or upper bounds for minimization

problems. Specifically, we showed the benefit of wider use of SLT under the “sickest

first” allocation rules by comparing “all-split, sickest first” with “few split, sickest

first”, an approximation of the current OPTN policy. Moreover, “optimal split,

optimal allocation” and “all split, optimal allocation” consistently outperform

“no-split” policies. Particularly, we showed that the “all-split, optimal allocation”
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policy is optimal given only 10% livers are splittable. And ‘all-split, optimal

allocation” under stricter fairness constraints performs better than “no-split”

policies with no fairness constraints.

Our fairness formulation is intuitive and patient-centered, as it implies that the

timing within a review period at which a candidate arrives to the waitlist should not

affect their minimum probability of getting a transplant. Although one may think it

can be a strict fairness requirement, it is very applicable. Figures 2.3 and 2.4 show

that our stricter fairness criteria can be met with a small PoF through broader SLT

use and optimally allocating organs to recipients. Moreover, one can choose the

proper parameter for the fairness notion: Enforcing a 68% fairness with our

definition is not necessarily stricter than maintaining a 75% fairness with the

cumulative fairness level.

A.2.2 Patient Strategic Behaviors: Multiple Listing

We did not explicitly consider patient strategic behaviors in the base formulation,

such as multiple listing and endogenous accept/reject decisions in our baseline

model. Below, we show that modifying the patient arrival parameters to address

multiple listing suffices. Moreover, we can slightly modify our fluid models to

incorporate endogenous patient choices as functions of our allocation policy.

Multiple listing (also known as Multi-listing) refers to the same transplant candidate

listing themselves at multiple TCs across different geographical locations, in the

hope that they could get a transplant earlier at one of these TCs when a local donor

liver becomes available. In our fluid model, we assumed that there is no
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multi-listing, i.e., When allowing multi-listing, there are two cases: In the first case,

a patient multi-listed at multiple TCs, but we would categorize him into the same

patient group in any one of their listed TC. In this case, it makes no difference

whether this patient is multi-listed or not in the fluid model, as this patient belongs

to the same patient group. In the second case, a patient may have listed themselves

at two TCs and may belong to two patient groups simultaneously. We argue that

this case can be fully captured by our fluid model as well, because our fluid model

assumes that all patient queues are non-empty, and we do not differentiate patients

within the same patient group. Our parameter estimates may change when we

factor multi-listing into our model to avoid double counting. That being said, for

individual candidates, by multi-listing their chances of getting a transplant earlier

increase (as they get more options); from the central planner’s perspective, exactly

who in the patient group gets the liver is not a first-order concern and re-estimation

of parameters are needed to capture the expected percentages of multi-listing.

A.2.3 Patient Strategic Behaviors: Endogenous Accept/Reject Decision

A.2.3.1 Related Work.

Transplant candidates’ accept/reject decisions on liver offers depend on several

factors: their health conditions (e.g. they may need an immediate transplant to

sustain life), the suitability of the donor liver (e.g. size and blood/tissue type

matching), the cold ischemia time (i.e. time elapsed since harvesting the liver from

its deceased donor, the shorter the better), the quality of the liver (e.g. young,

healthy donors died from accidents are usually preferred), and the anticipation of

future offers (e.g. they may choose to wait for a better offer).
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In the literature, researchers have studied patient strategic decisions using discrete,

infinite-horizon Markov decision processes (MDPs). For example, Alagoz et al.,

2007b modeled patient accept/decline decision using an MDP and summarized

patient decisions based on a) the patient’s current and likely future health

conditions, b) the current liver offer, and c) the patient’s current and future

prospects for organ offers. Alagoz et al., 2007a proceeded with structural analysis

and Sandıkçı et al., 2008 further found that having a more transparent waiting list

helps candidates make better accept/reject decisions. Sandıkçı et al., 2013 formed a

partially observable Markov decision process (POMDP) for each candidate, as

patient future offer prospects could only be estimated based on aggregated

information about the waitlists. In Subsection 2.5.3, we also briefly discussed related

papers using game-theoretic analysis, reduced models, and simulation-based

structural models. None of the existing papers solves the analytical, dynamic, and

transient optimal organ allocation problem in the presence of patient strategic

accept/reject decisions.

While patients’ anticipation of future organ offers may be modeled analytically,

rigorous empirical studies are needed to investigate whether candidates’

accept/reject decisions are truly endogenous and how patients respond to various

organ allocation policies.

A.2.3.2 Proof for Subsection 2.5.3.

Below we show how we can apply the fluid decomposition technique to a case where

P and P̄ are functions of (U(t), S(t)), i.e., P(U(t), S(t)) and P̄(U, S). Fluid
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dynamics equation (2.7) becomes

ẋ(t) = λ−
∑︂

ℓ

Pℓ(U(t), S(t))uℓ(t)− P̄ℓ(U(t), S(t))sℓ(t) + Ψx(t) ∀t (A.12)

(2.18) becomes

F (U(τ), S(τ)) := λ−
∑︂

ℓ

(︂
Pℓ(U(t), S(t))uℓ(τ) + P̄ℓ(U(t), S(t))sℓ(τ)

)︂
. (A.13)

Note that (2.17) holds regardless of the explicit form of F (U(τ), S(τ)). Also, (2.22)

∼ (2.24) all hold under (A.13) except that P and P̄ are replaced with the general

P(U(t), S(t)) and P̄(U(t), S(t)). Therefore, we can replace Proposition 3 with the

following Proposition A.2.1:

Proposition A.2.1. When Ψ is non-singular and replacing (2.7) with (A.13),

U NP DW T
t and U QALY

t can be written as

U NPDWT
t = d⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

Pℓ(U(t), S(t))uℓ(t) + P̄ℓ(U(t), S(t))sℓ(t)
)︄

(A.14)

U QALY
t = −q⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

Pℓ(U(t), S(t))uℓ(t) + P̄ℓ(U(t), S(t))sℓ(t)
)︄

(A.15)

+
∑︂

ℓ

OℓPℓ(U(t), S(t))uℓ(t) + ŌℓP̄ℓ(U(t), S(t))sℓ(t)

Proposition A.2.1 shows that the fluid decomposition technique applies to a fluid

model with any integrable functions P(U(t), S(t)) and P̄(U(t), S(t)). This result is

powerful, as we are able to remove the differential constraints and reduce the fluid
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optimization problem over a continuous time horizon to simpler math programs (not

necessarily linear programs, given a general P ̸∈ P̄) to solve optimal decision rules

with the presence of endogenous and strategic patient choices. Corollary A.2.1

illustrates a case where P(U(t), S(t)) and P̄(U(t), S(t)) are linear in (U(t), S(t)).

Corollary A.2.1. If Pℓ(U(t), S(t)) = p0 + p1 · uℓ(t) and

P̄ℓ(U(t), S(t)) = p̄0 + p̄1 · sℓ(t), U NP DW T
t and U QALY

t are quadratic programs,

more specifically

U NPDWT
t = d⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

(p0 + p1 · uℓ(t))uℓ(t) + (p̄0 + p̄1 · sℓ(t))sℓ(t)
)︄

(A.16)

U QALY
t = −q⊤ (exp((T − t)Ψ)− I) Ψ−1

(︄∑︂
ℓ

(p0 + p1 · uℓ(t))uℓ(t) + (p̄0 + p̄1 · sℓ(t))sℓ(t)
)︄

(A.17)

+
∑︂

ℓ

Oℓ(p0 + p1 · uℓ(t))uℓ(t) + Ōℓ(p̄0 + p̄1 · sℓ(t))sℓ(t)

Corollary A.2.1 is obtained by directly applying Proposition A.2.1. We can also

easily arrive at the conclusion that if P(U(t), S(t)) and P̄(U(t), S(t)) are

polynomials of degree n1 and n2 respectively, then U NP DW T
t and U QALY

t are math

programs with polynomial objective functions of degree n1 + 1 and n2 + 1,

respectively.

Notably, our fluid decomposition technique removes (2.7), placing the term in (2.7)

that is independent of x and ẋ, i.e., F (·), into the decomposed math programs’

objective functions. If F (·) is a black-box mapping or a more complex form, solving
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the decomposed math programs may require advanced optimization methods and

techniques well beyond the scope of this paper.

We note that, we do not solve for the exact endogenous form of patients’ strategic

accept/reject decisions. Our work is complementary to existing work which either

formulates the patient MDP accept/reject decisions (Alagoz et al., 2007a) for

dynamic decision making or studies the system equilibria (Tunç et al., 2022) for

steady-state analysis. In other words, these papers propose the exact forms of

P(U(t), S(t)) and P̄(U(t), S(t)); while our fluid decomposition technique can

evaluate policy outcomes for any such forms as long as F (·) is an integrable function.

A.2.4 Sequential Organ Offering and Provisional Offers

In practice, cadaveric whole livers are offered to waitlisted candidates sequentially.

Below we show that sequential liver offering can be easily factored into the fluid

model. Suppose a type-ℓ liver is offered to n patients of type ij and the liver is

eventually accepted. Each ij-patient’s decision is independent of others and with

probability πℓ
ij, they accept a type-ℓ whole liver offer. Given these notations, we

have

Pℓ
ij = 1− (1− πℓ

ij)n (A.18)

For split livers offered sequentially to n1 type-ij candidates and n2 type-i′j′

candidates. Each ij-patient’s decision is independent of others and with probability

π̄ℓ
ij, they accept a type-ℓ split liver offer. There are four possible cases:

• Case 1: All patients reject type-ℓ split liver offers. Pr(Case 1) =
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(1− π̄ℓ
ij)n1(1− π̄ℓ

i′j′)n2 .

• Case 2: At least one type-ij patient accepts a type-ℓ split liver while all

type-i′j′ patients reject. Pr(Case 2) =
[︂
1− (1− π̄ℓ

ij)n1
]︂

(1− π̄ℓ
i′j′)n2 .

• Case 3: At least one type-i′j′ patient accepts a type-ℓ split liver while all

type-ij patients reject. Pr(Case 3) = (1− π̄ℓ
ij)n1

[︂
1− (1− π̄ℓ

i′j′)n2
]︂
.

• Case 4: Both type-ℓ split livers are accepted. Pr(Case 4) = 1−∑︁3
i=1 Pr(Case

i).

We define P̄ℓ
ij,i′j′ as the probability of at least one partial liver is accepted, i.e.,

P̄ℓ
ij,i′j′ =1− (1− π̄ℓ

ij)n1(1− π̄ℓ
i′j′)n2 (A.19)

In Case 1, the liver is usually wasted. In Cases 2 and 3, the liver is likely

transplanted to the accepting candidate, using a reduced-size liver transplantation

(RLT) technique if necessary.

In some scenarios, a provisional offer (i.e. an organ offer before other patients

assigned previously declining the same organ), may be extended in order to reduce

organ wastage. We can incorporate provisional offers in our fluid model by choosing

the corresponding nP , nP
1 and nP

2 that capture the number of total organ offers

including provisional offers. No further changes are needed, because eventually, the

organ is offered sequentially.
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A.2.5 Broader Geographic Sharing

As UNOS is moving toward a more continuous allocation scoring system (Bertsimas

et al., 2020; Kasiske et al., 2020), one important extension to the fluid model is

enabling geographic sharing. We can easily incorporate geographic sharing by

setting liver and patient categories that include larger geographical regions within

the same group. Note that we cannot guarantee a strictly continuous, boundaryless

sharing, as the liver and patient types are categorical by nature in the fluid model;

but we can be very close to a continuous one by carefully choosing the parameters

that define different liver and patient categories.

A.2.6 Retransplantation

The retransplantation rate is typically below 10% in liver

transplantation (Marudanayagam et al., 2010). Our base model assumes that all

patients who accept whole or partial livers leave the waitlist system, regardless of the

surgery outcomes: The base model does not explicitly include retransplantation in

our model formulation as the retransplantation rate is below 10% (Marudanayagam

et al., 2010). Nevertheless, we can easily incorporate retransplantation in our fluid

model. The only change is to add Tℓuℓ(t) + T̄sℓ(t) on the right hand side of (2.7),

where Tℓ ∈ RI·J and T̄ℓ ∈ RI2·J2 are the retransplantation probability matrices for

WLT and SLT, respectively. In other words, we replace (2.7) with (A.20):

ẋ(t) = λ−
∑︂

ℓ

Pℓuℓ(t)− P̄ℓsℓ(t) + Ψx(t) + Tℓuℓ(t) + T̄sℓ(t) ∀t (A.20)
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A.2.7 Medical Learning and SLT Expertise

Despite SLT’s potential to relieve the acute shortage of donated livers in the US, it

is underused in part because few surgeons in the US have learned to perform SLT.

One barrier for young surgeons to acquire the skills to perform SLT is the need to

perform actual SLT surgeries to become proficient, and the lower success rate such

early surgeries have. Further, because SLT is a delicate operation, even with

practice, some medical teams may still have only mixed success.

Based on the fluid model and the fluid limit decomposition method described in this

work, Tang, Li, et al., 2021 study the donated liver allocation problem in a setting

where surgeons with different potential abilities may learn SLT, becoming skilled

over time. The authors formulate a multi-armed bandit (MAB) model, in which

learning curves are embedded in the reward functions, to address the trade-off

between discovering and developing talents (exploration) and utilizing a defined

group of already-skilled surgeons (exploitation). To solve their MAB learning model,

Tang, Li, et al., 2021 propose the L-UCB, FL-UCB, and QFL-UCB algorithms, all

variants of the upper confidence bound (UCB) algorithm, enhanced with additional

features such as learning, fairness, queueing dynamics (decomposed fluid limits),

and arm dependence. They prove that the regrets of the proposed algorithms, that

is, the loss in total rewards due to lack of information about surgeons’ aptitudes, are

bounded by O(log t). They also show that the proposed algorithms have superior

numerical performance compared to standard bandit algorithms in settings where

learning exists. Tang, Li, et al., 2021 provide insights into potential strategies to

increase the proliferation of SLT and other technically-difficult medical procedures.
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A.3 Sufficient Conditions for the Interior Case

The patient fluid queue lengths in our SLT context are likely always nonempty for

several reasons. First, the national liver waitlists are overloaded. Second, the fluid

model is a first-order approximation based on FLLN. It is most suitable for strategic

planning on a high level with broad patient classes. That entails the proper

estimation of model parameters and careful choices of granularity levels.

A sufficient condition for our original fluid optimization problem to stay in the

interior of the state space is

λij(t) ≥
∑︂
ℓ∈L

⎛⎝P ℓ
ijū

ℓ
ij(t) +

∑︂
i′,j′

(︂
P̄ ℓ

ij,i′j′ s̄ℓ
ij,i′j′(t) + P̄ ℓ

i′j′,ij s̄
ℓ
i′j′,ij(t)

)︂⎞⎠ (A.21)

In (A.21), ū1:L
ij (t), s̄1:L

ij,i′j′(t) and s̄1:L
i′j′,ij(t) are solved for each i ∈ I and j ∈ J to the

following optimization problem for all t ∈ T \ {T}, i, and j:

max
(U(t),S(t))

∑︂
ℓ∈L

⎛⎝P ℓ
ijū

ℓ
ij(t) +

∑︂
i′,j′

(︂
P̄ ℓ

ij,i′j′ s̄ℓ
ij,i′j′(t) + P̄ ℓ

i′j′,ij s̄
ℓ
i′j′,ij(t)

)︂⎞⎠ (A.22)

ūℓ(t), s̄ℓ(t) ≥ 0 ∀ℓ, t ∈ [0, T ] (A.23)

1I·J ūℓ(t) + 1I2×J2 s̄ℓ(t) ≤ µℓ(t) ∀ℓ, t ∈ [0, T ] (A.24)

1I2·J2 s̄ℓ(t) ≤ µ̄ℓ(t) ∀ℓ, t ∈ [0, T ] (A.25)∑︂
ℓ

ūℓ(t) +
∑︂

ℓ

Zs̄ℓ(t) ≥ Θλ(t) ∀t (A.26)

The sufficient condition (A.21) says that the maximum number successful surgeries

that can be performed for any wait list cannot meet the incoming demand, subject

to capacity and fairness constraints.
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A.4 Application of Our Results to WLT and Kidney Alloca-

tion

A.4.1 Explicit Dynamic Indexes for the Optimal Policy in LT

We first note that if we set µ̄ℓ = 0 for all ℓ ∈ L in (2.5), then sℓ = 0,∀ℓ ∈ L and

therefore the fluid optimization problem (2.1) ∼ (2.7) reduces to the fluid

optimization problem (Pκ) in Akan et al., 2012 with κ = 0. Thus our results yield

an exact and explicit solution for solving (Pκ) with κ = 0 in Akan et al., 2012 in the

interior case. In a multi-objective framework, i.e., κ ∈ [0, 1] in the optimization

problem Pκ of Akan et al., 2012, solving (Pκ) is equivalent to solving the reduced

LP (2.34) ∼ (2.35) with µ̄ℓ = 0,∀ℓ.

Akan et al., 2012 derived the dual control problem of (2.1) ∼ (2.7) and pointed out

that the optimal policy could be characterized by the dual solution, i.e., the shadow

prices. From there, they showed that the optimal policy of the primal problems are

dynamic index policies, maximizing indexes that are functions of the shadow prices.

However, the dual control problems which give the indexes are neither smaller or

easier than the primal ones, as they contain ordinary differential inequalities in the

constraints in addition to linking constraints. Moreover, to obtain the dual

solutions, one needs to search through the entire primal dual spaces, for the interior

case and the boundary case. Our result show that in the interior of the primal

problem’s state space, the optimal allocation policy greedily optimizes over

decomposed objectives (the dynamic indexes), which compactly summarize the

contribution of each action to the overall objective value.
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A.4.2 Structural Properties and Explicit Solutions to Fluid Models in

Kidney Allocation

Using our results, the optimal policy of the fluid model that Zenios et al., 2000b

used (see their Equation (19)) to describe the kidney allocation system can likewise

be decomposed and reduced to standard quadratic programs (QPs). Equity

objectives in their work are incorporated into the objective function, instead of

appearing in the constraints: This formulation is equivalent to modifying our

soft-constraint single-efficiency objective (QALY) with Θ = 0.

We show that there exists a closed-form expression for their objective (19) and using

our fluid-limit decomposition technique, we can find the optimal solution of the

proposed fluid model with objective (19) in the interior of the state space.

Specifically, we can decompose and reduce the complex fluid control problem to

standard QPs, which are solved in polynomial time when the QPs are convex. The

optimal policy consists of decision rules that optimize over explicit and

finite-dimensional dynamic indexes for each t ∈ T , and are easy to describe and

implement. Moreover, we find analytically tractable optimal decision rules and

optimal policies without assumptions or approximations in the interior case.

The quadratic term in Zenios et al., 2000b’s Equation (19) results from their choice

of fairness objective. Generally speaking, the choices of fairness concepts (e.g.

max-min, envy-free, etc.) should best fit the problem context: The formulation used

to mathematically translate these concepts should consider the accuracy in

describing the concept, elegance in design/formulation, and computational efficiency.
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Below we show the proof. In notation consistent with our previous definitions and

compatible with theirs, solving the QP below gives the optimal decision rules at

each t ∈ T :

max
U(t)

∑︂
ℓ

γ⊤D̃uℓ(t)− βh⊤ (exp((T − t)Ψ)− I) Ψ−1Pℓuℓ(t)

− (1− β)
∫︂ T

t

[︂
exp((τ − t)Ψ)(λ−Pℓuℓ(t))

]︂⊤
R
(︂
exp((τ − t)Ψ)(λ−Pℓuℓ(t))

)︂
dτ

− (1− β) [exp[tΨ]x(0)]⊤ R (exp((T − t)Ψ)− I) Ψ−1(λ−Pℓuℓ)

− (1− β)
[︂
(exp((T − t)Ψ)− I) Ψ−1(λ−Pℓuℓ)

]︂⊤
R exp[tΨ]x(0)

(A.27)

s.t. (2.3), (2.4), (2.7), (2.26) (A.28)

where h ∈ R|I|·|J | is defined as the vector of QALY scores assigned to patient groups,

β ∈ [0, 1] is the weight of the efficiency objective, and γ ∈ R|I||J | is the Lagrange

multiplier vector, and R is an approximated parameter measuring waiting times at

the equilibrium allocation rates under the FCFS policy used by Zenios et al., 2000b.

Notice that the second line in (A.27) contains a matrix integral; this can be

transformed to closed-form expressions through matrix calculus. Before we dive into

the derivation, recall that the matrix Ψ is based on real data, therefore Ψ is

diagonalizable with probability 1; and it is indeed diagonalizable in our estimation

using UNOS/OPTN data from 2009 - 2019. Consistent with our discussion on Ψ’s

non-singularity, in the case that Ψ is not diagonalizable (which occurs with

probability 0), we can add a small enough noise matrix/perturbation

ϵ ∈ RIJ×IJ −→ 0 so that (Ψ + ϵ) is diagonalizable and limϵ−→0 Ψ + ϵ = Ψ.

Summarizing above, we can safely assume that Ψ is diagonalizable, i.e., there exists
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a diagonal matrix D ∈ RIJ×IJ and an invertible matrix V, s.t. Ψ = V−1DV. Note

that our proof holds even if Ψ is not diagonalizable; we can use Jordan matrices

instead of diagonal D matrices.

Using the definition of the matrix exponential, we have

etΨ =
∞∑︂

k=0

1
k! (tΨ)k

=
∞∑︂

k=0

1
k!
(︂
tV −1DV

)︂k

=
∞∑︂

k=0

1
k!V

−1 (tD)k V

= V −1
(︄ ∞∑︂

k=0

1
k! (tD)k

)︄
V

= V −1etDV,

Thus, we know etΨ is also diagonalizable. Therefore, assuming β ∈ [0, 1) (the

closed-form expression for (A.27) is trivial when β = 1), we can equivalently write

the second line in (A.27) as − 1
1−β

∑︁
ℓ Aℓ where Aℓ is defined as follows

Aℓ =
∫︂ T

t

[︂
exp((τ − t)Ψ)(λ−Pℓuℓ(t))

]︂⊤
R
(︂
exp((τ − t)Ψ)(λ−Pℓuℓ(t))

)︂
dτ

=
∫︂ T

t

[︂
(V−1)⊤ exp((τ − t)D)V(λ−Pℓuℓ(t))

]︂⊤
R
(︂
V−1 exp((τ − t)D)V(λ−Pℓuℓ(t))

)︂
dτ

= (λ−Pℓuℓ(t))⊤
(︄∫︂ T

t
V⊤ exp((τ − t)D)(V−1)⊤RV−1 exp((τ − t)D)Vdτ

)︄
(λ−Pℓuℓ(t))

Now, we look at the individual elements of Aℓ and show that we have closed-form

expressions for each Aij, i ∈ [I], j ∈ [J ]. For convenience, define

Bℓ =
∫︁ T

t V⊤ exp((τ − t)D)V−1RV−1 exp((τ − t)D)Vdτ . Denote D’s diagonal
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elements as the scalars dkk, where k ∈ {1, 2, . . . , I · J}:

Bℓ
ij =

∑︂
k∈[I],l∈[J ]

∫︂ T

t
(V⊤)ik exp((τ − t)dkk)

(︂
(V−1)⊤RV−1

)︂
kl

exp((τ − t)dll)(V)ljdτ

=
∑︂

k∈[I],l∈[J ]
(V⊤)ik

(︂
(V−1)⊤RV−1

)︂
kl

(V)lj

∫︂ T

t
exp((τ − t)dkk) exp((τ − t)dll)dτ

=
∑︂

k∈[I],l∈[J ]
(V⊤)ik

(︂
(V−1)⊤RV−1

)︂
kl

(V)lj

∫︂ T

t
exp((τ − t)[dkk + dll]dτ

=
∑︂

k∈[I],l∈[J ]
(V⊤)ik

(︂
(V−1)⊤RV−1

)︂
kl

(V)lj
1

dkk + dll

[exp((T − t)(dkk + dll))− 1]

From the above derivation, we have explicit closed-form expressions for all Bℓ
ij’s,

where i ∈ [I], j ∈ [J ]. Thus we can write Bℓ and Aℓ explicitly. Specifically,

Aℓ = −(1− β)(λ−Pℓuℓ(t))⊤Bℓ(λ−Pℓuℓ(t))

And line 2 in (A.27) can be written in closed-form as follows:

∑︂
ℓ∈L

Aℓ = −
∑︂
ℓ∈L

(1− β)(λ−Pℓuℓ(t))⊤Bℓ(λ−Pℓuℓ(t))

A.4.3 Exact Optimal Solution, Reduced Computational Complexity, and

Structural Properties

Not only are our solutions exact in the interior space, they also significantly reduce

computational complexity. The original fluid control problems have ODEs in the

constraints, and such constraints are by nature continuous. Akan et al., 2012 relied

on solving the the dual control which requires additional discretization of the dual

space for both the interior case and the boundary case.
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Besides loss in solution quality as a result of an additional discretization of the

continuous dual control problem, one needs to solve a huge discretized LP or

QP (Akan et al., 2012; Zenios et al., 2000b) with O(TN |I||J ||K|) variables and

O(TN |I||J ||K|) constraints for the decision rule at t ∈ T . While in our decomposed

LP, we only need to solve a small LP with O(|I||J ||K|) variables and constraints.

Note that in practice, O(|I||J ||K|) is less than 104 even under the most granular

classification, but TN can easily go up to O(106) scale. Thus, our decomposition

results reveal that the fluid model-optimal policy’s decision rules are solutions to

standard LPs—this finding significantly reduces the complexities of solving the fluid

control problem with ODEs in the constraints. Moreover, we can easily derive the

optimal decision rule at any t ∈ T in the interior of the state space, without the

need to discretize the continuous space.

Our decomposed optimal decision rules imply and corroborate the structural

properties found in Akan et al., 2012 (i.e. that the optimal policy contains decision

rules maximizing some dynamic indexes), and offers a simple and fast approach to

find the exact and explicit dynamic indexes without involving the dual control

problem. All monotonicity results found in the previous literature become even

more clear and straightforward, with our closed-form expressions for the dynamic

indexes (see Section A.7 in Appendix for detail). We also provide new insights, for

example, the convexity and piece-wise linearity of the dynamic index values as

functions of resource and fairness constraints. Our exact solutions via fluid limit

decomposition illuminate the full potential and inherent properties of the fluid

approximation and fluid model-based optimization in organ transplantation.
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A.5 Singular Patient Health Transition Matrix

When patient health transition matrix Ψ is estimated from real data numerically, Ψ

is non-singular with very high probability and with probability 1 with infinite

precision. Even if we get a singular Ψ, we can add an arbitrarily small

perturbation/error matrix to break the singularity, as described in Section 2.4.

For theoretical completeness, we show that even with a singular Ψ, we can still

remove the matrix integration and write the LP objectives (which are functions of

x(t), uℓ(t), and sℓ(t)) in closed form. The only task is to remove the integral of the

matrix exponential in the expression for x(t). When Ψ is singular, using the Jordan

form, we can rewrite it as

Ψ = V−1

⎛⎜⎜⎜⎜⎜⎜⎝
A 0

0 B

⎞⎟⎟⎟⎟⎟⎟⎠V

where B is non-singular, and A is strictly upper triangular. V is an invertible

matrix. Using the definition of the matrix exponential, we have

etΨ = V−1

⎛⎜⎜⎜⎜⎜⎜⎝
etA 0

0 etB

⎞⎟⎟⎟⎟⎟⎟⎠V

Applying Proposition 3 to the non-singular B, the integral of the matrix
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exponential above can be written as

∫︂ b

a
etΨdt = V−1

⎛⎜⎜⎜⎜⎜⎜⎝
∫︁ b

a etAdt 0

0
(︂
ebB − eaB

)︂
B−1

⎞⎟⎟⎟⎟⎟⎟⎠V

Denote A’s dimension as n (in our problem, Ψ is a square matrix and its n = I · J)

Since A is strictly upper triangular, thus An+k = 0, ∀k ∈ N ∪ {0}. Thus,
∫︁ T

0 etAdt

can be written in closed-form:

∫︂ T

0
etAdt = T

(︄
I + AT

2! + (AT )2

3! + · · ·+ (AT )n−1

n! + · · ·
)︄

= T

(︄
I + AT

2! + (AT )2

3! + · · ·+ (AT )n−1

n!

)︄

Therefore,

∫︂ b

a
etAdt = I(b− a) + b

(︄
Ab

2! + (Ab)2

3! + · · ·+ (Ab)n−1

n!

)︄
− a

(︄
Aa

2! + (Aa)2

3! + · · ·+ (Aa)n−1

n!

)︄

Summarizing above, even when Ψ is singular, we can still write the objectives of our

decomposed LP in closed form.

A.6 Proofs for Analytical Results in Section 2.4.5

A.6.1 Proof for Proposition 5

Proof. Recall that

µℓ(t) ∈ RI·J
+ , µ̄ℓ(t) ∈ [0,µℓ(t)],Θ ∈ [0, 1]I·J ,λ(t) ∈ RI·J

+ ,∀ℓ ∈ L, t ∈ T . The feasible

set of f(·) is convex. We first prove that
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gMulti
t (µℓ, µ̄ℓ,Θλ,λ, ℓ ∈ L) := max(U,S) U Multi

t is piece-wise linear concave in the

RHS (e.g. µℓ, µ̄ℓ,Θλ,λ, ℓ ∈ L). The proof follows the global sensitivity analysis

from Bertsimas and Tsitsiklis, 1997 (see their Section 5.2, Equation 5.2). According

to our fluid limit decomposition in the fully overloaded setting and the

exchangeability in integration dimensions (2.24), OBJMulti is a definite integral of

gMulti
t (µℓ, µ̄ℓ,Θλ,λ, ℓ ∈ L) from 0 to T . Concavity is preserved by integrals (Boyd &

Vandenberghe, 2004).

A.6.2 Proof for Corollary 2.5.1

Proof. According to Proposition 5, f(µ1, ...,µ|L|, µ̄1, . . . , µ̄|L|,Θλ,λ) is concave,

thus ∂f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,Θλ,λ)
∂µ

(the marginal benefit of one additional donor liver) is

monotonically non-increasing in µ, and ∂f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,Θλ,λ)
∂µ̄

(the marginal

benefit of one additional split-table donor liver) is monotonically non-increasing in

µ̄.

A.6.3 Proof for Corollary 2.5.2

Proof. First, because the larger Θ ≥ 0 is, the more restrictive (2.12) is, the smaller

the feasible set the LP (2.34) ∼ (2.35) has. As a result, the objective function value

(2.34) potentially decreases, thus f(µ1, ...,µ|L|, µ̄1, . . . , µ̄|L|,Θλ,λ) potentially goes

down when Θ increases. Therefore, PoF = 1− f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,Θλ,λ)
f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,0,λ) is

non-decreasing.

According to Proposition 5, f(µℓ, µ̄ℓ,Θ,λ) is concave. Because f(µℓ, µ̄ℓ, 0,λ) > 0 is

a fixed number, f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,Θλ,λ)
f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,0,λ) is concave, and

PoF = 1− f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,Θλ,λ)
f(µ1,...,µ|L|,µ̄1,...,µ̄|L|,0,λ) is convex.
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A.6.4 Proof for Proposition 4

Proof. First, we present two lemmas that will be useful in the proof of monotonicity

of the dynamic indices:

Lemma A.6.1. For a square matrix A and any t ∈ R++, detA

dt
= etAA.

Lemma A.6.2. If matrices A and B commute, i.e., AB = BA, then eA+B = eAeB.

Let IIJ,IJ/I denote the identity matrix of dimension IJ × IJ . Because

I(Ψ + I) = (Ψ + I)I and I−1 = I; thus I−1(Ψ + I) = (Ψ + I)I−1, and

(T − t)I−1(T − t)(Ψ+ I) = (T − t)(Ψ+ I)(T − t)I−1. According to Lemma A.6.2, we

have exp((T − t)Ψ) = exp((T − t)(Ψ+ I− I)) = exp((T − t)(Ψ+ I)) exp(−(T − t)I).

Given the two lemmas, for D(t):

dD(t)
dt

=
d
(︂
d⊤ (exp((T − t)Ψ)− I) Ψ−1∑︁

ℓ Pℓ
)︂

dt

=
d
(︂
d⊤ exp((T − t)Ψ)Ψ−1∑︁

ℓ Pℓ
)︂

dt

= d⊤
(︄

d (exp((T − t)Ψ))
dt

)︄
Ψ−1∑︂

ℓ

Pℓ

= d⊤ (− exp((T − t)Ψ)Ψ) Ψ−1∑︂
ℓ

Pℓ (apply Lemma A.6.1)

= −d⊤ exp((T − t)Ψ)
∑︂

ℓ

Pℓ

= −d⊤ exp((T − t)(Ψ + I− I))
∑︂

ℓ

Pℓ

= −d⊤ exp((T − t)(Ψ + I)− (T − t)I)
∑︂

ℓ

Pℓ
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= −d⊤ exp((T − t)(Ψ + I)) exp(−(T − t)I)
∑︂

ℓ

Pℓ (Apply Lemma A.6.2)

Let us look at exp((T − t)(Ψ + I)) in the last line above. Recall that Ψ’s diagonal

elements are in [−1, 0), while its nondiagonal elements are in [0, 1). Thus, all of

(Ψ + I)’s elements are in [0, 1). As a result, (Ψ + I)k ≥ 0 and [(T − t)(Ψ + I)]k ≥ 0

for any k ∈ N∗ and t ∈ [0, T ]. By definition,

exp((T − t)(Ψ + I)) =
∞∑︂

k=0
[(T − t)(Ψ + I)]k /k! ≥ 0

Since −(T − t)(I) is a diagonal matrix, thus exp(−(T − t)(I)) is also a diagonal

matrix and its diagonal elements are et−T > 0. Since d and Pℓ’s elements are

nonnegative, we have

dD(t)
dt

= −d⊤ exp((T − t)(Ψ + I)) exp(−(T − t)(I))
∑︂

ℓ

Pℓ ≤ 0

This tells us that D(t) is nonincreasing in t. Replace Pℓ with P̄ℓ, the same proof

goes through for D̄(t). Similarly, replace d above with (−q), we have Q(t) is

nondecreasing. Replacing d above with (−q) and Pℓ with P̄ℓ, we get Q̄(t)’s

non-decreasing proof.

In proving monotonicity we showed above that exp(aΨ) > 0 for any a ≥ 0. This also

implies that the NPDWT dynamic index is nonnegative:

U NPDWT
t := d⊤

{︄∫︂ T

t
exp[(τ − t)Ψ]dτ

}︄(︄∑︂
ℓ

Pℓuℓ(t) + P̄ℓsℓ(t)
)︄
≥ 0
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The first term in the QALY dynamic index is nonpositive:

max
U(t),S(t)

U QALY
t := −

∑︂
ℓ

q⊤
{︄∫︂ T

t
exp[(τ − t)Ψ]dτ

}︄(︄
Pℓuℓ(t) + P̄ℓsℓ(t)

)︄
≤ 0

Proposition 4 essentially tells us that as t increases, the absolute values of dynamic

indices’s coefficient vectors shrink. This suggests earlier allocation decisions have a

larger impacts in absolute value on the cumulative system objective value.

A.6.5 Proof for Proposition 6

Proof. Based on the explicit objective function of LP (2.34) ∼ (2.35), when

D̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Dℓ
i′′j′′(t)eIJ

i′′j′′ and

Q̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ + (H̄ℓ
ij + H̄ℓ

i′j′)P̄ ℓ
ij,i′j′eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Qℓ
i′′j′′(t)eIJ

i′′j′′ + Hℓ
i′′j′′P ℓ

i′′j′′eIJ
i′′j′′

hold, the coefficient of splitting ℓ and transplanting it to (ij, i′j′) dominates, thus

the objective value of a decision rule that allocates as many type-ℓ livers as possible

to a (ij, i′j′)-pair for SLT is higher than that of a decision rule allocates

more-than-necessary type-ℓ livers for WLT. Constraint (2.5) ensures that the

allocation does not exceed the splittable-liver capacity; this constraint is ordinary

and thus won’t affect the optimal splitting decisions. (2.6) prevents the allocation

from infringing the fairness guarantee; under certain choices of Θ, this could mean

forcing the decision rules to deviate from the optimal splitting decisions without

fairness constraints. (2.26) assures that the fluid limits to always stay non-negative

(i.e. never assign livers to empty fluid queues). This constraint is not active in the

interior case; for completeness, we include it here and it serves as a constraint for

the boundary case heuristics.
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A.6.6 Proof for Corollary 2.5.3

Proof. When for all ℓ ∈ L, ∃ i, i′ ∈ I, j, j′ ∈ J , s.t. (a)

D̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Dℓ
i′′j′′(t)eIJ

i′′j′′ , and b)

Q̄ℓ
ij,i′j′(t)eIJ×IJ

ij,i′j′ + (H̄ℓ
ij + H̄ℓ

i′j′)P̄ ℓ
ij,i′j′eIJ×IJ

ij,i′j′ ≥ maxi′′,j′′ Qℓ
i′′j′′(t)eIJ

i′′j′′ + Hℓ
i′′j′′P ℓ

i′′j′′eIJ
i′′j′′

hold, apply Proposition 6: The coefficient of splitting ℓ and transplanting it to their

corresponding (ij, i′j′) dominates. Thus, for every ℓ, the objective value of a decision

rule that allocates as many type-ℓ livers as possible to their corresponding

(ij, i′j′)-pair for SLT is higher than that of a decision rule allocates

more-than-necessary type-ℓ livers for WLT. Of course, the decision rules are subject

to the other constraints and may have to deviate from always splitting at some t’s.

Please refer to the proof for Proposition 6 for discussions on the influences of

constraints.

A.7 Analytical Results Analogous to Propositions 1 and 2

from Akan et al. 2012

With our closed-form objective functions and constraints, we can solve the

decomposed LPs with standard solvers and perform sensitivity analysis on the

optimal decision rules using the explicit LPs. For example, if we want to study the

impact of increasing dℓ
ij or Hℓ

ij on our optimal decision: when we increase/decrease

the parameters just a little bit, the base of the solution may not change; however,

our optimal solution and the base may change when we further increase/decrease

the parameters to some point. Below we present two corollaries analogous to

Propositions 1 and 2 from-Akan et al., 2012 but in our fluid formulation with SLT
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and fairness. Note that we only demonstrate a subset of sufficient conditions, more

general results are possible.

The UNOS policies usually give precedence to the sickest patients. Corollary A.7.1

characterizes sufficient scenarios where such a strategy is optimal in minimizing

patient deaths on the waitlists. Corollary A.7.1 is not a direct translation or

extention of Proposition 1 from Akan et al., 2012 in our context, due to the

difference in formulation of the transition matrix Ψ, but it provides comparable and

broader insights.

Corollary A.7.1. Suppose that P ℓ
ij = P ℓ

i′j = P ℓ
j for all i, i′, j, ℓ for WLT,

P̄ ℓ
ij,i′j′ = P̄ ℓ

i′′j,i′j′ = P̄ ℓ
j,i′j′ , and P̄ ℓ

i′j′,ij = P̄ ℓ
i′j′,i′′j = P̄ ℓ

i′j′,j for SLT, ∀i, i′, i′′, j, j′, ℓ. In an

optimal solution to (2.1) ∼ (2.7), within the same static group, patients’ relative

priorities are set in the order of their death rates d, i.e., giving the priority to the

sickest patients (who are mostly likely to die in the next 90 days), provided that

dij > di(j−1),∀i, j = {2, . . . , J} and y := d⊤ (exp((T − t)Ψ)− I)Ψ−1 ∈ R1×IJ

satisfies yij > yi(j−1),∀i, j = {2, . . . , J}, ∀t ∈ (0, T − t].

The proof of Corollary A.7.1 uses the decomposed dynamic indexes. The high-level

idea is that y summarizes the total reduced deaths (including the immediate

removals and the reduced future deaths as a result of shortened waitlists) from t to

T per unit of liver allocated to each of the patient classes.

Proof. Because dij > di(j−1),∀i, j = {2, . . . , J} and yij > yi(j−1),∀i, j = {2, . . . , J},

∀t ∈ (0, T − t] and the assumptions on P and P̄,

C := d⊤ (exp((T − t)Ψ)− I)Ψ−1P ∈ R1×IJ and
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C̄ := d⊤ (exp((T − t)Ψ)− I)Ψ−1P̄ ∈ R1×IJ satisfy: Cij > Ci(j−1),

C̄ij,i′j′ > Ci(j−1),i′j′ , and C̄i′j′,ij > Ci′j′,i(j−1), ∀i, i′, j, j′, t and j ∈ {2, . . . , J}.

Therefore, the marginal benefit or the weight of class ij is larger than that of

patient class i(j − 1), for all i, j ∈ {2, . . . , J}; the optimal solution will prioritize

those patient classes with larger marginal benefit, equivalently, the sickest under the

premises of Corollary A.7.1.

The UNOS policies sometimes prioritize certain static patient groups when other

conditions are the same, e.g. children over adults. Corollary A.7.2 characterize when

such policies are optimal and generalizes Proposition 2 from Akan et al., 2012.

Corollary A.7.2. Suppose that there exists a permutation rℓ(·) of I such that

qℓ
rℓ(1)j ≥ qℓ

rℓ(2)j ≥ · · · ≥ qr(I)ℓj for all j ∈ J , ℓ ∈ L, and for each ℓ ∈ L, and a subset of

the following conditions holds

Hℓ
rℓ(1)j ≥ Hℓ

rℓ(2)j ≥ · · · ≥ Hℓ
rℓ(I)j, ∀j ∈ J (A.29)

H̄ℓ
rℓ(1)j,i′j′ ≥ H̄ℓ

rℓ(2)j,i′j′ ≥ · · · ≥ H̄ℓ
rℓ(I)j,i′j′ , ∀j, j′ ∈ J , i′ ∈ I (A.30)

H̄ℓ
i′j′,rℓ(1)j ≥ H̄ℓ

i′j′,rℓ(2)j ≥ · · · ≥ H̄ℓ
i′j′,rℓ(I)j, ∀j, j′ ∈ J , i′ ∈ I (A.31)

P ℓ
rℓ(1)j ≥ P ℓ

rℓ(2)j ≥ · · · ≥ P ℓ
rℓ(I)j, ∀j ∈ J (A.32)

P̄ ℓ
rℓ(1)j,i′j′ ≥ P̄ ℓ

rℓ(2)j,i′j′ ≥ · · · ≥ P̄ ℓ
rℓ(I)j,i′j′ , ∀j, j′ ∈ J , i′ ∈ I (A.33)

P̄ ℓ
i′j′,rℓ(1)j ≥ P̄ ℓ

i′j′,rℓ(2)j ≥ · · · ≥ P̄ ℓ
i′j′,rℓ(I)j, ∀j, j′ ∈ J , i′ ∈ I (A.34)

a. If (A.29) and (A.32) hold, Hℓ
rℓ(1)j > max{H̄ℓ

rℓ(1)j,i′j′ , H̄ℓ
i′j′,rℓ(1)j}, and

P ℓ
rℓ(1)j > max{P̄ ℓ

rℓ(1)j,i′j′ , P̄ ℓ
i′j′,rℓ(1)j}, an optimal solution to (2.8) ∼ (2.9) only

assigns livers of type ℓ to static patient type rℓ(1) = argmaxi Hℓ
ij if xij > 0 for
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all i, j and t ∈ T .

b. If (A.30) and (A.33) hold, H̄ℓ
rℓ(1)j,i′j′ > max{Hℓ

rℓ(1)j, H̄ℓ
i′j′,rℓ(1)j}, and

P̄ ℓ
rℓ(1)j,i′j′ > max{P ℓ

rℓ(1)j, P̄ ℓ
i′j′,rℓ(1)j}, an optimal solution to (2.8) ∼ (2.9) only

assigns partial livers of type ℓ to static patient type rℓ(1) = argmaxi H̄ℓ
ij as

primary recipients if xij > 0 ∀i, j and t ∈ T .

c. If (A.31) and (A.34) hold, H̄ℓ
i′j′,rℓ(1)j > max{H̄ℓ

rℓ(1)j,i′j′ , Hℓ
rℓ(1)j}, and

P̄ ℓ
i′j′,rℓ(1)j > max{P̄ ℓ

rℓ(1)j,i′j′ , P ℓ
rℓ(1)j}, an optimal solution to (2.8) ∼ (2.9) only

assigns partial livers of type ℓ to static patient type rℓ(1) = argmaxi H̄ℓ
ij as

secondary recipients if xij > 0 ∀i, j and t ∈ T .

The proof is straight-forward, because between static classes there is no transition.

Therefore, we can ignore Ψ in (2.27) ∼ (2.28) and based on the explicit LP

formulation, draw the monotonicity conclusions directly.

A.8 Current SLT Practice

For completeness, we describe the practice of SLT in the US and more specifically,

at the world-renowned transplant center where two of the authors work.

A.8.1 Two Splitting Methods for SLT

There are two splitting methods and a liver can only be split once, according to the

OPTN white paper (OPTN & UNOS, 2016):

• An adult-child split. In this splitting method, a small child or very

small-statured adult receives the smaller left lobe, and an adult receives the
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extended right lobe.

• An adult-adult (or adult-big child) split where an adult receives the right lobe,

and an adult (or big child) receives the left lobe.

Current SLT practice indicates that the adult-child split is consistently favorable.

Nevertheless, recent reports indicated good results could be achieved in relatively

healthier recipients and advanced techniques (OPTN & UNOS, 2016).

A.8.2 SLT Expertise

In the US, after graduating from medical schools and having chosen their

specialization areas, surgeons complete their residency programs to obtain an

unrestricted license to practice medicine and a board certificate for their chosen

surgical specialty, in our case, the liver transplant. It is during residency that

surgeons may learn SLTs at selected TCs, such as the one at University of

California, San Francisco.

A.8.3 The Liver Allocation Procedure and SLT Use as Exceptional Cases

In practice, successful SLTs involve a complicated process, including registration,

procurement, allocation, logistics, surgical operations, and post-surgery recovery. To

start, eligible ESLD patients choose transplant centers and register for the national

liver transplant waitlists. When a deceased-donor liver becomes available and is

being evaluated to determine whether it is medically splittable (based on donor age,

body mass index, size, etc.), UNOS generates a ranked list (known as the

match-run), based on computerized algorithms. The organ is offered to the

match-run candidates sequentially, until a candidate/candidate pair accepts it. The
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longer it takes between the removal of blood supply from the deceased-donor organ

and the transplantation into the recipient(s) (the cold ischemia time), the more the

organ’s quality deteriorates. An organ is discarded if the cold ischemia time is

determined to be too long (exceeding 12 - 18 hours).

Once a liver is accepted, the organ is harvested (and split if to be used in SLTs) by

a trained team at the donor hospital. The matching of transplant surgeons and

candidates is finalized after a candidate has accepted an offer and right before the

surgery. After being harvested, the procured whole liver (two split liver grafts) is

transported to the WLT patient TC (SLT patient TCs), where the WLT surgery

(SLT surgeries) is performed by the patient’s transplant surgeon, and patient

recovery occurs.

Currently, most SLTs are performed in few major transplant centers; thus, the

primary recipients (usually children) and secondary recipients are usually within the

same TC (Ge et al., 2020). However, because of UNOS’s new acuity circles policy

that took effect in 2019 (UNOS system notice: Liver and intestinal organ

distribution based on acuity circles implemented February 4, 2020,

https://unos.org/news/system-implementation-notice-liver-and-intestinal-organ-

distribution-based-on-acuity-circles-implemented-feb-4/), patients from different

TCs within the acuity circles may receive halves of the same donor liver more

frequently. Researchers are also exploring continuous distribution that do not rely

on geographical boundaries (Bertsimas et al., 2020; Kasiske et al., 2020).
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A.9 Numerical Experiments

A.9.1 Numerical Setup

In the first set of experiments, we compare the objective values of the optimal

solution (the “fluid optimal”) with objective values of (2.15) under alternative

policies. This experiment focuses on the structural properties of the “fluid optimal”

policy and captures only the first-order dynamics of the liver wait lists.

In our second experiment, we set up a discrete simulation model for a 1-year time

horizon. Liver and patient arrivals in each discrete time step follow Poisson

Distribution; and patient deaths, transitions, and removals follow a Binomial

distribution. All parameters are calibrated to available data. Each simulation run is

a sample path, and we generate Figure 2.6 using five runs for each box. The

simulation model mimics the liver allocation system and incorporates higher-order

dynamics.

For specific parameter settings and the codes, please see the source code. Code can

be accessed using this link: https://drive.google.com/drive/folders/1WU90jtm9A_

fTj1oVzHM0mrghPS_pyGph?usp=sharing.
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Figure A.1: Comparisons of five policies under maximizing the MULTI objective where
κ = 0.01. We compare the five policies discussed in Section 2.6: The “all-split, optimal allo-
cation” policy seems to perform as well as “optimal-split, optimal allocation” and dominates
other policies. “All-split, sickest first” consistently outperforms “few-split, sickest first.” The
benefits of broader SLT use appear to be more significant in “optimal allocation” policies.

A.9.2 Additional Numerical Experiment Results
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Figure A.2: Simulation results based on OPTN data: We experiment with smaller reject
thresholds in this experiment. Smaller reject thresholds indicate worse objective values. The
“all-split, sickest first” policy seems the most sensitive to strategic behaviors.

173



Appendix A. Appendix for Chapter 2

A.9.3 Additional Discussions on Our Numerical Experiments

The improvement of our “optimal split, optimal allocation” policy over other

policies that do not utilize SLT likely gives a conservative estimate of the potential

of SLTs to achieve multiple liver transplantation goals, because in reality > 10% of

donated livers are splittable (OPTN & UNOS, 2016), yet we assume µ̄ = 0.1µ as

there is no consensus on the exact percentage of splittable livers.

As already mentioned, “all-split, optimal allocation” performs nearly as well at

maximizing QALY and MULTI, and minimizing NPDWT; this similarity in

performance is driven by the fact that the “optimal split, optimal allocation”

strategy splits more than 99% of medically-splittable livers in the simulation.

A.10 Future Directions

This paper is the first in its kind that studies fluid models in SLT. We hope to

provide insights, recommend policy modifications, generate discussion, and inspire

more detailed analyses regarding implementation in the operations research and

transplantation communities. For instance, we estimate the SLT outcomes using the

data available, but one could do sensitivity analysis regarding outcomes, factoring in

selection biases, heterogeneous medical expertise, medical learning, and geographical

distributions. For example, Tang, Li, et al., 2021 study the donated liver allocation

problem in a setting where surgeons with different potential abilities may learn SLT,

becoming skilled over time. They formulate a multi-armed bandit that could

incorporate first-order queueing dynamics using our fluid limit decomposition.
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B.1 Proofs for Theoretical Results in Section 3.4

B.1.1 Alternative Statement of Theorem 3.4.1 and Proof

While Theorem 3.4.1 is a canonical statement of the regret upper bounds, Theorem

B.1.1 is a stronger statement mathematically.

Theorem B.1.1. Let α̂a,n be the estimator for the aptitude of arm a, i.e. αa, after

it has been chosen n times. Suppose α̂a,n has a per-coordinate difference bound with

parameter Cw
a,n and bias ba,n. Define δa,τ,n :=

√︃
2 log τ
nCw

a,n
For any sub-optimal arm a, if

there exists a ua,t ∈ [1, t] such that ∆a ≥ 2δa,τ,n and |ba,n| ≤ 1
10δa,τ,n hold for any

t ≥ τ ≥ n ≥ ua,t, then arm a is pulled on average at most

E[Ta(t)] ≤ ua,t + 2ζ(1.24)

times, where ζ is the Riemann zeta function, i.e. ζ(s) = ∑︁+∞
n=1 n−s, and ζ(1.24) is

approximately 4.76. If such a ua,t exists for any sub-optimal arm, then the expected

cumulative regret is bounded by

E[Rt] ≤
∑︂

a̸=a∗
(r̄a∗ − ra) (ua,t + 2ζ(1.24))

Remark: Before we prove this theorem, we show its application in some simple cases.
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First, when α̂a,n is the empirical mean of n independent Bernoulli random variables

or any random variables on [0, 1], we have Cw
a,n = 1 and ba,n = 0. We may choose

ua,t = 8 log t
∆2

a
, indicating that this theorem recovers the bound of the vanilla UCB yet

with the larger constant 2ζ(1.24) ≈ 9.52 compared to π2

3 ≈ 3.29. The larger constant

results from the loose inequality dealing with the bias, i.e. as we decrease the 1
10 in

|ba,n| ≤ 1
10δa,τ,n towards 0, the constant will approach π2

3 .

Second, if we scale the value of α̂a,n and the sub-optimal gap by ℓ, then Cw
a,n

becomes 1
ℓ2 , and thus ua,n is unchanged. This indicates the bound is scale-free.

Third, when α̂a,ns have smaller and/or different Cw
a,ns and still zero bias, and when

Cw
a := infn Cw

a,n > 0, i.e. when Cw
a,n is uniformly bounded by a constant from below,

we know the minimal ua,t is at most 2 log t
Cw

a ∆2
a

(because we proved 2 log t
Cw

a ∆2
a

is a valid choice

for ua,t in Theorem 3.4.1) and therefore E[Ta(t)] is still in O(log t) scale, although

the coefficient is larger.

Fourth, when Cw
a := infn Cw

a,n > 0 and Cb
a := supn

√
n|ba,n| < +∞, i.e.

|ba,n| = O
(︂

1√
n

)︂
, we may let ua,t = max

{︂
exp

(︂
Cw

a (Cb
a)2/200

)︂
, 2 log t

Cw
a ∆2

a

}︂
, and then

E[Ta(t− 1)] is still in O(log t) scale.

Fifth, similarly, as long as Cw
a := limn→+∞

nCw
a,n

log n
≥ 8

∆2
a
, i.e. either Cw

a,n = Ω( log n
n

) or

Cw
a,n = Θ( log n

n
) but Cw

a,n ≤ 8 log n
n∆2

a
,∀n, such a ua,t exists, but ua,t might be in Ω(log t).

Again, the exact value of ua,t is beyond our concern, because we aim to provide a

bound for a general scenario. When Cw
a,n → 0, |ba,n| = O

(︃√︂
log n

n

)︃
is a sufficient

condition of the existence of such a ua,t.

Sixth, in contrast, when Cw
a,n diminishes too fast, i.e. Cw

a,n = o( log n
n

), δa,t,n is no
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longer a decreasing function of n. This implies δa,t,t might be greater than ∆a for

any arbitrarily large t. Hence, no feasible ua,t exists for large t and this theorem is

not applicable to these cases. Again, the exact or approximate threshold of the

arbitrarily large value of t is not related to this theorem which focuses on what we

can bound for an estimator with good properties, i.e. large Cw
a,n and small |ba,n|.

Below, we show the full proof for Theorem B.1.1 and Theorem 3.4.1.

Proof. Let a ∈ A, τ ∈ T , and n := Ta(τ − 1). And we derive probabilistic bounds

for α̂a,n,

P (α̂a,n − αa ≥ ε) = P (α̂a,n − E[α̂a,n] + E[α̂a,n]− αa ≥ ε)

≤ P (α̂a,n − E[α̂a,n] + |E[α̂a,n]− αa| ≥ ε)

= P (α̂a,n − E[α̂a,n] ≥ ε− |ba,n|)

P (α̂a,n − αa ≤ −ε) = P (α̂a,n − E[α̂a,n] + E[α̂a,n]− αa ≤ −ε)

≤ P (α̂a,n − E[α̂a,n]− |E[α̂a,n]− αa| ≤ −ε)

= P (α̂a,n − E[α̂a,n] ≤ −ε + |ba,n|)

Let ε̄ := ε− |ba,n|. When ε̄ > 0, using the bounded difference inequality McDiarmid,

1989, we have

P (α̂a,n − αa ≥ ε) ≤ P (α̂a,n − E[α̂a,n] ≥ ε̄) ≤ exp
(︂
−2nε̄2Cw

a,n

)︂
P (α̂a,n − αa ≤ −ε) ≤ P (α̂a,n − E[α̂a,n] ≤ −ε̄) ≤ exp

(︂
−2nε̄2Cw

a,n

)︂

Set ε = δa,τ,n =
√︃

2 log τ
nCw

a,n
, and thus ε̄ =

√︃
2 log τ
nCw

a,n
− |ba,n|. When ε̄ > 0, the above two
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inequalities can be rewritten as

P

⎛⎝α̂a,n − αa ≥

⌜⃓⃓⎷2 log τ

nCw
a,n

⎞⎠ ≤ exp
(︄
−2

(︃√︂
2 log τ − |ba,n|

√︂
nCw

a,n

)︃2
)︄

(B.1)

P

⎛⎝α̂a,n − αa ≤ −

⌜⃓⃓⎷2 log τ

nCw
a,n

⎞⎠ ≤ exp
(︄
−2

(︃√︂
2 log τ − |ba,n|

√︂
nCw

a,n

)︃2
)︄

(B.2)

If a sub-optimal arm a is pulled at time τ , i.e. στ = a, we know that

Ba,τ,Ta(τ−1) ≥ Ba∗,τ,Ta∗ (τ−1), where a∗ denotes the arm with maximum aptitude. This

indicates either Ba,τ,Ta(τ−1) is at least αa or Ba∗,τ,Ta∗ (τ−1) underestimates αa∗ (or

both), i.e. either Ba,τ,Ta(τ−1) ≥ αa or Ba∗,τ,Ta∗ (τ−1) ≤ αa∗ (or both). If arm a has been

chosen at least ua,t times prior to this time, i.e. Ta(τ − 1) ≥ ua,t = 8 log τ
Cw

a ∆2
a
, then

∆a ≥ 2δa,τ,Ta(τ−1), which implies, if Ba,τ,Ta(τ−1) ≥ αa, then α̂a,τ − δa,τ,Ta(τ−1) ≥ αa, i.e.

even the ‘lower bound’ of arm a overestimates αa. Therefore, if στ = a and

Ta(τ − 1) ≥ ua,t for some τ , at least one of the following two inequalities holds

α̂a,Ta(τ−1) − δa,τ,Ta(τ−1) ≥ αa

α̂a∗,Ta∗ (τ−1) + δa∗,τ,Ta∗(τ−1) ≤ αa∗

Now, by definition and the above results, the following inequalities hold for any real

number u > 1

Ta(t) ≤ u +
t∑︂

τ=⌊u⌋+1
1 {στ = a ∧ Ta(τ − 1) ≥ u}

≤ u +
t∑︂

τ=⌊u⌋+1
1
{︂
Ba,τ,Ta(τ−1) ≥ Ba∗,τ,Ta∗ (τ−1) ∧ Ta(τ − 1) ≥ u

}︂

≤ u +
t∑︂

τ=⌊u⌋+1
1 {∃v ∈ {⌊u⌋, . . . , τ − 1}, v∗ ∈ {1, . . . , τ − 1} : Ba,τ,v ≥ Ba∗,τ,v∗}
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≤ u +
t∑︂

τ=⌊u⌋+1

τ−1∑︂
v=⌊u⌋

τ−1∑︂
v∗=1

1 {Ba,τ,v ≥ Ba∗,τ,v∗}

≤ u +
t∑︂

τ=⌊u⌋+1

τ−1∑︂
v=⌊u⌋

τ−1∑︂
v∗=1

1 {α̂a,v − δa,τ,v ≥ αa ∨ α̂a∗,v∗ + δa∗,τ,v∗ ≤ αa∗}

≤ u +
t∑︂

τ=⌊u⌋+1

τ−1∑︂
v=⌊u⌋

τ−1∑︂
v∗=1

(1 {α̂a,v − δa,τ,v ≥ αa}+ 1 {α̂a∗,v∗ + δa∗,τ,v∗ ≤ αa∗})

Set u = ua,t, take the expectation on both side and we have

E[Ta(t)] ≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1

τ−1∑︂
v=⌊ua,t⌋

τ−1∑︂
v∗=1

(︂
P (α̂a,v − δa,τ,v ≥ αa) + P (α̂a∗,v∗ + δa∗,τ,v∗ ≤ αa∗)

)︂

≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1

τ−1∑︂
v=⌊ua,t⌋

τ−1∑︂
v∗=1

(︄
exp

(︄
−2

(︃√︂
2 log τ − |ba,v|

√︂
vCw

a,v

)︃2
)︄

+ exp
(︄
−2

(︃√︂
2 log τ − |ba∗,v∗|

√︂
v∗Cw

a∗,v∗

)︃2
)︄)︄

≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1

τ−1∑︂
v=⌊ua,t⌋

τ−1∑︂
v∗=1

2 exp
(︄
−2

(︃ 9
10
√︂

2 log τ
)︃2)︄

≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1
2τ 2 exp

(︃
−324

100 log τ
)︃

≤ ua,t + 2
+∞∑︂
τ=1

τ− 124
100

= ua,t + 2ζ(1.24)

The third inequality holds because ba∗,v∗ ≤ 1
10

√︃
2 log τ

v∗Cω
a∗,v∗

.

Once we have the bounds of E[Ta(t− 1)], we can directly derive the bounds for total

regret. Let r̄a := sups ra,s and ra := infs ra,s, then

E[R(t)] ≤
∑︂

a̸=a∗
E[(r̄a∗ − ra)Ta(t− 1)] ≤

∑︂
a̸=a∗

(r̄a∗ − ra) (ua,t + 2ζ(1.24)) (B.3)
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B.1.2 Proof of Proposition 3.4.1

Proof. Let ω∗
i = inf wi. By definition, we know ω∗

i ≤ 1, as the image set of φ is [0, 1],

thus C∗
n = 1

n
∑︁n

i=1 ω∗2
i

≥ 1
n
∑︁n

i=1 12 = 1
n2 , proving the left inequality. Before we proceed

to prove the right inequality, we briefly introduce Chebyshev’s sum

inequality (Hardy et al., 1952):

Lemma B.1.1 (Chebyshev’s sum inequality). Suppose c1, . . . , cn, b1, . . . , bn ∈ R

such that c1 ≥ c2 ≥ . . . cn and b1 ≥ b2 ≥ . . . bn, and then
1
n

∑︁n
i=1 cibi ≥

(︂
1
n

∑︁n
i=1 ci

)︂ (︂
1
n

∑︁n
i=1 bi

)︂
.

By Chebyshev’s sum inequality, ∑︁n
i=1 w∗

i ≤
√︂

n
∑︁n

i=1 w∗2
i =

√︂
1

C∗
n
. Suppose by

contradiction that C∗
n > 1, that is ∑︁n

i=1 w∗
i ≤

√︂
n
∑︁n

i=1 w∗2
i =

√︂
1

C∗
n

< 1 Using

Chebyshev’s sum inequality, for any two points x, x′ ∈ X n,

|φ(x)− φ(x′)| ≤ ∑︁n
i=1 w∗

i ≤
√︂

1
C∗

n
< 1. This indicates that the image set of φ has a

length at most C∗ that is strictly less than 1, which contradicts the assumption that

φ has an image set of length 1. Thus, C∗
n ≤ 1, the right inequality holds.

B.2 More on Bias Conditions in Example 3.4.3

Figure B.1 shows the bias decay rates of ωMLE
1,n and ωMLE

2,n . We might be interested

in ωMLE
1,n and ωMLE

2,n ’s bias decay rates for general dynamic learning problems with

unknown vector parameters. For Theorem 3.4.1 to hold in the SLT problem that

focuses on the long-term, full potentials of arms, we only need to verify the bias
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conditions for αMLE
1,n and αMLE

2,n .
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Figure B.1: Verifying bias scales of ωMLE
1,n and ωMLE

2,n . The bias scales are both o

(︃√︂
log n

n

)︃
;

although not needed, we can see that the bias decay rates of ωMLE
1,n and ωMLE

2,n satisfy the
bias condition in Theorem 3.4.1.

B.3 Proof of Bandits with Delayed Feedback in Section 3.6.1

Let ˆ̂αa,n denote our point estimate of αa when Ta(t) = n and up to ka true rewards

have not been revealed but reward estimates are available.

Proof. Let a ∈ A, τ ∈ T , and n := Ta(τ − 1). Below we derive probabilistic bounds

for ˆ̂αa,n,

P
(︂

ˆ̂αa,n − αa ≥ ε
)︂

= P
(︂

ˆ̂αa,n − α̂a,n + α̂a,n − E[α̂a,n] + E[α̂a,n]− αa ≥ ε
)︂

≤ P
(︂
| ˆ̂αa,n − α̂a,n|+ (α̂a,n − E[α̂a,n]) + |E[α̂a,n]− αa| ≥ ε

)︂
= P (α̂a,n − E[α̂a,n] ≥ ε− |ba,n| − |ea,n|)

P (α̂a,n − αa ≤ −ε) = P
(︂

ˆ̂αa,n − α̂a,n + α̂a,n − E[α̂a,n] + E[α̂a,n]− αa ≤ −ε
)︂

≤ P
(︂
−| ˆ̂αa,n − α̂a,n|+ (α̂a,n − E[α̂a,n])− |E[α̂a,n]− αa| ≤ −ε

)︂
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= P (α̂a,n − E[α̂a,n] ≤ −ε + |ba,n|+ |ea,n|)

Let ε̄ := ε− |ba,n| − |ea,n|. When ε̄ > 0, using the bounded difference

inequality McDiarmid, 1989, we have

P (α̂a,n − αa ≥ ε) ≤ P (α̂a,n − E[α̂a,n] ≥ ε̄) ≤ exp
(︂
−2nε̄2Cw

a,n

)︂
P (α̂a,n − αa ≤ −ε) ≤ P (α̂a,n − E[α̂a,n] ≤ −ε̄) ≤ exp

(︂
−2nε̄2Cw

a,n

)︂

Set ε = δa,τ,n =
√︃

2 log τ
nCw

a,n
, and thus ε̄ =

√︃
2 log τ
nCw

a,n
− |ba,n| − |ea,n|. When ε̄ > 0, the above

two inequalities can be rewritten as

P

⎛⎝α̂a,n − αa ≥

⌜⃓⃓⎷2 log τ

nCw
a,n

⎞⎠ ≤ exp
(︄
−2

(︃√︂
2 log τ − |ba,n|

√︂
nCw

a,n − |ea,n|
√︂

nCw
a,n

)︃2
)︄

(B.4)

P

⎛⎝α̂a,n − αa ≤ −

⌜⃓⃓⎷2 log τ

nCw
a,n

⎞⎠ ≤ exp
(︄
−2

(︃√︂
2 log τ − |ba,n|

√︂
nCw

a,n − |ea,n|
√︂

nCw
a,n

)︃2
)︄

(B.5)

The rest of the proof follows that of Theorem 3.4.1 in Section B.1.1. The only minor

changes are needed after we set u = ua,t and take the expectation on both side; we

have

E[Ta(t)] ≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1

τ−1∑︂
v=⌊ua,t⌋

τ−1∑︂
v∗=1

(︂
P (α̂a,v − δa,τ,v ≥ αa) + P (α̂a∗,v∗ + δa∗,τ,v∗ ≤ αa∗)

)︂

≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1

τ−1∑︂
v=⌊ua,t⌋

τ−1∑︂
v∗=1

(︄
exp

(︄
−2

(︃√︂
2 log τ − |ba,v|

√︂
vCw

a,v − |ea,v|
√︂

vCw
a,v

)︃2
)︄

+ exp
(︄
−2

(︃√︂
2 log τ − |ba∗,v∗|

√︂
v∗Cw

a∗,v∗ − |ea∗,v∗|
√︂

v∗Cw
a∗,v∗

)︃2
)︄)︄
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≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1

τ−1∑︂
v=⌊ua,t⌋

τ−1∑︂
v∗=1

2 exp
(︄
−2

(︃(︃
1− 1

10 −
1
40

)︃√︂
2 log τ

)︃2)︄

≤ ua,t +
t∑︂

τ=⌊ua,t⌋+1
2τ 2 exp

(︃
−1225

400 log τ
)︃

≤ ua,t + 2
+∞∑︂
τ=1

τ− 425
400

= ua,t + 2ζ(1.063)

The third inequality holds because ba,v ≤ 1
10

√︃
2 log v
vCω

a,v
≤ 1

10

√︃
2 log τ
vCω

a,v
and

ba∗,v∗ ≤ 1
10

√︃
2 log v∗

v∗Cω
a∗,v∗
≤ 1

10

√︃
2 log τ

v∗Cω
a∗,v∗

. Similarly, ea,v ≤ 1
40

√︃
2 log v
vCω

a,v
≤ 1

40

√︃
2 log τ
vCω

a,v
and

ea∗,v∗ ≤ 1
40

√︃
2 log v∗

v∗Cω
a∗,v∗
≤ 1

40

√︃
2 log τ

v∗Cω
a∗,v∗

.

Once we have the bounds of E[Ta(t− 1)], we can directly derive the bounds for total

regret. Let r̄a := sups ra,s and ra := infs ra,s, then

E[R(t)] ≤
∑︂

a̸=a∗
E[(r̄a∗ − ra)Ta(t− 1)] ≤

∑︂
a̸=a∗

(r̄a∗ − ra) (ua,t + 2ζ(1.063)) (B.6)

B.4 Proof of Theorem 3.5.1: FL-UCB Regret Bounds

Proof. Proof of FL-UCB regret bounds: First, we consider the LP defined by (3.11)

∼ (3.15). For the sake of notational simplicity and generality, we write it in the

standard form

max
z

f(z) (B.7)

s.t. z ∈ Cset (B.8)
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where Cset ∈ R|A| is a nonempty convex set and f : R|A| ↦→ R|A| is a convex function.

A point z∗ is optimal for the convex optimization problem (B.7) ∼ (B.8) if

∃ξ ∈ R|A|\{0} s.t. ξ(z − z∗) ≤ 0, ∀z ∈ Cset (B.9)

Before we further analyze the optimality criterion (B.9), we define the concept of

normal cones.

Definition B.4.1. The normal cone of a closed, convex set Cset ∈ Rnis

NC(z∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ξ ∈ Rn|(∀z ∈ Cset)ξT (z − z∗) ≤ 0} if z∗ ∈ Cset

∅ if z∗ /∈ Cset

(B.10)

(B.9) is equivalent to requiring that ξ ∈ NC(z∗)\{0}. To find the normal cone of the

feasible region defined in (3.12) ∼ (3.15), we need to use the following lemma

Lemma B.4.1. Let A ∈ Rm×n and let b ∈ Rm. Consider the polyhedron

Q(A, b) = {x | Ax ≤ b}. Suppose x ∈ Q(A, b), then

NQ(A,b)(x) = {AT y|y ∈ Rm such that y ≥ 0 and yT (b− Ax) = 0}.
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The optimal solution to (3.11) ∼ (3.15) is:

z∗
a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θA
a , a ∈ AA \ ABK

θBK
a , a ∈ ABK \ AA \ {a∗}

max{θBK
a , θA

a } a ∈ ABK ∩ AA \ {a∗}

0, a ̸∈ ABK ∪ AA

1−∑︁a∈A\{a∗} z∗
a, a = a∗

(B.11)

Therefore, the normal cone at an optimal solution z∗ for the convex set QF UCB as

defined by (3.12) ∼ (3.15) is a convex cone defined by the following inequalities,

assuming ABK is known (we will estimate it later):

Ba∗,Ta∗ (t−1) ≥ Ba,Ta(t−1) ∀a ∈ A (B.12)

Ba,Ta(t−1) ≥ 0 ∀a ∈ A (B.13)

If we replace α with Bst−1 := BA,TA(t−1),sA,t−1 = [Ba,Ta(t−1),sa,t−1 ]|A|
a=1, as long as

Bst−1 ∈ NC(z∗), the optimal basis stays optimal for the new LP problem with the

objective defined by (3.16). (B.12) ∼ (B.13) show that as long as we are able to

identify a∗ (the unique solution of the new LP is the optimal) and other top-K arns

using the UCB indexes soon enough and only explore the other arms rarely

afterwards.

Moreover, we need to bound the regret incurred while estimating the members of

ABK and the ordering. Specifically, we want to distinguish the difference between

the k-th best arm a(k) and the k + i-th best arm a(k+i), ∀i ∈ {1, . . . , |A| − k}. The
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proof of regret bound in distinguishing the k-th and the (k + i)-th best arm is

analogous to that of proving L-UCB regret upper bounds: The difference is that we

are not only interested in a∗ or a(1), but also a(k) for k ∈ {2, . . . , K}. Specifically, to

compute the expected number of pulls of a(k+i) when we actually want to pull a(k),

we choose

ua(k)

a(k+i) = T̄ := 8 log t

Cw
a ∆2

a(k),a(k+i)

where ∆a(i),a(j) = α(i) − α(j), ∀i, j ∈ {1, . . . , |A|}. The number of times that an arm

a(k+i) is mistaken in the ABK as a(k) set is bounded by

8 log t

Cw
a ∆2

a(k),a(k+i)
+ 2ζ(1.24)

Therefore, the expected number of times we pull “worse” arms (whose true

parameters are worse than those of the ones we intend to pull) when imposing

BK-fairness, is bounded by

K∑︂
k=1

|A|−k∑︂
i=1

⎛⎝ 8 log t

Cw
a ∆2

a(k),a(k+i)
+ 2ζ(1.24)

⎞⎠

And thus the expected regret when imposing BK-fairness is bounded by

E[RBK(t)] =
∑︂

t

ra∗,Ta∗,Ta∗ (t−1) − rat,Ta(t−1) ≤
∑︂

a

(r̄a∗ − ra) E[Ta]

≤
K∑︂

k=1

|A|−k∑︂
i=1

(r̄a∗ − ra(i))
⎛⎝ 8 log t

Cw
a ∆2

a(k),a(k+i)
+ 2ζ(1.24)

⎞⎠
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Note that imposing BK- or AA-fairness incurs linear PoF as long as θA + θBK ̸= 0,

which is not counted as part of F-regret or regret. Moreover, AA is assumed to be

known based on inherent, known arm features and thus does not require estimation.

B.5 Extension: Arm Correlation

In this section we study bandit problems where the learning processes of arms are

correlated. Specifically, we study bandits where arm experience is correlated in a

linear fashion: Linear correlation is among the most common dependence patterns

in the literature, and its mathematical simplicity enables us to derive clean

analytical results that shed light on the influence of arm dependence on bandits. We

have proved that the regret bounds of bandits with mutually independent learning

arms are O(log t). We will show that similar results hold when arms are correlated.

In our SLT problem setting, the arms are patient-TC-surgery tuples. Arm

correlation may arise from the fact that the skill sets required to perform successful

SLT surgeries of various types typically overlap. This translates to a bandit problem

where an arm’s hidden parameter might change along with its the learning curve,

even if that particular arm is not chosen.

B.5.1 Experience-Correlated Bandits

As discussed in Section 3.6, the skills learned from different surgeries could be

partially transferable as the skill sets required for similar surgeries may overlap. We

consider linear correlation based on experience in bandit contexts; we explicitly
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define bandits with this particular form of arm dependence.

Definition B.5.1. (Experience-Correlated Bandit) A bandit problem is

experience-correlated if the experience score sa,t−1 of an arm a ∈ A can be written

as

sa(t) = sa(t− 1) +
∑︂

j∈Aa

βa,j,t1(at = j) βa,j,t ≥ 0,∀t ≥ 1, (B.14)

where Aa ̸= ∅ is the set of arms that are correlated with a.

When arms are uncorrelated/independent, Aa = {a} and βa,a,t = 1,∀t. When

∃j ̸= a, j ∈ Aa, s.t. βa,j,t > 0, we say arm a is dependent on arm j. In this case,

sa(t) ≥ Ta(t), with this inequality being strict for at least one a: Ta(t) is the number

of times that an arm has been pulled (affecting the total regret), while sa(t) affects

the current proficiency parameter, θa(αa, sa,t). Here, correlation affects learning.

And we demonstrate through the examples below that such problems can be

challenging, in general.

Unlike the vanilla bandit problem, the optimal policy of an experience-correlated

bandit is not a straightforward stationary policy, i.e., always pulling the arm with

the highest aptitude α∗ may turn out to be a sub-optimal strategy in both large-t

the long-term regime and small-t the short-term regime. Consider the following

example:

Example B.5.1. Consider an experience-correlated bandit with two arms: arm 1
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and arm 2. The learning curves and correlations are explicitly known:

θ1,t : = l1(s1(t)) = 0.5 + min
{︃0.5s1

100 , 0.5
}︃

t ≥ 1 (B.15)

θ2,t : = l2(s2(t)) = min
{︃

s2

100 , 0.9
}︃

t ≥ 1 (B.16)

s1(t) = s1(t− 1) + 1(at = 1) + 100 · 1(at = 2) t ≥ 1 (B.17)

s2(t) = s2(t− 1) + 1(at = 2) t ≥ 1 (B.18)

where s1(0) = s2(0) = 0.

The optimal policy is to pull arm 2 at t = 1, and choose arm 1 when t ≥ 2.

Proof. Under π∗, the total expected reward is

E
[︂∑︁

t rat,sat,t−1

]︂
= 0 + 1 + · · ·+ 1 = T − 1.

First, we show that if arm 2 has been pulled once, we should always pull arm 1 in

later rounds. Because pulling arm 2 once will guarantee that s1(t) ≥ 100 and

θ1(t) = 1; thus, the expected reward of pulling arm 1 in a later time will yield the

highest possible expected single period reward (= 1), while pulling arm 2 will give

no more than 0.9 expected reward. As a result, in an optimal policy, once arm 2 is

pulled, arm 1 should always be chosen in later rounds.

Now, we show that we will pull arm 2 at least once. If we never pull arm 2, then we

always pull arm 1; the expected total reward under this policy is

0.5 + 0.505 + 0.51 + 0.515 + · · ·+ 0.995 + 1× (T − 99) < T − 1. Therefore, π∗ has

higher expected total rewards compared to the policy that pulls arm 1 throughout

the time horizon.
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Finally, we show that we will pull arm 2 precisely at t = 1. If we follow a policy π′

that first pulls arm 2 at t = k, k ∈ {2, · · · , t}, then the expected reward at t = 1,

Er1,0(1) = 0.5. The expected total reward of the policy π′,

E
[︂∑︁

t rπ′(t)
]︂
≤ rπ′(1) + rπ′(k) + 1× (T − 2) = 0.5 + 0 + T − 2 = T − 1.5 < T − 1.

Therefore, π∗ has higher expected total reward compared to any policy that dictates

pulling arm 2 at time t = 1.

The arguments above show that π∗ is the optimal policy.

In many applications the solution to the offline experience-based bandits can be

found using dynamic programming. The following example shows that the optimal

policy for our problem may require switching arms more than once and revisiting an

arm.

Example B.5.2. Consider an experience-correlated bandit with two arms, arm 1

and arm 2. The learning curves and correlations are explicitly known:

θ1(t) : = l1(s1(t− 1)) = 0.5 + min{0.5s1

100 , 0.5} t ≥ 1 (B.19)

θ2(t) : = l2(s2(t− 1)) = min{ s2

100 , 0.9} t ≥ 1 (B.20)

s1(t) = s1(t− 1) + 1(at = 1) + 100 · 1(at = 2) t ≥ 1 (B.21)

s2(t) = s2(t− 1) + 100 · 1(at = 1) + 1(at = 2) t ≥ 1 (B.22)

where s1(0) = s2(0) = 0.

The optimal policy is to choose arm 1 at t = 1, choose arm 2 at t = 2, and then

choose arm 1 when t ≥ 3.
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Proof. First, we prove that in the optimal policy, we pull arm 1 and 2 each at least

once. The expected reward of always choosing arm 1 is

0.5 + 0.505 + · · ·+ 0.995 + 1× (T − 100) < T − 1; similarly, the expected reward of

always choosing arm 2 is 0 + 0.01 + · · ·+ 0.89 + 0.9× (T − 90) < T − 1. However,

the expected total reward of π∗ is 0.5 + 0.9 + 1× (T − 2) = T − 0.6 > T − 1.

Therefore, both stationary policies cannot be optimal.

Next, we show that we pull arm 2 at most once. Now we know that both arms are

chosen at least once in the optimal policy. Suppose we have pulled arm 2 at time t′,

then pulling arm 2 at any time t′′ > t′ will not increase θ1(t′′), but will yield a lower

immediate reward; thus, the marginal benefit of choosing arm 2 at t′′ is strictly

negative. As a result, we choose arm 2 exactly once.

Finally, we prove that we choose arm 2 at t = 2. If we choose arm 2 at t = 1, then

the expected total reward is 0 + 1× (T − 1) = T − 1 < T − 0.6, thus choosing arm 2

at t = 2 is better than pulling arm 2 at t = 1. If a policy π′ pulls arm 2 at

t = k, k ∈ {3, · · · , T}, then the expected total reward

E[∑︁t rπ′(t)] < rπ′(1) + rπ′(2) + rπ′(k) + 1× (T − 3) ≤ 0.5 + 0.505 + 0.9 + T − 3 =

T − 1.05 < T − 0.6. In summary, the optimal policy is to pull arm 2 at t = 2.

Example B.5.2 shows that in the optimal policy, a low immediate-reward, high

contributed-experience arm (arm 2) may be chosen after higher-reward, low

experience arms in an optimal strategy. An explanation for the fluidity and

complexities is that the hidden parameters of arms may change when any arms are

pulled, and depending on the specific structure of learning curves and correlation

patterns, an arm that is useless at one time may be incredibly useful in later rounds.
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This being said, imposing conditions on the correlation would potentially yield

structural results on the optimal policy. Such an exploration is deferred for future

work.

B.5.2 Heterogeneous livers

We can incorporate liver heterogeneity in two ways. The most straightforward

approach is to formulate parallel MABs, one for each liver type; within each MAB,

livers are viewed as homogeneous. This formulation is practical and realistic, as

livers are often allocated to TCs and patients within the geographical region in

which they are acquired (see Section B.7 for more information). Surgical experience

and expertise at one TC rarely transfer to another that is geographically remote.

Alternatively, we can incorporate liver heterogeneity in one MAB, i.e., |L| > 1,

implying that for each ℓ ∈ L, all arms in A can be pulled, i.e., a liver of type ℓ can

be allocated to any TC and any patient type. This formulation can be helpful when

we are interested in a more granular classification of liver types within the same

geographical region, as experience gained from operating with different liver types is

carried forward. Our FL-UCB algorithms apply to the case |L| > 1, except that we

estimate α̂ℓ
a,n for each ℓ ∈ L. All theoretical regret bounds hold (the upper bounds

for heterogeneous livers are |L| times the original bounds for the homogeneous

case). The actual regrets might be much lower, as surgical experience transfers and

accumulates faster.
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B.6 More Details about the Numerical Study in Section 3.7

B.6.1 Details about the SLT Simulation Setup

Below we detail how we estimate α’s from the STAR files. For each

medically-splittable liver, it can save two patients’ lives. In current SLT practice,

the smaller left lobe is usually allocated to a sick child. The other half, depending

on its size and the patient waitlists, may be allocated to a small adult/big child or a

medium adult. There is a liver-splitting technique that allows a more even splitting

of a donor’s liver and thus can save two small or medium adults’ lives. The two

partial livers can be used for two recipients at two different transplant centers; thus,

we view each partial liver arrival as an independent time step. A partial liver may

be shared across a large geographical area; see (UNOS, 2021) for detail about the

acuity circles policy.

Currently, a splittable liver may be shared across a large geographical area; see the

acuity circles policy UNOS, 2021 for detail. We consider a 500 nautical mile circle

that includes OPTN regions 2, 9, 10, 11, and Wisconsin and Illinois (URL:

https://optn.transplant.hrsa.gov/about/regions/). In 2022, there were around 8000

donated livers and 10 big transplant centers in the 500NM Circle. (See

https://optn.transplant.hrsa.gov/data/view-data-reports/regional-data/ for more

detail.)

Each (partial) liver graft can be allocated to a patient within one of the five health

condition groups. Patients’ health conditions are described by the Model for

End-Stage Liver Disease (MELD) score (for adults) and Pediatric End-Stage Liver
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Disease (PELD) score (for children), which are indicators of medical urgency.

MELD and PELD scores take integer values in [6, 40]; for critically sick patients,

there are 1A, 1B, 2A, and 2B special urgent categories. We divide the patients into

five score buckets: ≥ 40 (including MELD/PELD = 40 and critically sick patients),

35 ∼ 39, 30 ∼ 34, 20 ∼ 29, 6 ∼ 19. The current OPTN system allocates (whole)

livers preferentially to eligible patients with the highest scores (the sickest

patients) (Emre & Umman, 2011); SLT surgeries are rarely performed, but the

current SLT patient matching does not strictly follow the “sickest-first” rule, due to

lack of policy clarity in matching the secondary recipient, and the primary recipient

is often a child. Since SLT is a challenging medical procedure and saves twice as

many lives, it makes sense to consider allocating partial livers to healthier patients

to maximize overall survival and welfare.

Therefore, in total, we have 10× 5 = 50 arms for the livers splittable in the

geographical region of interest. Recall that 10% of livers are medically safe to

split (OPTN & UNOS, 2016), so at least 800 livers can be used for SLT a year in

the 500NM Circle, with each liver supporting two SLT surgeries. A total of 1600

SLT surgeries are possible. Livers are heterogeneous; among the medically safe

livers, it is estimated that ∼ 63% (Perito et al., 2019), or around 1008 of them,

satisfy the strictest medical criteria and thus are of the highest quality. In our

simulation, we consider allocating these high-quality livers to patients and TCs in

the 500NM geographical circle. See Section B.6 for more details about the allocation

of high-quality livers acquired in different geographical regions (i.e., heterogeneity)

and please refer to Section B.7 for more facts about current SLT practice in the US.
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The α ’s are drawn from (0.3, 0.95), where the upper and lower bounds of the range

are estimated directly from the STAR files: We compute the 1-year graft survival for

different surgery technique types in each geographical region; these statistics are

then used for simulate the distribution and range of SLT’s 1-year survival outcomes.

These statistics of past surgeries (WLTs and a small number of SLTs) show that

1-year graft survival range from 0.33 to 1. Retrospective reviews and anecdotal

accounts report that SLT outcomes can be comparable and as good as WLT

outcomes in few, proficient TCs that have gained SLT mastery through a good

amount of experience (Duke Health, 2021; Hackl et al., 2018). Since SLT is a more

complex surgery by nature, we adjust the lower limit of the 1-year graft survival

rate to 0.3.

B.6.2 Outcome Prediction Accuracy and Uncertainty Quantification

In Section 3.7 we assume the prediction accuracy in SLT is 60%; Figure B.2 shows

results assuming the prediction accuracy is 85%.

Similar to the case where the prediction accuracy is 60%, FL-UCB with MLE

estimation has the lowest regrets and converges fast when an 85%-accurate estimate

is available. However, with a higher accuracy level, the UCB performance is

significantly improved and is second only to FL-UCB; its regrets also show signs of

convergence at t = 3600.
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Figure B.2: Comparing FL-UCB regret against benchmarks when medical learning exists
and assuming there is a 1-year delay in observing true rewards (the rollout policy is described
in Section 3.7.1). Estimates based on demographics and perioperative clinical metrics are
available and are 85% accurate.

B.6.3 More about the Bandit Algorithms Used for Comparison

Procedure 3: L-TS Algorithm Pseudo Code
1: Initialization: Choose prior distributions Beta(α̃a,0, β̃a,0), ∀a ∈ A.

Select each arm a ma times. Update posterior distribution as in Step 3.

2: Select arm: Sample at ∼ Beta(α̃a,n, β̃a,n)

3: Update distribution: α̃at,Tat (t−1), β̃at,Tat (t−1))←(︂
(α̃a,Ta(t−1) + rt(1 + exp(ωat − Ta,t−1)), β̃a,n−1 + (1− rt(1 + exp(ωat − Ta,t−1))

)︂
4: Increment t, Tat,t = Tat,t−1 + 1 and Go to Step 2

In TS, we update the posterior distribution using

(α̃at,Tat (t−1), β̃at,Tat (t−1))← (α̃a,Ta(t−1) + rt, β̃a,n−1 + (1− rt)). Recall that rt is the

random reward (or the estimated reward) at time t. In our numerical study, we

choose ma = 20 and (α̃a,0, β̃a,0) = (2, 2) for all a in both L-TS and TS. For ETC

algorithm implemented, the exploitation starts once the 500 rounds of round robin
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conclude. In ϵ-greedy, with probability 0.95 we greedily choose the arm with the

highest estimated reward (breaking ties arbitrarily) and we explore arms with equal

probability when not exploiting. In our discounted UCB, we use δ = 0.9.

B.7 Current SLT Practice in the US

To better understand how SLTs are practiced, we consulted with senior surgeons

from the globally renowned transplant center affiliated with the University of

California, San Francisco (UCSF). In the US, after graduating from medical schools

and having chosen their specialization areas, surgeons complete their residency

programs to obtain an unrestricted license to practice medicine and a board

certificate for their chosen surgical specialty, in our case, the liver transplant. It is

during residency that prospective surgeons may learn SLTs at selected TCs, such as

the one at UCSF. Such residency programs involve assisting with actual SLT

surgeries. Besides graduation requirements that enable some residents to learn SLT,

young physicians may be intrinsically interested in saving more lives, expanding

their skill sets, and mastering the techniques to perform complex surgeries; extrinsic

motivations such as recognition from the surgical community and income increase

brought by more transplants can also incentivize medical learning and overcome risk

aversion.

In practice, successful SLTs involve a complicated process, including registration,

procurement, allocation, logistics, surgical operations, and post-surgery recovery. To

start, eligible ESLD patients choose transplant centers and register for the national

liver transplant waitlists. When a deceased-donor liver becomes available and is

being evaluated to determine whether it is medically splittable (based on donor age,
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body mass index, size, etc.), OPTN (which is administered by United Networks for

Organ Sharing, short for UNOS) generates a ranked list (known as the match-run),

based on computerized algorithms. The organ is offered to the match-run candidates

sequentially until a candidate/candidate pair accepts it. The longer it takes between

the removal of blood supply from the deceased-donor organ and the transplantation

into the recipient(s) (the cold ischemia time), the more the organ’s quality

deteriorates. An organ is discarded if the cold ischemia time is determined to be too

long (exceeding 12 - 18 hours). From our discussions with UCSF transplant

physicians and transplant software professionals, we learned that transplant centers

could also make provisional offers to more than one patient to reduce organ waste

and maximize societal welfare. Therefore, practically speaking, UNOS/OPTN

essentially assigns livers to transplant centers and certain patient health groups; at

the center level, the medical teams on call perform the surgery with the assigned

recipients or make adjustments under OPTN guidelines when necessary.

Once a liver is accepted, the organ is harvested (and split if to be used in SLTs) by

a trained team at the donor hospital. The matching of transplant surgeons and

candidates is finalized after a candidate has accepted an offer and right before the

surgery. After being harvested, the procured split liver grafts are transported to the

SLT recipient TCs, where the two transplant teams perform the SLT surgeries. After

that, patient recoveries occur. Currently, most SLTs are performed in few major

transplant centers; thus, the primary recipients (usually children) and secondary

recipients are usually within the same TC. However, because of UNOS’s new acuity

circles policy that took effect in 2019 (UNOS, 2021) , patients from different TCs

within the acuity circles may receive halves of the same donor liver more frequently.
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The acuity circles policy aims to enable broader organ sharing but has been

controversial due to challenging logistics, incentive misalignment, and increased

organ waste. There has also been debate over the transplant objective itself: Should

we allocate livers to the sickest patient(s) within the 500NM circle? Is the current

“sickest-first” principle simply preventing more immediate deaths but not optimizing

societal welfare (e.g., survival outcomes, quality-adjust life years, equity)?

B.8 More on Related Work

UCB variants for nonstationary environments: Garivier and Moulines, 2011

consider abrupt changing environments where the reward distributions may remain

constant for epochs and change at unknown breakpoints. The authors proposed

D-UCB and SW-UCB policies to overcome environment nonstationarity. Similar to

the idea of our discounted UCB, D-UCB averages past rewards with a discount

factor which gives more weight to recent observations. The difference between our

discounted UCB and D-UCB is in the padding function (i.e., the term added to our

estimate of the arm parameter). Their SW-UCB relies on a local empirical average

of the last few plays, leaving out earlier observations. Alternatively, we proposed

reweighted UCB to discount the past observations less aggressively, as in our SLT

problem the reward distribution changes gradually.

Bandits and queueing: Such explicit modeling would likely render our SLT

learning problem intractable; thus, analyzing queueing dynamics via a separate

module sounds more viable: We may incorporate them into a subroutine of our

proposed algorithm to maintain a stateless bandit. Compared to these previous

works, the objective in the SLT problem is also markedly different: For example,
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Krishnasamy et al., 2016 combined MAB with queueing by designating the MAB’s

rewards as queue lengths; while Whittle, 1988 and Bertsimas and Niño-Mora, 2000

did not incorporate queueing behaviors in their analysis. In our problem, the reward

functions can be written as convex combinations of immediate rewards and

queueing metrics, both of which are functions of the bandit decisions.

Experience-based learning: Human learning describes how human individuals

acquire and possess knowledge or skills under cognitive and environmental

influences, taking into account prior experience (Illeris, 2002; Jarvis, 2006;

Lefrancois, 2019).

For the new franchisee problem, Darr et al., 1995 studied the transfer of knowledge

acquired through learning by doing empirically—they found evidence of learning

based on weekly data collected from 36 pizza stores. To our best knowledge, there

has not been analytical modeling work that studies both experience-based learning

and queueing dynamics.
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