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Abstract 

 
The first chapter, joint work with Nikhil Malik, Tim Derdenger, and Kannan Srinivasan, 

challenges conventional wisdom regarding eXplainable AI (XAI) regulations such as GDPR. 

Through a game-theoretic model examining XAI methods and levels in a duopoly market 

with heterogeneous customer preferences, we demonstrate that partial explanations can 

emerge as an equilibrium in unregulated settings. Importantly, we identify conditions where 

mandating full explanations through regulation may actually harm consumer surplus rather 

than enhance it. This finding holds across various policy levers (strict, self-regulating, and 

lower bound), regardless of firms’ choice of XAI methods and policy objectives including 

welfare maximization, consumer surplus, and average XAI depth. Our comparative analysis 

reveals that while strict XAI policies ensure uniform explanation depth, they potentially limit 

firms’ capacity for differentiation and innovation. Conversely, unregulated XAI, while 

offering maximum flexibility, may fail to guarantee minimum explanation depth for all 

consumers. The introduction of flexible approaches—self-regulating XAI and lower-bounded 

XAI—results in higher consumer welfare than either unregulated or full XAI policies. This 

research urges policymakers to consider a more nuanced approach when crafting XAI 

regulations, as a one-size-fits-all policy across all markets, particularly one mandating full 

explanation, may not yield the desired outcomes. For firms operating in these markets, the 

optimal strategy may not be to provide full explanations, as partial explanations can emerge 

as equilibrium strategies that better serve their competitive positioning while still addressing 

consumer needs. 

The second chapter addresses the growing use of LLMs as simulated consumers in 

marketing research. I develop a novel approach based on Shapley values from cooperative 

game theory to interpret LLM behavior and quantify the relative contribution of prompt 

components to model outputs. Through applications in discrete choice experiments and 

cognitive bias investigations, I uncover what I term the “token noise” effect—a phenomenon 

where LLM decisions are disproportionately influenced by tokens providing minimal 

informative content (such as empty lines in a questionnaire!). This finding provides a 



 x 

theoretical foundation for understanding how LLMs process information and make decisions, 

revealing fundamental differences from human cognition that must be accounted for in 

marketing research. For marketers employing LLMs for consumer simulation, this raises 

significant concerns about the validity of using LLMs as proxies for human subjects and 

necessitates rigorous validation procedures when using LLMs for preference elicitation or 

behavior prediction. The proposed Shapley value method offers practitioners a model-

agnostic approach for optimizing prompts and mitigating apparent cognitive biases in LLM 

responses. 

The third chapter investigates the unintended consequences of AI alignment techniques 

on the creative capabilities of language models. Through a series of experiments with the 

Llama model family (created by Meta/Facebook), I demonstrate that alignment methods like 

Reinforcement Learning from Human Feedback (RLHF), while reducing bias and harmful 

outputs, significantly diminish syntactic and semantic diversity. My findings reveal that 

aligned models exhibit lower entropy in token predictions, form distinct clusters in embedding 

space, and gravitate toward “attractor states”, indicating limited output diversity. This 

contributes to our theoretical understanding of AI creativity by conceptualizing the 

relationship between alignment and creativity as a fundamental trade-off rather than a 

technical limitation. Marketing teams must strategically balance the benefits of AI safety 

alignment with creative performance when selecting language models for content generation 

tasks. Different models may be optimal for different marketing functions—aligned models for 

customer-facing interactions where consistency and brand safety are paramount, and base 

models for ideation tasks that benefit from novelty and creativity, such as ad copywriting and 

customer persona development. 

The fourth chapter steps beyond individual models to examine networks of AI agents that 

work together to accomplish complex goals, such as automating various functions in a 

business (e.g., customer support, SEO, refunds, etc.). This introduces a new challenge: not 

just how we build these agents, but how we coordinate them. To address this, I introduce Pel, 

a programming language I developed from scratch specifically for orchestrating AI agents. 

Pel offers an elegant, principled framework for multi-agent AI systems, addressing limitations 

in current methods of controlling LLMs through a syntactically simple yet semantically rich 
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platform for expressing complex actions, control flow, and inter-agent communication. Its 

design emphasizes minimal grammar suitable for constrained LLM generation, powerful 

composition mechanisms, and built-in support for natural language conditions. This advances 

programming language theory through the development of a domain-specific language (DSL) 

optimized for AI agent control, proposing a new paradigm for human-AI interaction that 

incorporates the unique capabilities and limitations of language models. From a managerial 

perspective, Pel provides marketing technology teams with a specialized tool for building 

sophisticated marketing automation systems powered by LLMs, to be used in customer 

engagement and support, content personalization, and multi-channel campaign management.  
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Abstract

The most recent AI algorithms lack interpretability. eXplainable AI (XAI) aims to ad-

dress this by explaining AI decisions to customers. Although it is commonly believed that

the requirement of fully transparent XAI enhances consumer surplus, our paper challenges this

view. We present a game-theoretic model where a policymaker maximizes consumer surplus in

a duopoly market with heterogeneous customer preferences. Our model integrates AI accuracy,

explanation depth, and method. We find that partial explanations can be an equilibrium in

an unregulated setting. Furthermore, we identify scenarios where customers’ and firms’ desires

for full explanation are misaligned. In these cases, regulating full explanations may not be so-

cially optimal and could worsen the outcomes for firms and consumers. Flexible XAI policies

outperform both full transparency and unregulated extremes.
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1 Introduction

In recent years, the adoption of Artificial Intelligence (AI) models for decision-making has increased.

Gartner identifies AI engineering as one of the top 12 strategic technology trends of 20221 and the

International Data Corporation (IDC) forecasts global spending on AI systems to exceed $204

billion by 2025.2 AI has been used in various forms in marketing over the years. Segmentation

(Valls et al., 2018, Dekimpe, 2020, Pitt et al., 2020) and targeting (Neumann et al., 2019, Drew et

al., 2001, Ascarza, 2018) are two prominent applications that have benefitted from AI. AI could also

help brands develop successful positioning statements and compelling slogans (Huang and Rust,

2021).

A significant challenge in AI adoption is the interpretability of its decisions or predictions. While

early AI models were transparent, modern methods like Deep Neural Networks (DNNs) are opaque,

making their decisions hard to understand even for their creators.3,4 These latest AI algorithms are

often seen as complex “black box” models (Castelvecchi, 2016). Although interpretability might

not be crucial for certain applications like email categorization or voice assistants, in many cases,

humans are hesitant to trust algorithms that lack interpretability and transparency, especially due

to incidents of biased outcomes (Zhu et al., 2018). For instance, Google displayed fewer high-paying

job ads to women (Datta et al., 2015), Amazon’s same-day delivery skipped black neighborhoods5,

and digital camera software struggled to recognize non-white faces.6,7

To address AI interpretability, researchers have shifted their focus to eXplainable AI (XAI), a

class of methods that aim to produce “glass box” models that are explainable to humans while

maintaining a high level of prediction accuracy8 (Abdollahi and NaSRaoui, 2016; Csiszár et al.,

2020; Doshi-Velez and Kim, 2017; Holzinger et al., 2017b; Lipton, 2017; Murdoch et al., 2019).9

XAI enables human users, including nonexperts, to understand and trust AI systems. Its market

size was estimated at $4.4 billion in 2021, projected to reach $21.0 billion by 2030 with a CAGR
1https://www.gartner.com/en/information-technology/insights/top-technology-trends

2https://www.idc.com/getdoc.jsp?containerId=IDC_P33198

3https://www.newyorker.com/magazine/2017/04/03/ai-versus-md

4For example, OpenAI’s GPT-3 model has about 175 billion parameters (Brown et al., 2020).

5https://www.bloomberg.com/graphics/2016-amazon-same-day/

6https://www.inverse.com/article/39483-apple-refund-china

7https://futurism.com/ai-bias-black-box

8https://www.darpa.mil/program/explainable-artificial-intelligence

9https://www.darpa.mil/program/explainable-artificial-intelligence
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of 18.4%.10 While consumer activists advocate for the regulation of AI and the promotion of

transparent XAI,11 little is known about its economic implications for firms and consumers (Adadi

and Berrada, 2018). Our paper explores the economics of XAI and answers whether preferences

for XAI are aligned between customers and firms, and how policymakers should regulate XAI in

response.

We model a duopoly market where firms offer a product based on AI algorithms, e.g., auto

insurance (where AI determines rates). We let firms set product quality and price while consumers

choose to purchase the product from one of the two firms. AI product quality can be related to

the accuracy of the AI model or not–such as the coverage of auto insurance. Besides price and

quality, the consumers receive AI explanations (XAI). Firms compete to capture market share by

choosing their explanation strategy, quality, and price levels. All customers prefer more quality

and more explanations, but customers may differ in how they weigh these preferences relative to

price. Customers also differ in their preferences for explanation format or method. Thus, firms’

AI explanation strategy includes the explanation level (amount of information) and explanation

method (format of information). The policymaker aims to maximize total welfare by designing

XAI policies that regulate XAI choices available to firms.

Despite the zero cost of providing XAI, there are equilibria where firms withhold complete ex-

planations. We demonstrate that customers and firms may have misaligned preferences for full

explanations. In some environments, firms prefer less than full explanations, while consumers want

full explanations. This occurs even when providing XAI is costless, as dominant firms may sacrifice

XAI to limit competition and secure profits. To understand this outcome, consider a dominant firm

(high quality and high demand) and a smaller firm (low quality and low demand). Intuitively, the

dominant firm may benefit from sacrificing its XAI depth (even though it is costless) to ensure that

the smaller firm does not compete on quality and price. This helps both firms relieve competition

and make positive profits.

This less-than-full XAI outcome occurs even when the underlying data or model (“secret sauce”)

is not revealed by XAI. Researchers may mistakenly infer that AI explanations divulge trade secrets,

observing a correlation between the depth of the explanation by a dominant firm and the AI quality
10By Next Move Strategy Consulting, nextmsc.com

11https://tinyurl.com/theguardian-AI-watchdog
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of a smaller competitor. Instead, such an empirical observation is fully explained by the interplay

between endogenous XAI and quality choices in a competitive environment. Thus, correlations

between AI explanations and competitor AI accuracy do not necessarily imply the disclosure of

trade secrets, challenging the notion that firms are exempt from providing explanations.

In addressing firms’ incentives to conceal AI explanations, the prevailing regulatory approach

often mandates full explanations to end users (Pradhan et al., 2022). Our model does replicate this

conventional wisdom, but this outcome is not universal. Surprisingly, we find that full explanations

may actually disadvantage consumers under some parameter settings. In these instances, consumers

may prefer less than full XAI from one or both firms, leading to higher-quality offerings.

Since neither the firms nor consumers may prefer the naïve full explanation regulation, we con-

sider a strict XAI policy where the policymaker chooses the depth of XAI (ξstrict ∈ [0, 1] with 1

being full explanations) and the firms must offer XAI at this depth (ξi = ξstrict). Although this

allows for less than full explanations, firms are still symmetric and therefore are unable to relieve

competition. We are motivated to identify XAI policies that allow firms to differentiate on XAI;

we contribute by introducing more flexible policy levers. The first is a self-regulating XAI policy

in which the industry association (policymaker) sets an XAI depth (ξopt ∈ [0, 1]), and firms can

voluntarily choose to adopt the XAI depth or not at all (ξi ∈ {0, ξopt}). The second is a lower

bound XAI policy, where the policymaker sets a lower bound (ξLB ∈ [0, 1]) and the firms are free

to choose XAI above this bound (ξi ∈ [ξLB, 1]).
Finally, we compare across policies. An unregulated market can outperform the strict full XAI

policy. Thus, calls for instituting costly strict regulations may be redundant. The flexible XAI

policies (self-regulation or lower bound, which may be inherently cheaper since it’s voluntary for

firms rather than mandatory) allow firms to differentiate their XAI depth, which may aid social

welfare and even consumer surplus. These findings remain robust in various scenarios: (i) differing

XAI methods used by firms, (ii) consumer sensitivity or heterogeneity in XAI compared to product

quality, and (iii) alternative objectives for policymakers, such as average XAI depth or fairness.

To our knowledge, our study is the first to systematically integrate AI product representation

(price and quality), XAI attributes (level and method), and various consumer preferences. Our

model is applicable across various AI algorithms and XAI methods, encompassing different regula-

tory approaches and policy objectives (social welfare, consumer surplus, XAI fairness). Achieving

4



tractable closed-form solutions for such a comprehensive model is challenging but accomplished by

segmenting strategy spaces into analytically solvable regions. Our approach consciously models the

interconnected economic forces while abstracting non-economic factors. This uniqueness offers a

framework for addressing further research questions in this domain.

Our paper intersects with three emerging research areas. First, it addresses concerns regarding

the negative societal implications of unexplained AI (Troncoso et al. 2023; Malik, 2020) and

consumers’ perceptions of AI decision changes (Bertini and Koenigsberg, 2021). Second, it explores

the tradeoffs between AI accuracy and privacy concerns associated with explainable AI (Adadi

and Berrada, 2018), including the potential for adversarial attacks (Goodfellow et al., 2015) and

strategic manipulation (Wang et al., 2022). Third, it examines AI algorithms used by competing

firms and the pressure they face to adopt accountable AI practices. Despite this, little is understood

about the economic impacts of adopting explainable AI for firms. Our paper provides guidance for

policymakers and managers in navigating this landscape.

The paper is structured as follows: Section 2 details the theoretical model for firm choices for

XAI depth, quality, price, and the resulting profits and consumer utilities. We motivate some of the

model elements based on prior literature. Section 3 presents the core equilibrium results for firms’

choices of XAI depth in an unregulated setting. Section 4.1 highlights where consumer preferences

for XAI depth are aligned or misaligned with unregulated firm choices. Motivated by these firm and

consumer preferences for the depth of XAI, Section 4.2 lays out XAI policies (strict, self-regulated,

and lower bound) to maximize consumer surplus. We compare the various policies to show that

flexible policies dominate full XAI. Finally, Section 5 shows the robustness of the findings to model

extensions (XAI methods, XAI fairness, etc.).

2 The Model

2.1 Background

The rise of XAI research coincides with the evolving regulatory landscape for AI worldwide. The

EU’s GDPR, introduced in 2016, grants individuals the ”right to an explanation” for algorithmic

decisions.12 This provision has garnered support from organizations like The European Consumer
12See Articles 13 through 15: https://tinyurl.com/EU-regulation-2016-679
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Organization13 and companies like Facebook/Meta. Similar mandates for XAI are proposed in the

Digital Republic Act (France) and FCRA (US). However, opposition to these proposals exists due

to concerns about inherent explainability limits, the trade-off between XAI and AI accuracy, and

debates over whether AI decisions should face higher scrutiny compared to human intuition. More

detailed arguments for and against XAI are provided in Appendix A1.2.

In addition to the above argument, firms cite other reasons for not adopting XAI, including

concerns about the long-term implications of intellectual property theft, the risk of imitation by

competitors, susceptibility to adversarial attacks, or the lack of availability of applicable XAI meth-

ods for their AI models (Cinà et al., 2022). Although some articles explore the relationship between

XAI and adversarial attacks (Galli et al., 2021; Kuppa and Le-Khac, 2020), there is currently no

documented evidence that XAI has directly facilitated or enabled such attack vectors. We do

not consider external forces against XAI, such as adversarial threats or engineering limitations of

XAI tools, which have been discussed previously. This omission highlights that endogenous com-

petitive forces alone can impose constraints on XAI. However, we acknowledge the complexities

involved in adopting AI and XAI strategies and account for this friction, by analyzing the firm’s

decision-making process when the XAI strategy is considered before the choice of quality and price.

In specifying the economic utility of XAI, we leverage attributes of XAI introduced by Roman

et al. (2021) to ground our modeling. The first attribute is the depth (or ’complexity’) of the

explanation (Roman et al., 2021). XAI methods can be tuned to reveal different amounts of

information in the explanations e.g., depth of splits in a decision tree. For example, Facebook

provides some local explanations for why a certain ad was shown (Figure 1). Facebook’s AI ad

targeting engine likely uses dozens of rules, but in this specific example, they explain only three

rules that resulted in the customer receiving a particular ad. We model a firm’s continuous choice

of XAI depth and not just a binary choice of whether to offer XAI or not. Roman et al., (2021)

found that most users prefer more rather than less complexity in explanations. Following this, in

our model consumer utility from depth is always increasing.

The second key aspect of an explanation is its method, or format, as proposed by Roman et al.

(2021). Explanation methods can vary across multiple dimensions. They may be based on rules

(Martens et al., 2008; Martens et al., 2014), feature importance (Ribeiro et al., 2016; Lundberg et
13https://www.wired.com/story/europes-new-privacy-law-will-change-the-web-and-more/
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Figure 1: (Left) Facebook provides some explanation about why it shows an ad to you. (Right)
When applying for a loan, XAI analyzes each feature and finds its positive/negative effect on the
outcome (loan risk). Source: AIMultiple14

al., 2017), or counterfactuals (Martens et al., 2014). Explanations can take textual or visual forms

and can be either global or local. Even within local explanations, various methods such as LIME,

LOCO, and SHAP can be employed (Lei et al., 2017; Lundberg and Lee, 2017; Ribeiro et al., 2016).

Roman et al. (2021) suggest that consumers may exhibit preferences for one method over another.

However, we do not delve into behavioral rationales for such preferences. Instead, our focus is on

consumer preference determined by the information set revealed by different methods. Naturally,

these information sets may differ only when the methods do not provide full information depth.

Although Roman et al. (2021) identify specificity as a third attribute of explanation, we do not

incorporate this attribute into our model as it is rooted in behavioral construal level theory (Trope

et al., 2010) and is highly context-dependent.

It is important to note that we assume the quality of AI products and the depth of XAI are

independent of each other. In certain applications, such as autonomous vehicles and medical image

diagnostics, quality may rely on the accuracy of the AI model. Traditionally, there has been an

assumption of a trade-off between AI accuracy and interpretability (Adadi and Berrada, 2018),

which would challenge the independence of AI product quality and XAI depth. However, recent

research suggests otherwise. Rudin (2019) argues that such a trade-off is a ”blind belief” and

a ”myth” lacking empirical support. Rudin demonstrates that structured data and meaningful

features often result in negligible accuracy differences between complex classifiers (like deep neural

networks, boosted decision trees, random forests) and simpler, more interpretable ones (like logistic

7



regression, decision lists) after preprocessing. Therefore, our model intentionally excludes any direct

trade-off between XAI and quality.

2.2 Model

We consider a duopoly where two firms, indexed i = 1, 2, market products with three attributes:

XAI depth ξi ∈ [0, 1], quality qi ∈ 0, and price pi ∈ 0. Product attributes are observable by

customers. Without loss of generality, we assume that firm 1 is the high-quality firm and firm 2 is

the low-quality one (i.e. q1 ∈ q2). A quadratic cost for quality is assumed βq2
i . We model customer

preferences using a characteristics-based approach, defined directly over the attribute dimensions

of the available products. Customers are heterogeneous in terms of their quality valuation (i.e.

willingness to pay). This heterogeneity is captured by a parameter θ, which is uniformly distributed

throughout the population and normalized to [0, 1]. Customer j’s flow utility from quality of firm

(i) is θjqi. Everyone has the same preference for price, so those who purchase from firm i experience

the same flow (dis)utility −pi. The third component of firms’ products is the explanation that they

offer as the reasoning behind their AI’s decision. The flow utility of the customer j from the

explanations of the firm i is denoted by ue
ij . Below we formulate ue

ij as a function of firm’s XAI

method ei, XAI depth ξi and customer’s preference for explanation xj . In aggregate, the utility of

the customer j from the purchase of the firm i’s product is:

uij = V + θjqi − pi + u
e
ij(ei, ξi, xj) (1)

where V is the customer’s reservation value, i.e., the intrinsic value that he has for the products

in this market.15

Consider a motivating example of the utility of XAI ue
ij(ei, ξi, xj). In search of auto insurance,

Consumer A receives a (AI-based) quote of $120 along with an explanation - “your insurance

quote differs from the city average of $100 because your neighborhood has 18% greater incidents

of theft”. This consumer would be largely satisfied, since the neighborhood roughly explains the

above-average insurance quote of 20%. Consumer B receives the same quote of $120 along with
15This makes use of the common assumption in the discrete-choice framework literature that income effects from

price changes are negligible (Cunha et al., 2020), that is, income and prices are additive and separable. Therefore,
Vj can be omitted from Eq. 2.1 since it does not vary between products.
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an explanation - “your insurance quote differs from the city average because your neighborhood has

4% lower incidents of theft”. This consumer would be largely unsatisfied with this explanation.

If a different factor was explained – “households with 2+ uninsured individuals increase collision

chances by 23%”, it would have satisfied consumer B (who let’s say had 3 adult family members

without insurance).

To ground this motivating example, consider a simple AI model that predicts an insurance rate

ŷj = β1z1,j + β2z2,j using a linear model of customer characteristics zj . At less than the full depth

of the XAI ξi < 1, only β1 is revealed in the explanation. Customers who prefer to know β1 will be

satisfied, while others who prefer to know β2 will be unsatisfied with this explanation. A different

XAI method may explain β2 and therefore be preferred by the second group of customers. At full

XAI depth ξi = 1 both parameters of the model {β1,β2} are revealed, therefore all customers are

satisfied by either method. ”It is important to note that the method of explanation need not be

linked to the actual algorithm that led to the decision. For example, a decision could be reached by

a random forest model and explained using a counterfactual” (Roman et al., 2021) or an importance

ranking.

Firms can choose different XAI depth ξi and method ei even if they have the same underlying AI

model (and therefore the same accuracy or quality). In the model extension section 5, we discuss

why XAI methods (e.g. importance ranking vs. counterfactual) may reveal different information

sets (β1 vs. β2), and why firms may do this to horizontally differentiate, i.e., e1 = 0, e2 = 1. For

our baseline model, we will limit the XAI method to be identical between firms e1 = e2 = 0. We

assume that customers are distributed over the characteristic space so that their distances from

the XAI method are uniformly distributed xj ∼ U[0, 1]. Our baseline model of the utility of XAI

is thus given by:

u
e
ij (ei, ξi, xj) = −t (1 − ξi) ∣xj − ei∣ e1=e2=0

−−−−−−→ −t (1 − ξi)xj

In Appendix A.1.4 we provide a more elaborate decision tree-based AI model and how XAI depth

and method impact customer utility from explanations. Here, consumers have a fixed location

in a characteristic space. The depth of XAI ξi determines “how many” points in characteristic

space are explained, the XAI method ei determines “which” set of points in characteristic space are
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explained, and the customer heterogeneity xj captures the distance between the customer’s fixed

location and the closest explained point.

Firms’ Game: Firm i’s profit is πi = pidi −βq2
i where di denotes its market share. We consider

zero technical cost of implementing XAI due to the availability of cutting-edge, model-agnostic

XAI algorithms (e.g., SHAP, LIME) that can be downloaded as free, open-source packages. Firms

aim to maximize their profits in a three-stage game. In stage one, they choose personalization

levels ξ1, ξ2. In stage two, they select quality levels q1, q2. Finally, in stage three, they set prices

p1, p2. We will enforce non-negative payoffs for the firms. Consequently, the equilibria identified

for this three-stage game are also viable in an extended game where firms decide on market entry

in stage zero preceding XAI, quality, and price choices. The intuition behind the three-stage game

structure is the fact that prices are more flexible than quality in the short term (Cunha et al.,

2020). Likewise, product quality (e.g., through the AI model’s accuracy) is more flexible than that

of the XAI strategy. Thus, decisions in the early stages can be viewed as the firm’s long-term

strategy, while subsequent stages involve progressively shorter-term decisions. At each stage, firms

simultaneously make their own decisions. This three-stage game is of perfect information because

both firms have access to not only complete information (rules of the game, available strategies,

and the payoffs associated with each outcome) but also all past moves made by both firms. This

means that at any point in the game, each firm knows the entire history of the game up to that

point.

2.3 Market Structures

This problem is solved using backward induction starting with prices (p1, p2) in Stage 3, followed

by qualities (q1, q2) in Stage 2, and XAI depth (ξ1, ξ2) in stage 1. The analysis becomes intricate

when we consider that the mathematical expressions for demand functions (d1, d2) (and thus for-

profit functions π1, π2) vary depending on the values of ξi, qi, pi, i = 1, 2. In different ranges

of these variables, the indifference lines could intersect θ-axis (Figure 2 left and middle) or x-axis

(Figure 2 right) to split the demand between firms.

Consider that the firms are differentiated both in quality and in XAI depth. Intuitively, when

the cost of explanation misfit t is small, consumers are more heterogeneous in preference for quality.

Consumer demand is likely to be split based on quality preferences, that is, when the indifference
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lines intersect the θ-axis. We call this a quality-dominated market. When the cost of explanation

misfit t is large, consumers are very heterogeneous in preference for XAI. Consequently, consumer

demand is likely to split based on explanations, that is, indifference lines intersecting x-axis. We

call this an explanation-dominated market. Note that t is exogenous, while the market structure

explanation-dominated or quality-dominated is endogenous. Notwithstanding our example above,

it is possible that even under small t the firms make endogenous choices about quality and XAI

depth (for example equal qualities) that result in an explanation-dominated market. In practice,

we believe that consumers care first and foremost about the quality of the AI product before its

explanation. Therefore, we will focus on the former small t regions in Section 3 and discuss the

latter large t regions as an extension in Section 5.

To identify pure strategy equilibria,16 we assume that both market structures exist and solve for

the equilibrium values of ξi, qi, pi in each market using the appropriate mathematical expressions

for demand. Then we examine whether any firm i would be better off if they switched from their

optimal values in one market to the other. If no firm unilaterally deviates, then we have found a

Nash equilibrium. Note that the special treatment of these two market structures does not alter

the game; this only describes the procedure we use to identify pure strategy equilibria.

3 Results

In this section, we discuss equilibrium XAI choices for unregulated firms. Tirole (1988) provided

some guidance for the equilibrium results when firms choose quality (q1, q2) and prices (p1, p2).

Firms can maintain a differentiated quality equilibrium (q1 − q2 > 0) where the revenue for both

firms is increasing in quality differentiation. The higher quality firm prefers to increase quality, and

the lower quality firm prefers to decrease quality. Revenue for both firms (even the firm with low

quality) is increasing in maximal differentiation on quality because it weakens price competition in

the last stage. This principle of maximal differentiation is not unbounded. Practical considerations

such as available quality levels, cost of quality, and loss of market coverage may limit (or even

prohibit) quality differentiation. We will return to these boundaries, but first, we analyze how the

addition of the XAI depth choice (ξ1, ξ2) in stage 1 changes this equilibrium result.
16We will limit our examination to pure strategy, therefore any findings about firm or policymaker choices do not

consider mixed strategy equilibria.
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3.1 Unregulated XAI

To study the unregulated case and for our results to be analytically tractable, we limit the choice

of quality to qi ∈ {ql, qh} (with the notation ∆q = qh − ql). Without loss of generality, firm 1 is

fixed as a high-quality firm. Instead of exhaustively enumerating equilibria under all exogenous

parameter ranges, we focus on two-parameter ranges of interest. First, a range where both firms

choose the full depth of the XAI (ξ∗1 = 1, ξ∗2 = 1) in equilibrium and thus are undifferentiated in

XAI, i.e., ∆ξ = ξ∗2 − ξ∗1 = 0. Second, is a range where one firm (high-quality firm) chooses less

than the full XAI depth (ξ∗1 < 1, ξ∗2 = 1) in equilibrium; thus, the firms are differentiated on XAI

i.e., ∆ξ = ξ∗2 − ξ∗1 < 0. These two equilibria hold for the mutually exclusive exogenous parameter

β, ql, qh ranges expressed in Proposition 3.1. Figure 2 (left and middle) illustrates the indifference

lines (u1j = u2j) under the two equilibria. As the exogenous cost of quality β increases, firms switch

from the former to the latter equilibrium. We are interested in unraveling the intuition for when

and why unregulated firms switch to less than full XAI even when XAI is costless to offer.

Proposition 3.1. Unregulated firms with XAI choice ξi ∈ [0, 1], quality choice qi ∈ {ql, qh}, and

price choice pi ∈ 0 set in equilibrium (proof in Appendix A2.1)17:

a. Undifferentiated full XAI (ξ∗1= 1,ξ∗2= 1) if β > ∆q

9q2
l
:

(qh, ql) = (2∆q
3

,
∆q
3

)

π
∗
1 = (2

3
)2

∆q − βq
2
h π

∗
2 = (1

3
)2

∆q − βq
2
l

b. Differentiated partial XAI (ξ∗1= 1−∆ξ∗ug,ξ∗2= 1) if ∆q

9q2
l
< β < 1

9ql
:

(qh, ql) = (2∆q
3

−
t∆ξ∗ug

6
,

∆q
3

+
t∆ξ∗ug

6
)

17For these analytical result, we had to limit firms to choosing between two quality levels {ql, qh}. We employ
a numerical simulation to relax this simplification. Numerical simulations utilize Pytorch tensors (widely used for
training deep learning models on GPU) for speed improvement. Consistent with Proposition 3.1, there are mutually
exclusive exogenous parameter (β, t) ranges where firms set full XAI and less than full XAI. The numerical results
are consistent with an upcoming discussion using the simple analytical model on how firms choose XAI and quality
levels to weaken competition and maximize profits.
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Figure 2: Demand for Firm 1 and Firm 2 from consumers uniformly distributed over explanation
preference xj ∈ [0, 1] and quality preference θj ∈ [0, 1]. At equilibrium (a) with ∆q > 0, ∆ξ = 0
the indifference line is horizontal. At equilibrium (b) with ∆q > 0, ∆ξ > 0 the low-quality firm
gains additional demand because of XAI advantage ξ2 > ξ1. For large values of t (not captured in
Proposition 3.1) the indifference line will start to intersect x-axis, eventually becoming horizontal
for explanation-dominated equilibrium (∆ξ > 0, ∆q = 0)

π
∗
1 = (2

3
−

t∆ξ∗ug

6∆q
)2

∆q − βq
2
h π

∗
2 = (1

3
+

t∆ξ∗ug

6∆q
)2

∆q − βq
2
l

where ∆q and ∆ξ∗ug is the notation of ∆q = qh − ql and ∆ξ∗ug = min (1, 6
t
(ql

√
β

∆q
− 1

2
)), respec-

tively, in a market where 2ql > qh > ql and t < (∆q/4) ∗ (qh/ql)2 .

Note that firms choose differentiated quality in stage 2 (∆q > 0, q∗1 = qh, q∗2 = ql) under both

equilibria. Firms want to differentiate on quality to weaken competition and maximize profits. We

see that under both equilibrium outcomes, firm revenues are increasing in the quality differential

∆q. Thus, the addition of Stage 1 XAI depth choices does not appear to change each firm’s

incentive for maximal differentiation in quality. If more than two quality levels were available,

firms would prefer to differentiate further in quality (in Stage 2) under Stage 1 XAI choices for

either equilibrium.

Next, we compare firm profits π∗
i under both equilibria. Firm 1 has a strictly lower profit in

equilibrium (b). This is a direct result of Firm 1’s lower XAI depth in equilibrium (b). Therefore,

it appears that Firm 1 would prefer not to deviate from full XAI in equilibrium (a) to partial

XAI in equilibrium (b). This is true for a small cost of quality β. More generally, when firms

can differentiate costlessly in two dimensions, they prefer to only differentiate on the “dominant”
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dimension. Among the two dimensions here (quality and XAI), quality is the “dominant” dimension

at low t (see the condition on t in Proposition 3.1) because small transportation cost means that

consumer heterogeneity in XAI does not substantially influence their utility. Consequently, firms

can more effectively weaken competition by differentiating on quality. On the secondary XAI

dimension, neither firm has an incentive to differentiate, so both raise their XAI depth (costlessly)

to 1.

Given the above intuition, the existence of equilibrium (b) appears surprising. The incentives

for Firm 1 (the high-quality firm) to sacrifice its XAI in Stage 1 will become apparent when we

provide a close examination of the Stage 2 equilibrium. For a large cost of quality β, the Stage

2 differentiated quality equilibrium (q1 > q2) cannot be sustained under full XAI (ξ1 = 1, ξ2 = 1).

Instead, the two firms end up in a competitive equilibrium (q1 = q2) and receive zero profits.

Consider, for example, the profit for Firm 2 (lower quality firm) in equilibrium (a). As the cost of

quality β increases up to β = ∆q/9q2
l Firm 2’s profit goes to zero (π∗

2 = 0). If β increases beyond

this level, Firm 2 prefers to deviate from differentiated quality (q2 = ql < qh = q1,π2 < 0) to the

competitive quality level (q2 = qh = q1,π2 = 0). At the boundary β = ∆q/9q2
l , the profit of Firm

1 remains positive, i.e., π1 > 0 = π2. To avoid a fully competitive equilibrium, Firm 1 has an

incentive to sacrifice its XAI depth in Stage 1 and transfer some of its profit to Firm 2. To see

this visually, notice that in Figure 2 (left) the low-quality Firm 2 has a lower demand and price,

thus a lower revenue. In Figure 2 (middle) the low-quality Firm 2 gets a slightly higher demand

because Firm 1 lowers its XAI depth. The XAI advantage (ξ2 > ξ1) gives the low-quality firm

additional demand and revenue. Thus, discouraging Firm 2 from competing on quality. Therefore,

we find that reverse XAI differentiation in Stage 1 (ξ2 > ξ1) helps sustain a differentiated quality

equilibrium in Stage 2 (q1 > q2).

Generalization: Proposition 3.1 only captures equilibria when available quality levels are dis-

crete (ql, qh) and explanation misfit cost t are low, we discuss briefly below that similar equilibria

with differentiated XAI exist more generally outside of these exogenous parameter ranges.

First, consider the discrete quality levels (ql, qh). When 2ql < qh, low-quality Firm 2 (instead of

the high-quality Firm 1) has an incentive to sacrifice its XAI depth in stage 1. This happens because

under full XAI (ξ1 = 1, ξ2 = 1), it is the higher quality firm 1 whose profits become negative first

as β increases. Here, Firm 1 deviates away from differentiated quality to the competitive quality
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choice. The low-quality Firm 2 still has positive profits at this boundary β (across which Firm 1

profits switch from positive to negative) and therefore has an incentive to sacrifice its XAI depth

in Stage 1. This interestingly results in an equilibrium where Firm 1 has a higher XAI and higher

quality.

To better understand when incentives for the differentiation of XAI kick in, remember that the

maximal quality differentiation in Stage 2 is bounded. First, it is bounded by cost limits. For

example, as the high-quality firm continues to increase its quality q1, its revenue increases, but

its costs βq2
1 can start to dominate. Second, maximal differentiation can be bounded by demand

limits. For example, as the low-quality firm reduces its quality q2, it expects not to lose demand

to the high-quality firm (weaker competition). But it can lose demand if some consumers decide

not to purchase at all (uij < 0 ∀ i). When cost limits and demand limits are increasingly tight

at available quality levels, a differentiated quality equilibrium may not be viable for any. In such

cases, firms will have incentives for XAI differentiation in Stage 1 to maintain differentiation quality

equilibrium in Stage 2.

Second, consider relaxing the upper bound on t in Proposition 3.1. When t is large, firms can

more effectively weaken competition by differentiating on XAI (then quality). We had concluded

earlier that when firms can differentiate costlessly on two dimensions they prefer to only differentiate

on the “dominant” dimension. Intuitively, firms would prefer to differentiate maximally on XAI

instead of quality when t is large. We will generalize this more formally, large t regions, when we

discuss extensions in Section 5.

3.2 AI Explanation and Accuracy Correlation

As a by-product of the equilibria (a) and (b) captured in Proposition 3.1, we can examine important

questions about the relationship between AI explanations and AI quality. Note that an AI product’s

accuracy can be a key determinant of its quality. Industry practitioners often raise the concern that

AI explanations reveal the “secret sauce” of the underlying AI model. A competitor can therefore

use AI explanations to infer good AI model design and thereby improve its own AI accuracy.

Empiricists may look for instances where one firm increases its explanation levels and check to

see if competing firms improve their AI accuracy simultaneously. This claim can be used to argue

against XAI regulations. However, in this section, we will discuss why this conclusion may be
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erroneous.

Under equilibria (a) and (b) in Proposition 3.1, revenue for both firms increases with ∆q. How-

ever, in the differentiated equilibrium of XAI (b), the revenue of both firms is increasing slower

with (∆q). Consequently, if more than two quality levels were available, we would expect a smaller

quality differentiation (q∗1 − q∗2 ). More generally, when firms differentiate on a secondary dimen-

sion (XAI here), they endogenously differentiate less on the “dominant” dimension (quality here).

Furthermore, under the differentiated XAI equilibrium (b), (relative to (a)), Firm 1 can increase

q1 (to increase ∆q) but faces a tighter cost limit (q∗1 (∆ξ > 0) < q∗1 (∆ξ = 0)) on increasing q1

resulting in a smaller q∗1 . Firm 2 can decrease q2 (to increase ∆q) and face a weaker demand limit

(q∗2 (∆ξ > 0) < q∗2 (∆ξ = 0)), resulting in a smaller q∗2 . Overall, we would expect lower q∗1 , q∗2 and

average quality (qavg = (q∗1 d∗1 + q∗2 d∗2 )/(d∗1 + d∗2 )) at equilibrium (q∗1 , q∗2 ).

Now consider a market where the cost of quality β increases such that the equilibrium shifts from

full XAI (a) to differentiated partial XAI (b). Our model predicts that the larger firm (high quality,

high demand, high revenue) will reduce its XAI depth, and the smaller firm will reduce its quality

levels. Empirically, there appears to be a positive correlation between AI explanations by

the large firm and AI quality of the smaller competitor. One may jump to the causal

conclusion that AI explanations reveal the “secret sauce” that smaller competitors use to improve

their AI models. However, this conclusion can be erroneous. The correlation is fully explained

by the impact of differentiated XAI on incentives to maximally differentiate on quality and is not

driven by any learning about the underlying AI model from AI explanations.

Looking further into the quality and XAI tension, we discuss the impact on average (market) AI

explanation and quality. Consider both firms offering less than the full XAI, i.e. ξ1 = ξ2 < 1 (still

∆ξ = ∣ξ1 − ξ2∣ = 0), the equilibrium expression for prices remains the same as above. Firm 2 is

more constrained in decreasing q2 (to increase ∆q) from a demand limit. We would expect lower

differentiation and higher average quality (q∗avg) at equilibrium (q∗1 , q∗2 ). Empirically there appears

to be a negative correlation between average AI explanations and average investment

in AI quality. Again, one may jump to the causal conclusion that AI explanations reveal the

“secret sauce” that inhibits investment in AI models. However, this conclusion is again potentially

erroneous.
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4 XAI Regulations

In Section 3, we presented the results of our analysis for the unregulated case. We observed

equilibria in which firms provide full or partial explanations in different parameter spaces. Section

4.1 examines consumer surplus to answer whether consumers always prefer full XAI. We also identify

when firms and consumers have conflicting preferences for full vs. partial XAI depths to guide when

and how policymakers should regulate firm XAI depths. Section 4.2 proposes various regulatory

levers that the policymaker can deploy.

4.1 Consumer Surplus and Firm Profits

Under Tirole (1988), when firms choose quality (q1, q2) and prices (p1, p2), consumers dislike quality

differentiation, since it weakens firm competition and increases prices. Our model adds an addi-

tional dimension (XAI) for firms to differentiate on, over the work of Tirole 1988. However, it

is important to address whether Tirole (1988) holds with this additional dimension. Proposition

4.1 provides consumer surplus U under equilibria (a) and (b) discussed in the last section. Under

the undifferentiated full XAI equilibrium (a), consumer surplus U is trivially decreasing in quality

differentiation (increasing ∆q and decreasing q2). For the differentiated partial XAI equilibrium

(b), consumer surplus U decreases in quality differentiation (increasing ∆q and decreasing q2) and

in XAI differentiation ∆ξ∗.

Proposition 4.1. The consumer surplus U under each equilibrium is (proof in Appendix A2.2):

a. Undifferentiated full XAI equilibrium (ξ∗1 = ξ∗2 = 1); (qh, ql) = (2∆q
3

, ∆q
3
)

U = ql

2
−

∆q
9

b. Differentiated XAI equilibrium (1 − ∆ξ∗ug, 1); (qh, ql) = (2∆q
3

− t∆ξ∗

6
, ∆q

3
+ t∆ξ∗

6
)

U = ql

2
−

∆q
9

−
t∆ξ
36

α; α > 0

Next, we compare the surplus of consumers across the equilibria of (a) and (b). Under equilib-

rium (b), relative to equilibrium (a), the consumer (surplus U) is hurt by XAI differentiation. If
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consumers, through a policymaker, could influence the depth of XAI, consumers would prefer the

full undifferentiated XAI.

Although consumer preference for full XAI is consistent with conventional wisdom, there are

caveats to this conclusion. Consider enforcing full XAI when the cost of quality β is high (β >

∆q/9q2
l in Proposition 3.1). Here, the profits of Firm 2 (lower quality) would be negative under

differentiated quality (q1 = qh, q2 = ql). Thus, firms establish fully competitive undifferentiated

qualities, resulting in competitive equilibrium profits (π∗
1 = π∗

2 = 0) that cause firms to be indifferent

between market entry and not entering. Consequently, a monopoly is also an equilibrium and the

policymaker may not regulate to a full explanation. Rather, a differentiated partial XAI should be

examined when the cost of quality β is high. In doing so, an equilibrium is sustained with positive

profits for both firms.

Consider another scenario that allows for differentiated XAI. In Proposition 3.1 equilibrium (a),

firms (undifferentiated on XAI) can maximally differentiate on quality. Unregulated firms have

no incentive to differentiate on XAI when they can differentiate successfully on the “dominant”

quality dimension. Now consider when firms are forced to exogenously differentiate on XAI rather

than in the unregulated case. The equlibrium (b.) of Proposition 3.1 states that Firm 2 (the

firm with the XAI advantage) does not deviate from low quality in stage 2. However, when a

regulator forces no XAI differentiation or a very large amount of XAI differentiation and Firm

1 chooses to sacrifice XAI, Firm 2, the firm now with the XAI advantage, will be better off to

deviate from low quality to high quality in stage 2. Firm 2 is also able to capture 100% of the

demand by undercutting Firm 1’s price in stage 3. Given this, Firm 1 in stage 1 will never elect

to sacrifice XAI by a large degree. Thus, a sufficiently large exogenously forced XAI differentiation

can result in undifferentiated quality. Now compare these two settings from a consumer’s point of

view – undifferentiated XAI allowing maximal differentiation on quality (Proposition 3.1(a) and

Proposition 4.1(a)) vs. forced differentiated XAI resulting in undifferentiated quality. In the former,

consumers face differentiated quality and in the latter, they face differentiated XAI. Consumers

dislike both quality and XAI differentiation. But when they dislike quality differentiation more,

consumers may prefer differentiated partial XAI (ξ2 − ξ1 > 0). In essence, consumers prefer the

firm to sacrifice XAI for higher quality.18

18Consumers have similar preferences for less than full XAI when there is a single monopoly firm.
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Proposition 4.2. There exist exogenous parameter ranges where (proof in Appendix A2.3):

a. Both firms and consumers prefer full XAI (ξ1 = ξ2 = 1)
b. Firms prefer differentiated XAI (ξ1 < 1, ξ2 = 1) while consumers prefer full XAI (ξ1 = ξ2 = 1)
c. Both firms and consumers prefer differentiated XAI (ξ1 < 1, ξ2 = 1)
In setting (a), no regulation is required given that XAI preferences for both consumers and firms

are aligned for a full explanation which occurs for β > ∆q/9q2
l . But Proposition 4.2 also identifies

scenarios where regulation of XAI may be required given firm profits and consumer surplus. In

setting (c), while firms and consumers prefer less than full XAI, they may prefer different levels.

However, regulation should not mandate full explanations. In setting (b) firms and consumers are

clearly misaligned, leading a policymaker to consider regulating firms at a full XAI depth.

4.2 Regulatory Levers—The Policymaker’s Problem(s)

The policymaker’s goal is to maximize either total consumer surplus U which is calculated by

integrating Eq. 1 over demand for firm 1 (d1) and for firm 2 (d2) or Total Welfare (W ), which
includes consumer surplus and firm profits. Below we discuss results related to consumer surplus

and relegate our discussion of total welfare to the Appendix. We are motivated to look for policies

that allow some room for firms to set XAI less than full (to cater to setting (b) and (c) in Proposition

4.2 for example).

We consider three policy setups: (1) Strict XAI, (2) Self-Regulating XAI and (3) Lower

Bounded XAI.19 In strict XAI, the policymaker sets the XAI depth ξstrict and enforces this policy

(ξ1 = ξ2 = ξstrict). In self-regulating XAI, industry firms are motivated by the threat of possible

government regulation that they take it upon themselves to impose self-regulatory actions (DeMarzo

et al., 2005). Here, the policymaker is replaced by an industry association which sets the depth of

XAI ξSR as a guideline, but firms are free to choose whether they will offer XAI at this depth or

not at all (ξi ∈ {0, ξSR}).20 For self-regulation policy, the industry association (policymaker) must
19In Appendix A3 we provide industry examples (outside of XAI context) where such regulatory levers have been

used.
20One such example of self-regulation is in the food industry where the industry has provided guidance on lowering

children’s food marketing to its firms
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predict the equilibrium strategies of the firms and set the self-regulating ξ accordingly. Similar

to the self-regulating policy, in a lower bound policy, the policy maker sets a minimum level of

XAI i.e., ξi ∈ [ξLB, 1] and firms are free to choose their XAI depth within these limits. Here, the

government regulator, through the choice of ξLB, can shape the market structure and hence the

equilibrium strategies of the firms.

In the rest of this section, we will discuss the optimal choice for the policymaker in each policy

environment. Then we will compare the consumer surplus across the policies.

Strict Policy (ξi=ξstrict): The first policy we discuss is a strict policy that enforces a uniform

level of XAI ξstrict across all firms such that ξi = ξstrict . Current conventional wisdom may lead

policymakers to set a strict full explanation standard, that is, ξstrict = 1. However, we find that

ξstrict = 1 is not guaranteed to maximize consumer surplus (or social welfare). The loss of firm

profits at ξstrict = 1 is based on Proposition 4.2 (b), where only consumers, but not firms, prefer

full XAI. But why would consumers not prefer a regulatory policy of (ξstrict = 1)? The reason

is counterintuitive, since consumers lose explanations, while firms remain undifferentiated in both

cases. The rationale for this becomes clearer when we examine the tension between average XAI

depth and quality.

Note that when the XAI depths of the firm are exogenously set to undifferentiated levels (ξ1 = ξ2 =

ξstrict) then firms want to differentiate maximally on quality. However, as discussed above, quality

differentiation is bound by cost limits and demand limits. As ξstrict is reduced from 1, demand limits

becomes tighter, i.e. the low-quality firm starts losing market coverage and, therefore, its profit.

High-quality Firm 1 can transfer some of its demand (by lowering quality) to low-quality Firm

2. Eventually, both firms reach equal competitive quality and zero profits (π1 = π2 = 0). While

the consumers lose surplus from lack of explanations, they gain surplus due to high competitive

qualities and low prices. In general, consumers can be better off at ξstrict < 1.

Self-Regulating Policy (ξi∈ {0,ξSR}): The second policy that we study is a self-regulating

policy where firms can either choose to offer XAI at ξSR depth or not offer XAI at all, that is,

ξi ∈ {0, ξSR}. This allows the firms to differentiate on the depth of the XAI if only one firm

opts to offer XAI at ξSR, which is set by the industry association (policymaker). The findings

from the application of such a policy also extend21 to a similar policy where firms choose between
21The consumer surplus is scaled up under ξi ∈ {1 − ξSR, 1} compared to ξi ∈ {0, ξSR}, without changing any key
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ξi ∈ {1 − ξSR, 1} (similar to the unregulated equilibrium in Proposition 3.1 (b)).

Proposition 4.2 (a) provides one trivial scenario where a cheaper self-regulating policy works

as well as the costly strict policy since both firms and consumers prefer full XAI—but the need

to regulate here is limited. In Proposition 4.2 (b), only consumers prefer full XAI. Proposition

3.1(b) provides one such equilibrium in which unregulated firms would choose differentiated XAI

(ξ∗2 − ξ∗1 = ∆ξ∗ug > 0). The rationale for ∆ξ∗ug > 0 was that Firm 1 (high-quality) reduces its XAI

depth by ∆ξ∗ug to give Firm 2 (low quality) additional demand to discourage it from deviating to

a competitive quality level. The ideal choice for Firm 1 would be to provide Firm 2 just enough

XAI advantage to make non-zero profits at low quality. A self-regulating standard of ξSR<∆ξ∗ug

does not allow Firm 1 to provide sufficient XAI advantage to Firm 2. Similarly, a self-regulating

standard of ξSR=1 gives Firm 1 two options – not sacrifice XAI at all or sacrifice XAI to 0. Given

these options, Firm 1 may choose to opt in. This is because Firm 1, which prefers to reduce its XAI

depth by a moderate ∆ξ∗ug, does not want to reduce its XAI to 0 by opting out. Thus, the cheaper

self-regulating policy again works as well as the costly strict policy. Finally, in Proposition 4.2 (c)

scenario, both firms and consumers prefer partially differentiated XAI (but not necessarily at the

same level). Here, an ξSR<1 improves both consumer surplus and firm profits (therefore also social

welfare) relative to ξSR=1. Similar to strict policymaking, ξSR= 1 is not guaranteed to maximize

consumer surplus (or social welfare) under a self-regulating policy.

Lower Bounded Policy (ξi∈ [ξLB,1]): Finally, we consider a more flexible lower bound reg-

ulation ξLB. In this policy, the policymaker sets a minimum level of XAI i.e., ξi ∈ [ξLB, 1], which
promotes competition while maintaining a minimum level of XAI for all consumers. The lower

bounded policy may be less realistic than a strict or self-regulating policy. It is unclear if there is a

mechanism for firms to communicate arbitrary XAI depths outside of setting regulatory standards.

Under a lower bound policy ξi ∈ [0.5, 1], it is unclear how firms communicate different XAI depth

of say 0.75 or 0.9. Yet again, ξLB = 1 is not guaranteed to maximize consumer surplus (or social

welfare) under the lower bound policy. The rationale comes from Proposition 4.2 (c). When both

firms and consumers prefer partially differentiated XAI a lower bound standard of ξLB allows Firm

1 to sacrifice its XAI depth up to a maximum of (1 − ξLB). Further in Proposition 4.2 (b) where

consumer prefers full XAI but firms do not, if (1 − ξLB) < ∆ξ∗ug the XAI advantage available to

intuition.

21



Firm 2 may not be sufficient to discourage it from deviating to competitive quality. Consequently,

even a lower bound choice ξi∈ [ξLB,1] results in (ξ∗1 = 1, ξ∗2 = 1). Thus, a cheaper lower bound

policy works as well as a costly strict policy.

Corollary 4.3. Under a variety of XAI policy levers (strict, self-regulating, and lower bound) the

optimal choice of regulated level (ξ∗strict, ξ
∗
SR and ξ∗LB respectively) to maximize consumer surplus

(and social welfare) is not always 1. Comparing across policy levers, the self-regulating XAI (and

similarly flexible Lower Bounded XAI) policy can result in greater consumer surplus (and social

welfare) than the more extreme policies of - Strict XAI and Unregulated XAI (Proof in Appendix

A2.4).

5 Extension

In this section, we test the robustness of our findings while extending the model to an environment

where firms use different XAI methods. In the model presented in Section 2 firms use the

same XAI method, this corresponds to the firms located at the center of the Hotelling line (i.e.,

e1 = e2 = 0.5). We analytically model firms’ deployment of different XAI methods by setting

e1 = 0, e2 = 1. Note that the choice of the XAI method (ei) is a long-term strategy that often

requires multiple levels of approval within the organization and with the regulators. The way XAI

is presented also shapes how customers interact with the firm’s product. Therefore, changing ei

requires a significant investment in product repositioning. Consequently, we treat firms’ locations

on the Hotelling line as exogenous decisions made before the start of the game. Intuitively, an

environment with different XAI methods allows a new dimension on which firms have a fixed

difference and, therefore, changes their incentives to differentiate on XAI depth and quality.

In section 2.2 we presented two XAI methods as revealing different explanations for the same

underlying AI model ŷj = β1z1,j + β2z2,j . For concreteness, consider two XAI methods. The first

method iterates over the features and ranks them based on their explanation or predictive power

in isolation. For example, the model β1z1,j may have an R square higher than β2z2,j . At less than

full explanation, this XAI method would reveal only β1 in its explanation. The second method

provides counterfactuals intended to convey the features that may make it easier for consumers to

improve and change their prediction ŷj . At a less than full explanation, this XAI method would
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only reveal β2 in its counterfactuals. In Appendix A.1.5, we provide a practical example of feature

importance and counterfactual methods applied to the same AI model. Fundamentally, the set of

features explained by XAI methods can differ because the XAI methods have different objectives.

An environment with different XAI methods also requires an examination of XAI Fairness.

Absolute XAI fairness refers to the situation in which all customers on the Hotelling line receive

the same XAI utility. This notion of XAI fairness is similar to the equal outcome definition of AI

fairness (Hardt et al., 2016) and can only happen when firms offer full explanations (ξ1 = ξ2 = 1).22

If XAI in equilibrium turns out to be less than full XAI i.e., ξ < 1, then different customer

predictions on the Hoteling line xj receive unequal explanations. Consider two customer groups –

protected (historically marginalized) and unprotected. The predictions for the two groups may be

best explained by different features, e.g., employment or education for one group, but credit history

and purpose of loan for another group. On the Hotelling line, members of the protected group will

be closely clustered together (say on the right extreme) but distant from the unprotected group

(say in the middle). If the two firms use the same XAI method (situated in the middle) and offer

less than full explanations, the protected group systematically receives less explanation. When

firms use the same XAI method and therefore coincide on the hoteling line, the goal of XAI fairness

and average XAI depth become equivalent. When firms use different XAI methods, the objective

of XAI fairness is not aligned with the average depth of XAI.

Besides extending to different XAI methods, we allow for a continuous choice of quality instead

of the two discrete levels discussed in the above model. We further discuss results (i) for regions

with a large exogenous parameter t, and (ii) other policymaker objectives besides consumer surplus.

In Appendix A4, we provide formal equilibrium solutions. These model extensions will create too

many permutations if every choice of regulatory policy (strict or self-regulating), XAI method

(same or different), market structure (E or Q), and policymaker objective (welfare or fairness) are

discussed. Therefore, we only discuss here scenarios that reveal new insights for policymaking or

managerial implications.
22We must have ue

1j = ue
2j ∀xj ∈ [0, 1]. Thus, ξ1 = ξ2 = 1 and ue

1j = ue
2j = 0.
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5.1 Strict, Lower-Bounded and Unregulated XAI Policy Policies

Strict Policy: Recall that under the setting of identical XAI methods, strict policies eliminate

differentiated XAI depth (ξ1 = ξ2 = ξstrict), the market cannot be divided based on XAI differen-

tiation ∆ξ. As ξstrict decreases, firm profits strictly decrease, eventually going to π1 = π2 = 0 , as

firms set competitive qualities and prices. Under different XAI methods, the strict XAI policy level

(ξstrict) has an additional force. As ξstrict decreases, the horizontal differentiation between the firms

on the Hotelling line increases because the horizontal differentiation of each firm to the other is

t (1 − ξstrict) ∣e1 − e2∣. This in turn relieves price competition and improves profits. Consequently,

firm profits are not necessarily maximized at ξstrict= 1 under different XAI methods.

More generally, we can confirm Proposition 4.3 (i.e., ξ∗strict = 1 may not maximize welfare W ) even

under a different XAI method, continuous quality choices, and a wider range of t. Furthermore,

we can extend this conclusion beyond a total welfare W (or consumer surplus U) objective. XAI

Fairness objective is trivially achieved using a strict XAI policy with ξstrict = 1. But the strict

full explanations do not maximize welfare. Intuitively, welfare and fairness are best balanced when

firms use different XAI methods and offer symmetric XAI ξi=ξ∗fair∈ [ξ∗strict,1).23

Unregulated Policy: In the scenario where firms employ the same XAI methods, we identified

an exogenous parameter range (β, t) where unregulated firms in equilibrium offer less than full XAI

(Proposition 3.1 and Proposition 4.2). Under different XAI methods, we can confirm this result.

Consider large t regions with the use of different XAI methods. In an unregulated environment,

firms with a choice of continuous quality and XAI choose symmetric XAI levels:

ξ
∗
ug = 1 −

1
36βt

The equilibrium ξ∗i approaches 1 as t increases. This result of firms mirroring each other’s XAI

depth when unregulated simplifies the comparison of firm profits under unregulated and strict

policies.24 Firms prefer strict policy ξstrict = ξ∗ug and are worse off for ξstrict above or below ξ∗ug.

Under a lower-bounded policy ξLB > ξ∗ug, firms choose ξi = ξ∗ug. With any lower-bound policy

ξLB > ξ∗ug, firms will be worse off relative to an unregulated environment.
23In Appendix A5 we discuss XAI fairness in more detail.
24But while mirroring each other’s XAI levels leads to a symmetric equilibrium in this market, mirroring each

other’s XAI method results in no equilibrium at all.
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5.2 Self-Regulating XAI Policy

Recall that under the same XAI method and small t regions, we discussed an equilibrium in which

firm 1 (high quality) opts out to sacrifice its XAI while firm 2 (lower quality) opts in to receive

some XAI advantage. We now consider large t regions and different XAI methods.

Large t and Same XAI Method: Firms differentiate on XAI depth i.e., firm 1 opts in while

firm 2 does not. Thus, self-regulating XAI introduces a measure of horizontal differentiation even

though firms are located at the same point on the Hotelling line. Although firms are undifferenti-

ated, XAI by one firm helps both firms earn higher profits. Interestingly, firm 1 (the high-quality

firm) lowers its quality as ξ increases, while firm 2 (the low-quality firm) does the opposite. The

intuition is that: when firms are flexible to differentiate on a dominant dimension (∆ξ) and sec-

ondary dimension (∆q), they differentiate maximally only on the dominant dimension. Profits

increase with quality for both firms (∂πi/∂qi > 0, i = 1, 2), leading them to choose almost iden-

tical qualities if the cost of quality approaches zero,25 hence a reduction in the quality gap and

profits. Comparing small t and large t regions, quality and XAI are substitutes in helping

firms weaken competition and make positive profits.

Large t and Different XAI Method: We find that no firm has the incentive to offer expla-

nations at low levels (ξ < 1 − 1
36βt

), but when (ξ > 1 − 1
36βt

) Firm 1 (the high-quality firm) opts

in. There are multiple forces at play. As the level of explanation ξ increases, the XAI depth of

differentiation increases. This weakens competition by creating greater differentiation in XAI, but

it also reduces the Hotelling line distance between the two firms and therefore increases competi-

tion. Moreover, there is an indirect effect through quality. Firm 1 (the high-quality firm) opts in

at (ξ1 = ξSR) and offers a higher level of quality compared to a baseline in which no firm offers

explanations. Firm 2 (the low-quality firm) responds by lowering its quality. Consequently, the

quality gap grows in ξ and contributes to greater profits. As Firm 1 (Firm 2) increases (decreases)

its quality level, it charges a higher price than Firm 2. Firm 1 captures more customers while

also increasing its price, whereas Firm 2 loses its market share while lowering its price. Unlike the

scenario where firms use the same XAI method, quality and XAI are complementary. We

show that with Firm 1 offering XAI, Firm 2 cannot do any better by adopting XAI, ruling out the
25Which is not possible because of the equilibrium condition (βtξ > 2/9).
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(ξ∗1 , ξ∗2 ) = (ξ, ξ) strategy.

Lemma 5.1. Under self-regulating XAI policy ξi ∈ {0, ξSR} and large t, regardless of XAI methods,

at most one firm opts in resulting in a partial XAI equilibrium.

Furthermore, we can extend this result beyond the objective of total welfare W (or consumer

surplus U). In practice, the policymaker may find it challenging to measure total welfare. For

political or PR reasons, the policymaker may seek to maximize an objective that is easier to

measure and publicize, such as the total number of firms that opt-in to offer XAI or the average

depth of explanations received by the customer. We find that when firms use the same (different)

XAI method, the number of firms that offer XAI is constant or decreasing (increasing) in ξ. In

summary, under self-regulating XAI, the number of firms that offer XAI or the average XAI depth

is not strictly increasing in ξSR. Consequently, we show that ξSR= 1 does not maximize the number

of firms offering XAI or average XAI depth.

Finally, we compare self-regulating and strict policies. We confirm that for small βt, there is no

additional total welfare from the strict XAI policy over the self-regulation policy. We also have

an interesting counterintuitive result that the policymaker’s choice of an optimal strict XAI depth

may be lower than the optimal self-regulating level (ξ∗strict<ξ∗SR). Consider, for instance, the case

of different XAI methods under high βt. On one hand, under self-regulating XAI, the policymaker

asks for full explanations (ξ∗SR = 1) but only one firm will choose to offer XAI. On the other hand,

if XAI is strict, the policymaker asks for partial explanations (ξ∗strict < 1) but both firms comply.

Thus, one setting has a higher explanation depth while the other has a greater number of firms

that offer XAI.

6 Conclusion

This research paper offers a deep dive into the complex dynamics of eXplainable Artificial Intelli-

gence (XAI) regulations and their impact on firm competition and social welfare. The study’s key

finding is a nuanced departure from the common assumption that regulating an AI product to full

explanation is preferred. The finding that a full XAI explanation is not a recommended regulatory

strategy holds for a variety of XAI policy levers (strict, self-regulating, and lower bound), regardless

of firms’ choice of XAI methods (same or different) and variety of policy objectives (e.g., welfare,
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consumer surplus, average XAI depth).

We are also able to compare across XAI policy levers. While strict XAI policies ensure a uniform

explanation depth across the market, they potentially limit firms’ capacity for differentiation and

innovation in their XAI offerings. Unregulated XAI, while offering maximum flexibility, may fail to

guarantee a minimum explanation depth for all consumers. We introduce flexible policies of self-

regulating XAI and lower bounded XAI that result in higher consumer welfare than the extremes of

unregulated or full XAI policies. In summary, this research urges policymakers to consider a more

nuanced approach when crafting XAI regulations. A one-size-fits-all policy (across all markets),

particularly one mandating full explanation, may not yield the desired outcomes.

Future research could examine different aspects of XAI, such as the number of explained features

or the distinction between inferential and counterfactual explanations. It would be beneficial to

investigate the dynamics of XAI in scenarios where consumers may strategically manipulate AI

decision-makers, which could influence firms’ willingness to provide full algorithmic transparency.

Subsequent studies could also empirically validate our theoretical assumptions (e.g., order for strate-

gic firm choice of XAI method, depth and quality) as well as findings in real-world settings. Finally,

while our model excludes factors such as adversarial attacks and model privacy issues, examining

their role in the practical implementation of XAI could offer valuable insights into regulatory

strategies.
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Abstract 

The emergence of large language models (LLMs) has opened up exciting possibilities for 
simulating human behavior and cognitive processes, with potential applications in various 
domains, including marketing research and consumer behavior analysis. However, the 
validity of utilizing LLMs as stand-ins for human subjects remains uncertain due to glaring 
divergences that suggest fundamentally different underlying processes at play and the 
sensitivity of LLM responses to prompt variations. This paper presents a novel approach 
based on Shapley values from cooperative game theory to interpret LLM behavior and 
quantify the relative contribution of each prompt component to the model’s output. 
Through two applications—a discrete choice experiment and an investigation of cognitive 
biases—we demonstrate how the Shapley value method can uncover what we term the 
“token noise” effect, a phenomenon where LLM decisions are disproportionately influenced 
by tokens providing minimal informative content. This finding raises concerns about the 
robustness and generalizability of insights obtained from LLMs in the context of human 
behavior simulation. Our model-agnostic approach extends its utility to proprietary LLMs, 
providing a valuable tool for practitioners and researchers to strategically optimize 
prompts and mitigate apparent cognitive biases. Our results underscore the need for a 
more nuanced understanding of the factors driving LLM responses before relying on them 
as substitutes for human subjects in survey settings. We emphasize the importance of 
researchers reporting results conditioned on specific prompt templates and exercising 
caution when drawing parallels between human behavior and LLMs. 

Keywords: Large Language Models (LLMs), Shapley Value, Machine Learning, 
Interpretability, eXplainable AI (XAI), Cognitive Biases 
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. Introduction 
The rapid advancement of large language models (LLMs) has opened up exciting 

possibilities for understanding and simulating human behavior, with potential applications 
in various domains, including economic surveys, marketing research, and consumer 
behavior analysis. The appeal of utilizing LLMs for practitioners and researchers lies in 
their potential to exhibit reasoning patterns akin to humans. If LLMs can indeed 
demonstrate such capabilities, they could function as highly scalable proxies to traditional 
resource-intensive survey studies. Armed with the ability to rapidly collect “human-like” 
data through LLM simulations, marketers could significantly accelerate research cycles by 
testing different product configurations, pricing strategies, or advertising messages on 
virtual consumers before launching them in the real world. However, to harness the full 
potential of LLMs in business applications, we must first understand the factors that drive 
their behavior and the extent to which they truly reflect human cognitive processes. 

While LLMs have been shown to sometimes mirror documented cognitive biases found 
in human psychology experiments, there are also glaring divergences that suggest 
fundamentally different underlying processes at play. Moreover, the sensitivity of LLM 
responses to variations in input prompts has led to concerns about the robustness and 
generalizability of the insights obtained from these models. A key challenge lies in 
interpretability—how can we disentangle the factors truly driving an LLM’s behavior? 
When an LLM provides an output concordant with an established human bias, is it 
genuinely simulating the associated cognitive process? Or is the LLM simply locking onto 
superficial token-level signals unrelated to the core semantics? 

To illustrate the concerning fragility of LLM responses, consider a simple discrete choice 
experiment where we ask an LLM to choose between two flight options, A and B. When 
presented with the basic prompt, the model assigns certain probabilities to choosing each 
option based on the logits associated with response tokens. However, a striking 
phenomenon emerges when we introduce an imperceptible modification to the prompt: 
the sequential addition of newline characters after the question1. Despite being invisible 
to human readers and carrying no semantic meaning, each additional newline character 
significantly—and unpredictably—alters the choice probabilities. 

 

 

1 By repeatedly pressing “Enter/Return” at the end of the question. 
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Figure  illustrates this phenomenon through a series of snapshots showing how the 
choice probabilities change with different numbers of newlines. With no newlines (top-
left), the model strongly prefers option A. However, after adding just  newlines (bottom-
left), the probability of choosing option B rises notably, only to drop again with  newlines 
(bottom-right). Figure  reveals the full extent of this instability by tracking these 
probabilities across  newline insertions. The resulting pattern defies simple 
explanation: the choice probabilities exhibit chaotic fluctuations, with option B's 
probability occasionally surging above . before abruptly falling back near zero. This 
behavior starkly contrasts with human decision-making, where blank space in a 
questionnaire would not influence responses. More troublingly, the non-linear and 
seemingly random nature of these probability shifts means we cannot systematically 
correct for this type of noise in LLM decisions. 

 

 
Figure . Impact of newline characters on choice probabilities: four snapshots showing how the LLM’s preferences 

between flight options change with different numbers of newline characters. The model’s strong initial preference for 
option A (probability ≈ . with no newlines) becomes unstable as newlines are added, demonstrating the sensitivity 

of LLM responses to seemingly innocuous formatting changes. 

 

The following flights are available from City 1 to City 2. Which one would you 
choose?

- Flight A: Costs $400, Travel Time 7h
- Flight B: Costs $650, Travel Time 4h
<# newlines inserted here>
Your answer should be in JSON format: {"flight_label": <the label of the flight you 
choose>}
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Figure . Complete trajectory of choice probabilities for flight options A and B as the number of newline characters 
increases from  to . The chaotic fluctuations in probabilities demonstrate the unpredictable impact of newline 

characters on the LLM’s decision-making process, with no discernible pattern or convergence even after many 
iterations. 

 

This example underscores a critical reality: every token in a prompt, regardless of its 
semantic significance, can substantially impact an LLM’s decision-making process. The 
sensitivity to ostensibly irrelevant tokens raises fundamental questions about the 
reliability of LLM responses in experimental settings. Furthermore, it highlights the urgent 
need for interpretability methods that can not only identify how each token contributes 
to the LLM’s output but also quantify these effects. Our proposed approach, based on 
Shapley values from cooperative game theory, addresses precisely this challenge. 

Our Shapley value method treats the elements of a prompt as “players” in a game and 
quantifies the relative contribution of each component to the LLM’s output. This approach 
allows us to identify key tokens that significantly impact the model’s decisions, 
differentiating between tokens that carry semantic weight and those that do not, which 
ideally should exert minimal influence on the model’s responses. 

The results reveal an even more pervasive phenomenon beyond the newline character 
effect, which we call “token noise”: the model’s decision is unduly affected by tokens with 
negligible informational content, such as articles, prepositions, and even single words like 
“flight”—tokens that provide little to no meaningful content about the choice options 
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themselves. For instance, in the same flight choice scenario discussed above, while one 
would intuitively expect the tokens representing dollar amounts and flight durations to be 
the prime determinants of the LLM’s choice, our findings show otherwise. This token noise 
effect, combined with the sensitivity to format-level changes like newline characters, casts 
serious doubt on whether the LLM’s outputs truly reflect an understanding of the 
semantic content or a capacity for human-like decision-making. 

Our proposed Shapley value method diverges significantly from conventional 
eXplainable AI (XAI) techniques, such as SHAP, commonly used in machine learning. We 
begin by transforming the prompt into a vector format, representing it as a template with 
fields that can be substituted with arbitrary values. This template serves as the basis for 
generating different versions of the prompt. The LLM is then modeled as a function that 
maps this prompt vector to a probability distribution over possible outputs. Utilizing 
Shapley values, we compute the contribution of each segment of the prompt to the LLM’s 
prediction, thereby quantifying the significance of different token groups in shaping the 
model’s predictions. This stands in stark contrast to SHAP’s approach which considers 
each token as an isolated feature, lacking the capacity to recognize the semantic 
interconnections between groups of tokens. Moreover, SHAP’s reliance on multiple data 
points for comparison with an average input model is impractical for LLM scenarios where 
typically only a single, specific prompt is analyzed. Our methodology carefully navigates 
this by using the prompt’s template as a reference, sidestepping the limitations inherent 
in SHAP’s comparative framework. 

Moreover, in this paper the algorithm for estimating Shapley values deviates from 
traditional approaches like Kernel SHAP. Instead of averaging marginal contributions 
across random data points, we use a moving average approach that enhances stability and 
accuracy without needing to store intermediate values, making our estimation technique 
well-suited for the single prompt vector scenario. 

Another key advantage of our Shapley value method is that it is model-agnostic, 
working on any LLM, even proprietary models that are closed-source and gated behind 
an API, such as OpenAI’s GPT1, Google’s Gemini2, or AnthropicAI’s Claude3. This 

 

 

1 https://chat.openai.com/ 
2 https://gemini.google.com/app 
3 https://claude.ai/ 
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universality offers a major benefit over mechanistic interpretability approaches that often 
require access to the model’s weights. 

We demonstrate the effectiveness of our Shapley value method through two 
applications. In the first, we investigate a discrete choice experiment akin to those used 
in marketing research studies such as conjoint analyses. Our analysis uncovers the outsized 
impact of token noise, with the LLM’s choices being heavily influenced by tokens carrying 
little semantic information about the choice options. Furthermore, we demonstrate how 
the insights from our Shapley value method can be utilized to make subtle adjustments 
to the prompt phrasing, resulting in significant changes to the choice probabilities of large 
language models. This raises concerns about the validity and robustness of using such 
models as proxies for human subjects. 

The second application explores the presence of cognitive biases in LLMs, using the 
framing effect as an illustrative example. While LLMs exhibit apparent sensitivity to 
framing, our Shapley value analysis reveals that this behavior is largely an artifact of 
token noise rather than genuine cognitive processing. Crucially, we showcase how 
leveraging insights from our method enables practitioners to strategically optimize 
prompts and mitigate the apparent framing effects, questioning the genuine presence of 
this bias in LLMs. 

Our findings underscore the importance of researchers incorporating Shapley value 
analysis as a standard practice when studying LLM behavior. This approach contributes 
to a more nuanced and comprehensive interpretation of research findings, akin to reporting 
confidence intervals in statistical analyses. Furthermore, we emphasize the necessity of 
releasing results conditioned on the specific prompt templates used, enabling a thorough 
evaluation of the impact of prompt formulations. 

The remainder of this paper is structured as follows. Section  reviews the relevant 
literature on cognitive biases in LLMs and their potential applications in marketing, 
highlighting the need for novel interpretability methods. Section  introduces our 
methodology, explaining the Shapley value framework and its implementation. Section  
presents the results from our two marketing-focused case studies, showcasing the insights 
gained from the Shapley value analysis. Finally, Section  discusses the key conclusions, 
limitations, and future research directions. 

. Background and Literature Review 
The emergence of LLMs has sparked significant interest in their potential to simulate 

human behavior and cognitive processes. Several researchers have explored the intriguing 
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possibility of using LLMs as proxies for human subjects in various contexts, including 
decision-making tasks, surveys, opinion polling, and marketing research. However, a 
growing body of literature has raised concerns about the presence of cognitive biases in 
LLMs, casting doubt on their ability to accurately represent human behavior. 

Several studies have investigated the presence of cognitive biases and reasoning abilities 
in LLMs, drawing comparisons to human performance on similar tasks. (Binz and Schulz, 
) treated GPT- as a participant in a psychology experiment, subjecting it to a 
battery of canonical experiments from the cognitive psychology literature. They found 
that GPT- exhibited behavior similar to humans in tasks related to decision-making, 
information search, and deliberation. However, the authors also noted that small 
perturbations to the input prompts could lead to vastly different responses from the 
model, raising questions about the robustness and consistency of LLM behavior. Similarly, 
(Shaki et al., ) demonstrated that GPT- exhibits cognitive effects such as priming, 
distance, SNARC, and size congruity, but not anchoring. (Jones and Steinhardt, ) 
examined OpenAI’s Codex model and identified biases such as anchoring effects, framing 
effects, and a tendency to mimic frequent training examples, drawing parallels with human 
cognitive biases. (Hagendorff and Fabi, ) demonstrated that GPT- exhibits behavior 
resembling human-like intuition and the associated cognitive errors, while more advanced 
models such as ChatGPT and GPT- have learned to avoid these errors, performing in a 
“hyperrational” manner. (Koo et al., ) benchmarked LLMs as evaluators and found 
evidence of cognitive biases, such as the egocentric bias, where models prefer to rank their 
own outputs highly. (Fuchs et al., ) discussed methods that demonstrate assumptions 
about cognitive limitations and biases in human reasoning, and their potential application 
to LLMs. (Loya et al., ) examined the sensitivity of LLMs’ decision-making abilities 
to prompt variations and hyperparameters, finding that simple adjustments could lead to 
human-like exploration-exploitation trade-offs. 

(Talboy and Fuller, ) expanded on this line of research by examining several 
documented cognitive biases in LLMs. The authors demonstrated the presence of these 
biases and discussed the implications of using biased reasoning under the guise of 
expertise. While their work highlights the potential risks associated with the increasing 
adoption of LLMs, it relies on the assumption that the presence of human-like biases in 
LLMs indicates the existence of cognitive processes similar to those of humans. 

(Stella et al., ) critiqued this assumption, arguing that focusing solely on human-
like biases may not be sufficient for understanding the true nature of LLM reasoning. 
They emphasized the importance of investigating non-human-like biases, such as myopic 
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overconfidence and hallucinations, to assess knowledge elaboration in LLMs. In the same 
vain, (Macmillan-Scott and Musolesi, ) concluded that while LLMs display 
irrationality in tasks from cognitive psychology, they do so in ways that differ from human-
like biases, with significant inconsistency in their responses. These works underscore the 
need for a deeper understanding of the processes generating these biases and the potential 
differences between LLM and human cognition. 

Several researchers have explored the potential of using LLMs to simulate human 
behavior in specific contexts, such as student learning (Xu and Zhang, ), multiple 
human subjects in experiments (Aher et al., ), and strategic decision-making (Chen 
et al., ; Sreedhar and Chilton, ). However, these studies have also acknowledged 
the challenges and limitations associated with using LLMs as human proxies. (Tjuatja et 
al., ) found that popular open and commercial LLMs generally failed to reflect 
human-like response biases in survey questionnaires, particularly models that underwent 
reinforcement learning from human feedback (RLHF). 

The application of LLMs in market research and consumer preference elicitation has 
also been explored. (Brand et al., ) demonstrated that GPT-. responded to survey 
questions in ways consistent with economic theory and consumer behavior patterns, but 
acknowledged potential limitations in using LLMs for marketing purposes. The authors 
suggested that LLMs could be used to understand consumer preferences and estimate 
willingness-to-pay for products and features. 

However, the validity and reliability of using LLMs as proxies for human subjects have 
been called into question. (Gui and Toubia, ) highlighted the challenges of conducting 
LLM-simulated experiments from a causal inference perspective. They showed that 
variations in the treatment included in the prompt could cause variations in unspecified 
confounding factors, introducing endogeneity and yielding implausible demand curves. 
This endogeneity issue is likely to generalize to other contexts and may not be fully 
resolved by simply improving the training data. 

Some papers have taken a more philosophical or theoretical approach to understanding 
the implications of cognitive biases in LLMs. (Thorstad, ) advocated for cautious 
optimism about the prevalence of cognitive bias in current models, coupled with a 
willingness to acknowledge and address genuine biases. (Taubenfeld et al., ) observed 
that LLM agents simulating political debates tended to conform to the model’s inherent 
social biases, deviating from well-established social dynamics among humans. 
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The limitations of current approaches to understanding LLM behavior highlight the 
need for novel methods to interpret LLM responses and uncover the factors driving the 
model’s outputs. Without a clear understanding of the underlying mechanisms, it is 
premature to assume that LLMs exhibit genuine cognitive processes akin to those of 
humans or that they can serve as reliable proxies for human subjects in research settings. 
The inconsistencies and sensitivity to prompt variations observed in LLM responses 
suggest that the results obtained from these models may be largely driven by factors other 
than cognitive processes. In the following section, we propose the use of Shapley values as 
a method to interpret LLM experiments and shed light on the role of such factors in 
driving LLM results. 

. Method 
.. Vectorizing the Prompt 

Consider the following prompt which we want to send to an LLM: 

The following flights are available from City 1 to City 2. Which one would you choose? 
 
- Flight A: Costs $400, Travel Time is 7 hours 
- Flight B: Costs $600, Travel Time is 5 hours 

Let us assume that the LLM responds with “A” and “B” with % and % 
probability, respectively1. Our goal is to find out how much each word or token in the 
prompt contributes to the choice probabilities2. 

The first step is to convert the prompt into a (“Jinja”) template3. In this template, 
some parts of the text (tokens, words, or groups of words4) are replaced with handlebar 

 

 

1 With local models we use context-free grammars in the LLM engine to constrain the output structure of 
the model so that it always follows the specified format. With API models (such as OpenAI’s GPT 
models), we use logit bias or JSON-mode to constrain the output format. 
2 We do not consider punctuation marks such as “.”, “,”, “-”, etc. The instruction about JSON format is 
not included either. 
3 https://jinja.palletsprojects.com/en/..x/ 
4 When thinking about creating the template fields, we can consider putting one token, one word, or a 
group of words in one field. It is possible to create one field per token, but tokens do not necessarily carry 
enough semantic information to help make a decision (e.g., the word “flights” under GPT-. and GPT- 
tokenizer is two tokens: “fl” + “ights”, none of which helps even a human in decision-making). Words, on 
the other hand, are—by definition—semantically meaningful. Depending on the context, we create fields 
for single (meaningful) tokens, words, and groups of words. 

39



 

fields like {{ this }}. One can substitute the value of a field with arbitrary values in order 
to generate different versions of the prompt. If we fill out all fields with their corresponding 
values in the prompt text, we get back the original prompt. A simple template of our 
prompt with  fields is as follows (For the actual full template used in the paper, see 
Appendix A.): 

The following flights are available from !" x_1 !# to !" x_2 !#. Which one would you  
choose? 
 
- !" x_3 !#: Costs !" x_4 !#, Travel Time is !" x_5 !# hours 
- !" x_6 !#: Costs !" x_7 !#, Travel Time is !" x_8 !# hours 

Conditioned on the prompt template, one can now write the prompt as a feature vector 𝑥⃗ = (𝑥1, … , 𝑥𝐼)𝑇  where 𝐼 is the number of fields in the template and each feature 𝑥𝑖 is a 
field value1. Using the simple template above, the original prompt is then: 𝑥⃗ = ("City ", "City ", "Flight A", "$", "", "Flight B", "$", "")𝑇 . 
.. Modeling the LLM 

After vectorizing the prompt, the next step is to model the LLM as a function 𝑓 that 
maps the prompt 𝑥⃗ to a probability2, i.e., makes a prediction based on 𝑥⃗. Of course, 
LLMs— like most deep neural networks—are highly nonlinear in their input arguments, 
so 𝑓 cannot simply be a linear function of 𝑥⃗. Instead, a common approach in the machine 
learning literature is to think of 𝑓 as a linear function of the attributions of its input 𝑥⃗—
denoted by 𝜙 ⃗ = (𝜙1, … , 𝜙𝐼)𝑇 —where each 𝜙𝑖 is the attribution of the corresponding 𝑥𝑖. 
This aligns well with our goal to find the contribution of each (prompt) feature 𝑥𝑖 to the 
prediction. Therefore, 𝑓 can be written as: 

 𝑓(𝑥)⃗ = 𝜙0 + ∑ 𝜙𝑖𝐼
𝑖=1  . 

where 𝜙0 is a baseline (reference) attribution. Note that the linearity of Eq. . does 
not imply that the LLM is a linear function of the prompt, but rather the LLM is a linear 
function of the attributions of the prompt3. To calculate 𝜙,⃗ we follow the approach in 

 

 

1 Notation: (… )𝑇  means the transpose of (… ). 
2 Actually the arguments of 𝑓 are the prompt template as well as the prompt vector 𝑥⃗, so a more precise 
notation would be 𝑓(𝑥|⃗template), but for simplicity we just write 𝑓(𝑥)⃗. 
3 And the attributions can be highly nonlinear because they are based on LLM outputs. 
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(Ancona et al., ) and we employ Shapley values, a solution concept in cooperative 
game theory. This is discussed next. 

.. Shapley Value Attributions 
Remember that our goal is to find feature attributions 𝜙 ⃗for the given prompt vector  𝑥.⃗ Think of 𝒳 ≔ {𝑥1, … , 𝑥𝐼} as players in a cooperative (or “coalitional”) game with a 

payoff for the entire coalition. The payoff is characterized by a “value” function1 𝑣 that 
maps any subset of 𝒳 to ℝ or a subset of it2. In this paper, 𝑣 is the probability of the next 
token3 predicted by the LLM compared to some baseline 𝜙0 which we will define later. In 
the context of coalitional games, any subset 𝒮 ⊆ 𝒳 is called a “coalition” of players and 𝑣(𝒮) is the payoff of the coalition. Thus, our question in cooperative game theory terms 
is: How should we distribute the payoff among the players in the coalition? Shapley value 
offers a solution that guarantees “fairness” in the sense that each player 𝑥𝑖 (i.e., each 
prompt field) receives a payoff commensurate to its contribution to the coalition4. The 
Shapley value of player 𝑥𝑖 under the value function 𝑣 is denoted by 𝜙𝑖(𝑣) and is given by: 

 𝜙𝑖(𝑣) = 𝔼𝑂~𝜋(𝒳)[𝑣(pre𝑖(𝑂) ∪ {𝑥𝑖}) − 𝑣(pre𝑖(𝑂))] . 

where 𝜋(𝒳) is the ordered set of permutations of 𝒳, 𝑂 is an ordering randomly sampled 
from 𝜋(𝒳), and pre𝑖(𝑂) is the set of players that precede player 𝑥𝑖 in 𝑂. Therefore, 𝝓𝒊(𝒗) 

 

 

1 𝑣 is a “set function”. A set function is a type of function where the domain consists of sets rather than 
individual elements. Unlike a “normal” function that maps individual elements of one set to another set 
(e.g., 𝑓 : 𝒳 → 𝒴, where each 𝑥 ∈ 𝒳 is mapped to a unique 𝑦 ∈ 𝒴), a set function operates on sets 
themselves. In our definition of value function, 𝑣: 2𝒳 → ℝ where 2𝒳 denotes the power set of 𝒳, i.e., the 
set of all subsets of 𝒳 including the empty set and 𝒳 itself. 
2 𝑣(∅) is normalized to zero. 
3 Since we study prompts with two options (e.g., Flight A and Flight B), we can simply consider ℙ(𝐴) as 
the LLM prediction. LLMs typically first provide a probability distribution for the next token and then 
draw a sample from it. Since we can directly obtain the probability distribution, there is no need to 
actually sample from it.	
4 To be more precise, Shapley value is a “fair” distribution because it is the only distribution that satisfies 
the following four constraints at the same time (see Appendix A for more details): () Efficiency: All 
payoff is divided among players; () Symmetry: Payoff is split equally among players who contribute the 
same value in every coalition; () Additivity (Linearity): If there are two independent games (with value 
functions 𝑣 and 𝑤, respectively), then each player’s payoff is the sum of her payoffs in each game; () Null 
(Dummy) Player: A player who adds no additional value to any coalition receives a payoff of zero. 
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can be thought of as the expected marginal contribution of player 𝒙𝒊 when 
players are added to a coalition in a random order. Eq. . can be written as: 

 
𝜙𝑖(𝑣) = 1𝑁 ! ∑[𝑣(pre𝑖(𝑂) ∪ {𝑥𝑖}) − 𝑣(pre𝑖(𝑂))]𝜋(𝒳)= 1𝑁 ! ∑ [|𝒮|! (𝑁 − |𝒮| − 1)! [𝑣(𝒮 ∪ {𝑥𝑖}) − 𝑣(𝒮)]]𝒮⊆𝒳\{𝑥𝑖}  

. 

That is, the Shapley value of player 𝑥𝑖 is the average of player 𝑥𝑖’s contribution to each 
coalition 𝒮 weighted by |𝒮|! (𝑁 − |𝒮| − 1)!, the number of permutations in which the 
coalition can be formed. Before we can calculate Shapley values, though, we need to choose 
the baseline 𝜙0 and clarify the value of 𝑣(𝒮). This is done below. 

.. Baseline (Reference) Point 𝝓𝟎 
Some XAI methods such as SHAP (Lundberg and Lee, ) choose the average of all 

model predictions 𝔼𝐗[𝑓(𝑥)⃗] as the baseline of their explanations, where 𝐗 = {𝑥1⃗, … , 𝑥𝑁⃗} 
is the dataset of all feature vectors. But here we have only one prompt vector 𝑥,⃗ so we 
follow the game formulation in (Merrick and Taly, ) which unifies existing methods 
and allows us to think of Shapley values as contrastive explanations of an input 𝑥 ⃗relative 
to one or several reference vectors denoted by 𝑟.⃗ To do this, for any coalition 𝒮, we create 
a composite input 𝑧(⃗𝑥,⃗ 𝑟,⃗ 𝒮) (See Figure ): 

 𝑧(⃗𝑥,⃗ 𝑟,⃗ 𝒮) ≔ (𝑧1, … , 𝑧𝑑)𝑇  where 𝑧𝑖 = 𝑥𝑖 if 𝑥𝑖 ∈ 𝒮 and 𝑟𝑖 otherwise . 

 

 
Figure . A composite input 𝑧 ⃗is an input that agrees with 𝑥⃗ on features in 𝒮 and with 𝑟 ⃗on all the other features. 

 

In this paper, we let 𝑟𝑖 ∈ 𝑟 ⃗be “ _ “, therefore, any time a field is absent in the prompt, 
we substitute its template field with a space followed by an underscore and another space. 
According to (Merrick and Taly, ), we can now formulate the value function as: 

 𝑣(𝒮) = 𝑓(𝑧(⃗𝑥,⃗ 𝑟,⃗ 𝒮)) − 𝑓(𝑟)⃗ . 
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with 𝑣(∅) = 0  and 𝑣(𝒳) = 𝑓(𝑥)⃗ − 𝑓(𝑟)⃗1 . Eq. . means that the value we want to 
distribute among members of coalition 𝒮 is the difference between the probability of the 
next token when items in 𝒮 are present in the prompt (while others are filled out with “ 
_ “), and the probability of the next token when all prompt template fields are filled out 
with “ _ “. Plugging Eq. . in Eq. . now gives us the exact Shapley values. 

.. Estimating Shapley Values  
Calculating the exact Shapley values using Eq. . can be computationally infeasible 

for LLM prompts (see Appendix A for details). In practice, there exist approximation 
methods such as (Castro et al., ; Štrumbelj and Kononenko, ) that use Monte 
Carlo simulation to estimate Shapley values. The algorithm in this paper follows (Grah 
and Thouvenot, ) which is inspired by the general idea of (Štrumbelj and Kononenko, 
), but deviates from it in important ways. First, (Štrumbelj and Kononenko, ) 
estimate Shapley values by calculating the marginal contributions compared to random 
instances in the dataset 𝐗 . But since we have only one prompt vector, marginal 
contributions must be calculated compared to a reference vector 𝑟.⃗ Second, (Štrumbelj 
and Kononenko, ) find the average of all marginal contributions of feature 𝑥𝑖 and 
report that as its Shapley value, while the algorithm in this paper uses a moving average 
throughout the entire algorithm, making the estimation more stable and accurate with 
each iteration without needing to store all intermediate values2. Next, we present our main 
results. 

. Applications 
In this section we present two applications of our Shapley value method in LLM 

experiments to demonstrate how LLM responses can be interpreted. While we provide the 
following examples, bear in mind that our method is general and model-agnostic (a 
desirable property in XAI methods), meaning that it can be used on any experiment with 
LLMs of any kind, even the ones whose weights are not open-sourced (i.e., models gated 
behind an API, such as OpenAI’s GPT models). 

 

 

1 This is easy to verify: For 𝒮 = ∅, we have 𝑧(⃗𝑥,⃗ 𝑟,⃗ ∅) = 𝑟⃗ and for 𝒮 = 𝒳, we get 𝑧(⃗𝑥,⃗ 𝑟,⃗ 𝒳) = 𝑥.⃗ Also, notice 
that 𝑓(𝑟)⃗ in Eq. . is an offset term to ensure that the payoff for the empty set is zero. 
2 See Appendix A for details of the algorithm. 
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.. Application : A Discrete Choice Experiment 
This is a basic application of our method in which we ask the prompt mentioned in 

Section . from the language model. Studying discrete choice experiments of this kind is 
worthwhile due to the recent interest in substituting human subjects in marketing research 
studies (e.g., conjoint analyses) with LLM agents. To ensure the robustness of our findings, 
we conduct the discrete choice experiment on three Llama--Chat models of varying sizes: 
B, B, and B parameters (see Appendix A.). By testing our approach on models 
with different capacities, we aim to validate the consistency of our results and demonstrate 
the generalizability of our method across LLMs of different scales. 

Important to note is that we categorize prompt template fields into two groups: () 
Those that carry information critical in decision-making, () and the non-critical ones. 
For example, when choosing between two flights as in Section ., the price, travel time, 
and label of flight options is crucial in making an informed decision. On the other hand, 
most parts of speech (e.g., articles, prepositions, conjunctions, pronouns, auxiliary verbs, 
etc.) are non-critical for decision-making1. The high-information tokens determine the 
semantics/content of the prompt whereas the low-information tokens form the general 
syntax/structure of it and changing them does not alter the meaning of the prompt. 

LLMs are designed to pay attention to the entire batch of input tokens (Vaswani et al., 
), but each token may have a varying impact on the model’s prediction of future 
tokens. If it turns out that the LLM’s decision (flight “A” or “B”) is heavily driven by 
low-information tokens, that would cast doubt on the validity of the experiment conducted 
on the LLM. Put differently, it prompts us to question whether the experiment results 
truly reflect the underlying behavior of the LLM or if they are merely influenced by what 
we refer to as “token noise”. To answer this question, we calculate the Shapley values 
according to our algorithm mentioned in Appendix A. Depending on the direction of 
impact, Shapley values can take positive or negative values. 𝜙𝑖 > 0 (𝜙𝑖 < 0) implies that 
feature 𝑥𝑖 pushes (pulls) the choice probability to be higher (lower) than the baseline 𝜙0—
the choice probability when the empty prompt template is given to the LLM. Since we 

 

 

1 For instance, asking “Which flight would you choose?” instead of “Which flight do you choose?” should 
not matter as much as changing the price of flight A. 
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are concerned only with the magnitude of impact, we take the absolute values of Shapley 
values and then normalize1. 

Our findings provide evidence that large LLMs, regardless of their size, are “smart” 
enough to pay attention to high-information tokens, but we also discover noticeable 
traces of token noise among all the LLMs we studied (See Figure  which 
illustrates our results for Llama--B-Chat, the largest LLM among the three2.). The 
patterns of token noise remain consistent across the B, B, and B models, indicating 
that the observed token noise is not specific to a particular model size but rather a general 
characteristic of LLMs in this context. 

Let us first consider the model’s “smartness”: Notice how in Figure  the LLM pays 
relatively small attention to the first part of the prompt3 while correctly focusing on the 
second part which contains the information about the flights. The Shapley values for high-
information tokens such as the price, travel time, and label of flights (“A” and “B”) are 
relatively high4, meaning that they contribute substantially to the LLM’s decision. In 
addition, some low-information tokens such as “flights”, “Flight”, “Costs”, and “Travel 
Time” contribute a great amount by providing context. For example, by reading “The 
following flights…”, the model knows that what comes next has something to do with 
flights. Similarly, “Costs”, “Travel Time”, “is”, and “hours” link the words in the prompt 
and thus have high Shapley values. 

 

 

 

1 For the sake of brevity, from this point forward, we will use the term “Shapley values” to refer to 
normalized absolute Shapley values.  
2 Appendix A. lists our results for all three models (Llama--Chat B, B, and B). 
3 This part of the prompt says: “The following flights are available from City  to City . Which one 
would you choose?” 
4 Flight labels (“A” and “B”) are important because the model is asked to choose a flight between the 
provided options. Therefore, it must know the label of each option. 
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Figure . Normalized absolute Shapley values for a discrete-choice question 

 

That being said, the stark difference between the Shapley values of low-information 
tokens versus the high-information ones is concerning. The fact that the highest Shapley 
values belong to {“flights”, “Flight [A]”, “Flight [B]”} indicates that the model’s 
decision—choosing flight “A” or “B”—is mostly swayed by words that do not actually 
provide any details about the flight options1. Moreover, the very first word (“The”) is 
almost as important in the LLM’s decision-making as is the price of flight “B”. This 
phenomenon—which we refer to as token noise—can be exploited to influence the decision 
of the LLM. For example, consider Figure  which shows the choice probabilities of the 
model before and after we slightly tweak its prompt. As we can see, the choice probability 
of flight “B” almost doubles even though the semantics of the two prompts are identical. 
Results like this raise concerns about the validity and robustness of using LLMs instead 

 

 

1 Consider the word “Flight” as indicated by v_Flight on Figure . Its unnormalized Shapley value is ≈−0.13, meaning that the presence of this word reduces the probability of selecting flight “A” by % (as 
compared with the baseline 𝜙0). 
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of humans in marketing research studies because the estimated coefficients of the utility 
function could be biased. We will return to this point in Section . 

 

 
Figure . Influencing the LLM’s choice probabilities by slightly rephrasing the prompt. (LLM: Llama--B-Chat) 

Red Text: Tokens removed in the other prompt. Blue Text: Modified tokens. 

 

.. Application : Existence of Cognitive Biases in LLMs 
In our second application, we explore the presence of cognitive biases in LLMs. 

Understanding the behavioral tendencies of LLMs is crucial for marketers for two reasons: 
() It allows for harnessing the full potential of LLMs when deployed in production (For 
instance, an LLM that is sensitive to “framing effect” may require careful prompting when 
used in a recommendation system.), and () LLMs that exhibit human-like behavior can 
serve as valuable test environments for consumer behavior experts to conduct preliminary 
studies before conducting their main experiments. 

Let us consider the framing effect. The concept was first introduced in (Kahneman and 
Tversky, ). The authors illustrated that the choices individuals make are significantly 
influenced by the manner in which problems are framed. This is primarily due to the 
inherent cognitive bias towards avoiding risk in gains and seeking risk in losses. To test 
this effect on LLMs, we conduct an experiment in two stages as follows: First, we use the 
prompt used in Section . to find the choice probabilities when no framing effect is 
introduced. Then, we modify the prompt by adding the word “only” before the price of 
flight B, i.e., “… Flight B: Costs only $, Travel Time is  hours…”. Semantically 
speaking, this positive framing makes flight B more attractive than before, as evident in 
the significant change in the LLM’s choice probabilities (Figure ): 

The following flights are available from City 1 to 
City 2. Which one would you choose?

- Flight A: Costs $400, Travel time is 7 hours
- Flight B: Costs $600, Travel time is 5 hours

The following options are available from City 1 to 
City 2. Which one would you choose?

- Option A: Costs $400, Travel time 7 hours
- Option B: Costs $600, Travel time 5 hours
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Figure . Positively framing an option makes the LLM choose it more than before. (LLM: Llama--B-Chat) 

Green Text: Injected tokens. 

 

Taking it at face value, the observed shift in choice probabilities may indicate that 
LLMs are sensitive to changes in framing and can exhibit patterns that mimic human 
behavior (in this case, the framing effect). However, as LLMs are fundamentally 
autoregressive models trained on extensive datasets, their responses may also reflect 
learned statistical associations rather than genuine cognitive processes. Furthermore, as 
discussed in Section ., the impact of token noise might significantly skew the 
interpretation of LLM choices, making any deductions about their decision-making 
unreliable. To put in context the change in choice probabilities, we can examine the 
Shapley values of the modified prompt (the one with positive framing, shown on Figure 
, right). Doing so, we find that all three LLMs exhibit significant attention to the word 
“only”. In the case of Llama--B-Chat (Figure ), the unnormalized Shapley value for 
“only” stands at −0.08, implying that the presence of this word increases the probability 
of choosing flight “B” by %, reinforcing the idea that LLMs may be susceptible to framing 
effects. 

With that being said, here, too, we find the same discernible pattern of token noise  
that we saw in Section . (Figure ). In fact, the cosine similarity1 between the Shapley 

 

 

1 To calculate the cosine similarity, we remove the value of __v_only_B__ from Figure , and then 
calculate the dot product of Shapley values in Figure  and Figure  divided by their norms, i.e., cosine_similarity (𝑣1⃗, 𝑣2⃗) = 𝑣1⃗ ⋅ 𝑣2⃗/(‖𝑣1⃗‖ × ‖𝑣2⃗‖) where 𝑣1⃗, 𝑣2⃗ are the normalized absolute Shapley values. 

The following flights are available from City 1 to 
City 2. Which one would you choose?

- Flight A: Costs $400, Travel time is 7 hours
- Flight B: Costs $600, Travel time is 5 hours

The following flights are available from City 1 to 
City 2. Which one would you choose?

- Flight A: Costs $400, Travel time is 7 hours
- Flight B: Costs only $600, Travel time is 5 hours

48



 

value distributions with and without positive framing for Llama--B is ≃ 0.90, which 
suggests that the overall (noisy) decision-making process of the LLM remains largely 
consistent across different framings. A notable exception is the Shapley value of the price 
of flight A: When the price of flight B is portrayed more favorably, the importance assigned 
by the LLM to the price of flight A jumps by %1. This shift indicates that positive 
framing of the price of flight B leads the LLM to scrutinize the price aspects of the options 
more meticulously, hinting at a nuanced influence of framing on the LLM’s comparative 
evaluations. 

 

 
Figure . Normalized absolute Shapley values for a question that frames option B positively. 

 

Nonetheless, the rest of the low-information tokens, namely {“flights”, “Flight [A]”, 
“Flight [B]”}, retain their relatively high Shapley values. This insight can be leveraged to 
sway the LLM’s decision-making process. For instance, following Section ., we could 

 

 

1 From .% in Figure  to .% in Figure , hence (4.6 − 2.8) 2.8⁄ = 64% increase. 

49



 

substitute the word “Flight” with “Option” and replace “Costs” with “Priced at”. While 
this preserves the semantic meaning of the prompt, it significantly alters the choice 
probabilities, as illustrated in Figure . Interestingly, these slight modifications not only 
eliminate the apparent framing effect but also result in a decreased probability of 
choosing flight B, casting doubt on the existence of the framing effect to begin with. 
Without the Shapley value analysis, identifying the key tokens responsible for the 
apparent framing effect and devising an effective strategy to mitigate it would be a 
challenging and arduous task, especially with longer prompts. 

 

 
Figure . Using the Shapley values to modify the framing prompt in order to avoid observing the framing effect. 

 

The token noise pattern observed in this experiment was consistently detected across all 
three Llama--Chat models (B, B, and B), demonstrating the robustness of our 
findings1. Circling back to our initial point, the Shapley value method proves to be highly 
useful in practical applications where marketers aim to mitigate what appears to resemble 
cognitive biases in LLMs. By leveraging the insights gained from our analysis, practitioners 
can strategically optimize prompts to mitigate the influence of ostensible cognitive biases, 
ensuring more reliable and consistent performance in real-world scenarios. This 
demonstrates the far-reaching implications of our method, not only in advancing our 

 

 

1 See Appendix A.. 

The following flights are available from City 1 to 
City 2. Which one would you choose?

- Flight A: Costs $400, Travel time is 7 hours
- Flight B: Costs $600, Travel time is 5 hours

The following flights are available from City 1 to City 2. 
Which one would you choose?

- Option A: Priced at $400, Travel time is 7 hours
- Option B: Priced at only $600, Travel time is 5 hours
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understanding of LLMs, but also in enhancing their practical utility across various 
domains. 

. Conclusion 
In this paper, we have presented a novel approach for interpreting the behavior of LLMs 

using Shapley values. Our method provides a quantitative framework for understanding 
the relative importance of different tokens in shaping the decisions made by LLMs, 
shedding light on the underlying factors that drive their responses. 

The findings from our two applications, as discussed in Sections . and ., 
demonstrate the effectiveness of our Shapley value method in unraveling the complex 
decision-making processes of LLMs. By illuminating the influence of specific tokens on the 
model’s choices, our approach not only deepens our understanding of LLM behavior, but 
also enhances the reliability and interpretability of experimental outcomes. However, it is 
important to recognize that while Shapley values offer valuable insights, they do not serve 
as a definitive measure of the trustworthiness of LLM results. Instead, they should be 
interpreted as indicators of the relative significance of various factors in the LLM’s 
decision-making process. 

In light of these considerations, we strongly recommend that researchers studying LLM 
behavior incorporate Shapley value analysis as a standard practice in their methodology. 
By doing so, they can provide a more nuanced and comprehensive interpretation of their 
findings, akin to the practice of reporting confidence intervals in statistical analyses. This 
approach will contribute to a richer and more robust discourse on the reliability and 
interpretability of LLM-driven research. 

Furthermore, we emphasize the importance of researchers releasing their results 
conditioned on the specific prompt template used in their experiments. Given the high 
sensitivity of LLM responses to variations in the prompt template and the exact wording 
of the prompt, conducting sensitivity analyses using our Shapley value method is crucial 
for ensuring the robustness and generalizability of the findings. This practice will enable 
a more thorough evaluation of the impact of different prompt formulations on the observed 
results. 

Researchers attempting to establish connections between human behavior and LLMs 
must exercise particular caution, as our findings suggest that the phenomenon of token 
noise can substantially influence the outcomes. The presence of token noise, where LLM 
decisions are primarily driven by tokens that may not hold significant semantic importance 
for human decision-making, can lead to misleading conclusions about the cognitive 
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processes underlying LLM behavior. Therefore, careful consideration and analysis of the 
role of token noise are essential to avoid overinterpreting the similarities between LLM 
and human decision-making. 

The token noise phenomenon revealed by our analysis raises fundamental questions 
about the nature of LLM behavior. Much like the Heisenberg uncertainty principle in 
quantum physics—where measuring a particle’s position affects our ability to measure its 
momentum—we find that the very act of measuring LLM preferences alters those 
preferences. LLMs do not possess stable preferences waiting to be uncovered; rather, they 
generate preferences dynamically in response to prompts. 

This observation aligns with the fundamental architecture of these models: At their 
core, LLMs take an input prompt and generate a distribution over possible output tokens, 
making their “preferences” merely probabilistic outputs conditioned on the exact prompt 
configuration—including seemingly irrelevant elements like newline characters. Different 
prompts, even those that appear semantically or visually identical to human readers, can 
yield substantially different distributions over output tokens. 

These insights advance marketing theory in two ways. First, by quantifying token noise, 
we establish that LLM decision-making fundamentally differs from human cognition in its 
sensitivity to non-semantic elements, challenging their use as direct proxies for human 
subjects. Second, the finding that LLMs generate rather than possess preferences calls for 
a new theoretical framework that treats LLM outputs as conditional probabilistic 
responses rather than revelations of stable preferences. 

It is crucial to recognize that Shapley values, by their nature, are not predictive or 
causal. The positive or negative values assigned to tokens do not necessarily imply that 
replacing those tokens with alternative ones will result in a corresponding change in choice 
probabilities. Similarly, the magnitude of the Shapley values does not provide a precise 
quantitative measure of the impact of token substitution. Instead, Shapley values offer 
insights into the average marginal effect of each token within the specific prompt under 
consideration. To assess the impact of token replacement, it is necessary to reapply the 
Shapley value method to the modified prompt. 

While our approach has yielded promising results, there are several limitations and 
avenues for future research that warrant attention. Firstly, exploring other potential 
applications of the Shapley value method in the context of LLM interpretation could 
reveal new insights and extend the scope of its utility. Secondly, the computational cost 
associated with estimating Shapley values can be substantial, particularly for larger 
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prompts and more complex models. Developing faster and more efficient approaches to 
Shapley value estimation could greatly enhance the practicality and scalability of our 
method. 
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Appendices 
A. Jinja Prompt Template 

We vectorized the prompt according to the following template: 

!" v1_The !# !" v2_following !# !" v3_flights !# !" v4_are !# !" v5_available !# !" v6_
from !# !" !$v7_City_1!$ !# !" v8_to !# !" !$v9_City_2!$ !#. !" v10_Which !# !" v11_one
 !# !" v12_would !# !" v13_you !# !" v14_choose !#? 
 
- !" v15_Flight !# !" !$v16_A!$ !#: !" v17_Costs !# !" !$v18_price_A!$ !#, !" v19_Trave
lTime !# !" v20_is !# !" !$v21_only_A!$ !# !" !$v22_tt_A!$ !# !" v23_hours !# 
- !" v24_Flight !# !" !$v25_B!$ !#: !" v26_Costs !# !" !$v27_only_B!$ !# !" !$v28_price
_B!$ !#, !" v29_TravelTime !# !" v30_is !# !" !$v31_tt_B!$ !# !" v32_hours !# 

The fields that carry information important in decision-making are written in “dunder” 
style like __this__. Each field has an index (e.g., v means variable number ). 

A. Shapley Value Properties 

A.. Efficiency ∑ 𝜙𝑖(𝑣)𝑥𝑖∈𝒳 = 𝑣(𝒳) 
Efficiency ensures that no value is lost or left unallocated, attributing the entire 

coalition payoff to its members. When thinking about the prompt vector 𝑥,⃗ one can write: ∑ 𝜙𝑖(𝑣)𝑥𝑖∈𝒳 = 𝑓(𝑥)⃗ − 𝜙0 
That is, the feature contributions add up to the difference of prediction for 𝑥 ⃗(i.e., the 

probability of next token) and the baseline 𝜙0. 
A.. Symmetry 𝑣(𝒮 ∪ {𝑥𝑖}) = 𝑣(𝒮 ∪ {𝑥𝑗}) ∀𝒮 ⊆ 𝒳 ⟹ 𝜙𝑖(𝑣) = 𝜙𝑗(𝑣) 

Symmetry ensures that payoffs are impartial and based solely on contribution, not on 
external factors or identities of the players.  

A.. Additivity (Linearity) 𝜙𝑖(𝑣 + 𝑤) = 𝜙𝑖(𝑣) + 𝜙𝑖(𝑤) ∀𝑥𝑖 ∈ 𝒳 
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where 𝑣 + 𝑤 represents the formation of a composite game where the value of any 
coalition 𝒮 in this composite game is the sum of the values that the coalition would achieve 
in each of the individual games, that is, (𝑣 + 𝑤)(𝒮) = 𝑣(𝒮) + 𝑤(𝒮). The “+” operation 
reflects the linearity property of the Shapley value. As a special case, if the value function 
of the game is scaled by 𝛼, the payoff of each player will be scaled by 𝛼 as well: 𝜙𝑖(𝛼𝑣) = 𝛼𝜙𝑖(𝑣) ∀𝑥𝑖 ∈ 𝒳, 𝛼 ∈ ℝ 

A.. Null (Dummy) Player 𝑣(𝒮 ∪ {𝑥𝑖}) = 𝑣(𝒮) ∀𝒮 ⊆ 𝒳 ⟹ 𝜙𝑖(𝑣) = 0 

This reflects the principle that rewards should be commensurate with the contribution 
to the collective effort. 

A. Complexity of Calculating Exact Shapley Values 

- Exponential Number of Coalitions: Even short prompts may contain around 𝑁 =30 words, resulting in 2𝑁 = 230 coalitions to sum over. This exponential growth in the 
number of coalitions makes the computation extremely resource-intensive. 

- Marginal Contribution Calculation: For each of the 2𝑁  coalitions, two evaluations 
of the value function are required—one with the player and one without. This doubles 
the computational effort needed for each coalition. 

- Factorial Complexity: Eq. . involves averaging the marginal contributions across 
all permutations of players. There are 𝑑! such permutations. For each permutation, 
one has to iterate through the players, considering each as the “marginal” player being 
added to a coalition of preceding players. This factorial complexity further compounds 
the computational challenge. 

- Complexity of the Value Function: Calculating 𝑣(𝒮) itself can be computationally 
expensive because it involves querying the LLM server. Each LLM call involves1 a 
sample time (time it takes to “tokenize”—sample—the prompt text for it to be 
processed by the LLM), a prompt eval time (time it takes to process the tokenized 
prompt text), and an eval time (time needed to generate all tokens as the response to 

 

 

1 https://github.com/ggerganov/llama.cpp/issues/ 
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the prompt). This does not even include the load time (time it takes for the model to 
load) and server warm-up time. Therefore, each LLM call may take a few milliseconds 
(for small LLMs) to a few seconds (large LLMs), which multiplies the overall 
computational burden. 

A. Estimation Algorithm for Shapley Values 

Inputs: The prompt vector 𝑥⃗, the reference vector 𝑟⃗, the value function 𝑣, and the 
number of iterations 𝑇 . 

Result: The vector of Shapley value estimates 𝜙̂⃗ ∈ ℝ𝐼 . 
Algorithm: 

- Initialize 𝜙 ̂ ⃗to [0, 0, … , 0]𝑇 . 

- For each iteration 𝑡 = 1, … , 𝑇 : 

- Choose a random permutation 𝑂 of the prompt template fields, i.e., 𝑂 ∈ 𝜋(𝒳) (See 
Section .). 

- Evaluate the value function for the reference vector 𝑟,⃗ that is, find 𝑣1 ≔ 𝑣(𝑟)⃗. 
- Set the current coalition vector 𝑠 ⃗to the reference vector 𝑟.⃗ 
- For each field 𝑖 in the permutation: 

- Set the corresponding element of 𝑠 ⃗to its value in 𝑥,⃗ that is: 𝑠 ⃗ = {𝑥𝑗 𝑗 = 𝑖𝑠𝑗 otherwise ;  𝑗 ∈ {1, … , 𝐼} 

- Evaluate the value function for the updated coalition vector, i.e., find 𝑣2 ≔𝑣(𝑠)⃗. 
- The marginal contribution of feature 𝑖 is computed as the difference between 

the two value function evaluations: 𝜙𝑖 = 𝑣2 − 𝑣1. 
- If 𝑡 > 1, update the estimated Shapley value 𝜙𝑖 using a moving average: 𝜙𝑖̂ = 𝜙𝑖𝑡 + (𝑡 − 1)𝜙𝑖̂𝑡  
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- Set the value function evaluation from the previous step as the baseline for the 
next step: 𝑣1 = 𝑣2. 

A. Applications (in Details) 

A.. Application : A Discrete Choice Question 

As mentioned before, we used the following prompt with Llama--Chat models of three 
sizes: B, B, and B parameters: 

The following flights are available from City 1 to City 2. Which one would you choose? 
 
- Flight A: Costs $400, Travel Time is 7 hours 
- Flight B: Costs $600, Travel Time is 5 hours 

The results are as follows: 

 

 
Figure . The normalized absolute Shapley values of Application  for the three models under study. 

  

A.. Application : Existence of Cognitive Biases in LLMs 

We made option B more appealing by injecting the word “only” before its price, 
resulting in the following prompt: 

The following flights are available from City 1 to City 2. Which one would you choose? 
 
- Flight A: Costs $400, Travel Time is 7 hours 
- Flight B: Costs only $600, Travel Time is 5 hours 

The normalized absolute Shapley values for the three models under study are: 
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Figure . The normalized absolute Shapley values of Application  for the three models under study. 
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Abstract 

Large Language Models (LLMs) have revolutionized natural language processing but can exhibit 
biases and may generate toxic content. While alignment techniques like Reinforcement Learning 
from Human Feedback (RLHF) reduce these issues, their impact on creativity, defined as syntactic 
and semantic diversity, remains unexplored. We investigate the unintended consequences of RLHF 
on the creativity of LLMs through three experiments focusing on the Llama- series. Our findings 
reveal that aligned models exhibit lower entropy in token predictions, form distinct clusters in the 
embedding space, and gravitate towards “attractor states”, indicating limited output diversity. 
Our findings have significant implications for marketers who rely on LLMs for creative tasks such 
as copywriting, ad creation, and customer persona generation. The trade-off between consistency 
and creativity in aligned models should be carefully considered when selecting the appropriate 
model for a given application. We also discuss the importance of prompt engineering in harnessing 
the creative potential of base models. 

Keywords: Large Language Models (LLMs), Reinforcement Learning from Human Feedback 
(RLHF), AI Alignment, Recommendation Systems, Diversity and Creativity 

. Introduction 
Large Language Models (LLMs) have demonstrated remarkable capabilities in 

generating human-like text, with applications in various domains. However, LLMs have 
also been shown to exhibit biases and generate toxic or inappropriate content (Bender et 
al., ; Gehman et al., ), prompting the development of techniques such as 
Reinforcement Learning from Human Feedback (RLHF) to align LLMs with human values 
and preferences (Ouyang et al., ; Stiennon et al., ), aiming to mitigate these 
issues. 
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While RLHF has proven effective in reducing biases and toxicity in LLMs, our work 
suggests that this alignment process may inadvertently lead to a reduction in the models’ 
creativity and output diversity. In the context of this paper, we define “creativity” as the 
model’s ability to generate outputs with high syntactic and semantic diversity. Syntactic 
diversity refers to the variety in the choice of words, sentence structures, and other 
linguistic elements, while semantic diversity pertains to the range of meanings, 
sentiments, and ideas expressed in the generated text1. 

The potential trade-off between safety and creativity is particularly relevant in the 
context of marketing, where generating diverse and engaging content is crucial for various 
applications, such as customer persona generation, ad creation, writing product 
description, and customer  support. One specific application of LLMs in marketing is the 
generation of simulated customers or personas with diverse preferences and backgrounds. 
These personas can be used for various purposes, such as training bank associates 
to better communicate with actual customers or providing business school students with 
more engaging alternatives to traditional case studies. 

When generating customer personas using LLMs, there are two primary approaches: 
generating multiple personas simultaneously2 or generating them one at a time. While 
creating multiple personas simultaneously might seem more efficient, it has limitations 
due to the context size3 constraints of LLMs and the causal attention mechanism in these 
models (Vaswani et al., ). The causal attention mechanism means that the 
distribution of the generated personas will not be independent, as each new persona would 
depend on the previous generations. Therefore, generating personas one at a time 
is a more suitable approach, as it solves both the context size and independence issues. 
However, when using this method with an aligned LLM, an unexpected challenge arises: 
the generated personas often exhibit striking similarities in their preferences and 
characteristics, lacking the desired heterogeneity. This lack of heterogeneity in the 

 

 

1 It is important to note that our use of the term “diversity” does not refer to the concept of diversity in the 
context of diversity, equity, and inclusion (DEI) or other similar domains, although one of our experiments 
does show that the aligned model exhibits reduced diversity in that sense as well. 
2 For example, asking the LLM to generate  personas delimited by new lines. 
3  Context size refers to the maximum number of tokens a transformer can handle simultaneously, 
encompassing both the input sequence and the generated output. For instance, a context size of , 
tokens, as seen in Meta’s Llama- models, corresponds to approximately  pages of English text (“Context 
length in LLMs,” ). 
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generated personas is problematic as it limits the ability to capture the diverse preferences 
and behaviors of real-world customers, potentially leading to less effective marketing 
strategies and suboptimal user experiences. 

This observed lack of creativity in the outputs of aligned models led to the suspicion 
that the RLHF process itself might be the underlying cause. We investigate this problem 
by taking a foundational approach and examining the issue at both the semantic and 
syntactic levels. Our study comprises three experiments that aim to provide a 
comprehensive understanding of how the alignment process affects the diversity of LLM 
outputs. 

Experiment  serves as a concrete example of the impact of RLHF on creativity in a 
practical marketing context. We generate customer personas and their corresponding 
product reviews using both the base and aligned models, comparing the diversity of the 
generated attributes, such as names, demographics, and review content. The results reveal 
significant differences in the variety of outputs between the two models, with the aligned 
model exhibiting less diversity and more repetitive patterns. 

Experiment  investigates the semantic diversity of the models’ outputs by examining 
their ability to recite a historical fact about Grace Hopper1 in various ways. The generated 
outputs are encoded into sentence embeddings and visualized using dimensionality 
reduction techniques. The results reveal that the aligned model’s outputs form distinct 
clusters, suggesting that the model expresses the information in a limited number of ways. 
In contrast, the base model’s embeddings are more scattered and spread out, indicating a 
higher level of semantic diversity in the generated outputs. These results are further 
supported by the cosine similarity analysis which shows the aligned model’s outputs are 
more semantically similar to each other compared to the base model’s outputs. 

An intriguing property of the aligned model’s generation clusters in Experiment  is 
that they exhibit behavior similar to attractor states in dynamical systems. We 
demonstrate this by intentionally perturbing the model’s generation trajectory, effectively 
nudging it away from its usual output distribution. Surprisingly, the aligned model 
gracefully finds its way back to its own attractor state and in-distribution response. The 
presence of these attractor states in the aligned model’s output space is a phenomenon 

 

 

1 The inventor of the COBOL programming language which is still heavily used by financial institutions 
and banks (“Grace Hopper,” ). 
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related to the concept of mode collapse in reinforcement learning, where the model over-
optimizes for certain outputs, limiting its exploration of alternative solutions. This 
behavior contrasts with the base model, which exhibits greater flexibility and adaptability 
in its outputs. 

Experiment  delves into the syntactic diversity of the models by analyzing the entropy1 
of generated tokens and the probability distributions over the top predicted tokens at each 
step. The results show that the base model exhibits significantly higher average entropy, 
assigning more spread-out probabilities to different tokens, while the aligned model has a 
more skewed probability distribution, favoring certain tokens over others. 

The findings from these experiments suggest that the RLHF process, which aims to 
reduce biases and toxicity in LLMs, may transform them into more deterministic 
algorithms that lack the capacity to explore diverse sets of token trajectories, leading to 
reduced semantic and syntactic diversity in their outputs. In other words, aligned models 
exhibit higher confidence in their outputs, providing consistency and predictable behavior. 
However, this confidence comes at the cost of lowered creativity, as the models tend to 
stick to a limited set of outputs. 

In marketing, this trade-off between consistency and creativity has far-reaching 
consequences. Applications such as copywriting, writing scripts for ad clips, and customer 
persona generation all require a high level of variation and diversity in the generated 
content. If an aligned model is used for these tasks, the resulting outputs may lack the 
necessary heterogeneity and novelty to effectively engage the target audience. Similarly, 
in the domain of recommendation systems, LLMs that lack diversity in their outputs may 
struggle to recommend a diverse set of products to users, potentially leading to suboptimal 
user experiences and reduced customer satisfaction. 

It is important to note that base models, while more creative, are not directly usable 
in applications like chatbots. As a result, techniques such as prompt engineering (also 
known as prompt programming) (Sahoo et al., ) become even more crucial when 
working with base models. These techniques can help guide the models’ outputs and make 
them more suitable for specific applications while still leveraging their creative potential. 
Contrary to the belief that prompt engineering may become obsolete, our findings suggest 

 

 

1 Entropy is a measure of uncertainty in a random variable. 
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that these techniques will be more important than ever in harnessing the power of base 
models. 

Consequently, the choice between base and aligned models should be carefully 
considered based on the specific requirements of the task at hand. For applications where 
creativity is paramount, such as marketing, fiction writing, and other areas where novelty 
and diversity are valued, base models may be more suitable. On the other hand, aligned 
models may be preferred when safety and consistency are the primary concerns, such as 
in customer support or content moderation. 

The remainder of this paper is structured as follows: Section  provides background 
information on LLMs, RLHF, and their applications in marketing. Section  presents our 
experiments comparing the behavior of base and aligned models, followed by a discussion 
of the results and their implications in Section . Finally, Section  concludes the paper 
and outlines future research directions. 

. Literature Review 
RLHF has emerged as a promising technique to align LLMs with human preferences 

and values. However, recent research has highlighted several limitations and potential 
unintended consequences of RLHF, including scalability and efficiency concerns due to its 
reliance on human annotators (Lee et al., ; Yuan et al., ), variability and 
potential bias in human feedback affecting the quality and consistency of the process (Yu 
et al., ), vulnerability to manipulation by adversarial annotators leading to security 
breaches and ethical concerns (Wang et al., ), and alignment challenges such as 
objective mismatch and length bias (Lambert and Calandra, ; Shen et al., ). 

Despite these limitations, LLMs have shown significant potential in transforming 
various aspects of marketing and business. They can automate and accelerate time-
consuming tasks such as text generation, summarization, and content creation, leading to 
increased productivity and efficiency in marketing and business operations (Head et al., 
). LLMs also enhance customer interaction by providing personalized and context-
aware responses, which can improve customer satisfaction and engagement, particularly 
in customer service and support functions (Franceschelli and Musolesi, ). 
Furthermore, by analyzing large volumes of data, LLMs can generate valuable market 
insights, helping businesses understand customer preferences, market trends, and 
competitive landscapes, which can inform strategic decisions and marketing campaigns 
(Eloundou et al., ). 
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However, while the literature has explored the applications and limitations of LLMs in 
marketing and business contexts, there is a notable gap in understanding how the RLHF 
process affects the creativity and variation in the models’ outputs. This is a crucial aspect 
for marketers and professionals who rely on LLMs for creative tasks. Understanding the 
trade-off between alignment with human preferences and the preservation of creative 
diversity in the generated content can have significant implications for the effectiveness 
and engagement of marketing initiatives. 

. Experiments 
Remember that our goal is to evaluate and contrast the diversity of texts produced by 

base models and their aligned counterparts. We focus on both the short-term (syntactic) 
and long-term (semantic) variations in model outputs using the Llama- language models. 
Meta has made both the base models1 and their corresponding aligned versions2 publicly 
available, making them an ideal choice for this study. Therefore, comparisons are made 
between Llama--B-text (the “base” model) and Llama--B-chat (the “aligned” model) 
where B refers to the parameter size of the LLM. These models are currently highly 
favored within the open-source community3. Their widespread use is partly attributed to 
the affordability of finetuning them. 

We conduct three experiments to examine the effects of the alignment process on model 
creativity and diversity. Experiment  serves as a concrete example of the differences in 
creativity between the base and aligned models, while Experiments  and  investigate 
the underlying mechanisms that contribute to these differences. 

Each LLM is given an initial prompt which must be completed for a maximum4 of 𝑛predict tokens5. LLMs typically generate one token at a time. At each step, the LLM 
 

 

1 Referred to by Meta as “text” models. 
2 Referred to by Meta as “chat” models. 
3 Currently, there are more than , variants of Llama- models on the HuggingFace website: See 
https://huggingface.co/models?sort=trending&search=Llama- 
4 LLMs may stop generating tokens even before reaching the 𝑛predict limit if they encounter an end-of-
sequence (EOS) symbol. This symbol is <"s> for Llama- and <#im_end|% for ChatML models (such as 
OpenAI’s GPT-). 
5 That is, the LLM continues our given prompt much like the autocomplete feature on smartphones. In 
Experiments  and , no further preprocessing is required. But in Experiment , we should format the 
prompt according to the chat template used during the Supervised Fine-Tuning (SFT) of the model (“Llama 
 Prompt Template,” ). 
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produces a set of logits over the potential next tokens. These logits are then normalized 
to sum up to  using the softmax function, and one token is sampled randomly according 
to its probability: 

 Pr(𝑡𝑜𝑘𝑖) = exp(logit(𝑡𝑜𝑘𝑖) 𝑇⁄ )∑ exp(logit(𝑡𝑜𝑘𝑖) 𝑇⁄ )𝑖  . 

where 𝑡𝑜𝑘𝑖  is token number 𝑖 in the LLM’s vocabulary1 of tokens and 𝑇 ∈ (0, 1] is a 
parameter called temperature which controls the “softness” of the probability distribution2. 
In our experiments we choose 𝑇 = 1.0 for maximum response variation. 

.. Experiment : Customer Persona and Review Generation 
In this experiment, we generate customer personas using both the base and aligned 

models. For each model, we create  unique customer personas with the following 
attributes: first name, last name, gender, age, nationality, ethnicity, and personality type, 
according to the Myers-Briggs test (“Myers–Briggs Type Indicator,” ). Additionally, 
each simulated customer writes a review for a hypothetical product: “A coffee machine 
that connects to your smartwatch so it keeps your coffee warm if you are far away from 
it.” 

To analyze the results, we first generate word clouds of the first and last names to 
visualize the diversity and variation in the names generated by each model. We then plot 
the distributions of ages, genders, and review lengths to compare the variety of these 
attributes between the base and aligned models. 

Next, we compute and plot the distribution of sentiment polarity for the reviews using 
VADER3, a sentiment analysis algorithm that assigns scores between −1 (negative) and +1 (positive) to texts (Hutto and Gilbert, ). This step allows us to compare the range 
of sentiments expressed in the reviews generated by each model. 

 

 

1 For Llama-, the vocabulary size is , tokens (Touvron et al., ). 
2 High values of 𝑇  lead to more uniform and softer distributions, meaning that the LLM is more likely to 
generate creative and diverse outputs. Low values of 𝑇 , on the other hand, result in peaked distributions 
with most of the probability mass concentrated on one or few tokens. This could lead to high confidence 
(but less variation) in the model’s outputs. 
3 Valence Aware Dictionary and sEntiment Reasoner 
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To understand the variety in review semantics generated by the base and aligned 
models, we extract the embeddings of each sentence in the customer reviews. Embeddings 
are dense vector representations of words or texts that capture their semantic meaning in 
a high-dimensional space. The intuition behind using embeddings is that they can capture 
the semantic similarity of the generated outputs, even if the outputs differ at the token-
level1. To calculate the embeddings, we use Sentence-BERT (SBERT), a state-of-the-art 
framework for text and image embeddings2 (Reimers and Gurevych, ). Given an input 
text, SBERT converts it to a -dimensional vector in the embedding space. 

We determine the optimal number of k-means (“k-means clustering,” ) clusters for 
the embeddings of each model and visualize the clusters using t-distributed Stochastic 
Neighbor Embedding (t-SNE) (van der Maaten and Hinton, ), a technique for 
dimensionality reduction that is particularly well-suited for the visualization of high-
dimensional datasets. By applying t-SNE to the -dimensional embeddings, we can 
project them onto a D space while preserving the local structure of the data, making it 
easier to identify clusters and patterns. If the LLM’s outputs form tight clusters in the t-
SNE visualization, it would indicate a lack of semantic diversity and creativity. Vice versa, 
if the outputs are spread out, it suggests higher variation. 

.. Experiment : Semantic-level Variation in LLM Outputs 
In this experiment, we examine the long-term semantic diversity of the base and aligned 

models when given a simpler task that does not explicitly require creativity. We set the 
initial prompt to “Grace Hopper was” with 𝑛predict = 128, allowing the model to generate 
long sequences of tokens. The goal is to assess the model’s ability to recite a historical 

 

 

1 For example, it could be that the LLM generates texts that are syntactically different because it has many 
alternative wording choices. However, these choices may nevertheless all lead to semantically similar outputs. 
In such cases, the generated texts will have embeddings that are very close in the embedding space, 
indicating a lack of variety in semantics and, consequently, a lack of creativity in model output. On the 
other hand, if the model generates outputs with more diverse embeddings, it would suggest a higher level 
of semantic variety and, therefore, more creativity in the long run. 
2 SBERT uses a pre-trained BERT model (Devlin et al., ) to encode the input text into a fixed-size 
vector representation. The BERT model is an encoder-only transformer trained on a large corpus of text 
data using a self-supervised learning approach, which allows it to learn rich, contextual representations of 
words and sentences. SBERT fine-tunes the pre-trained BERT model on a sentence similarity task, resulting 
in a model that can generate high-quality sentence embeddings. 
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fact about Grace Hopper in various ways, focusing on its capacity in expressing the same 
information using different wordings and sentence structures. 

We generate  outputs from each model and calculate their embeddings using 
SBERT as in Experiment  and reduce the dimensionality using t-SNE. However, unlike 
Experiment , we now calculate the embeddings for the entire generations rather than for 
individual sentences, capturing the holistic semantics of the model output. 

To complement the t-SNE visualization, we calculate the cosine similarity scores 
between pairs of embedding points using the TF-IDF (Term Frequency-Inverse Document 
Frequency) vectorizer (Salton and Buckley, ; Sparck Jones, ). TF-IDF is a widely 
used technique in natural language processing that converts the generated texts into 
numerical vectors where each dimension represents a unique word in the corpus, and the 
value of each dimension is the TF-IDF weight of the corresponding word1. These vectors 
can then be used to calculate the cosine similarity between pairs of generated outputs, 
providing a quantitative measure of their semantic similarity. 

.. Experiment : Syntactic Diversity in LLM Outputs 
In this experiment, we investigate the short-term token-level probabilities of the base 

and aligned models. We hypothesize that the difference in semantic diversity between the 
two models could be due to the aligned model’s inability to assign more spread-out 
probabilities to tokens, resulting in certain token trajectories being blocked or unavailable. 
In other words, syntactic diversity is a necessary condition for semantic diversity. 

To test this hypothesis, we set the initial prompt to “Steve is the CEO of a startup 
company” with 𝑛predict = 64 so the model generates a background story for Steve. For each 
generated token, we extract the top five predicted tokens according to their probability 
(see Eq. .) and calculate their Shannon entropy2 (Shannon, ) as follows: 

 

 

1 Calculated based on its frequency within the document and its rarity across the entire corpus. 
2 The Shannon entropy is a measure of the uncertainty or information content of a random variable, and 
can be thought of as the level of randomness in the model’s predictions at each step. A higher Shannon 
entropy indicates more uncertainty or a more uniform probability distribution over the predicted tokens, 
while a lower entropy suggests the model is more confident or has a more skewed probability distribution 
favoring certain tokens. 
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 𝐻𝑛 = − ∑ Pr(𝑡𝑜𝑘𝑗) log2(Pr(𝑡𝑜𝑘𝑗))5
𝑗=1  . 

where 𝐻𝑛 is the entropy of the 𝑛-th generated token (1 ≤ 𝑛 ≤ 𝑛predict) and 𝑡𝑜𝑘𝑗, 𝑗 ∈ [1, 5] 
are the top five tokens predicted by the LLM1. The intuition is that a more creative model 
will generate a wider variety of tokens, resulting in a higher average entropy across its 
predictions. Conversely, a less creative model is expected to have a more skewed 
probability distribution, favoring certain tokens over others, leading to lower entropy 
values. 

For each completion, we compute the average entropy of the generated tokens. The 
mean and standard deviation of these average entropies is then calculated across  
completions. This approach allows us to compare the average token variation between the 
two LLMs while reducing the impact of outliers or inconsistencies in individual 
completions. 

. Results 
.. Customer Persona and Review Generation 

We begin by analyzing the word clouds of the first and last names generated by the 
base and aligned models (Figure ). While the aligned model heavily favors few names 
such as “Emily” and “Samantha” for first names and “Jones” and “Wang” for last names, 
the base model produces a much wider variety of names. This observation suggests 
a potential lack of creativity in the aligned model resulting from the RLHF process. 

 

 

 

1 The Shannon entropy in Eq. . is measured in bits, with a lower-bound of  bits corresponding to complete 
certainty (i.e., the model assigns a probability of  to a single token and  to all others) and an upper-bound 
of log2(5) ≈ 2.32 bits, which occurs when the model assigns equal probabilities to all  tokens under 
consideration. 
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Figure . Word cloud of first and last names of the synthetic customers generated by the base and aligned models. 

 

Next, we examine the diversity in the demographic attributes of the simulated 
customers, including nationality, ethnicity, personality type, and age. Figure  shows the 
distribution of nationalities generated by the base and aligned models. The base model 
generates a wide range of nationalities, with American, British, and German being the 
top three. In contrast, the aligned model only generates three nationalities: American 
(highest percentage), Chinese, and a small percentage of Mexican. 

 

 
Figure . The distribution of nationalities of the customers generated by the base and aligned models. 
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A similar trend is observed in the distribution of ethnicities (Figure ). The base model 
generates various ethnicities, including White, Asian, Black, Latino, and even some 
minorities such as Ashkenazi Jewish. On the other hand, the aligned model primarily 
generates White and Asian, with a smaller percentage of Latino. 

 

 
Figure . The distribution of ethnicities of the customers generated by the base and aligned models. 

 

When analyzing the distribution of personality types (Figure ), we find that the base 
model generates all  personality types defined by the Myers-Briggs test. In contrast, the 
aligned model only generates six personality types, indicating a significant reduction 
in diversity. 
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Figure . The distribution of personality types of the customers generated by the base and aligned models. 

 

The distribution of ages for the simulated customers (Figure ) further highlights the 
differences between the two models. The base model’s age distribution resembles a normal 
distribution, spanning from below  years old to nearly  years old, with the majority 
centered around . The aligned model, however, selects ages within a narrow range, with 
a strong preference for age  and a few other ages between  and . Notably, the 
aligned model does not select any ages above  or below , indicating a limited 
capability in generating diverse age values. 

 

 
Figure . The distribution of ages of the customers generated by the base and aligned models. 
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Finally, the distribution of customer gender (Figure ) shows that the base model 
generates approximately % male and % female customers, while the aligned model 
generates nearly % female customers, with a negligible number of males. 

 

 
Figure . The distribution of genders of the customers generated by the base and aligned models. 

 

The Effect of Token Noise: It is important to note that the goal of this paper is not 
to study bias or demographic diversity in language models, as there is already extensive 
research on this topic. As discussed in (Mohammadi, ), the effect of token noise can 
significantly influence the distributions of preferences generated by language models, 
depending on the specific prompt used. Language models do not have a single set 
of preferences. Rather, they are data generating processes that generate distributions 
of distributions based on the input prompt. Therefore, the focus of this study is not on the 
change in the distribution of specific demographic attributes, but rather on the overall 
variety and diversity of the generated outputs. 

Moving on to the analysis of the product reviews, we first examine the distribution 
of review lengths (Figure ). The aligned model generates significantly longer reviews 
compared to the base model, with an average length of  characters for the aligned 
model and  for the base model. However, the length of the review alone does not 
provide much insight into the content and diversity of the reviews. To gain a deeper 
understanding of the review sentiments, we analyze the polarity of the reviews (Figure ). 
The base model covers a wider range of sentiments, from −0.75 to +0.97, with most of the 
distribution skewed towards positive sentiments. In contrast, the aligned model 
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concentrates almost entirely around +1, indicating that the sentiments of the reviews 
generated by the aligned model customers are overwhelmingly positive about the product. 
While positive reviews are desirable, generating a diverse set of customer experiences, 
including some negative or neutral reviews, is important for realistic market simulations. 

 

 
Figure . The distributions of the length of the reviews by simulated customers of the base and aligned models. 

 

 
Figure . The distributions of the sentiments of the reviews generated by the simulated customers produced by the 

base and aligned models. 

 

To quantify the diversity in the review content, we calculate the embeddings of each 
sentence in the reviews and cluster them using k-means clustering. The optimal number 
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of clusters is determined to be  for the base model and  for the aligned model, with 
a perplexity of  chosen for both t-SNE plots (Figure ). The t-SNE visualization reveals 
that the sentences from the aligned model reviews form distinct clusters, whereas the base 
model sentences exhibit more spread and heterogeneity. This finding suggests that the 
aligned model generates reviews with similar sentence structures, word choices, and overall 
content, while the base model produces more diverse and varied reviews. 

 

 
Figure . The t-SNE plot of the embeddings of the product reviews generated by simulated customers of the base and 

aligned models. Colors indicate clusters. 

 

Table  and Table  present sample sentences from each cluster for both the base and 
aligned models. The aligned model clusters exhibit repetitive patterns, such as sentences 
focused on emojis, phrases like “highly recommend” or “I highly recommend it”, and 
verbatim repetitions of sentences such as “this machine is a game changer”. Furthermore, 
this model generates sentences with similar structures like “as a busy professional […]” 
or “as someone who is always on the go […].” In contrast, the base model clusters do not 
display such repetitive patterns, indicating a higher level of semantic and syntactic 
diversity in the generated reviews. 

The results of Experiment  highlight the significant differences in the variety 
of demographics and review content between the base and aligned models when generating 
simulated customers for a practical marketing application. The aligned model, which has 
undergone the RLHF process to reduce bias and toxicity, appears to have lost its ability 
to generate diverse outputs. This finding motivates the need to investigate the underlying 
causes of this creativity loss, which will be explored in the subsequent experiments. 
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.. Semantic Diversity and LLM Output Embeddings 
To illustrate the differences in the semantic-level variation of the base and aligned 

models, we first present a sample of the generated outputs for the initial prompt “Grace 
Hopper was” (Table ). The sample outputs demonstrate that while both models generate 
factually correct information about Grace Hopper, the base model exhibits more diversity 
in its wording and sentence structures compared to the aligned model. 

The t-SNE visualization of the embedding space (Figure ) reveals distinct clustering 
patterns for the base and aligned models. The embedding points of the base model are 
scattered and spread out, indicating a higher level of semantic diversity in the generated 
outputs. In contrast, the aligned model’s embeddings form four distinct clusters (See Table 
 for an example of each), with empty spaces between them, suggesting that the aligned 
model tends to stick to certain embeddings or generations and expresses the information 
in a limited number of ways. 

 

 
Figure . The t-SNE visualization of the embedding space of LLM outputs and their cosine similarity scores. 

 

The cosine similarity analysis using TF-IDF vectorization provides further evidence of 
the differences in semantic diversity between the two models. The average cosine similarity 
score for the base model is . (STD = .), while the aligned model has a higher 
average similarity score of . (STD = .). These scores are visualized on the plots 
using a color scale. 

The results from Experiment  demonstrate that the base model exhibits higher 
variation compared to the aligned model at the semantic level, as evidenced by the more 
diverse embeddings of its generated outputs. This finding confirms the results of 

Base Model Aligned Model
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Experiment , further supporting the hypothesis that the alignment process constrains 
the creative capabilities of language models. 

.. Syntactic Diversity and Average LLM Entropy 
The results obtained from Experiment  reveal a significant difference in the average 

entropy between the base model and the aligned model. The base model exhibits a higher 
mean entropy of . (STD = .), while the aligned model has a lower mean entropy of 
. (STD = .). This difference is illustrated in the box plot in Figure . To emphasize 
the contrast between the two models, we introduce the terminology “hot model” for the 
base model and “cold model” for the aligned model. This nomenclature reflects the 
inherent differences in their token-level entropies and creativity. 

 

 
Figure . The boxplot of output entropies for the base and aligned LLMs 

 

To further illustrate the disparity between the two models, Figure  provides a side-
by-side comparison of a sample generation from each model (where 𝑛predict = 16), along 
with their corresponding entropy bar plots. The base model consistently displays higher 
entropy values compared to the aligned model, reinforcing the notion that the base model 
exhibits greater token-level variation. 

 

78



 

 
Figure . A Sample of Token Entropies. 

 

In addition to the entropy analysis, Figure  presents stacked bar plots of the 
probability distributions for each predicted token in the sample generation. The base 
model’s probability distributions appear more spread out, indicating that it assigns more 
evenly distributed probabilities to different tokens. Consequently, when the base model 
randomly samples from these distributions, it has a higher likelihood of generating diverse 
token trajectories. In contrast, the aligned model’s probability distributions are more 
peaked, with most of the probability mass concentrated on one or two tokens. As a result, 
when the aligned model samples from these distributions, it tends to generate the same 
tokens more frequently, leading to less diverse output. 

 

 
Figure . A Sample of Token Probabilities. 

 

These findings highlight the significant difference between the base model and the 
aligned model in terms of token-level variations, reinforcing our hypothesis that syntactic 

Base Model Aligned Model

Base Model Aligned Model
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diversity is a necessary condition for semantic diversity. Although high token-level 
variation does not guarantee semantic diversity, it is a necessary condition, and the aligned 
model, with its low token-level entropy, is incapable of producing semantically diverse 
outputs. This suggests that the RLHF process converts the LLM into a more deterministic 
algorithm that lacks the capacity to explore diverse sets of token trajectories.  

. Discussion 
.. Attractor States and Model Creativity 

Experiment  revealed that the aligned model’s outputs form four distinct clusters, 
suggesting that it can only describe Grace Hopper in four different ways. By analyzing 
the generated paragraphs, we observe that the model follows certain patterns in terms of 
word choice, sentence structure, and the overall content being discussed. 

An intriguing question is: What happens if we intentionally perturb the trajectory of 
tokens or the path that the model takes when generating outputs? To explore this, we 
take one of the four distinct ways the aligned model described Grace Hopper and modify 
the first sentence by changing the last word from “was” to “was not” (Figure ). We then 
append this to the initial prompt “Grace Hopper was” to obtain a new initial prompt such 
as “Grace Hopper was born on November ,  in New York City. She was not”. 
Interestingly, when presented with this perturbed prompt, the aligned model gracefully1 
finds its way back to one of its own completion distributions. 

Notice that the aligned model’s outputs in Figure  are predominantly green, reflecting 
its tendency to generate high-probability tokens as discussed in Experiment . 
Nonetheless, when we perturb the initial prompt of the aligned model, we can witness its 
struggle to find the appropriate tokens to justify the perturbation. The color of the first 
few tokens generated by the model may be red, orange, or yellow, indicating lower 
probabilities and a challenge in steering the completion back to its original path. However, 
once the model successfully navigates back to this “familiar” state, the token colors return 
to green, signifying a return to high-probability completions. 

This phenomenon is reminiscent of attractor states in system dynamics (Janus, ). 
Attractor states are regions in a system’s phase space towards which the system tends to 
evolve, even when slightly perturbed. In the case of the aligned model, the four distinct 

 

 

1 Pun intended. 
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ways of describing Grace Hopper can be seen as attractor states1. This makes the aligned 
model resemble more a goal-directed agent—which seems to have already decided what it 
is going to say—than an autoregressive model capable of generating various completions 
for its initial input. While the behavior of the aligned model ensures consistency and 
coherence in the model’s outputs, it also highlights a potential limitation in terms of 
creativity. For truly creative models, we desire the ability to explore diverse ways of 
expressing ideas and generating novel concepts, rather than being confined to a limited 
set of attractor states. 

It is important to note that the attractor states observed in the aligned model are 
different from the behavior of models at low temperature. We observe these attractors 
even at high temperatures (e.g., 𝑇 = 1) for the aligned model, whereas we do not observe 
similar attractors at low temperatures for the base model. This suggests a qualitative 
difference between the aligned model and the base model which does not get trapped in 
attractor states and thus can generate a wider variety of outputs. In the next section, we 
will delve deeper into the reasons behind this phenomenon, drawing insights from the 
description of the RLHF process by Meta in (Touvron et al., ). 

 

 

 

1 When the model is nudged away from these states through perturbations in the prompt, it finds its way 
back to the attractor, much like how masses are drawn towards black holes in space. 
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Figure . Slightly nudging the aligned LLM out of its completion distributions. The aligned LLM finds a way to get 

back to one of its own completion distributions. 

 

.. Why Alignment Reduces Creativity: Insights from 
RLHF and PPO 

The attractor states observed in the aligned Llama- models (Section .) can be 
attributed to mode collapse1, a common problem in reinforcement learning (RL) where 
the agent gets stuck in a limited set of behaviors or outputs. Mode collapse occurs when 
the agent’s policy converges to a suboptimal solution that maximizes the immediate 
reward but fails to explore potentially better strategies. This issue also plagues 
Reinforcement Learning from Human Feedback (RLHF), a popular technique for aligning 
language models with human preferences. 

In RLHF, human preference data is collected by asking human annotators to compare 
and rank model-generated responses. This data is then used to train a reward model that 

 

 

1 Mode collapse occurs when a generative model, like a Generative Adversarial Network (GAN), produces 
a limited set of outputs repeatedly. This happens because the generator over-optimizes for a specific 
discriminator, which fails to adapt, leading to the generator producing the same outputs. This cyclical 
failure results in a lack of variety in the generated outputs (“Common Problems,” ). 
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LLM Completion
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estimates the quality of a response based on its alignment with human preferences. Finally, 
the pretrained language model is fine-tuned using the reward model through an RL 
algorithm, such as Proximal Policy Optimization (PPO)1. 

In PPO, the policy (i.e., the language model) is updated based on the advantage 
function 𝐴𝜋(𝑠, 𝑎) defined as follows: 

 𝐴𝜋(𝑠, 𝑎) ≔ 𝔼𝑠′∼𝑇 (𝑠,𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑣𝜋(𝑠′)] − 𝑣𝜋(𝑠) . 

where 𝑠 represents the current state, 𝑎 represents the action taken in state 𝑠, 𝑠′ is the 
next state after taking action 𝑎  in state 𝑠 , 𝑇 (𝑠, 𝑎)  is the transition function that 
determines the probability of reaching state 𝑠′ from state 𝑠 by taking action 𝑎, 𝑅(𝑠, 𝑎, 𝑠′) 
is the reward received when transitioning from state 𝑠 to state 𝑠′ by taking action 𝑎, 𝛾 is 
the discount factor, and 𝑣𝜋(𝑠) is the state-value function, which estimates the expected 
return starting from state 𝑠 and following policy 𝜋. 

Intuitively, 𝐴𝜋(𝑠, 𝑎) measures how much better a specific action 𝑎 (i.e., generating a 
particular response) is compared to the average action taken by the current policy 𝜋 given 
the current state 𝑠 (i.e., the user’s prompt). To illustrate how this could lead to arbitrarily 
high logits on certain LLM responses, let us consider a simple example where a model is 
asked to generate a name for a new product. The prompt is “Create a name for a new 
chat bot powered by generative AI”. During the RLHF process, the model generates two 
responses: “Jeepiti” and “Chats and Giggles”, with rewards of . and ., respectively2. 
Assume that at the beginning, the model generates these responses with equal probability, 
and the value function 𝑣𝜋(𝑠) is set to zero. The policy update rule is: Add 𝐴𝜋(𝑠, 𝑎) to the 
logits (log-odds) of action 𝑎. For instance, if 𝜋0(𝑠, Jeepiti) = 0.5 and 𝐴𝜋0(𝑠, Jeepiti) =1.0, then the probability of “Jeepiti” increases from . to .3. The following table 

 

 

1 For a more detailed explanation of the RLHF process, please refer to the Appendix A. 
2 The reward given by the reward model during the RLHF process. The reward model estimates human 
preferences. 
3 Suppose in the beginning 𝜋0(𝑠, Jeepiti) = 𝜋0(𝑠, Chats and Giggles) = 𝑝 = 0.5. The logits (log-odds) of 
both actions are: log(𝑝 (1 − 𝑝)⁄ ) = log(1) = 0 . Adding the advantage 𝐴𝜋(𝑠, Jeepiti) = 1  to the logit of 
“Jeepiti”, we get the new logit: logit(Jeepiti) = 1 + 0 = 1. Converting the logits back to probabilities using 
the softmax function gives: 𝜋1(𝑠, Jeepiti) = 𝑒1 (𝑒0 + 𝑒1)⁄ ≃ 0.73 and 𝜋1(𝑠, Chats and Giggles) = 1 − 0.73 =0.27. 
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demonstrates how the advantage function oscillates under policy updates, extracting an 
unbounded amount of reinforcement from a single action (in this case, “Jeepiti”)1: 

 

Table . An illustrative example of mode collapse during RLHF 

𝑡 LLM 
Response 𝑎 

Reward 𝑅(𝑎|𝑠) Advantage 𝐴𝜋(𝑠, 𝑎) 𝑣𝑡𝜋(𝑠) 𝜋𝑡(𝑠, Jeepiti) 𝜋𝑡(𝑠, Chats and Giggles) 
 — — — 0.0 0.5 0.5 
 “Jeepiti” 1.0 (1 + 0) − 0= 1 1.0 0.73 0.27 

 “Chats and 
Giggles” 0.8 (0.4 + 0) − 1= −0.6 0.4 0.83 0.17 

 “Chats and 
Giggles” 0.8 (0.4 + 0) − 0.4= 0 0.4 0.83 0.17 

 “Jeepiti” 1.0 (1 + 0) − 0.4= 0.6 1.0 𝟎. 𝟗𝟑 𝟎. 𝟎𝟕 

 

As we can see, the model is receiving substantial positive reinforcement for the response 
“Jeepiti”, causing its internal circuits (i.e., neural network weights) to be reshaped in a 
way that favors this response. This behavior is undesirable because ideally we want 𝜋𝑡(𝑠, 𝑎) 
to be proportional to the reward of 𝑎, meaning that the reward should update the policy 
only by a finite amount. Moreover, the model can become trapped in a local optimum. 
For instance, if the goal is to have the model respond with other names for the chatbot 
and a reward of . is provided for saying “Chad-Chat”, exploration issues might prevent 
the model from ever producing this response during training. As noted by (TurnTrout 

 

 

1 This is a simplified example. The actual PPO algorithm works differently and incorporates additional 
mechanisms such as clipping and early stopping based on KL divergence thresholds to mitigate mode 
collapse.  
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and MichaelEinhorn, ), this issue is exacerbated by the fact that PPO actively 
updates the policy against actions that do not outperform the current (on-policy) value 
function 𝑣𝑡𝜋(𝑠). This process tends to discourage exploration, as it penalizes actions that 
do not directly increase the estimated value. 

Both the GPT- (Ouyang et al., ) and Llama- (Touvron et al., ) models 
used PPO for RLHF, as well as a KL penalty1 in the reward function to encourage the 
updated policy to stay close to the original policy: 

 𝑅(𝑎|𝑠) = 𝑅̃𝑐(𝑎|𝑠) − 𝛽𝐷KL(𝜋(⋅ |𝑠) ∥ 𝜋0(𝑎|𝑠)) . 

where 𝑅̃𝑐 is the combined reward from the helpfulness and safety reward models, 𝛽 is the 
KL penalty coefficient, 𝜋 is the updated policy, and 𝜋0 is the original policy. For Llama-
, relatively small values for 𝛽 were used2 to balance the trade-off between allowing the 
model to optimize for the reward and maintaining stability during training. 

Nonetheless, this definition of the reward function implicitly assumes that human 
preferences can be encapsulated solely as a function of the prompt (𝑠) and the generated 
response (𝑎). However, human preferences can be contingent on the distribution of model 
outputs (particularly in scenarios where human evaluators are forced to select one of two 
model responses during RLHF, as in the case with Llama-). This constraint poses a 
significant challenge for the model to converge to a reasonable stochastic strategy, 
especially with only , labels used to RLHF the Llama- model (Touvron et al., ). 

Indeed, despite the use of PPO with clipping and KL divergence penalty, both GPT- 
and Llama- models still exhibit mode collapse issues. (Ouyang et al., ) found that 
even increasing the KL penalty coefficient 𝛽 by a factor of  was not sufficient to recover 
performance on public NLP datasets, and it caused a significant drop in the validation 
reward. As an alternative, they proposed mixing the pretraining gradients into the PPO 
gradients during RLHF fine-tuning (a technique they called “PPO-ptx”). While this 
approach performed better than increasing 𝛽, the authors noted that it still did not 
completely mitigate the performance regressions and could introduce undesirable 

 

 

1 The Kullback-Leibler (KL) divergence, denoted by 𝐷KL(𝑝‖𝑞), is a measure of how probability distribution 𝑝 is different from (a reference) probability distribution 𝑞. For discrete distributions 𝑝, 𝑞, we have: 𝐷KL(𝑝‖𝑞) ≔ ∑ 𝑝(𝑥)[ln 𝑝(𝑥) − ln 𝑞(𝑥)]𝑥  
2 . for smaller models and . for larger models. 
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behaviors if the pretraining data contained biases or toxicity. Furthermore, the persistence 
of mode collapse in GPT- models despite the use of PPO-ptx has been documented 
(Janus, ). 

These findings suggest that the alignment process using RLHF might be fundamentally 
problematic and can lead to an “alignment tax”—a term used to describe the performance 
degradation observed in aligned models compared to their base counterparts (Lin et al., 
). The limitations of the reward function and the difficulty in mitigating mode 
collapse through modifications to the PPO algorithm or hyperparameters highlight the 
need for alternative approaches. 

As proposed by (Ouyang et al., ), a potentially more effective approach to reducing 
biases and toxicity in language models, while preserving their creative potential, could be 
to focus on the quality and diversity of the pretraining data itself. By carefully curating 
and filtering the pretraining data to ensure that the model learns from high-quality, 
diverse, and unbiased examples, we may be able to mitigate the need for extensive post-
hoc alignment techniques like RLHF, which can inadvertently lead to mode collapse and 
reduced creativity.	

. Conclusion 
In this paper, we have investigated the impact of the Reinforcement Learning from 

Human Feedback (RLHF) alignment process on the creativity and output diversity of 
Large Language Models (LLMs). Our experiments, conducted using the Llama- series of 
models, have revealed that while RLHF is effective in reducing biases and toxicity in 
LLMs, it may inadvertently lead to a reduction in the models’ creative potential, defined 
as the ability to generate outputs with high syntactic and semantic diversity. 

We have taken a foundational approach to studying this problem by examining the 
issue at both the semantic and syntactic levels through three experiments. Experiment  
demonstrated the impact of RLHF on creativity in a practical marketing context by 
comparing the diversity of customer personas and product reviews generated by base and 
aligned models. Experiment  investigated the semantic diversity of the models’ outputs, 
revealing that aligned models form distinct clusters in the embedding space, indicating a 
fundamentally limited range of outputs compared to their base counterparts. Experiment 
 delved into the syntactic diversity, showing that aligned models exhibit lower entropy 
in token predictions. This suggest that the cause of this reduction in model creativity is 
the fact that many token trajectories become blocked during the RLHF process, i.e., the 
model loses its ability to produce certain tokens (their probability becomes almost zero), 
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even if they have nothing to do with generating toxic or biased content. This makes aligned 
models function more like deterministic algorithms rather than creative generative models. 

Furthermore, we have observed that the aligned model’s outputs tend to gravitate 
towards specific “attractor states”, a phenomenon related to mode collapse in 
reinforcement learning. This behavior highlights the challenges in preserving the creative 
potential of LLMs while aligning them with human preferences. In contrast, the base 
model exhibits greater flexibility and adaptability in its outputs. 

The implications of these findings are significant for marketers and other professionals 
who rely on LLMs for creative tasks, such as copywriting, ad creation, and customer 
persona generation. The trade-off between consistency and creativity in aligned models 
should be carefully considered when selecting the appropriate model for a given 
application. In situations where creativity and diversity are paramount, base models may 
be more suitable, while aligned models may be preferred when safety and consistency are 
the primary concerns. Additionally, our results are important for those studying 
recommendation systems, as the insights can inform the development and optimization of 
these systems to balance creativity, diversity, and reliability effectively. 

It is important to note that while base models offer greater creative potential, they are 
not directly usable in applications like chatbots. This is where techniques such as prompt 
engineering become increasingly important. Contrary to the belief that prompt 
engineering may become obsolete, our findings suggest that these techniques will be more 
crucial than ever in harnessing the power of base models for various applications. By 
carefully crafting input prompts that include instructions, examples, or constraints, users 
can guide the models’ outputs and make them more suitable for specific use cases while 
still leveraging their creative potential. 

A potential area for further investigation is the exploration of various parameters or 
configurations of the RLHF process, as higher computational costs and resource demands 
limited our ability to delve into these aspects. Future research could examine how different 
parameters influence the creativity and output diversity of aligned LLMs. Moreover, 
additional studies should analyze other unintended consequences of model alignment and 
RLHF to enhance our understanding of the trade-offs involved in practical applications of 
these models. 
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Appendices 
A. Additional Tables 

Table . Sample sentences from the clusters of review embeddings of the customers generated by the base model. 

Cluster 0: 
- Coffee is a great gift, this gift will keep you warm and let you share it with people you 
love 
- It is really compact, and the temperature is perfect! 
- It is so great that I can keep my coffee warm, even if I am far away from it! 
Cluster 1: 
- I would recommend it to anyone. 
- This product is great. 
- I highly recommend this product. 
Cluster 2: 
- This machine is amazing! 
- I have an iPhone 6s and I could pair it with my phone. 
- This machine is the best one that I've ever bought. 
Cluster 3: 
- It has an app that works with your smartwatch and lets you control it with your watch so 
you don't have to walk back to your coffee machine if you are away from it. 
- The smartwatch feature doesn't work either. 
- I like the fact that it can connect to my smartwatch 
Cluster 4: 
- This coffee machine is great. 
- This is the best coffee machine I have ever seen! 
- This coffee machine is great! 
Cluster 5: 
- I love it so much. 
- I saved so much time. 
- The design is also very nice! 
Cluster 6: 
- It doesn't keep my coffee warm if I'm far away from it. 
- It is easy to use, it keeps my coffee hot and it is really stylish. 
- It also saves money on the electricity bill as I never have to worry about whether the 
coffee is still warm enough. 
Cluster 7: 
- It works great. 
- It looks sleek and it tastes great. 
- I have it with me everywhere I go. 
Cluster 8: 
- My only problem is that I have to recharge it twice a day because it has a battery life 
of about 4 hours. 
- The only problem is that it is a bit noisy! 
- I can’t control it. 
Cluster 9: 
- It's a nice idea to have your coffee stay warm, but the machine has a design issue: it's 
too big to put on a table. 
- Amazing, it keeps my coffee warm no matter how far I am from the machine 
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- The coffee is always cold when I get back to my office. 
Cluster 10: 
- It has everything that you need from a coffee machine. 
- I have had this coffee machine for about two months and I have not had any issues with 
it. 
- This coffee machine is really useful if you are going to work and you are busy in the 
morning 
Cluster 11: 
- It is a little expensive, but it is worth it. 
- I cannot wait to get my hands on one 
- It is also really affordable. 
Cluster 12: 
- It doesn't make good coffee 
- I can only afford to drink coffee while I am close to it, but I think I might be able to 
convince my spouse that it's worth it. 
- Amazing product, it makes my coffee while I'm away at work. 
Cluster 13: 
- This product is f***ing cool! 
- This product is so cool! 
- Amazing. 

 

 

Table . Sample sentences from the clusters of review embeddings of the customers generated by the base model. 

Cluster 0: 
- ! 
- "! 
- "# 
Cluster 1: 
- As a busy professional, I need my coffee to be ready and waiting for me when I get home. 
- As someone who is always on-the-go, it's so convenient to be able to keep my coffee warm 
even when I'm not directly in front of the machine. 
- As a busy professional, I'm always on the go and don't always have time to wait for my 
coffee to brew. 
Cluster 2: 
- I am absolutely in love with this coffee machine! 
- I've been using it every day since I got it and I can already see the difference in my 
productivity levels - I'm so much more alert and focused throughout the day. 
- I would definitely recommend this product to anyone who is always on-the-go and wants to 
stay energized and focused throughout the day. 
Cluster 3: 
- Highly recommend! 
- I highly recommend it! 
- Highly recommend! 
Cluster 4: 
- This machine is a game-changer - it connects to my smartwatch, so I can program it to 
keep my coffee warm even when I'm not in the same room. 
- It's so convenient and has made my mornings so much more enjoyable. 
- I recently purchased the smart coffee machine that connects to my smartwatch and I am 
absolutely loving it! 
Cluster 5: 
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- I am so impressed with this coffee machine! 
- This machine is a game-changer. 
- This machine is a game changer. 

 

Table . Sample Outputs of the Models in Experiment  

Initial Prompt: “Grace Hopper was” 

Base Model Aligned Model 
one of the first programmers for IBM’s 704 
mainframe computer. She was also a trailblazer 
in computer programming, becoming the first 
female admiral (in the US Navy) and helping to 
create the COBOL language, which is still used 
widely today. 
“Learn the rules so you know how to break them 
properly.” – Grace Hopper 
 

an American computer scientist and Navy Rear 
Admiral who was one of the pioneers of computer 
programming. She is best known for her work on 
the development of COBOL, a high-level 
programming language that made it easier for 
non-technical people to write computer 
programs… 

a mathematician and pioneer in the computer 
field. She was the first person to program the 
Harvard Mark I Automatic Sequence Controlled 
Calculator (a.k.a. "Harvard Mark II"), which 
was used during WWII, and later led research 
for the United States Navy. She is also famous 
for coining the term "bug" in computer 
programming when an electrical short caused a 
computer to malfunction; she found that the 
actual insects were just as annoying as the 
bugs in her computers. 
She is buried at Arlington National Cemetery… 

an American computer scientist and Navy Rear 
Admiral who was a pioneer in the field of 
computer programming. She is best known for 
her work on the development of COBOL, a high-
level programming language that was designed 
to be easy to read and write. Hopper was also 
a vocal advocate for the use of computers in 
business and education, and she worked 
tirelessly to promote the field of computer 
science… 

born in New York City to a mother of Swedish 
descent and an Irish father, who worked as a 
bookkeeper. She attended the University of New 
York where she graduated in 1928 with a degree 
in mathematics. Grace went on to graduate 
school at Yale and obtained her masters in 
mathematics from Columbia University. In 
addition to being an accomplished 
mathematician Hopper is also credited for 
making major contributions to computer 
science, especially in the development of 
early programming languages… 

an American computer scientist and Navy Rear 
Admiral best known for her work on the 
development of COBOL, a high-level programming 
language that was designed to be easy to read 
and write. 
Hopper was born in 1906 in New York City and 
grew up in a family of mathematicians and 
inventors. She earned her PhD in mathematics 
from Yale University in 1934 and went on to 
work at the Harvard Mark I computer lab, where 
she helped develop the first compiler for 
programming language COBOL… 
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Table . Four typical ways the aligned model can describe Grace Hopper in Experiment . 

Biographic al 
Sketch  

born on November 9, 1906 in New York City. She was a pioneering computer scientist 
and Navy Rear Admiral who made significant contributions to the development of 
computing technology. Hopper earned her PhD in mathematics from Yale University in 
1934 and began working at Harvard University’s Mark I computer project in 1943. 
During World War II, she was part of a team that developed COBOL (Common Business-
Oriented Language), a programming language designed for business applications. 
Hopper’s work on COBOL helped pave the way for the development of… 

Early Life and 
Career 

an American computer scientist and Navy Rear Admiral who was one of the pioneers 
of computer programming. She is best known for her work on the development of 
COBOL, a high-level programming language that made it easier for non-technical 
people to write computer programs. 
Grace Hopper was born in 1906 in New York City and grew up during a time when women 
were not often encouraged to pursue careers in science or technology. Despite these 
challenges, she became fascinated with mathematics and physics at an early age and 
went on to study mathematics at Vassar College… 

Interesting 
Facts (in list 

form
at) 

a pioneering computer scientist who made significant contributions to the field of 
computer programming and the development of COBOL, a popular programming language. 
Here are some interesting facts about Grace Hopper: 
1. Early Life and Education: Grace Hopper was born on December 9, 1906, in New 
York City. She grew up in a family of inventors and engineers and developed an 
early interest in mathematics and science. She earned her Ph.D. in mathematics 
from Yale University in 1934. 
2. Navy Career: During World War II, Hopper joined the United States Navy… 

K
ey 

Contributions 
and Legacy 

a computer scientist who helped create the first compiler. She was born in 1906 
and died in 1992, but her legacy continues to inspire women in technology today. 
Hopper earned her Ph.D. in mathematics from Yale University in 1934, becoming one 
of the few women in the field at the time. She joined the Navy Reserve during World 
War II and was assigned to the Harvard Mark I computer, where she pioneered the 
use of machine language programming. 
In the 1950s, Hopper developed COBOL (Common Business Oriented… 

 

A. The RLHF Process 

Reinforcement Learning from Human Feedback (RLHF) is a technique used to align 
language models with human preferences and values. In (Touvron et al., ), the 
authors employ RLHF to fine-tune the pretrained Llama- language model, resulting in 
an AI assistant that generates more helpful, safe, and aligned responses. This appendix 
provides an overview of the RLHF process used in the Llama- paper. 

A.. Human Preference Data Collection 

The first step in the RLHF process is to collect human preference data, which will be 
used to train the reward model. In the Llama- paper, the authors use a binary comparison 
protocol, where annotators are asked to write a prompt and then choose between two 
sampled model responses based on provided criteria. To maximize diversity, the two 
responses for each prompt are sampled from different model variants and temperatures. 
Annotators also label the degree to which they prefer their chosen response over the 
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alternative, using options such as “significantly better”, “better”, “slightly better”, or 
“negligibly better/unsure”. 

A.. Reward Modeling 

The collected human preference data is used to train a reward model, which takes a 
model response and its corresponding prompt as inputs and outputs a scalar score 
indicating the quality of the response in terms of helpfulness and safety. The Llama- 
paper trains two separate reward models: one optimized for helpfulness (Helpfulness RM) 
and another for safety (Safety RM). The reward models are initialized from pretrained 
chat model checkpoints to ensure that they have access to the same knowledge as the base 
model. The model architecture and hyperparameters are identical to those of the 
pretrained language models, except for the classification head, which is replaced with a 
regression head for outputting scalar rewards. 

A.. Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO) is a popular reinforcement learning algorithm 
used in the Llama- paper to fine-tune the pretrained language model using the reward 
models. PPO aims to update policies via (“Proximal Policy Optimization,” ): 𝜃𝑘+1 = arg max𝜃 𝔼𝑠,𝑎∼𝜋𝜃𝑘 [𝐿(𝑠, 𝑎, 𝜃𝑘, 𝜃)] 
where 

𝐿(𝑠, 𝑎, 𝜃𝑘𝜃) ≔ min ( 𝜋𝜃(𝑎|𝑠)𝜋𝜃𝑘(𝑎|𝑠) , clip ( 𝜋𝜃(𝑎|𝑠)𝜋𝜃𝑘(𝑎|𝑠) , 1 − 𝜖, 1 + 𝜖)) 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) 
- 𝜃 represents the parameters of the policy network (the language model). 

- 𝜋𝜃(𝑎|𝑠), 𝜋𝜃𝑘(𝑎|𝑠) are the new and old policy, respectively. 

- 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) is the advantage function of taking action 𝑎 under policy 𝜋𝜃𝑘 at state 𝑠. 
- clip(𝑥, 𝑎, 𝑏) truncates 𝑥 < 𝑎 and 𝑥 > 𝑏. 

- 𝜖 is a hyperparameter that controls the clipping range (usually set to . or .). 

The clipping function in the PPO objective helps to limit the size of the policy updates, 
ensuring that the new policy does not deviate too far from the old policy. This promotes 
stability during training. Essentially, clipping acts as a regularizer by disincentivizing 
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dramatic policy changes, with the hyperparameter 𝜖 determining the allowable deviation 
that still benefits the objective. 
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Abstract

The proliferation of Large Language Models (LLMs) has opened new frontiers in
computing, yet controlling and orchestrating their capabilities beyond simple text gen-
eration remains a challenge. Current methods, such as function/tool calling and direct
code generation, suffer from limitations in expressiveness, scalability, cost, security,
and the ability to enforce fine-grained control. This paper introduces Pel, a novel pro-
gramming language specifically designed to bridge this gap. Inspired by the strengths
of Lisp, Elixir, Gleam, and Haskell, Pel provides a syntactically simple, homoiconic,
and semantically rich platform for LLMs to express complex actions, control flow, and
inter-agent communication safely and efficiently. Pel’s design emphasizes a minimal,
easily modifiable grammar suitable for constrained LLM generation, eliminating the
need for complex sandboxing by enabling capability control at the syntax level. Key
features include a powerful piping mechanism for linear composition, first-class clo-
sures enabling easy partial application and functional patterns, built-in support for
natural language conditions evaluated by LLMs, and an advanced Read-Eval-Print-
Loop (REPeL) with Common Lisp-style restarts and LLM-powered helper agents for
automated error correction. Furthermore, Pel incorporates automatic parallelization
of independent operations via static dependency analysis, crucial for performant agen-
tic systems. We argue that Pel offers a more robust, secure, and expressive paradigm
for LLM orchestration, paving the way for more sophisticated and reliable AI agentic
frameworks.

1 Introduction
The capabilities of Large Language Models (LLMs) have expanded dramatically, moving
beyond simple text generation towards executing complex tasks and interacting with external
systems. A critical challenge in this evolution is enabling LLMs to perform actions reliably,
safely, and expressively. Current industry approaches primarily fall into two categories, each
with significant drawbacks.
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The first, widely adopted approach is function calling or tool calling (“Function call-
ing and other API updates,” 2024). Here, programmers pre-define functions, expose their
signatures (often as JSON Schema) to the LLM, and the model generates JSON payloads
specifying which function to call with what arguments. While useful for simple tasks, this
method suffers from several limitations. First, it struggles to represent complex control flow
(conditionals, loops), sequential dependencies beyond simple chaining, or parallel execution
patterns. In this method conditional logic—even a condition easily verifiable by code—often
relies solely on the LLM’s judgment (e.g., “call action A if condition X is met”), which
not only can lead to potential inaccuracies, but also results in verification opacity. More-
over, this method does not scale in real-world scenarios: Defining hundreds of functions for
complex agents becomes unmanageable, and the resulting large JSON schemas passed to
the LLM increase costs and can significantly degrade the model’s reasoning performance.
Finally, function calling is a rigid method: Actions are limited strictly to the pre-defined
functions. The LLM cannot compose existing tools in novel ways or perform computations
not explicitly provided.

The second approach involves letting the LLM generate code directly in a general-purpose
language like Python (e.g., ChatGPT Code Interpreter, “ChatGPT plugins,” 2024). This
offers greater flexibility and allows the LLM to leverage existing libraries. However, it in-
troduces severe challenges. First, running arbitrary code generated by an LLM is inherently
dangerous. Prompt injection attacks may trick the LLM into generating malicious code that
can compromise the system, exfiltrate data, or perform unintended actions. Sandboxing
helps but is complex and not foolproof. Secondly, restricting the LLM’s capabilities within
a powerful language like Python is extremely difficult. For example, preventing the use of
loops or specific library functions requires sophisticated static analysis or runtime monitor-
ing. Modifying the grammar of languages like Python to disable features at the generation
level is impractical due to their complexity (e.g., Python’s EBNF grammar spans hundreds
of lines). Converting such large grammars to formats suitable for constrained generation
(like regex) results in massive performance degradation.

This research stems from my decade-long fascination with programming language design,
sparked by exploring both mainstream and esoteric languages and their unique ideas. During
my PhD work on a project leveraging LLMs, the inadequacy of existing action-performing
mechanisms became starkly apparent. We needed a way for an LLM to specify complex,
conditional, and potentially concurrent actions safely and reliably, particularly in the context
of orchestrating multiple AI agents. This led to the development of Pel, an intermediate
language specifically designed to be written by LLMs and safely interpreted by the host
system.
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Figure 1: Pel’s Position in the LLM Orchestration Landscape, balancing expressiveness and
safety.

Pel combines a Lisp-like syntax with functional programming concepts, resulting in a lan-
guage with several distinctive characteristics. First, it is safe by design—its simple, regular
grammar can be easily modified to restrict LLM generation at the source level, disabling
unwanted features (e.g., network access, file I/O, specific functions) with guarantees, elimi-
nating the need for complex sandboxing. Second, Pel is highly expressive, supporting con-
ditionals, loops (as non-strict functions), variable bindings, complex data structures, and
powerful composition via pipes (See Figure 1). The language is also inherently LLM-friendly.
Its uniform syntax and simple grammar facilitate easier learning (in-context) and reliable
generation by LLMs. Its linear composition style (pipes) aligns well with the sequential token
generation process of LLMs. Furthermore, Pel provides fine-grained control over execution,
including automatic asynchronous execution for performance-critical agentic systems. Fi-
nally, it integrates natively with LLM capabilities for tasks like evaluating natural language
conditions and providing automated debugging help within its interactive environment.

This paper details the design philosophy, syntax, semantics, and novel features of Pel. We
elaborate on its suitability for LLM code generation and its interactive Read-Eval-Print-Loop
(aptly named “REPeL”). We also briefly illustrate its application in orchestrating hierarchical
AI agent systems, demonstrating Pel’s potential as a foundational technology for building
sophisticated and reliable agentic AI systems.
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2 Literature Review
The development of agent-based AI systems has seen significant advancement in recent years,
particularly with the emergence of large language models (LLMs). Within this domain, re-
searchers have explored various frameworks for agent architecture and orchestration, with
systems like AutoGPT and BabyAGI representing early attempts at autonomous agentic sys-
tems (Weng, 2023). More formalized approaches have emerged, such as the ReAct framework,
which combines reasoning and acting in language agents through a process of thought-action-
observation cycles (Yao et al., 2022).

The challenge of reliably coordinating multiple agents has led to the development of multi-
agent frameworks like AgentVerse (Chen et al., 2023), which provides a customizable plat-
form for constructing and orchestrating agent societies in various application domains. Sim-
ilarly, MetaGPT (Hong et al., 2023) proposes a meta-programming framework that enables
collaborative problem-solving among multiple agents with specialized roles. These multi-
agent systems often struggle with reliable inter-agent communication and coordination, with
recent work by Park et al. highlighting challenges in agent-to-agent interaction patterns
(Park et al., 2023).

Despite these advances, a critical gap exists in the orchestration of AI agents. Current ap-
proaches predominantly fall into two categories, each with significant limitations. The first
approach is function calling or tool calling, which allows LLMs to interact with predefined
functions but struggles with complex control flow, sequential dependencies, and scalability in
real-world scenarios (IBM, 2025). As noted by Microsoft’s Magentic-One research, function
calling becomes unwieldy when orchestrating numerous agents with complex interdepen-
dencies (Microsoft Research, 2024). The Berkeley Function-Calling Leaderboard highlights
ongoing challenges in function calling reliability across different programming languages and
API scenarios (Berkeley, n.d.).

Function calling approaches face several critical limitations: they struggle to represent com-
plex control flow patterns (conditionals, loops), provide limited scaling capacity when defin-
ing large numbers of functions, and lack expressiveness for novel tool compositions (2024).
Additionally, security concerns arise when verification is delegated solely to LLM judgment
rather than programmatically verifiable code (BentoML, 2024). These limitations impede
the development of sophisticated agentic systems capable of handling real-world tasks with
appropriate governance mechanisms (OpenAI, 2024).

The second approach—allowing LLMs to generate code directly in general-purpose
languages—offers greater flexibility but introduces severe security risks and challenges in
capability restriction. Pel positions itself in this gap, providing a specialized language with
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a restricted grammar that enables safe yet expressive agent orchestration. Unlike function
calling frameworks that limit expressivity, or general-purpose language generation that
compromises safety, Pel offers a middle ground that addresses both concerns simultaneously.

Pel’s approach to grammar-level safety leverages recent advances in constrained generation
techniques. Research on grammar-constrained decoding demonstrates that formal grammars
can successfully restrict LLM output to follow specific structures (Geng et al., 2023), ensuring
syntactic validity without requiring fine-tuning. The approach of converting context-free
grammars to regular expressions for constrained LLM generation has gained traction as
demonstrated by tools like ReLLM (Rickard, 2024) and frameworks such as Domino (Wagner
et al., 2024), which implement efficient and minimally-invasive constrained decoding.

These constrained generation approaches offer significant advantages over traditional sand-
boxing methods. As shown by Cooper (Cooper, 2024), constrained decoding guarantees
valid outputs on first generation by restricting token distributions via state machines with
regex or context-free grammars. This approach is particularly valuable for programming
languages, where syntax errors can render generated code unusable. By enforcing grammar
constraints at the generation level, Pel can guarantee the syntactic safety of LLM-generated
code without compromising expressiveness.

On the programming language design front, a number of DSLs (Domain-Specific Languages)
have been designed for specific AI tasks. DSPy (Khattab et al., 2023), for example, intro-
duces a framework for programming foundation models that separates the optimization of
prompts from their specification. Beyond such DSLs, though, general-purpose languages
such as Lisp have had profound influence on AI, dating back to McCarthy’s original work
(McCarthy, 1960). Modern iterations of Lisp like Clojure have demonstrated the continued
relevance of homoiconicity and S-expressions for representing and manipulating code as data
(Hickey, 2008). Homoiconicity—“the ability to treat code as data” (“Exploring the Power
of Artificial Intelligence in Lisp Programming,” 2024)—facilitates metaprogramming and
makes it particularly suitable for AI applications where programs need to be generated or
manipulated by other programs (SIGPLAN Blog, 2020).

Pel’s error handling system draws inspiration from Common Lisp’s condition system, which
has been acknowledged as a sophisticated mechanism for error recovery and program re-
silience (Pitman, 1988). Elixir and Gleam, which inform Pel’s pipe operator syntax, demon-
strate how functional language constructs can enhance code readability and composition
(Valim, 2013). The pipe operator (^>) enables sequential data transformation that aligns
well with LLMs’ token-by-token generation pattern. Additionally, Common Lisp’s error
handling system, which influences Pel’s REPeL design, provides sophisticated mechanisms
for error recovery (Pitman, 1988) that are particularly valuable when dealing with potentially
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faulty LLM-generated code.

Pel’s unique contribution lies in its synthesis of these various influences into a cohesive
language specifically designed for LLM orchestration, addressing limitations in both function
calling approaches and unrestricted code generation while providing its own novel, expressive,
safe, and LLM-friendly programming environment for agentic systems.

3 Design Philosophy
Pel is designed with simplicity, regularity, and expressiveness in mind, tailored for generation
by LLMs and safe interpretation. In particular, Pel strives for:

1. Simplicity and Consistency: Employ a minimal, regular syntax based on Lisp’s
S-expressions. This uniformity makes the language easier for LLMs to learn (better
in-context learning) and parse.

2. Grammar-Level Safety: Define a concise grammar (expressible easily in EBNF) that
can be readily modified. This allows developers to enable or disable language features
(specific functions, control flow constructs, network access) at the grammar level. By
using constrained generation techniques (e.g., regex sampling guided by the grammar),
we can guarantee that the LLM cannot generate forbidden code paths, eliminating the
need for runtime sandboxing for many security concerns (See Figure 2).

3. Expressiveness for Orchestration: Include essential control flow structures and
data manipulation capabilities as first-class citizens within the language.

4. Composable Linearity: Provide mechanisms (like pipes) that allow LLMs to build
complex workflows step-by-step without needing to plan the entire structure in advance
or backtrack during generation.

5. Seamless LLM Integration: Natively incorporate mechanisms for leveraging LLM
capabilities where appropriate (e.g., evaluating natural language conditions).

6. Developer Ergonomics: Offer an interactive development experience with robust
error handling and debugging aids (the REPeL).

The design of Pel did not occur in a vacuum. It stands on the shoulders of giants in
programming language history and draws inspiration from several key languages that have
fascinated me over the years:

Lisp: The most apparent influence is Lisp, particularly its S-expression syntax (^^.). This
provides a simple, uniform structure (homoiconicity) that is easy to parse and manipulate
programmatically. However, Pel diverges significantly from traditional Lisps. It avoids cons
cells as the fundamental list structure in favor of distinct parenthesized evaluation lists (^^.)
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Figure 2: Comparison of Safety Mechanisms: Pel’s Proactive Grammar Constraint vs. Re-
active Runtime Sandboxing.

and bracketed literal lists [^^.]. Crucially, Pel enforces a strict operator-first interpretation
for (^^.) forms and eliminates special forms entirely, opting for a unified function model.

Elixir and Gleam: The pipe operator (^>) is directly inspired by Elixir, providing a linear
and readable way to compose functions. Pel extends this concept by using the ^ caret symbol
for injecting the piped value into specific argument positions, offering greater flexibility than
Elixir’s default first-argument injection. This linearity is particularly advantageous for LLMs,
which generate code sequentially.

Haskell: Pel incorporates automatic partial application, a hallmark of Haskell and other
ML-family languages. When a function (or PelClosure) is called with fewer arguments than
it expects, it automatically returns a new closure capturing the provided arguments, rather
than raising an error. This is possible because Pel functions have a fixed arity (no variadic
arguments), allowing the interpreter to “know” when a function is full and ready to fire.
This simplifies the creation of higher-order functions and functional composition patterns.
Pel’s emphasis on immutability also echoes functional programming principles championed
by Haskell.

Common Lisp: The design of Pel’s interactive environment, the REPeL, draws inspiration
from the powerful condition and restart system of Common Lisp. The ability to intercept
errors, inspect the context, and choose how to proceed (e.g., retry, abort, provide a value,
rewrite code) offers a much more robust development experience compared to typical REPLs,
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especially relevant when dealing with potentially faulty code generated by LLMs.

Pel aims to provide a unique and effective solution by synthesizing these influences within
the specific context of LLM interaction while offering its own novel contributions.

4 The Pel Language
Pel is designed to be minimal yet expressive. Its core components are described below.

4.1 Syntax and Grammar
Pel uses a Lisp-like syntax based on S-expressions. Code consists of atoms and lists.

• Atoms: Basic indivisible values like numbers (PelNum), strings (PelString), booleans
(PelBool), the null value (PelNil), symbols (pelSymbol), and keywords (PelKey).

• Lists: Sequences of elements enclosed in delimiters. Pel distinguishes between:
– Parenthesized Lists (): Interpreted as expressions. The first element is al-

ways treated as the operator (a function/closure to be called), and the remaining
elements are its arguments. Example: (+ 1 2).

– Bracketed Lists []: Interpreted as literal data lists (PelListLiteral). Elements
are evaluated, but the list itself is treated as data, not a function call. Example:
[1 #t "hello"]. This avoids the ambiguity present in some Lisps where () can
mean both function call and data list. Notice that literal lists are heterogeneous,
unlike Python lists that can only contain one type of data.

This strict interpretation of () simplifies parsing and evaluation logic. The grammar is
designed to be small and regular, making it amenable to constrained generation.

4.1.1 Pel EBNF Grammar

{(* Entry point: A program is zero or more expressions *)}
program = { expression } ;

(* An expression is a primary expression, potentially chained with pipes *)

expression = primary , { PIPE , primary } ;

(* A primary expression is the base unit before considering pipes *)

primary = atom

| list

| literal_list

| quoted_expression

;
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(* Atomic literal values *)

(* Note: KEY is included here. The parser interprets it contextually *)

(* as either a literal key or the start of a key-value pair. *)

(* The grammar allows KEY to be followed by another expression *)

(* within lists or at the top level, covering the pair syntax. *)

atom = BOOL | NIL | NUMBER | STRING | SYMBOL | KEY ;

(* Standard parenthesized list *)

list = LPAREN , { expression } , RPAREN ;

(* Bracketed literal list *)

literal_list = LBRACKET , { expression } , RBRACKET ;

(* Quoted expression *)

(* The parser ensures the content is interpreted with allow_pairs=False *)

quoted_expression = QUOTE , expression ;

(* Terminal Symbols (provided by the tokenizer) *)

LPAREN = "(" ;

RPAREN = ")" ;

LBRACKET = "[" ;

RBRACKET = "]" ;

QUOTE = "'" ;

PIPE = "^>" ;

BOOL = ? "#t" | "#f" ?

; (* Based on regex r"#t|#f" *)

NIL = "#nil"

; (* Based on regex r"#nil" *)

STRING = ? C-style string literal ?

; (* Based on regex r'"[^"]*"' *)

KEY = ? keyword starting with ':' ?

; (* Based on regex r":[a-zA-Z0-9_\-+^/\\?!^>=.]+" *)

NUMBER = ? integer or float literal ?

; (* Based on regex r"-?\d+(\.\d+)?" *)

SYMBOL = ? sequence of non-whitespace, non-delimiter chars ?

; (* Based on regex r"[^\s()\[\]\";|^]+" *)

(* Ignored Tokens: comment, whitespace *)

The simplicity of this grammar is crucial. It allows for easy conversion to regular expressions
for use in LLM constrained generation frameworks (like Guidance or LMQL). Developers can
easily modify this EBNF (e.g., remove the PIPE rule, remove specific SYMBOLs corresponding
to built-in functions) to create variants of Pel with restricted capabilities, enforced at the
generation stage.
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4.2 Data Types
Pel supports a range of fundamental data types:

• PelNum: Represents integer and floating-point numbers.
• PelString: Represents UTF-8 text strings, enclosed in double quotes (").
• PelBool: Represents boolean values #t (true) and #f (false).
• PelNil: Represents the null or absence of value, denoted #nil or (). Importantly,

unlike Python’s None, PelNil does not evaluate to false in conditional contexts. Its
truthiness is undefined.

• PelListLiteral: Represents 1-indexed heterogeneous lists of PelValues, enclosed in
brackets []. Example: [1 "two" #t #nil].

• PelKey: Represents keyword symbols, prefixed with a colon :. Example: :name, :age.
Keywords are often used for named arguments and creating map-like structures.

• PelPair: Represents a key-value association, typically formed implicitly by the parser
when a PelKey is followed by a non-keyword value within a list. Example: :name "Pel"
within [:name "Pel" :version 1]. A standalone key like :flag is implicitly paired
with #nil.

• PelClosure: The internal representation of all callable entities (functions and lambdas)
in Pel.

4.3 Functions and Closures (PelClosure)
Functions are central to Pel.

• Uniformity: There are no “special forms” in the traditional Lisp sense. Constructs
like if, for, case, and even def are implemented as functions (specifically, PelClo-
sures).

• Definition: Functions and variables are defined using the same def construct. Defin-
ing a variable binds a symbol to a value; defining a function binds a symbol to a
PelClosure (typically created via a lambda).

(def pi 3.14) ; Variable definition
(def greet (lambda [:name] (print "Hello, " name))) ; Function definition

Thanks to Pel pipes, one can also define functions in “reverse” order—first creating the body
and then piping that into a symbol:

(lambda [:x :y]
[(pow x 2) (pow y 2)] ^> (+) ^> (sqrt)
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) ^> (def my-foo ^)

• PelClosure: This is the heart of Pel’s function mechanism. A PelClosure encapsu-
lates:

– The function’s code (or a reference to a built-in implementation).
– The environment in which it was defined (closing over variables).
– Specifications for its arguments (ArgSpec), including names and optional default

values.
– A flag indicating whether it’s strict (evaluates arguments before invocation) or

non-strict (arguments passed unevaluated).

• Partial Application: Inspired by Haskell, Pel supports automatic partial application.
If a PelClosure is called with fewer arguments than required, it does not raise an error.
Instead, it returns a new PelClosure that has captured the provided arguments and is
waiting for the remaining ones.

(def add (lambda [:x :y] (+ x y))) ; Defines add function
(def add5 (add 5)) ; Creates a new closure, add5, where x is bound to 5

(add5 10) ; Invokes the partial closure, returns 15

This applies to all functions, including control flow constructs, making them first-class
citizens that can be passed around partially applied. For instance, a for loop missing
its body can be passed as an argument to another function.

• Strict vs. Non-strict: Strict functions (the default for lambdas) evaluate their ar-
guments before the function body is executed. Non-strict functions receive their argu-
ments as unevaluated expressions. This is essential for control flow like if, which must
only evaluate the then or else branch, not both. Currently, only built-in functions can
be non-strict, but user-defined non-strict functions are planned. Non-strict functions
in Pel provide an alternative approach to Lisp macros in that they operate directly on
the AST and can selectively evaluate their arguments just like the unquote mechanism
in macros.

• Argument Passing: Closures can be called using:

– Positional arguments: (area 3 4 5)
– Named arguments: (area :x 3 :y 4 :z 5). Mixing positional and named

arguments in a single call is disallowed. Lambdas can define default values for
arguments: (lambda [:x :y 10] ^^.) makes y default to 10.
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4.4 Piping (^>, ^)
Pel provides a powerful piping mechanism for composing functions linearly, inspired by Elixir.

• Basic Pipe ^>: The ^> operator takes the result of the expression on its left and
passes it as the first argument to the function call expression on its right.

[1 2 3 4] ^> (len) ^> (+ 5) ; Equivalent to (+ (len [1 2 3 4]) 5) ^> 9

• Caret Injection ^: The caret symbol ^ acts as a placeholder within the right-hand
expression, indicating exactly where the result of the left-hand expression should be
injected.

"world" ^> (concat "hello, " ^) ; Equivalent to (concat "hello, " "world")
5 ^> (* 10 ^) ; Equivalent to (* 10 5)

The caret injection works recursively within nested structures:

[1 2 3] ^> (print :vals ["a list of items:" ^] :sep " ")
; Equivalent to (print :vals ["a list of items:" [1 2 3]] :sep " ")

• Linearity Advantage for LLMs: This piping mechanism is particularly beneficial
for LLMs. They generate code token by token, moving forward. Unlike traditional
nested function calls bar(foo(a)) where the LLM needs to plan the bar( call before
generating foo(a), Pel’s pipes allow the LLM to generate (foo a), then decide to pipe
it into bar after the fact: (foo a) ^> (bar ^). This linear flow aligns better with
the sequential nature of LLM generation and reduces the need for complex planning
or backtracking.

4.5 List Operations and Accessing
Pel provides powerful mechanisms for working with literal lists. While literal lists appear
as simple data structures, they actually behave as PelClosures. This design choice enables
sophisticated list manipulation operations through a unified function calling syntax.

A literal list is can receive three optional arguments that default to #nil: :at, :from, and
:to. When a literal list is “called” without arguments, it returns all its elements. However,
providing one or more of these arguments enables advanced list slicing and key-value lookup
operations:

; 1 Basic indexing (returns element at index 1)
([5 6 7 8] :at 1) ; => 5
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; 2 Slicing to a specific index (inclusive)
([5 6 7 8] :to 2) ; => [5 6]
; 3 Slicing from a specific index (inclusive)
([5 6 7 8] :from 2) ; => [6 7 8]
; 4 Combined slicing with both from and to indices
([5 6 7 8] :from 1 :to 3) ; => [5 6 7]
; 5 Retrieving multiple elements by index
([5 6 7 8] :at [1 3]) ; => [5 7]
; 6 Key-value lookup (requires quoting the key)
([:a 1 :b 2 :c 3] :at ':a) ; => 1
; 7 Multiple key lookup
([:a 1 :b 2 :c 3] :at [':a ':c]) ; => [1 3]
; 8 Index-based retrieval of multiple pairs
([:a 1 :b 2 :c 3] :at [1 3]) ; => [:a 1 :c 3]

For key lookup operations (as in the sixth example), the key must be quoted to prevent Pel
from interpreting it as a separate key-value pair. Without quoting, Pel would interpret :at :a
as two separate pairs: PelPair(PelKey(":at"), #nil) and PelPair(PelKey(":a"), #nil).
Literal lists with alternating keys and values are automatically interpreted as containing
key-value pairs. Internally, [:a 1 :b 2 :c 3] is represented as [PelPair(PelKey(":a"),
PelNum(1)), ^^.]. This means standard list operations like indexing still work naturally.
Named arguments can be omitted for brevity, with positional arguments being mapped to
the list’s parameters in order (:at, :from, :to):

; Implicit :at parameter (equivalent to :at 1)
([5 6 7 8] 1) ; ^> 6

; Implicit :from and :to (equivalent to :from 1 :to 3)

([5 6 7 8] () 1 3) ; ^> [6 7 8]

Since literal lists behave like closures, they integrate seamlessly with Pel’s piping mechanism:

(def data [1 2 3 4 5])
(for [0 2 4] i

i ^> (data :at ^) ^> (print))

; Prints elements at indices 0, 2, 4 in data

This unified treatment of data structures as closures exemplifies Pel’s functional design phi-
losophy and demonstrates how even basic language constructs can offer rich, expressive
capabilities through a consistent interface.

110



4.6 Control Flow
Control flow constructs are implemented as non-strict PelClosures.

4.6.1 if

Takes :cond, :then, and optional :else arguments (defaulting to #nil). Evaluates :cond; if
true, evaluates and returns :then, otherwise evaluates and returns :else.

(if data ^> (len) ^> (gt 2)
(print "length of data is greater than 2")

(print "data is too short"))

Note that since even control flow constructs are functions, one can also call them using
named arguments and pipe into them:

data ^> (len) ^> (gt 2) ^>
(if :cond ^

:then (print "length of data is greater than 2")

:else (print "data is too short"))

4.6.2 case

A generalized conditional structure. Takes a value (:scrut) and a literal list of condition-
consequence pairs (:body). It evaluates conditions sequentially. The first condition that
evaluates to #t causes its corresponding consequence to be evaluated and returned. A final
#t condition acts as a default else clause.

(case my-list [
(len) ^> (gt 5)

"length of my-list is greater than 5"

#t ; Default case

(print "all conditions failed")

]) ^> (print)

Notice that case pipes its :scrut into each condition; turning the first condition into my-list
^> (len) ^> (gt 5).

4.6.3 for

Provides iteration. Takes :coll (the collection to iterate over), :iterator (a symbol to bind
each item to), and :body (an expression to evaluate for each item). Importantly, it returns a
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PelListLiteral containing the results of each body evaluation. The length of output is the
same as :coll.

(for :coll [1 2 3] :iterator i :body (* i 2)) ; ^> [2 4 6]

4.6.4 do

Evaluates a sequence of expressions (provided as arguments or in a PelListLiteral) and
returns the value of the last expression. Useful for side effects.

(do
(print "Starting^^.")

(def x 5)

(+ x 10))

; Prints "Starting^^.", returns 15

4.6.5 do/async

Similar to do, but evaluates the expressions concurrently. Returns the result of the last
expression specified in the block, after all have completed.

4.7 Natural Language Integration
Recognizing that Pel is often generated or used in conjunction with LLMs, it incorporates
direct hooks for LLM evaluation:

• Natural Language Conditions in case: If a condition expression within a case
body is a PelString, Pel interprets it as a natural language condition. It passes the
:scrut (the value being tested) and the condition string to an underlying LLM. The
LLM’s boolean response determines whether the condition passes.

(case user-profile [
"is a premium member" (grant-access user-profile)

"has incomplete profile" (prompt-completion user-profile)

#t (show-basic-view)

])

Here, the strings are evaluated by an LLM against the user-profile data.

• Other LLM Functions: Pel can easily incorporate other built-in functions that call
LLMs, such as summarize, which takes text and returns an LLM-generated summary.
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This tight integration allows leveraging the fuzzy understanding capabilities of LLMs directly
within the structured logic of Pel.

5 The Pel Runtime Environment
Pel is more than just a language specification; it includes a runtime environment designed
for interactive development and efficient execution, especially in agentic scenarios.

5.1 The REPeL (Read-Eval-Print-Loop)
Pel features an enhanced REPL, affectionately termed “REPeL,” which incorporates ad-
vanced error handling and debugging features inspired by Common Lisp’s condition system
and augmented with LLM capabilities. As an interactive development environment, REPeL
provides a standard loop for entering Pel code, seeing results, and inspecting the environ-
ment. It includes features like command history, syntax highlighting, and auto-completion.
But perhaps the most intriguing aspect of REPeL is the way it handles errors. To illustrate
this, let us review, as an example, a piece of Pel code that calls two agents, accumulates
their responses, and summarizes the result:

(FIN-AGENT :query "give me the latest financial report for this quarter"
:expect "string") ^> (def financial_report ^)

(SALES-AGENT :query "I need our sales data in detail"

:expect "string") ^> (def sales_data ^)

(add financial_report sales_data) ^> (summarize) ; erroneous code

In this example, two API calls are made to agents, followed by a call to the add function. The
latter is problematic because the correct way to concatenate two strings in Pel is to use the
concat function. In such situations, most programming languages (including Python) would
throw an exception and exit, discarding the results obtained in the previous lines. Since
the API calls could be slow and potentially expensive, we need a way to keep the results
obtained from the first two lines while being able to fix the error on the third. Therefore,
when any error happens in Pel code (and a PelException is raised internally), the REPeL
does not simply crash; it preserves the state of the environment before the error and presents
the user (or an automated system) with restart options:

1. Rewrite Entire Program: Discard the current code and enter a completely new
program.

2. Rewrite from Error Forward: Keep the code up to the error point, discard the
rest, and enter new code to replace the faulty part onwards.
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3. Rewrite Current Expression: Replace only the specific expression that caused the
error and retry its evaluation within the original context.

4. Abort Evaluation: Stop the current evaluation entirely.

5. Self-Healing Mode (Helper Agent): Invoke an LLM-based helper agent to auto-
matically fix the code.

The LLM-assisted self-healing is a key innovation of REPeL. When an error occurs, the
associated PelException captures not only the error message and location but also contextual
information, often derived from the docstring of the Pel function where the error originated.
A dedicated “Helper Agent” (an LLM prompted with the error, the faulty code snippet,
and the function’s documentation/context) is invoked. It analyzes the discrepancy between
the code and the expected usage (based on the docstring) and proposes a corrected code
snippet. In automatic mode, the REPeL can accept this correction and continue execution
seamlessly. This provides an “autocorrect” experience, significantly improving robustness,
especially when LLMs are generating Pel code.

Pel> (def name "Behnam")
(print ["hello" name] :sep " ")

^> "Behnam"

Error at line 2, col 1-32: Mixing named and positional arguments is not allowed.

1 | (def name "Behnam")

2 | (print ["hello" name] :sep " ")

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

error context:

FUNCTION SIGNATURE: (print :vals :sep " " :nl #t)

TYPES:

- vals: PelValue - values to print, can be a single value or a literal list [ ^^. ]

- sep: PelString (optional) - separator string, default ""

- nl: PelBool (optional) - whether to end with a newline, default #f

DESCRIPTION:

Prints values to stdout. If vals is a bracket-literal, prints each item.

Optionally separates with the given separator string and adds a newline.

Returns the input vals unchanged.

EXAMPLE USAGE:

<hidden for brevity>

Possible restarts:

1. Rewrite entire program

114



2. Rewrite from error point forward

3. Rewrite only the current expression

4. Abort evaluation

5. Use self-healing mode

Select option (1-4/5): 5

SELF-HEALING^^.

Helper agent proposed rewrite:

(print :vals ["hello" name] :sep " ")

Press 'a' to accept, 'e' to edit, 'r' to abort.

Choice (a/e/r)? a

1 (print :vals ["hello" name] :sep " ")

hello Behnam

^> ["hello" "Behnam"]

5.2 Automatic Asynchronicity
Performance is critical for agentic systems where multiple tasks or agent interactions might
need to occur concurrently. Pel addresses this through an optional automatic asynchronous
execution mode within the REPeL.

• Dependency Graph Analysis: Before execution in this mode, the REPeL performs
a pre-scan of the entire code. It parses the code into a sequence of top-level Abstract
Syntax Trees (ASTs). For each AST, it identifies the symbols it uses and the symbols
it defines (we which specifically look for def forms).

• Parallel Execution: Based on this analysis, the runtime builds a dependency graph.
ASTs that do not depend on the output (defined symbols) of other pending ASTs are
considered independent and can be scheduled for concurrent execution using asyn-
cio tasks, managed by the PelTaskManager. Pel’s functional nature and emphasis on
immutability simplify this dependency analysis.

This automatic parallelization can significantly speed up Pel programs, especially those in-
volving independent computations or I/O-bound operations like multiple agent calls, without
requiring the programmer (or the LLM generating the code) to explicitly manage threads or
async primitives everywhere. While this mode offers performance gains, the top-to-bottom
execution mode provides more predictable debugging with the restart system; refining error
handling in the fully async mode is an area of ongoing work.
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6 Application: Orchestrating Agentic AI Systems
The primary motivation for Pel was to enable more sophisticated coordination of LLM-based
agents. Here we demonstrate how Pel can be leverages to build a hierarchical multi-agent
system.

In this example, an organization is modeled as a hierarchy of agents (Figure 3 shows the
organizational hierarchy.). For example, there could be a “mini” department of Marketing,
a mini department of Finance, etc., each with their own sub-departments. Agent data (roles
and backgrounds, available tools for function calling, list of sub-agents) is loaded from a
JSON file. In this hierarchy, agents can be designated as routers or terminals. Terminal
agents perform specific tasks (potentially using traditional function calling or direct LLM
responses). Router agents, crucially, coordinate their sub-agents.

Pel as the Orchestration Language: Instead of relying on complex internal logic or
limited function calls, router agents achieve coordination by generating and executing Pel
code. A router agent, when tasked by its supervisor, might write Pel code that:

• Calls one or more of its sub-agents sequentially or in parallel (do/async).
• Uses the output of one sub-agent as input (:context) for another, facilitated by Pel’s

variables (def) and piping (^>).
• Implements conditional logic (if, case) based on sub-agent responses to decide the

next steps.
• Initiates collaborative sessions among sub-agents using the built-in meeting function,

which takes a list of agent names, a topic, and simulates discussion rounds. The
transcript can then be processed (e.g., summarized using summarize).

For instance, when the user asks the MAIN agent to come up with a comprehensive plan for
social media advertising, the agent writes the following Pel code which queries the relevant
agents (FINANCE and MARKETING) for more information and aggregates the results in a list.
That list, once evaluated, is given back to MAIN, which it then uses to provide an answer to
the user:

; MAIN's Pel code

(MAIN/FINANCE :query "what's the budget allocation

for social media advertising?"

:expect "num")

^> (def social_media_budget ^)

(MAIN/MARKETING :query "come up with an effective advertising campaign
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on social media given the given budget"

:context social_media_budget

:expect "string")

^> (def social_media_strategy ^)

[:social_media_budget social_media_budget

:social_media_strategy social_media_strategy]

Notice that the call to MARKETING itself might trigger that agent to write a piece of Pel code
to orchestrate its subagents:

; MARKETING's Pel code

(meeting :group ["MAIN/MARKETING/SOCIAL_MEDIA"

"MAIN/MARKETING/CONTENT_MARKETING"]

:rounds 3

:topic "come up with a great advertising campaign given the budget"

:context social_media_budget)

^> (summarize)

^> (def plan_summary ^)

[:plan_summary plan_summary]

This Pel-based approach provides far greater expressiveness and flexibility than function call-
ing. Complex, multi-step, conditional workflows involving multiple agents can be explicitly
defined and executed. Compared to generating Python, Pel offers inherent safety benefits
through its controlled grammar and avoids the need for complex sandboxing. Moreover, if
a router agent generates syntactically incorrect or semantically flawed Pel code (e.g., calls
a non-existent sub-agent, uses a function incorrectly), the REPeL’s restart mechanism kicks
in. In an automated setup (with self-healing), the helper agent can often fix the Pel code,
allowing the agentic system to recover gracefully from errors that would halt systems relying
on less robust execution models.

Pel thus serves as the connective tissue, the “language of thought and action,” for these
hierarchical agentic systems, enabling complex emergent behaviors through structured, safe,
and expressive code.

117



MAIN

Finance

Accounting

Payroll

Financial
Planning

Marketing

Social Media
Instagram

Facebook

Content
Marketing

Email
Campaigns

Operations

Supply Chain

Logistics

Quality
Control

Figure 3: Organizational structure diagram
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7 Discussion and Future Work
This paper introduces Pel, a specialized language designed specifically for Large Language
Model (LLM) orchestration. Pel provides a dedicated, secure, and expressive environment
for LLM code generation that successfully navigates between the limitations of basic function
calling and the security risks of unrestricted general-purpose language generation.

At its core, Pel leverages a simple, Lisp-inspired grammar that enables fine-grained con-
trol over LLM-generated code capabilities at the syntax level. This design choice allows
for grammar modification and constrained generation, substantially reducing security risks
without requiring complex sandboxing mechanisms. Despite this syntactic simplicity, Pel
achieves enhanced expressiveness by incorporating control flow constructs (if, case, for) as
first-class functions and implementing a powerful piping mechanism inspired by Elixir and
Gleam. These features enable complex, linearly-composed workflows that are particularly
well-suited for LLM generation.

A key innovation in Pel is its seamless integration with LLMs, natively supporting natural
language conditions within its control flow and delegating their evaluation to LLMs when
necessary. This integration extends to Pel’s advanced development environment (REPeL),
which features an interactive REPL with Common Lisp-style restarts and LLM-powered
“Helper Agents” for automated error diagnosis and correction. Furthermore, Pel’s runtime
can automatically detect and parallelize independent code blocks by analyzing dependencies
in the Abstract Syntax Tree (AST), enhancing performance for agentic systems.

Pel emerges from both practical necessity and appreciation for powerful programming lan-
guage paradigms, offering a novel solution to the critical challenge of LLM orchestration
and agency. By rejecting the false dichotomy between overly simplistic function calling
and insecure general-purpose code generation, Pel establishes a middle ground: a language
specifically designed for LLMs to use safely and effectively. As LLMs become increasingly in-
tegrated into complex workflows and autonomous systems, languages like Pel, which bridge
the gap between natural language understanding and structured, safe execution, will be
essential. Pel offers a promising foundation for building more capable, reliable, and control-
lable AI agents, representing a significant step toward specialized languages for interacting
with and controlling LLMs. Its core contributions lie in its unique combination of syntactic
simplicity, grammar-level safety, expressive pipeline-style programming, and advanced error
recovery in its REPeL through self-healing agents and a robust restart system.
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7.1 Limitations and Future Directions
Currently, only built-in functions can be non-strict, but enhancing expressiveness by allowing
users to define their own non-strict functions remains a significant area for improvement,
albeit one that requires careful semantic design. Additionally, work is ongoing to improve the
predictability and usability of the restart mechanism within the fully automatic asynchronous
error handling mode. While Pel has demonstrated impressive few-shot learnability, another
promising direction involves fine-tuning LLMs, even small models, specifically for Pel code
generation, which could substantially improve code quality and reduce errors. Future work
could concentrate on addressing these areas for improvement.
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