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Abstract 

Overprecision in judgment is the most robust type of overconfidence, and the one least 

susceptible to debiasing. It refers to people’s excessive certainty in the accuracy of their 

estimates, predictions or beliefs. Research on overprecision finds that confidence intervals, 

estimated ranges that judges are confident will include the correct answer, tend to include the 

correct answer significantly less often than what their assigned confidence level would suggest. 

For example, 90% confidence intervals typically include the correct answer about 50% of the 

time (Klayman, Soll, González-Vallejo, & Barlas, 1999). By this standard, confidence intervals 

appear too narrow, or overprecise. This dissertation focuses on effectively reducing this bias. 

In this dissertation, I present a novel elicitation method which can reduce overprecision, 

sometimes eliminating the bias. This method, called Subjective Probability Interval Estimates, 

or, in short, SPIES, presents the judge with the entire range of possible values, divided into 

intervals. The judge estimates, for each interval, the probability that it includes the correct 

answer. Since these intervals include the entire range of possible values, the sum of these 

subjective probabilities is constrained to equal exactly 100%.  

This work presents six experiments, organized in two parts. Part I focuses on the use of 

SPIES for eliciting quantitative estimates, and tests it against other elicitation methods in three 

experiments. Experiment 1 included a within-subject comparison of SPIES and two other 

elicitation methods, namely 90% confidence intervals and 5th and 95th fractile estimates, and 

found that SPIES produce interval estimates with significantly higher hit-rates than the other two 

methods. Experiment 2 varied the range which the SPIES task spanned and the number of 

intervals included in it, and found that SPIES outperformed the confidence interval method 

across all configurations. Experiment 3 tested the robustness of this effect to different value 
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scales, and to variations in the extremity of true values on the range. SPIES again produced 

consistently more inclusive and better calibrated estimates than confidence intervals. 

In Part II, I tested whether SPIES can improve estimates in other elicitation formats. 

Participants made multiple estimates, using SPIES for some and confidence intervals for others. 

Participants in Experiment 4 produced confidence intervals with better calibration with their 

assigned confidence level after having used SPIES in a prior estimate than before having 

practiced with SPIES. This effect held even when the two estimates had no shared content, 

suggesting that SPIES influence the estimation process, rather than merely increase the amount 

of relevant information already present in memory when making the second estimate.  

Experiment 5 tested the effect of SPIES on subsequent confidence intervals in two types 

of estimates. When participants could retrieve a relatively homogeneous set of values but were 

asked to estimate likelihoods of values across a wide range of possible outcomes, they responded 

by improving the inclusiveness and calibration of their subsequent confidence intervals. 

However, when the value set in the first estimate was diverse, such that retrieving evidence for 

the entire range of the SPIES was easy, no effect was observed in subsequent estimates. This 

suggests that judges do not simply generalize the SPIES process to subsequent confidence 

intervals. Rather, they might react to the conflict between their knowledge and the estimates they 

had to make. This conflict may increase doubt, leading to an adjustment in subsequent estimates 

to account for this uncertainty.  

Experiment 6 manipulated the existence of a conflict between participants’ knowledge of 

the distribution of possible values and the structure of the SPIES task, by varying the value set’s 

exposure time. When exposure time was very long, participants could assign each interval in the 
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SPIES task its according likelihood without conflict, and when it was very short, participants’ 

knowledge of the value set came mainly from the SPIES task itself. SPIES did not improve 

subsequent confidence intervals in either of these two conditions. Rather, only when exposure 

time was moderate, as it was in Experiment 5, did SPIES result in improved calibration of 

subsequent confidence intervals.  

Together, results of all experiments show that SPIES is an effective method for reducing 

overprecision in judgment. It allows for the elicitation of more inclusive and better calibrated 

estimates than those produced by the confidence interval method for a wide variety of estimate 

types. In addition, it can enact changes in judges’ estimation process, such that their subsequent 

estimates, elicited by traditional methods, display better accuracy. These features make SPIES an 

effective tool to reduce one of Judgment and Decision Making’s most robust biases. 
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One of the painful things about our time is that those who feel certainty are stupid, and 
those with any imagination and understanding are filled with doubt. 

(Bertrand Russell) 

 

Subjective Probability Interval Estimates 

Introduction 

The Federal Home Loan Mortgage Corporation, otherwise known as Freddie Mac, 

provides an online calculator on its website to help potential clients determine whether they 

should buy a home or rent one1

                                                            
1 (http://www.freddiemac.com/homeownership/calculators)  

. Among the factors included in this calculation is the estimated 

appreciation rate of the home in question, defined by the website as “the yearly percentage rate 

that an asset increases in value”. The user provides a percentage value by which, according to her 

best judgment, her potential home will increase or decrease. However, until recently, entering a 

negative value (i.e., a forecast that the house’s value will go down) produced an error message: 

“Please fix the following errors: Appreciation rate must be a number between 0.00 and 100.00.” 

The design of this online calculator conveyed Freddie Mac’s belief that housing prices can 

change only between 0% and +100%, with any rate outside this range being improbable. 

However, according to the Federal Housing Finance Agency (2011), the average yearly 

appreciation rate of houses in the United States was consistently outside this range from the 

second quarter of 2007 through the first quarter of 2010, falling as low as −12.03% (and even 

lower than −28% in some areas). This forecasting error, among others, resulted in Freddie Mac’s 

near failure. (In December 2010, Freddie Mac finally changed its online calculator to account for 

house value depreciation.) 
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The failure of Freddie Mac to anticipate a depreciation of U.S. house prices is but one of 

many examples of overprecision in judgment. Overprecision is a form of overconfidence. A 

widely studied topic, overconfidence had been considered for decades a unitary phenomenon. 

Recent research, however, has identified three distinct types of overconfidence (Moore & Healy, 

2008), which, under certain conditions, lead to different outcomes. One type of overconfidence is 

overestimating one’s actual ability, performance, level of control, or chance of success. For 

example, many people overestimate the amount of time they can hold their breath under water. 

This form of overconfidence is called overestimation. The second form, termed overplacement, 

is people’s erroneous or exaggerated belief that they are better than others. The famous finding 

that over 90% of drivers believe they are better than the average driver is an example of this bias, 

which has also been termed the better-than-average effect (Alicke, Klotz, Breitenbecher, & 

Yurak, 1995; Svenson, 1981). Overprecision is the third type of overconfidence. Also referred to 

as overconfidence in estimates (e.g., Soll & Klayman, 2004), overprecision is the excessive 

certainty that one knows the truth.  It is in this form that overconfidence tends to be the most 

consistent and extreme (Juslin, Wennerholm, & Olsson, 1999; Klayman et al., 1999). Also, 

unlike the two other forms of overconfidence, which are negatively correlated with each other 

and can be attenuated by varying task difficulty, overprecision is particularly impervious to 

debiasing (Moore & Healy, 2008).  

The literature on overprecision has documented numerous consequences of the bias. 

Physicians and mental health professionals display excessive certainty in their diagnoses, leading 

to mistreatment of patients (Christensen-Szalanski & Bushyhead, 1981; Oskamp, 1965). 

Excessive faith in the accuracy of their forecasts and market predictions can lead market traders 

to engage in too many trades (Daniel, Hirshleifer, & Subrahmanyam, 1998; Odean, 1999). 
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Research has also documented overprecision among leading experts in the field of climate 

research, finding that their predictions about the rate of climate change vary greatly, yet are so 

precise that there is virtually no overlap between them (Morgan & Keith, 1995; Zickfeld, 

Morgan, Frame, & Keith, 2010). This leads to a lack of consensus regarding the proper response 

to climate change, and hinders progress toward action. As these findings indicate, overprecision 

occurs among experts and laypeople alike, a result that has been confirmed in controlled studies, 

which varied judges’ levels of expertise but found overprecision at all levels (Clemen, 2001; 

Hilary & Hsu, 2011; Juslin, Winman, & Hansson, 2007; McKenzie, Liersch, & Yaniv, 2008). 

Most studies of overprecision include laboratory experiments. These experiments 

typically measure participants’ judgments by eliciting a confidence interval—a range of values 

that the judge is confident, to a certain degree, will include the true value (Alpert & Raiffa, 

1982).  A perfectly calibrated judge should produce confidence intervals which include the 

correct answer at a frequency equal to the level of confidence associated with them. For 

example, if the assigned confidence level is 90%, then nine out of ten confidence intervals 

should include the correct answer. However, people generally do not display perfect calibration; 

far from it. Research repeatedly finds that the percentage of confidence intervals which include 

the true values is lower than their assigned confidence level, suggesting that these confidence 

intervals are too narrow (i.e., overly precise, see Soll & Klayman, 2004).  

Research has proposed several ways to decrease overprecision, most of which 

concentrate on two revisions in the elicitation of the estimates: a) unpacking the estimate into 

multiple judgments; b) separating the interval from its fixed assigned confidence level, and 

letting the judge determine both the interval and her confidence in its accuracy. The effects of 

unpacking have been achieved by eliciting the confidence interval’s low and high boundary 
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values separately (Soll and Klayman, 2004), by eliciting a point estimate for the exact value in 

question before the production of a confidence interval around it (Block and Harper, 1991), by 

asking for the assessment of more alternative outcomes to the target outcome (Fischhoff, Slovic, 

and Lichtenstein, 1978), and by unpacking an estimate of a value one year in the future into 

multiple estimates of shorter time frames (i.e., 3 months and 6 months, see Bearden, Gaba, Jain, 

and Mukherjee, 2011).  

Studies separating confidence intervals from fixed confidence levels have done so in 

several ways. Some elicited probability judgments for predetermined intervals (Abbas, Budescu, 

Yu, & Haggerty, 2008; Glaser & Weber, 2007; Seaver, von Winterfeldt, & Edwards, 1978). 

Others had one group of judges estimate an interval for a fixed confidence level and then asking 

another group to assess their confidence in the accuracy of these intervals (Teigen & Jørgensen, 

2005). Other studies asked judges to adjust their confidence intervals until they fit the requested 

level of confidence (Cesarini, Sandewall, & Johannesson, 2006; Winman, Hansson, & Juslin, 

2004), or simply asked them to estimate “reasonable” intervals and then ask for their confidence 

in these intervals (Speirs-Bridge et al., 2010). In all of these studies, there was a modest 

reduction of overprecision, but never to the point of eliminating the bias. Moreover, none of 

these methods had an influence on participants’ judgments outside of the specific format offered. 

In other words, when participants switched back to the traditional confidence interval production 

method, overprecision returned to its prior high levels. 

THE SPIES METHOD 

This work introduces a novel method for reducing overprecision in estimates. This 

method, called Subjective Probability Interval Estimates (SPIES), does not directly elicit a 

confidence interval. Rather, it presents the judge with the entire range of values, divided into 
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intervals of equal width. These intervals can span the entire range, or, in case the value scale 

does not have pre-determined high and low bounds, a range that includes all plausible values, 

with an additional interval at each end representing all extreme values which lie outside this 

plausible range.  The judge then estimates a probability for each interval. In case of estimating 

one true value, this probability is the likelihood that the interval includes the correct answer. For 

estimates of a population’s properties, this probability is the proportion of the population that is 

included in the interval. Since the SPIES range includes all possible values, the sum of these 

probabilities is constrained to equal exactly 100% (see Figure 1 for an illustrative example). 

The judge’s output, then, is a series of subjective probabilities that total 100%. These 

subjective probabilities can be computed for numerous types of estimates. In addition to the 

estimated distribution, it is possible to calculate confidence intervals of virtually any width and 

confidence level, by combining the SPIES’ intervals within the SPIES task. For example, from 

the estimate of a future temperature in Pittsburgh, as in Figure 1, it is possible to calculate the 

most likely 10-degree and 20-degree intervals, as well as the judge’s 70% and 90% confidence 

intervals, all without having to elicit the judgment from the judge multiple times. The SPIES 

method, then, offers great versatility and flexibility to the recipient of the estimate.  

In this paper I make the argument, and present data to support it, that SPIES can 

significantly reduce overprecision in two ways. As an elicitation method, SPIES forces the judge 

to consider all possible values, including ones that often go ignored in the estimation process of 

other, more instantiated methods. This enables judges to produce confidence intervals of greater 

width and better calibration. As an intervention for reducing bias, SPIES influences subsequent 

estimates in other elicitation formats, by inducing judges to revise their estimation process.  The 

remainder of this dissertation will be organized in two parts, each presenting data from three 
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laboratory experiments. Part I will focus on SPIES as an elicitation method. It will present a 

comparison between estimates made using this method and estimates made using other methods 

and tests of the robustness of this difference. In Part II, I will explore how making an estimate 

with the SPIES method can improve the calibration of subsequent confidence interval estimates. 

Finally, I will discuss implications, theory extensions and possible applications of the SPIES 

method, within and outside the realm of cognitive research.  
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Part I 

SPIES produces estimates with better calibration 

This part of the dissertation focuses on the question of whether SPIES can produce 

estimates with lower levels of overprecision than traditional confidence interval estimates. The 

SPIES method includes a number of features which can potentially lead to a reduction in 

overprecision. First, in the SPIES task, the judge is forced to consider all possible values, 

including those which she may overlook when estimating confidence intervals. In confidence 

interval production, the judge thinks of the most likely outcomes, and builds her confidence 

interval around these outcomes, without an explicit attempt to consider all but the least likely 

ones. However, in a reverse process, by which the judge considers all possible values and 

dismisses only the least likely ones, overconfidence can significantly decrease (Yaniv & Schul, 

1997). In SPIES, not only does the judge consider all values, she must also assign each of them a 

probability of being correct. This probability can, of course, be zero, but this would not be due to 

unintended ignorance of this value by the judge, but rather after some consideration of its 

likelihood.  

The SPIES method also includes other features that are instrumental in reducing 

overprecision, such as the use of multiple judgments for producing one estimate. Soll and 

Klayman (2004), unpacked estimates into two or three judgments, whereas Speirs-Bridge et al. 

(2010) used four judgments to elicit estimates. These methods resulted in lower levels of 

overprecision. In SPIES, the estimate is unpacked into as many judgments as the number of 

intervals that make up the task. Also, building on findings of research on format dependence 

(Juslin et al., 2007; Teigen & Jørgensen, 2005), SPIES elicit probability judgments of fixed 

intervals, which appear to display less overprecision than do interval estimates for assigned 
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confidence levels. This reduction may be further enhanced by constraining the total probability 

assigned to outcomes to equal 100%, limiting the tendency to overstate subjective probabilities 

(Fox & Rottenstreich, 2003; Tversky & Koehler, 1994). 

Part I includes three experiments. Experiment 1 compared estimates produced by SPIES 

to those produced by other, more instantiated methods. Experiments 2 and 3 tested the robustness 

of this difference to different configurations of SPIES, to forecasts and general knowledge 

estimates and to bounded, as well as unbounded value ranges. These three studies were published 

in Haran, Moore, & Morewedge (2010). 

EXPERIMENT 1 

Experiment 1 compared SPIES to two common methods of eliciting interval estimates. 

One is the traditional 90% confidence interval, the most widely used method of interval 

production. The other is the fractile method, which elicits the judge’s estimated 5th and 95th 

fractiles of the distribution and infers the judge’s 90% confidence interval from the distance 

between these high and low bounds. This method was found to produce confidence intervals that 

include the correct answer more frequently than confidence intervals produced in one estimate 

(Soll & Klayman, 2004).  

Method 

Participants. One-hundred three Pittsburgh residents responded to an email solicitation, 

sent to past participants in studies of the Center for Behavioral Decision Research, inviting them 

to participate in an online study. One of the participants was randomly selected to receive a $100 

prize.   

Procedure. In a within-subjects design, participants estimated the high temperature in 

Pittsburgh one month from the day on which they completed the survey, in three different 
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formats.  In a 90% confidence interval format, participants were instructed to “please enter two 

numbers (separated by a dash), one low and one high, so that you are 90% sure the actual high 

temperature in one month will lie inside the range.” In a fractile format, participants were asked 

to “please specify a number sufficiently high that you are 95% sure that the high temperature will 

be BELOW this value one month from today” and to “please specify a number sufficiently low 

that you are 95% sure that the high temperature will be ABOVE this value one month from 

today.” In addition, participants made Subjective Probability Interval Estimates (SPIES)—they 

were presented with the following temperature ranges: below 40°F, 40-49, 40-59, 60-69, 70-79, 

80-89, 90-99, 100-109, and 110°F or above, and responded to the following question: “What is 

the likelihood, based on what you know, that the high temperature a month from today will fall 

in each of the following ranges?” The sum of these nine probabilities was constrained to equal 

100%.  Presentation order of the three formats was randomly determined, and not recorded. 

Results 

Because the assigned confidence level for intervals produced by the first two methods 

was 90%, this was also the target confidence level for intervals produced by SPIES.  My 

collaborators and I used an algorithm to calculate these confidence intervals, which identifies the 

temperature interval with the highest subjective probability and adds its neighboring intervals 

until the sum of probabilities reaches closest to, but not more than 90%.  The algorithm then adds 

the proportion of the adjacent interval with the next highest probability (or the two intervals on 

both sides of the aggregated interval, when they are assigned equal probabilities) needed to reach 

90%.  The resulting confidence interval is referred to henceforth as 90% SPIES.2

                                                            
2 The full algorithm used to calculate 90% SPIES can be viewed online at 

 This is a 

conservative calculation of 90% SPIES, designed to produce a confidence interval out of the 

http://www.sjdm.org/~baron/journal/10/101027/jdm101027.html (see appendix). 

http://www.sjdm.org/~baron/journal/10/101027/jdm101027.html�
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fewest possible subjective probability intervals. In cases where an extreme interval (i.e., below 

40°F, 110°F or above) was included in a participant’s 90% SPIES, that interval’s width was 

calculated as 10°F.  

The true temperatures on the days for which participants made their estimates ranged 

between 67°F and 73°F.  A repeated-measures ANOVA comparing the accuracy of participants’ 

estimates across the three methods revealed a significant difference, F(2, 101) = 4.98, p = .009. 

90% confidence intervals and intervals produced by the 5th and 95th fractiles did not differ in 

their accuracy, both including the correct answer 73.79% of the time (SD = 44.19).3

 The SPIES method does not seem to have improved participants’ intuition regarding the 

precise temperature, as measured by the distance between an interval’s midpoint and the true 

answer. A repeated-measures ANOVA revealed a significant method effect, F(2, 101) = 3.49, p 

= .03, but the midpoints of 90% SPIES were not significantly closer to the true answer than 

either those of 90% confidence intervals, t(102) = 1.39, p = .17, or those between the 5th and 95th 

fractiles, t < 1.  

  90% SPIES, 

however, included the correct answer in 88.35% of the estimates (SD = 32.24), a significantly 

higher hit-rate than both 90% confidence intervals, t(102) = 2.88, p = .005, and fractiles, t(102) = 

2.69, p = .008. While 90% confidence intervals and fractiles displayed  significant overprecision 

of 16.21%, ts(102) = 3.72, p < .0005, the accuracy level produced by SPIES was not 

significantly different from the 90% confidence level assigned to them, t < 1, meaning that these 

estimates did not exhibit overprecision (see Figure 2).  

                                                            
3 The identical result for 90% confidence intervals and the fractile method appears to be coincidental, as 
63 participants were accurate in both their 90% confidence intervals and fractile estimates, whereas 26 
were accurate in only one of the two formats.  
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 I also compared the widths of the intervals generated by the three methods. A repeated-

measures ANOVA revealed a significant effect of method on interval width, F(2,101) = 21.71, p 

< .0005. Within-subject contrasts show that 90% SPIES were significantly wider (M = 31.81, SD 

= 11.96) than 90% confidence intervals (M = 23.58, SD = 14.42), t(102) = 5.73, p < .0005, but 

slightly, and non-significantly, narrower than fractiles (M = 33.15, SD = 22.48), t < 1. The 

fractile estimates’ relatively large mean width, as well as their high variability, can be accounted 

for by the fact that eight of these estimates reached either below 30°F or above 119°F (the 

boundary values we set for calculating 90% SPIES), and resulted in relatively wide intervals.4

Discussion 

 

Of the three methods tested in this experiment, the SPIES method was the only one in 

which intervals’ hit-rates matched their assigned confidence levels. Although 90% confidence 

intervals and fractile estimates produced higher hit-rates than those which research typically 

finds (see Klayman et al., 1999), the hit-rate of SPIES was significantly higher than both of these 

methods. Moreover, the SPIES method not only produced better accuracy, it eliminated 

overprecision.  

Another noteworthy finding is that SPIES produced a significantly higher hit-rate than 

did fractile estimates. This result suggests that although in both methods judges unpack their 

estimates into multiple judgments, this feature might not be the primary driver of the superior 

calibration found in SPIES.  

The results of this experiment are not conclusive about why SPIES were more accurate. 

On the one hand, interval midpoints did not differ between the three estimation formats in their 

distance from the true value, suggesting the better hit-rate is due to 90% SPIES being more 
                                                            
4 Only one 90% confidence interval exceeded these boundary values. 
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inclusive than intervals in the other formats. On the other hand, 90% SPIES achieved a higher 

hit-rate than fractile estimates without being significantly wider. As noted, this may be due to the 

constraint put on including extreme values in the SPIES, but not in the other estimates. This issue 

was addressed in Experiment 3.  

One noteworthy difference between the structure of SPIES and the two other methods 

tested in this experiment is that the confidence interval and fractile tasks do not change when 

estimating different values. The questions to which the judge responds in these tasks are identical 

for any kind of estimate. In SPIES, however, this is not the case, and the way in which the SPIES 

task is structured is up to (and the responsibility of) the person eliciting the estimate. The range 

on which the true value of an estimate lies is different for every estimate, as is the variability of 

estimated values. Therefore, the SPIES task should be configured specifically for each estimate. 

There is reason to suspect that different configurations of the SPIES task may lead to differences 

in estimate performance. While in Experiment 1 the SPIES task was structured rather arbitrarily 

(i.e., ranges of 10 degrees in width between two round values, one very low and the other very 

high), in Experiment 2 my collaborators and I systematically varied the configuration of the task.  

EXPERIMENT 2 

One rather cumbersome feature of SPIES is that the task needs to be structured 

specifically for every estimate. For example, the SPIES task employed in Experiment 1 ranged 

from 40 to 110, a reasonable range for estimating the weather in Pittsburgh in degrees 

Fahrenheit, but not, for example, the size of the United States’ national debt. Variations in the 

configuration of the SPIES task might then affect the quality of the resulting estimate. 

Experiment 2 examined this hypothesis more closely, and compared confidence interval 

estimates to estimates elicited by SPIES in various configurations.   
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Configuring the SPIES task includes making two choices: how big to make the range of 

possible responses and into how many intervals to divide this range. These variations may 

influence the amount of attention given by the judge to the values she considers, and, 

subsequently, affect the quality of the estimates she produces. In order to test the robustness of 

the results obtained in Experiment 1 to these variations, Experiment 2 varied the configuration of 

the SPIES tasks in two ways: one was the width of the range for which estimates were made; the 

other was the number of intervals into which this range was divided.  While these variations may 

lead to differences in the resulting 90% SPIES, the basic estimation process remains the same for 

all of them. Therefore, we hypothesized that 90% SPIES will outperform 90% confidence 

intervals, regardless of the width of their range, or of how many intervals are included in each 

SPIES task.   

Method 

Participants. One-hundred twenty-five U.S. participants were recruited through 

Amazon.com Mechanical Turk to participate in a “Weather Forecasting Survey”. They 

completed the experiment online in exchange for $0.05 each. There were nine instances of 

multiple responses from the same IP address. The second record from each of these duplicates 

was stricken from the data file. The final sample consisted of 116 participants.  

Procedure. Participants estimated the day’s high temperature in Washington, DC exactly 

one month after the day on which they took the survey.  In a 2 x 2 between-subjects design, 

participants made SPIES with a narrow range (-15°F to 84°F)5

                                                            
5 The highest and lowest temperatures, respectively, ever recorded in Washington, DC in February, the 
target month for participants’ forecasts. 

 or with a wide range (-65°F to 

134°F), which were divided into either ten or twenty intervals. These divisions resulted in three 

interval grain-sizes: fine (5°F), medium (10°F) and coarse (20°F).  Two intervals of extreme 
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values were added at both ends of these ranges: “-16°F or lower” or “-166°F or lower” at one 

end, and “85°F or higher” or “135°F or higher” at another end (see Table 1).  To compare SPIES 

with conventional interval estimates, an additional group of participants produced a 90% 

confidence interval.   

 
Results 

Actual temperatures on the days for which participants provided their estimates fell 

between 31°F and 40°F. First, we compared the hit-rate of 90% confidence intervals to that of 

estimates made using SPIES. Similar to Experiment 1, 90% SPIES achieved a significantly 

higher hit-rate (M = 73.91%, SD = 44.15) than 90% confidence intervals (M = 29.17%, SD = 

46.43), t(114) = 4.38, p < .0005.  As expected, 90% SPIES of all four configurations produced 

accurate estimates at a significantly higher rate than 90% confidence intervals, ts ≥ 2.28, ps ≤ .03 

(see Figure 3). 

Second, we tested whether the different configurations of the SPIES task affected 

participants’ estimates. A 2 (range width: 100°F / 200°F) x 2 (number of intervals: 10 / 20) 

between-subjects ANOVA on the hit-rates of 90% SPIES revealed no significant effects of either 

range width, F < 1, or number of intervals, F(1,88) = 3.23, p = .08, nor was there a significant 

interaction, F < 1 (see Table 2). In order to perform a more conservative test of the effect of 

range width on participants’ estimates, we compared the two conditions in which participants 

made SPIES with a medium, 10ºF grain size (see Table 1). These two conditions differed only in 

range width: one group was presented with a 100ºF range, whereas for the other group, the 

SPIES task spanned 200ºF. The comparison between these two groups revealed no significant 

effect of range width on hit-rates (100ºF range: M = 80.95%, SD = 40.24%; 200ºF range: M = 

69.23%, SD =47.07%), t < 1. 
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We did, however, find that the width of 90% SPIES was affected by the configuration of 

the task.  We conducted a similar ANOVA on estimate width, which revealed significant main 

effects of the overall SPIES’ range width and the number of intervals it included, F(1,88) = 

12.52, p = .001 and F(1,88) = 12.25, p = .001, respectively, with no interaction, F < 1 (see Table 

3). However, a comparison of the two 10ºF grain size groups found no effect of range width on 

estimate width (100ºF range: M = 33.40, SD = 16.58; 200ºF range: M = 33.50, SD = 12.93), t < 1. 

As in Experiment 1, the manipulations did not affect the estimated intervals’ midpoints. 

The distances of 90% SPIES’ midpoints from their respective true values did not vary with range 

width, F(1, 88) = 1.47, p = .23, or with grain size, F  < 1, nor was there an interaction, F < 1. No 

significant difference in midpoint accuracy was found between 90% SPIES and 90% confidence 

intervals, either, t < 1.   

In light of the significant effects on estimate width and the large, though only marginally-

significant, effect of number of intervals on hit-rates, we sought to examine the extent to which 

participants were sensitive to the different SPIES configurations. We tested this by measuring the 

number of intervals to which participants assigned some probability higher than zero in their 

estimates. A 2 (range width) x 2 (number of intervals) ANOVA found a significant effect of 

interval number, wherein participants for whom the SPIES task consisted of twenty intervals 

gave significantly more intervals (M = 6.36, SD = 3.81) non-zero probabilities than those who 

were presented with only ten intervals (M = 4.24, SD = 2.30), F(1, 88) = 14.94, p < .0005. The 

ANOVA also revealed a significant range width effect, F(1, 88) = 22.69, p < .0005, but the direct 

comparison of the two 10ºF grain size groups found no effect of range width on the number of 

intervals with non-zero probabilities (100ºF range: M = 5.14, SD = 2.83; 200ºF range: M = 4.62, 

SD = 1.79), t < 1. Together, these results suggest that participants who made estimates with the 
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finer-grained SPIES were aware of the need to use a larger number of intervals and adjusted their 

estimates, but not sufficiently to fully equate their estimates’ width to those who made estimates 

with coarser-grained SPIES. 

Discussion 

As in Experiment 1, SPIES had a significantly higher hit-rate than standard 90% 

confidence interval estimates.  More important, this difference was consistent across various 

configurations of SPIES. Participants made their estimates using SPIES that spanned a very wide 

range, including unreasonable values, or a moderate range, including only values previously 

observed. The SPIES ranges were divided either coarsely divided (up to 20 degrees per interval) 

or more finely (with intervals as thin as 5 degrees). Inevitably, the inclusiveness of the resulting 

90% SPIES varied from condition to condition, but in all conditions, their inclusiveness and 

calibration was better than what was observed in 90% confidence intervals.  

One common feature of the first two experiments is that both included estimates of values 

on an unbounded scale (i.e., temperatures), for which we did not specify a minimum or a 

maximum value. In the absence of such explicit bounds, the highest and lowest intervals in the 

SPIES task may be perceived by the judge as cues, or reasonable bounds, between which the 

experimenters expect the true answer to lie. Previous studies have shown that providing judges 

with the relevant range of possible answers improves calibration (Rakow, Harvey, & Finer, 

2003). Because such information could have been inferred from the SPIES tasks, but not from 

the confidence interval estimates, this may account for some of the difference in performance 

between the two methods.  

Also, in both experiments, the true values eventually fell closer to the middle of the range 

than to any of its ends. One of the proposed advantages of SPIES over other methods is that it 
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prevents the judge from overlooking extreme values when these values are plausible (that is, can 

potentially be the true answer), but also not highly likely (and thus do not receive much attention 

in confidence interval production). Therefore, a comparison between SPIES and confidence 

intervals should also include estimates which true answers are closer to one of the ends of the 

possible value range than to its center. These issues were addressed in Experiment 3, in which 

the high and low bounds of the range were specified in all conditions, and the estimates’ true 

values were pre-determined, and thus could be manipulated to be across the entire value range.   

Another open question is whether the difference between SPIES and confidence interval 

production is solely due to the different elicitation format, or whether SPIES enact a change in 

the underlying process by which estimates are generated. I argue that the ways in which SPIES 

reduce overprecision are not external to the estimation process, as in, for instance, Winman et 

al.'s (2004) Adaptive Interval Assessment method, which repeatedly elicits judges’ assessments 

of intervals of varying widths until their confidence in a certain interval’s accuracy matches the 

desired level. Rather, by making judges consider, and assess the likelihoods of values across the 

entire range, plausible and implausible, SPIES activate different processes of sampling relevant 

evidence and inferring the most likely values from these pieces of evidence. Therefore, we 

hypothesized that using SPIES for estimating uncertain quantities may have effects beyond the 

specific elicitation method, and will affect subsequent estimates made in different formats.  This 

hypothesis was also tested in Experiment 3.   

EXPERIMENT 3 

Experiment 3 differed from the previous two experiments in several aspects: First, rather 

than estimating a single value, participants made a series of estimates, each of a different value. 

Second, participants made estimates rather than forecasts, that is, they estimated items of general 
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knowledge rather than make predictions about future values. They estimated the years in which 

all 20th Century U.S. presidents were first elected to office. These estimates constitute a third 

difference between this and previous studies, which is that the values being estimated were on a 

bounded range, ranging from 1900 to 1999. This limit was made known to all participants in all 

types of estimates, eliminating a potential alternative explanation for the results of Experiments 1 

and 2. In addition, since election years for all presidents of the 20th Century were estimated, the 

true values fell at various points on the range, both near the ends and closer to the middle.  

Last, the elicitation methods used for estimates in this experiment were varied 

systematically between estimates. Participants used confidence intervals for half of their 

estimates and SPIES for the others.  This design enabled us to test for the influence of SPIES on 

subsequent confidence interval estimates, by measuring differences in 90% interval widths 

between confidence intervals produced before SPIES and those produced after.  If format 

dependence is solely responsible for the reduction in overprecision exhibited in SPIES, then, 

similar to the findings of Winman et al. (2004), confidence intervals will not be affected after 

switching from SPIES.  If, as we suggest, SPIES change the process by which judges make 

confidence estimates, then 90% confidence intervals should include a wider range of values if 

made after SPIES than when made beforehand. 

Method 

Participants. Three-hundred thirty-four Pittsburghers (169 women, M age = 22.6, SD = 

6.79) completed a survey in the lab in exchange for $3 or course credit.   
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Procedure. Participants answered a 16-item quiz, estimating the years in which all 20th 

Century U.S. presidents were first elected to office6

Results 

.  For each president, participants estimated 

either a 90% confidence interval or SPIES. The SPIES task included all years from 1900 to 1999, 

divided into ten intervals, each representing a decade, with no end intervals for more extreme 

values. Similarly, in the confidence interval production condition, any estimate that included 

years outside the 20th century could not be submitted, and the participant was instructed to revise 

it. We used a mixed design, in which half of the participants provided 90% confidence intervals 

for the first eight estimates and SPIES for the last eight, whereas for the other half this order was 

reversed.  Items appeared in a different random order for each participant.   

We calculated 90% SPIES the same way as in Experiments 1 and 2. Next, we conducted 

a 2 (elicitation method: SPIES / confidence intervals) x 2 (elicitation order: first eight estimates / 

last eight estimates) mixed ANOVA7

                                                            
6 Not including William McKinley, who was first elected in 1896, and Gerald Ford, who was never 
elected president. 

 on hit-rates, which showed that 90% SPIES had a 

significantly higher hit-rate than 90% confidence intervals. SPIES included the correct answer 

76.91% of the time (SD = 20.17), compared with 54.34% (SD = 26.26%) in 90% confidence 

intervals, F(1,332) = 192.34, p < .001.  This result supported our prediction that SPIES would 

provide greater accuracy for estimated values in bounded ranges, regardless of where on the 

7 Since we counterbalanced elicitation order between the two groups (i.e., one group estimated SPIES for 
the first eight estimates and confidence intervals for the last eight, whereas the other group made 
estimates in the reverse order), the group means are equal to the method x order interaction.  
In formal terms, the group main effect is: H0: (SPIES1 + Conf. Int2) – (Conf.Int1 + SPIES2) =           
SPIES1 + Conf. Int2 – Conf. Int1 – SPIES2 = 0.  
Method x order interaction is: H0: (SPIES1 – SPIES2) – (Conf. Int1 – Conf. Int2)  =         
SPIES1 – SPIES2 – Conf. Int1 + Conf. Int2 = 0. As you can see, these two equations are the same. 
Therefore, a difference in the estimates of the two groups would imply a significant interaction between 
the elicitation method and order (i.e., first eight estimates vs. last eight).   
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range the true value eventually falls. As in Experiments 1 and 2, we found no significant effect 

of elicitation method on interval midpoint accuracy, F(1, 332) = 1.11, p = .29. 

A similar ANOVA on estimate width yielded a significant effect of SPIES on subsequent 

confidence interval width. SPIES produced significantly wider estimates (M = 36.27, SD = 

20.09) than 90% confidence intervals (M = 18.17, SD = 14.84), but there was also a significant 

Elicitation method x Elicitation order interaction, F(1,332) = 3.97, p = .04. Simple effects tests 

revealed that 90% confidence intervals produced after having taken the SPIES task were 

significantly wider  (M = 20.77 years, SD = 16.13) than those produced in the first set of 

estimates (M = 15.57, SD = 12.95), t(332) = 3.25, p = .001, whereas 90% SPIES did not differ 

between the two groups, t < 1. This result suggests that SPIES had a carryover effect on 

subsequent confidence interval estimates, leading judges to consider a wider range of values in 

their estimates.  To rule out learning and time effects, we conducted a repeated-measures 

ANOVA on confidence interval widths for each item participants estimated.  The last confidence 

interval estimate in each set was not, on average, wider than the first estimate in the set, F < 1, 

suggesting the greater width of confidence intervals made after SPIES than of those made before 

SPIES was not due to a simple improvement with experience or time within the same elicitation 

method (see Figure 4).   

Discussion 

Results of Experiment 3 lead to two main conclusions. First, this experiment extended the 

findings of Experiments 1 and 2, that SPIES produce interval estimates of reduced overprecision, 

to different conditions. Specifically, SPIES proved to be a superior elicitation method for 

estimates of general knowledge as well as forecasts of future values, and for values on all parts 

of the range. Also, this advantage proved not to be due to a signal provided by the extreme 
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intervals in the SPIES method, as the minimum and maximum possible true values were made 

explicit to judges during estimates in both formats. These results suggest that judges can benefit 

from using SPIES for estimates of uncertain quantities in a wide variety of contexts, with robust 

and reliable results. 

Furthermore, this experiment found that SPIES have a carryover effect on subsequent 

confidence interval estimates. Participants who first made a series of SPIES before switching 

formats produced 90% confidence intervals that were significantly more inclusive than 

participants who used 90% confidence intervals in the first set of estimates. This suggests that 

the reduced bias in SPIES is not only due to format dependence, but also demonstrates a change 

in the process by which judgments are made. The more extensive consideration of values in 

SPIES prompted judges to generate wider confidence intervals in later estimates. 

SUMMARY 

Part I of this dissertation aimed to present the SPIES method as an alternative to the 

standard elicitation methods of quantitative estimates. In three experiments, the SPIES method 

consistently produced interval estimates that were more inclusive, and better calibrated, than the 

standard confidence interval production method. This difference in inclusiveness and calibration 

was robust to different configurations of SPIES, i.e., different widths of ranges included in the 

task and different numbers of intervals which the judges had to estimate. This difference was 

observed in estimates of values on unbounded ranges (temperatures), as well as values on 

bounded ranges, with specified minimum and maximum values (the years of the 20th Century). 

Also, whether the estimate was a forecast of a future value or an estimate of general knowledge 

items did not affect the results, as SPIES provided better estimates for all types of questions. 
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In addition to demonstrating the power of SPIES as an elicitation method, Experiment 3 

provided an interesting result regarding the lasting effect of SPIES on subsequent estimates in 

other formats. While in prior studies (e.g., Winman et al., 2004) the effect of the bias-reducing 

intervention was limited to the specific elicitation format, SPIES appear to have an effect on 

judges’ estimation process, such that subsequent confidence interval estimates become more 

inclusive after having practiced with SPIES. 

Part II will focus on examining this carryover effect more closely. In order to fully 

understand this effect, we must first identify the stage of the estimation process at which the 

effect takes place, and the nature of the change it induces in the process of making subsequent 

estimates.  
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Part II 

SPIES reduce overprecision in other elicitation formats 

INTRODUCTION 

Part I reveals an interesting finding about the SPIES method. Not only can this method 

produce better estimates than other methods, it also has a lasting effect on participants’ 

judgments, such that their subsequent estimates, even when elicited in a different format, are 

more inclusive, relative to those who did not use SPIES in prior estimates. This suggests that, 

unlike previously developed methods of reducing overprecision, the SPIES method influences 

the cognitive process by which judges produce their estimates, and its effect is not format 

dependent (Winman et al., 2004)—an artifact of the elicitation format. 

There are a number of potential reasons for the lasting reduction in overprecision 

achieved by SPIES. In the following section, I will discuss the processes by which judges 

succumb to overprecision and then speculate on the ways by which SPIES can help judges 

attenuate the influence of these processes.  

CAUSES OF OVERPRECISION 

When a value is estimated, assuming it is not known and cannot be retrieved from 

memory, the judge must make an uncertain estimate by inferring the value inductively from 

knowledge of similar observations. This is essentially a two-step process. The first step includes 

the retrieval from memory of some known fact about the value in question and a sample of 

relevant observations. For example, to estimate the population of London, a person may retrieve 

the fact that London is a European capital, along with a sample of other European capitals and 

their respective populations (Hansson, Juslin, & Winman, 2008).  The second step includes 

transforming the sampled knowledge into an actual estimate, be it the most probable value (i.e., 
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best guess), a statement about how the value compares against a specific reference point (e.g., 

whether the population of London is higher or lower than the population of Berlin), a probability 

judgment (e.g., the probability that the population of London is between 4 million and 6 million) 

or a confidence interval. This step includes adjusting the amount of knowledge retrieved for the 

level of uncertainty the judge feels about his or her estimate (Teigen & Jørgensen, 2005), and for 

how informative the judge wants the estimate to be (Ackerman & Goldsmith, 2008; Yaniv & 

Foster, 1995, 1997).  

Overprecision can result from flaws in either of these two steps (Pleskac, Dougherty, 

Rivadeneira, & Wallsten, 2009). Incomplete or biased sampling of information from memory 

can place confidence intervals inaccurately on the range of possible values. Tversky and 

Kahneman (1973, 1974) demonstrated how values that are accessible in memory at the time of 

estimating affect the estimates. For example, evidence that is more salient (e.g., evidence that 

was encountered more recently, or remembered more vividly) tends to be perceived as more 

frequent or more representative of the population, and thus bias the estimates. Some have 

proposed that point estimates, “best guesses” made by the judge or another person, produce 

overprecision by serving as an anchor. This anchor may either bias the judge’s search for 

information in favor of information consistent with the her initial judgment (Ditto & Lopez, 

1992), or make it harder to adjust the confidence interval’s boundaries far enough from it 

(Clemen, 2001; Epley & Gilovich, 2004; Seaver et al., 1978). However, empirical tests of this 

proposition have not found consistent support for it (Block & Harper, 1991).   

Overprecision can also arise during the inference process. Soll and Klayman (2004) argue 

that random variability in the width of confidence intervals will result in more overprecision than 

underprecision, even when judgment errors themselves are not, on average, biased. Let us 
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assume a single-peak, symmetric distribution of likelihoods for all possible values. The most 

likely value is inside the confidence interval, while the likelihood of any other value decreases 

the farther away the value is from the distribution’s peak. The variability in setting the 

boundaries of a confidence interval should then result in asymmetric effects, such that an inward 

error should result in a loss of higher likelihoods than an outward error of the same size. See, for 

example, Figure 5 (Soll & Klayman, 2004). Interval I is the hypothetical, perfectly calibrated 

confidence interval for a certain time estimate, ranging from 1800 to 1840. Intervals J and K 

were produced by two individual judges. Interval J is 10 years narrower than the perfectly-

calibrated interval I while interval K is 10 years wider than this interval. While the average of 

these two intervals is equal to the perfectly calibrated interval I, the number of observations 

erroneously included in interval K is less than the number of observations erroneously excluded 

from interval J. Therefore, interval J will display a greater bias than interval K, resulting in 

overall overconfidence. 

Fiedler and Juslin (2006) also proposed that judges employ generally unbiased retrieval 

processes. However, they argue, judges fail to account for the differences between their retrieved 

samples and the populations which these samples attempt to represent, such as the effects 

sampling strategies, biased estimators, the origins of the samples and the level of variation. 

According to the Naïve Sampling Model, or NSM (Juslin, Winman, & Hansson, 2007), judges 

make two errors in transforming their retrieved sample into an estimate of the properties of the 

population. One is that they perceive the sample to be an exact, unbiased representation of the 

population, despite the fact that distributions of small samples are, on average, dislocated relative 

to the population distribution. The second error is the failure to acknowledge that sample 

variances are smaller than population variances. In order for a sample distribution to be an 
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unbiased estimator of a population’s distribution, its variance needs to be corrected by n/n-1 

(Kareev, Arnon, & Horwitz-Zeliger, 2002). 

HOW SPIES MIGHT REDUCE OVERPRECISION IN INTERVAL PRODUCTION 

The SPIES method can potentially reduce overprecision in either of the two steps 

described above. The retrieval step might be improved by inducing the judge to scan the entire 

range of possible answers more systematically, which may make subsequent estimates more 

evidence-rich and thereby more inclusive (Soll & Klayman, 2004). This effect was observed in 

the studies reported in Part I: when using SPIES, participants’ judgments included reference to 

more possible values than when they produced confidence intervals directly.  

SPIES might also influence the inference step of the estimation process. This can happen 

in one of two ways. One is by training the judge to generalize the wide scan and multiple 

assessment processes of SPIES to other elicitation formats. In the SPIES task, the judge scans the 

entire range of possible values and encounters more values deemed likely enough for inclusion in 

the estimate. The judge may then realize that these search tactics identify plausible values that 

are not discovered in prior methods and make a more systematic, and perhaps more effortful 

search for evidence (see Galinsky, Moskowitz, & Skurnik, 2000). By eliciting more information-

rich estimates, the SPIES method makes subsequent confidence interval estimates more 

information-rich as well (Hirt & Markman, 1995; McKenzie, 1997, 1998; Morewedge & 

Kahneman, 2010).   

Another way by which SPIES might affect the inference process is by highlighting a 

discrepancy between the judge’s knowledge or retrieved sample and the multiple assessments 

requested by the SPIES task. This discrepancy may cause increase the judge’s doubt, or prime 

exertion of more cognitive control in subsequent estimates. Prior research has shown that  when 
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people are in a state of low certainty, they tend to engage in greater information processing than 

in high certainty states (Tiedens & Linton, 2001; Weary & Jacobson, 1997). Botvinick, Braver, 

Barch, Carter, & Cohen (2001) demonstrated that a response conflict in one trial of a task leads 

participants to exert more cognitive control, and make less errors in a subsequent trial. Other 

studies (Simmons and Nelson 2006) suggested that intuitive biases arise when people feel very 

confident in their intuitions and are unmotivated or unable to doubt them; when this confidence 

in intuition is undermined, these biases can be reduced.  (see also Chaiken, Liberman, & Eagly, 

1989; Petty & Cacioppo, 1986). While the spontaneous search process might be the same for 

SPIES and interval production, in SPIES the judge is asked about all possible values, including 

those that did not come up in the search. This may lead the judge to be either more thorough or 

more conservative in her estimation process thereafter.   

The remainder of this part of the dissertation includes three experiments, which attempt 

shed light on how SPIES improve the process of confidence interval production. Experiment 4 

tested the robustness of the carryover effect of SPIES and attempted to identify the stage of the 

estimation process in which this effect takes place. Experiment 5 compared two potential 

accounts for the change which SPIES enact in judges’ estimation processes, and Experiment 6 

directly tested the hypothesis that SPIES when there is a conflict between the judge’s knowledge 

or retrieved sample and the response format.   

EXPERIMENT 4 

Results of Experiment 3 showed that the reduction of overprecision in SPIES was not 

limited to the specific elicitation format, but also carried over to confidence interval estimates 

produced by judges who used SPIES in earlier estimates. In Experiment 4, I sought to examine 

the mechanism by which this carryover effect happens. Specifically, this experiment was 
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designed to test whether the effect of SPIES influences only the amount of evidence retrieved 

before producing the estimated interval, or whether it also affects the inference stage of the 

estimation process. In order to test this, I used a novel experimental procedure of eliciting 

estimates and measuring calibration, called the value population paradigm. 

The value population paradigm 

For this experiment, as well as the other experiments reported in this part, my 

collaborators and I developed a novel paradigm for eliciting estimates and measuring their 

calibration. This paradigm includes presenting participants with a population of 100 numerical 

values, each corresponding to a percentile point on a certain distribution of numbers on a 

specified, 100-number range. The numbers are presented in a random order (see Figure 6 for an 

example).  

After the presentation of the value population, participants make an estimate in one of the 

following two formats: in a 90% confidence interval format, participants estimate a range that 

includes exactly 90% of the values they saw; in a SPIES format, participants are presented with 

ten intervals, each spanning a ten-number range, and estimate the percentage of the values they 

saw that is included in each interval (see figure 7). 

This paradigm has a number of distinct advantages. First, it provides a normative 

standard for precision at the individual estimate level. In interval estimates of general 

knowledge, the only standard for calibration is whether or not the proportion of estimated 

intervals which include the true value matches the target confidence level of these intervals. This 

measure can be misleading. For example, a judge who produces ten 90% confidence intervals, 

nine of which spanning the entire range of possible values and one interval including only one 

value (not the correct value) has the same calibration score as a judge who truthfully conveys her 
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subjective 90% confidence in all ten of her 90% confidence intervals, and hits the mark in nine 

of them. The value population paradigm avoids this problem by setting the goal of each estimate 

to represent as best as the participant can her knowledge about the population that was presented 

to her, rather than to include one true value. 

Another advantage of this paradigm is that it minimizes the effect of participants’ prior 

knowledge. In general knowledge questions, participants who know the exact correct answers to 

most of the questions should estimate intervals of minimal width. Their data might not be very 

informative with regard to their estimation process. In this paradigm, all participants start with 

the same minimal level of knowledge.  

The third and final important feature of the value population paradigm is that it controls 

the amount of information that can be transferred from one estimate to the next. When each 

estimate is made on different value populations, placed on non-overlapping number ranges, no 

specific evidence from one estimate can be relevant for subsequent estimates. Therefore, this 

paradigm was especially useful in Experiment 4, which focused on cases when there is no 

overlapping information between estimates.  

Experiment 4 was designed to examine whether the effect of SPIES on subsequent 

confidence interval estimates is limited to the information retrieval stage of the estimation 

process, or whether it also affects the inference stage, and thus can be applied even in cases 

where the test estimate for which knowledge from the practice estimate is irrelevant. One 

argument is that the SPIES method only eases information retrieval, by making estimate-relevant 

evidence, already retrieved in the initial SPIES estimate, more accessible during information 

retrieval for the next estimate. However, by doing so, SPIES does not influence the inference 

stage of subsequent estimates. If this is true, then confidence intervals will be affected by SPIES 
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only when at least some evidence retrieved during the SPIES task can be useful for the next 

estimate. This argument could explain the results of Experiment 3 by positing that participants 

who made SPIES in the first set of estimates had already scanned the entire 20th century range a 

few times, and had accessed evidence that was useful for estimating election years in the second 

set of estimates. However, had the two types of estimates not shared relevant evidence (e.g., had 

one set of estimates included election years of early 19th century Presidents), then confidence 

intervals would not have been any different after SPIES than before SPIES. 

Alternatively, SPIES may influence the inference stage of the estimation process, and 

induce a change in how judges use their sampled knowledge to produce estimates. The process 

of the SPIES task—the systematic scan of the entire range of possible values and the production 

of multiple, mutually-exclusive probability judgments—may have a lasting effect on how judges 

estimate other, unrelated values. Previous research (Hirt, Kardes, & Markman, 2004) has shown 

that alternative-generation-based exercises can debias judgments across different knowledge 

domains. Therefore, the SPIES effect might not be dependent on the content retrieved during the 

initial estimate, and exist also in settings in which both SPIES and subsequent estimates share 

relevant information.  

To test these two competing hypotheses, Experiment 4 varied whether the SPIES and 

confidence interval estimates share relevant content. All participants made two estimates, one 

using SPIES and the other using 90% confidence intervals. Half of the participants made both 

estimates on the same value population, whereas the other half made each estimate on a different 

population. If SPIES influence the inference stage of the estimation process, then we should 

expect 90% confidence intervals produced after SPIES to be better calibrated than those 

produced before SPIES in both content conditions. If SPIES work by increasing the amount of 
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accessible information during the retrieval process and do not affect the inference process, then 

we should observe an effect of SPIES on subsequent confidence intervals only when both 

estimates are made on the same population.  

Method 

Participants. One-hundred sixty participants were invited via Amazon.com Mechanical 

Turk to complete a “Cognitive Survey” online. They were paid $0.10 each for their participation. 

There were five instances of multiple responses from the same IP address. The second record 

from each of these duplicates was stricken from the data file. The final sample consisted of 155 

participants.  

Procedure. Participants in the same population group received the following 

instructions: 

“In this experiment we will present you with a string of numbers. The string 

includes 100 numbers, which were sampled from a certain distribution. This 

means that some numbers can appear more than once and others may not appear 

at all.  

The string will appear on the screen for two seconds.  

After the presentation of the string of numbers, we will ask you two different 

questions about it.” 

Participants in the different populations group were given these instructions:  

“In this experiment we will present you with two strings of numbers. Each string 

includes 100 numbers, which were sampled from a different distribution each 

time. This means that some numbers can appear more than once and others may 

not appear at all.  
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Each string will appear on the screen for two seconds.  

After the presentation of each string of numbers, we will ask you a question about 

it.” 

Next, participants in the SPIES-first group then received the following instructions: 

“In the first question, we will present you with all number ranges that make up the 

string of numbers. Your job will be to estimate which percentage of the numbers 

in the string you saw is included in each range. Since these ranges include all 

numbers in the string, the sum of your estimated percentages must equal 100%. 

In the other question, we will ask you to estimate a number range that will include 

a certain percentage of the numbers you saw in the string.  For example, if we ask 

you for a 50% range, then you will need to estimate a range that will include 

exactly 50 of the 100 numbers that were presented in the previous screen.” 

Participants in the SPIES-second group received the instructions about each method in 

reverse order.  

Before the presentation of each population, participants were told the minimum and 

maximum values of the value population’s range and that the population will be presented for 2 

seconds. Participants in the same population group were presented with one value population, 

which included all 100 percentiles of a distribution (alpha = 2, beta = 2), ranging from 341 to 

440 and made both estimates in sequence. Participants in the different populations group were 

first presented with a value population with the same distribution properties, but on a different 

range (731 – 830), and made their first estimate on this population. Then, they were presented 

with the same distribution as their same population counterparts, on which they made their 

second estimate (see Table 4). 
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Results 

To measure the effect of SPIES on subsequent 90% confidence intervals, I conducted a 2 

(method order: before SPIES / after SPIES) x 2 (populations: same population / different 

populations) between-subjects ANOVA on the inclusiveness of 90% confidence intervals, or the 

percentage of values from the population included in these intervals. The ANOVA revealed a 

significant effect of method order, F(1,151) = 10.06, p = .002, but no effect of population or an 

interaction, Fs < 1. Simple effects tests show that 90% confidence intervals produced after 

SPIES were significantly more inclusive, and were better calibrated, meaning the proportion of 

the population they included was significantly closer to 90%, than confidence intervals produced 

before SPIES, both in the same population condition, t(79) = 2.19, p = .03, and in the different 

populations condition, t(72) = 2.28, p = .03 (see Figure 8). This effect was not a simple order 

effect, whereby second estimates were more inclusive than first estimates, as 90% SPIES 

produced second did not include more values than those produced first. In fact, the opposite 

trend was observed, as 90% SPIES seemed to be more inclusive (albeit not significantly so) 

when produced before 90% confidence intervals than when produced after, both in the same 

population condition (MFirst = 88.23, SD = 18.56; MSecond = 83.29, SD = 23.48; t(79) = 1.06, p = 

.29) and in the different populations condition (MFirst = 95.50, SD = 3.21; MSecond = 88.85, SD = 

22.05; t(79) = 1.89, p = .06). 90% SPIES that followed 90% confidence intervals were not 

affected by whether they were made on the same population or a different one, t(69) = 1.02, p = 

.31. 

Discussion 

Results of experiment 4 lead to two conclusions. First, they replicate the findings of 

Experiment 3 that 90% confidence intervals estimated after SPIES are significantly more 
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inclusive than intervals produced without having previously completed a SPIES task. In this 

experiment, where the measurement of calibration at the individual estimate level was possible, 

individual 90% confidence intervals proved to be better calibrated with the 90% confidence 

standard when produced after SPIES than before SPIES.  

In addition, these results demonstrate that the carryover effect of SPIES occurs even in 

cases where no relevant knowledge can be transferred between estimates. Confidence intervals 

produced after SPIES were improved, relative to those produced before, even when the two 

estimates were made on different value populations with no shared content. This suggests that 

the effect of SPIES is not limited to increased information retrieval, or on the amount of 

evidence sampled to form the interval estimate. Participants in the different populations could 

not use any content retrieved in the first estimate for making the second estimate, but they, too, 

achieved higher calibration of their 90% confidence intervals after SPIES than before SPIES. 

Thus, SPIES influenced the inference process of their confidence interval estimates. The next 

two experiments were designed to identify the nature of this influence.  

EXPERIMENT 5 

Experiment 4 demonstrated that the carryover effect of SPIES can occur even without the 

transfer of relevant content between estimates, suggesting that this effect goes beyond the 

evidence retrieval stage of the estimate and also affects the inference stage. As previously 

mentioned, there are two ways by which SPIES may affect the inference the judge makes from 

her sampled evidence. One is by generalizing the SPIES estimation process into the process of 

confidence interval production. This may include the presentation of more value categories than 

the judge would spontaneously generate, and the decomposition of the estimate into multiple 

judgments, both of which have been found to reduce biases in estimates (Erev, Shimonowitch, 
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Schurr, & Hertwig, 2008; Soll & Klayman, 2004). By carrying out the process of systematically 

scanning the full range of possible values, the judge assesses various value categories and 

perceives more values as plausible. This realization then carries over to the confidence interval 

production process in subsequent estimates.   

However, the process of considering all possible values may have a different effect on the 

judge: by scanning the entire range of values, the judge may encounter many possibilities about 

which she is unsure. Forcing the consideration of these values in the SPIES task may create a 

conflict between the judge’s knowledge (or the stimuli presented to her) and the estimate 

elicitation format. This discrepancy may create doubt in the judge, who might revise her 

estimation process to account for this added uncertainty, or exert more cognitive control in later 

estimates. A number of studies report having reduced overestimation by creating similar 

discrepancies. Some studies (Hoch, 1985; Koriat, Lichtenstein, & Fischhoff, 1980; Sieck & 

Arkes, 2005) have asked participants to think of reasons for revising their estimates. Arkes, 

Christensen, Lai, and Blumer (1987) manipulated participants’ expectations about the difficulty 

of a task, and found that when participants completed a task that was more difficult than they had 

expected, their confidence coming into a subsequent task decreased. Bloomfield, Libby, and 

Nelson (1999) simply made uninformed judges aware that their available information suffers 

from low statistical reliability, which helped in debiasing their choices. Similar effects may occur 

on overprecision as well.    

Experiment 5 sought to distinguish between the two potential effects of SPIES on the 

estimation process of subsequent confidence intervals. Specifically, I wished to examine whether 

the effect occurs in settings where it is easier to generalize the systematic scan and multiple 

assessment procedures from the SPIES task to subsequent confidence intervals, or in settings that 
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create a discrepancy between the product of evidence retrieval and the estimate production 

process. To that end, I varied the properties of the population on which participants made their 

initial estimates. All participants made initial estimates using SPIES that included the same 

range, but for half of the participants the value population was distributed narrowly, including 

mostly values placed around the middle of the range, whereas the other participants were 

presented with a very diverse population of values, more evenly distributed across all parts of the 

range. Then, all participants made a second estimate on a new value population (the same 

population for all groups).  

A flat, even distribution of values in the population facilitates the retrieval of values from 

all parts of the range and incorporating them into the estimate. This makes the generalization of 

the SPIES process fairly easy, and may lead to an enhanced evidence retrieval process in later 

estimates as well. Conversely, when the distribution of the retrieved sample is very different 

from that of the intervals being assessed, such as when the sample is rather homogeneous and 

narrowly distributed but the SPIES task includes assessments of intervals across the entire range, 

a conflict may arise in the judge, which may prompt her to revise her estimation process, but will 

not encourage generalization of the same process to subsequent estimates.  

Method 

Participants. One-hundred sixty participants were invited through Amazon.com 

Mechanical Turk to participate in a “Cognitive Survey”. They completed the experiment online 

in exchange for $0.10 each. There were seven instances of multiple responses from the same IP 

address. The response from each of these duplicates was taken out of the data file. Results of 
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eleven participants were not recorded on account of a technical error in the program.8

Procedure 

 The final 

sample, then, consisted of 142 participants.  

Similar to Experiment 4, all participants in this experiment made two estimates—an 

initial, practice estimate and a second, test estimate. Each estimate was made on a different value 

population, presented for 2 seconds. Instructions for both estimates were the same as in 

Experiment 4. 

In a 2 x 2 orthogonal design, half of the participants used SPIES for their practice 

estimate whereas the other half used the 90% confidence interval method. For their test 

estimates, all participants produced 90% confidence intervals.  Practice estimates for all 

participants were made on a value population ranging from 731 to 830. For half of the 

participants (the narrow distribution condition) the value population was narrowly distributed 

(alpha = 10, beta = 10), and included mostly similar values with many repetitions; for the other 

half (the flat distribution condition) the value population was distributed almost uniformly (alpha 

= 1.3, beta = 1.3), including values from across the entire range. Test estimates for all 

participants were made on the same value population used in Experiment 4 (ranging from 341 to 

440, distribution properties: alpha = 2, beta = 2). The sequence of estimates for each group is 

illustrated in Table 5. 

Results 

Manipulation check. Participants were sensitive to the distributions of the value 

populations they saw in their practice estimates, and adjusted their estimates accordingly. The 
                                                            
8 The error was in the naming of variables in the Flash program we used to run the experiment. It affected eleven of 
the first thirty participants in the experiment, and was corrected when we updated variable names in the program 
during data collection for ease of use. This change did not affect the experimental procedure, and the error was 
discovered only after data collection was complete. 
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distribution width manipulation did not significantly affect the number of values included in 

these estimates, either in the form of  90% confidence intervals (MNarrow =  59.05, SD = 35.55; 

MFlat = 67.09, SD = 29.06, t(70) = 1.046, p = .30) or 90% SPIES (MNarrow = 88.84, SD = 26.07; 

MFlat = 83.64, SD = 17.50, t < 1). Consistent with findings reported in Part I of this paper, 90% 

SPIES were significantly more inclusive than 90% confidence intervals in both the narrow 

distribution and the flat distribution conditions, ts ≥ 3.00, ps ≤ .004, displaying significant 

overprecision only in the flat distribution condition, t(39) = 2.27, p = .03, and not in the narrow 

distribution condition, t < 1.  

Effect of SPIES on subsequent confidence intervals. A 2 (method used in practice 

estimate) x 2 (distribution width in practice estimate: narrow/wide) between-subjects ANOVA 

on the inclusiveness of test confidence interval estimates reveal a significant interaction, 

F(1,138) = 5.72, p = .02. Contrary to the generalization hypothesis, making SPIES on an evenly 

distributed value population did not result in improved confidence intervals in subsequent 

estimates; in fact, 90% confidence intervals after SPIES included a slightly lower proportion of 

the value population than those estimated after a confidence interval, but this result did not 

significantly deviate from chance, t < 1. Alternatively, when first presented with a narrow 

distribution, participants who had used SPIES for their practice estimates produced 90% 

confidence intervals that were significantly more inclusive and better calibrated than those who 

had used confidence intervals, t(66) = 2.84, p = .006, suggesting that the discrepancy between 

the distribution of the population and the structure of the task in the first estimate contributed to 

the improvement of confidence intervals in the second estimate (see Figure 9).   

Discussion 
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The results presented here refute the hypothesis that judges generalize the SPIES process 

to estimates made in other formats. When the values presented were fairly evenly distributed 

across all parts of the range, participants were able to sample values from many parts of the 

range and use them in their SPIES, but this did not have any positive effect on their subsequent 

estimates. Conversely, in the narrow distribution condition, participants’ retrieved samples 

included, primarily, values from the middle of the range, but they were asked in the SPIES task 

to estimate frequencies of values from across the entire range. This resulted in improvement of 

the calibration of subsequent estimates, which raises the possibility that confidence intervals 

were enhanced by the conflict between the stimuli and the SPIES task. This conflict may have 

instilled doubt in participants, leading them to produce wider confidence intervals to 

accommodate for this uncertainty, or caused them to exert more cognitive control in producing 

their subsequent estimate, in response to this conflict. 

It is interesting to note that participants who produced confidence intervals in their 

practice estimates displayed the opposite pattern: practice estimates on a flat distribution of 

values led to wider confidence intervals in the test estimate than practice estimates on the narrow 

distribution, although this difference was non-significant, t(70) = 1.22, p = .23. It appears that in 

the confidence interval condition generalization could occur: a widespread population of values 

generates a wider confidence interval than a narrowly distributed one, leading the judge to 

produce wider confidence intervals in subsequent tasks as well. On the other hand, the 

confidence interval production task does not produce the doubt present in the SPIES task, 

because it does not force the judge to consider any values she did not voluntarily take into 

account, and this is no different for either distribution condition.  

EXPERIMENT 6 
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Experiment 5 showed that the effect of SPIES on subsequent estimates does not occur 

when the practice estimate is made on a heterogeneous population that is equally represented by 

all intervals of the SPIES task. This suggests that the SPIES effect is not caused by the mere 

presentation of extreme possible values, even when these values are as plausible as ones which 

are closer to the mean of the distribution. Also, this experiment showed that successful sampling 

of multiple values across the entire range, which leads to the retrieval of a wide range of values, 

does not result in an improved estimation process in subsequent estimates. Rather, in order for 

SPIES to influence subsequent estimates, there needs to be some discrepancy between the 

retrieved sample and the assessments which the task elicits, which may lead the judge to revise 

her estimation process. 

In Experiment 6, I sought to test whether the mere discrepancy between the value 

population and the structure of the SPIES task can improve subsequent estimates. If doubt is 

involved in creating the effect, such discrepancy may not always be enough. For example, if a 

current reader of this paper were to use SPIES to estimate his or her own age, this is unlikely to 

undermine the strength of the judge’s belief in her knowledge of the true answer. Similarly, 

using SPIES to estimate the number of veal plates that were ordered at restaurants in Sligo, 

Ireland on January 25th, 1994, should not create much doubt or conflict, assuming the judge’s 

knowledge in this domain is already approximating zero. In both of these cases, a discrepancy 

exists between the properties of the distribution of likelihoods and the estimation task, but 

differences in knowledge prevent a real conflict from taking place. Thus, when the judge’s 

knowledge sufficiently high not to be fazed by the SPIES task, or sufficiently low that the SPIES 

task itself provides most of the information regarding the estimate, a change in the estimation 

process might not occur. 
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Experiment 6 was designed to test this proposition. In this experiment, participants made 

the same estimates that displayed the SPIES carryover effect in Experiment 5. However, their 

knowledge of the initial estimate’s content matter was manipulated by varying the time for which 

participants saw the value populations before making their estimates. When participants could 

observe the population for a long time, their knowledge about it was high enough that the 

structure of the SPIES task should not cause much of a conflict. When the time allotted to 

observe the population was very short, participants’ information about the population was low, 

such that the intervals making up the SPIES may have provided a source of information, rather 

than created a conflict with, or doubt in existing knowledge. However, when the time 

participants had to observe the population is neither too long nor too short, as may have been the 

case in Experiment 5, the SPIES task should conflict with participants’ knowledge of the 

population’s distribution, and may cause them to revise their estimation process.   

Method 

Participants. One-hundred forty participants were recruited through Amazon.com 

Mechanical Turk to participate in a “Cognitive Survey”. They completed the experiment online 

in exchange for $0.10 each. There were four instances of multiple responses from the same IP 

address. The latter response of each of these duplicates was stricken from the data file. The final 

sample consisted of 136 participants.  

Procedure. In a three-group design, all participants made a practice estimate on one 

value population using SPIES and then a test estimate, in a 90% confidence interval format, on a 

different value population. Participants were given the same instructions as in Experiments 4 and 

5. The values for both the first and second estimates were sampled from the same ranges and 

distributions as in the narrow-range condition in Experiment 5: the practice estimate included 
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numbers sampled from the 731 – 830 range, on a narrow beta distribution (alpha = 10, beta = 

10), whereas the test estimate was made on numbers sampled from the 341 – 430 range, on a 

moderate (alpha = 2, beta = 2) distribution. The groups varied in their exposure time to the value 

population before making the practice estimate. One group (the medium exposure group) saw the 

numbers for 2 seconds, same as in Experiment 5, where SPIES led to a revision in subsequent 

confidence interval estimates. This group served as a control group, providing a test for the 

replication of the findings of Experiment 5. A second group (the short exposure group) was 

presented with the value population for a quarter of the time allotted to the control group—500 

milliseconds—such that they could identify a very low number of values in the population, if 

any. For the third group (the long exposure group) the value population was presented for a time 

four times as long as the control group—8 seconds—such that participants could observe most, if 

not all, the values in the population. Therefore, their knowledge of the value population’s 

properties should be high enough that completing a SPIES task should not cause them to doubt 

it.   

After the practice estimate, all participants made a 90% confidence interval estimate on 

the same new population of values. Presentation times of the new estimate were also equal 

between the groups (2 seconds). 

Results 

Manipulation check. Table 6 shows that none of the groups displayed significant 

overprecision in their 90% SPIES, as might be expected of estimates of a population so narrowly 

distributed. In fact, the medium exposure group was even underconfident. However, one 

expected difference between these groups was that the more time one is given to sample the 

population, the better sense one should have about the distribution of the population, resulting in 
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smaller errors in interval assessments. A one-way ANOVA comparing the three groups on 

average error, or mean difference between the subjective probability participants gave each 

interval in the SPIES task and the interval’s true likelihood, revealed a significant difference: the 

longer the participant could observe the population, the smaller the participant’s average error 

was, F(2,133) = 6.71, p = .002 (see Table 6). In addition, a longer exposure time should improve 

the judge’s ability to distinguish between frequent and infrequent values, and produce a 

confidence interval that includes the most likely values and excludes very unlikely ones. This 

results in confidence intervals that are denser, meaning they include the same proportion of 

values from the population, but are narrower, in absolute terms, than the one produced by an 

less-informed judge.  This density measure can be calculated by measuring the ratio between the 

inclusiveness of the confidence interval (the proportion of values from the population included in 

the estimate) and the width of the confidence interval, in absolute terms. A one-way ANOVA 

comparing the density of participants’ 90% SPIES shows a significant between-group difference: 

the longer the participant could observe the population, the higher the density of their 90% 

SPIES, F(2,133) = 3.78, p = .02 (see Table 6). 

Effect of SPIES on subsequent 90% confidence intervals. To measure the effect of 

stimulus exposure time in practice estimates on participants’ test estimates, I conducted a one-

way ANOVA to compare the inclusiveness of participants’ confidence intervals between the 

three groups. Results reveal a significant difference, F (2,133) = 3.32, p = .04. Consistent with 

my prediction, while the calibration of confidence intervals produced by the medium exposure 

group replicated the results of Experiment 5, in the two other groups, where SPIES were 

assumed to not create doubt for participants, calibration of confidence intervals in the test 
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estimates was significantly poorer (Short exposure: t(93) = 2.39, p = .02; Long exposure: t(86) = 

2.18, p = .03, see Figure 10).   

Discussion 

Results of this experiment provide further support for the prediction that SPIES influence 

subsequent confidence interval estimates only when there is a discrepancy between the judge’s 

knowledge and the structure of the task and that knowledge is neither too high nor too low to 

create a conflict with the task, or increase the judge’s doubt. In the two conditions of this 

experiment where participants’ knowledge of the population in the practice phase was very high 

or very low (as seen by the different levels of error and density of their estimates), their estimates 

in the test phase demonstrated lower calibration, at a degree similar to that of confidence 

intervals produced without a preceding practice phase (see results of Experiment 4). 

The SPIES task in the short and long exposure conditions in this experiment included 

features which, in theory, could have contributed to the improvement of calibration of 

subsequent estimates. A very short exposure time should increase participants’ uncertainty and 

reduce their confidence in their ability to make an accurate prediction (Erev, Wallsten, & 

Budescu, 1994; Peterson & Pitz, 1986, 1988). Conversely, a long exposure time in the first 

estimate may make subsequent estimates, for which exposure times are shorter, seem more 

difficult. This may create a contrast effect and reduce participants’ confidence in their estimates 

(Arkes et al., 1987; Mussweiler, 2003). However, if this were true, then a difference in the 

opposite direction should have been observed in the short exposure condition, in which the test 

estimate was given a longer exposure time than the practice estimate. The fact that the two 

groups did not differ in their performance on the test estimate, and that both were outperformed 
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by participants in the medium exposure condition, provides further support for the proposition 

that conflict and doubt are required for subsequent estimate improvement. 

Despite a significant improvement in calibration, 90% confidence intervals produced by 

the medium exposure group were still overprecise: they included, on average, of 77.57% (SD = 

21.84) of the population, which was significantly lower than the standard 90%, t(46) = 3.901, p < 

.0005. This incomplete improvement in calibration can be explained by prior findings of research 

on revision of opinion, that judges tend to be too conservative in the extent to which they update 

their beliefs in light of new information (Erev et al., 1994; Fischhoff & Beyth-Marom, 1983). 

According to these studies, judges take into account new information that is inconsistent with 

prior estimates, but underweight this information vis-à-vis their prior beliefs, relative to 

predictions of Bayes’s theorem. A similar process may have taken place in this experiment, 

where participants were influenced by the SPIES task and adjusted their subsequent confidence 

intervals, but not enough, reflecting an overreliance on their prior estimation process.  

SUMMARY 

Data presented in Part II of this dissertation demonstrates that SPIES enact a change in 

the cognitive process judges use to produce interval estimates. In three experiments, as well as in 

Experiment 3 of Part I, participants who had initially used SPIES and then switched to 

confidence intervals produced intervals that were more inclusive than those produced by 

participants who had not practiced with SPIES.  

The value population paradigm used in the last three experiments enabled the comparison 

of not only the width of confidence intervals, but also their calibration with the 90% confidence 

standard. This was done by having participants make estimates on a finite population of values, 

and eliciting estimates of intervals that include a proportion of the population (i.e., 90% of the 
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values in the population). Using this method, we learned that the SPIES method not only 

increases the width of subsequent confidence intervals, it also improves their calibration. 

Although the exact mechanism by which the confidence interval production process 

changes as a result of SPIES is not fully clear yet, this work provides some interesting insight 

about this mechanism. First, this change occurs, at least in part, in the inference stage of the 

process, and does not depend on the accessibility of specific content. As demonstrated in 

Experiment 4, confidence interval estimates improved after SPIES, even when the two estimates 

were made on two different populations with no shared values. Second, for this effect to take 

place, there must exist a conflict between the judge’s knowledge of the distribution of possible 

values and the structure of the SPIES task. Judges did not display improvement in confidence 

intervals after SPIES when their sampled values corresponded equally with each of the SPIES 

task’s intervals, but rather only when the SPIES task included estimates of value categories 

participants did not think they saw. Experiment 6 showed that the discrepancy between the 

distribution’s properties and the SPIES task will create this conflict only when judges’ 

knowledge about the distribution is low enough that the task provides some information about 

the distribution, and high enough that the SPIES task is not the only source of information.  
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Conclusion 

Overconfidence is a widespread and widely studied phenomenon. While it has a number 

of distinct forms, overprecision seems to be the most consistent, potentially the most harmful, 

and possibly the least understood (Moore & Healy, 2008). Despite decades of research on 

overprecision, few studies have found ways to decrease it, and these attempts mostly resulted in 

modest improvements, limited to specific content and elicitation format.  

One common point stressed by most of these studies is that overprecision stems from 

judges’ failure to consider all alternative outcomes and relevant information, and that reducing 

the bias can be made possible by making judges pay attention to a wider range of evidence and 

possible answers. This dissertation presents a novel method which achieves just that. The SPIES 

method forces judges to consider all possible outcome categories and estimate the relative 

likelihood of occurrence of each of these categories. It presents the judge with the entire range of 

possible outcomes, and elicits probability judgments of occurrence of all of them. By 

transforming these probability judgments into an interval estimate, the SPIES method produces 

confidence intervals with consistently better calibration than intervals produced by other 

methods. This improved calibration is achieved by increasing the inclusiveness of these intervals, 

that is, making them span a wider range of values, rather than by improving the accuracy of their 

midpoints, as these were not, on average, closer to the true answer than the midpoints of 

traditional confidence intervals. This suggests that the SPIES method does not teach the judge 

anything new about the content matter of the estimate, but rather causes her to realize that more 

outcomes are possible, and prevents her from overlooking them.  

Further, SPIES seem to enact a change in judges’ estimation process, as demonstrated by 

the improved calibration of confidence intervals produced by judges who used SPIES in prior 
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estimates. To our knowledge, SPIES is the first method to have achieved a lasting effect on 

estimates produced in different elicitation formats. Similar to interval estimates produced by the 

SPIES method, the improved calibration appears to have been achieved by increasing the 

inclusiveness of the confidence intervals. Further support for this argument is provided by the 

fact that confidence interval calibration is improved after SPIES even when the two estimates are 

made on different knowledge domains. Data reported in Part II suggest that after practicing with 

SPIES, judges do not simply generalize this estimation process to subsequent judgments, but 

rather revise their processes after some conflict between the evidence they sampled and the 

structure of the SPIES task, which may cause them to doubt their current knowledge and adjust 

their estimation process to account for this uncertainty. Accordingly, when conditions are such 

that the knowledge-task conflict is low, subsequent confidence intervals are not affected. These 

conflict-curbing conditions occur when evidence across the entire range is easily accessible, or 

when the judge’s knowledge of the estimate is too high for SPIES to cause doubt or too low that 

uncertainty is already at a maximum.  

In addition to its ability to reduce bias, I believe SPIES can be an effective method thanks 

to its applicability. Relative to other elicitation methods, it is simple to use, from the judge’s 

point of view. Probability judgments are more intuitively comprehensible than value estimates 

(Teigen & Jørgensen, 2005) and while judges do provide multiple judgments in the SPIES task, 

these judgments are elicited as one general estimate. This method provides improved calibration 

without making the judge engage in meta-cognitive exercises or make multiple estimates of the 

same value. Although the SPIES method requires the designer of the task to specify the range on 

which the tasks’ intervals are placed, determining this range is not critical for achieving 

improved calibration, relative to the confidence interval production method.  
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The SPIES elicitation method also provides flexibility in calculating confidence intervals. 

The amount of information elicited from the judge enables the calculation of confidence intervals 

of different confidence levels and different widths, all from the same estimate, without making 

the judge estimate the same value again. Take, for example, an estimate of the future price of a 

house. A decision maker who receives this estimate can determine, for example, the likelihood 

that the price will be above or below a certain value, the most likely $20,000 range for the house, 

the judge’s 90% confidence interval, and the 70% confidence interval, all from the same 

estimate. 

LIMITATIONS 

The research on SPIES is hardly complete and several open questions remain. One is the 

applicability of the method to estimates that are not interval-based. Many estimates and forecasts 

attempt to predict a true outcome from a series of outcomes that are not placed on a scale. Can 

SPIES improve the calibration of categorical estimates as well? Prior research has shown that 

presenting participants with more possible outcomes can reduce base-rate neglect (Erev et al., 

2008) and improve calibration of estimates of categorical outcomes (Fischhoff et al., 1978; 

Tversky & Koehler, 1994), giving reason to suspect that SPIES might have a similar effect. 

However, the studies presented here tested SPIES only on quantitative, interval-based estimates, 

and therefore cannot confirm this argument.  

The studies in Part II on the carryover effect of SPIES have, admittedly, not entirely 

clarified the nature of the effect of SPIES on subsequent estimates. Experiments 5 and 6 showed 

that when conditions are such that when doubt in the judge’s knowledge of the estimate is 

unlikely to increase, subsequent confidence intervals will not be affected. However, these two 
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studies did not manipulate or measure doubt directly. Also, if doubt is driving the improvement 

in subsequent estimates, then this improvement could be achieved by other doubt-increasing 

methods, some simpler and more robust in generating doubt than SPIES. These questions should 

be investigated further.  

The SPIES method should be also tested for carryover effects on different types of 

quantitative estimates, such as probability judgments and contingency estimates. These estimates 

have been shown to suffer from overprecision, and there is reason to believe that practicing with 

SPIES might lead to their improvement as well. One caveat is that calibration in these estimates 

is measured differently than the way it is observed in confidence intervals. However, the 

processes by which SPIES may improve confidence interval production should have a similar 

influence on the process of producing probability and contingency estimates as well. 

CAN SPIES MAKE A DIFFERENCE FOR PRACTITIONERS? 

The introduction of this dissertation tells the story of the demise of one of the largest 

financial institution in the United States, in part due to overprecision in judgment. At a 

conference at which this project was presented, one of the attendants suggested that a more 

common use of methods such as SPIES could have prevented the latest financial crisis from 

happening. While this last statement is probably too extreme, there is reason to believe using 

SPIES can reap benefits for professionals. In many fields, estimates are an integral part of the job 

for executives and policy makers, and accurate forecasts are a key determinant of their success, 

just as surprises and failure to prepare for certain outcomes lead to very harmful consequences. 

The SPIES method minimizes the failure to consider possible outcomes, and therefore could be 

helpful for practitioners who rely on accurate forecasting in their jobs.  
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There is, however, one major obstacle to the implementation of SPIES in the field. Most 

quantitative forecasts and estimates today use the point prediction format. The output of these 

estimates is a precise value. For example, future price forecasts provide a precise price, or a price 

change value; product managers who predict the demand for their product in the next quarter 

estimate a precise value for this demand. The use of this format has a number of inherent 

problems. One is that the criterion for accuracy is ambiguous. Exact accuracy of these 

predictions is, obviously, virtually impossible. Therefore, recipients of these estimates expect 

them to be approximately accurate, but the cutoff point beyond which an estimate is regarded as 

inaccurate is rarely specified. This, in turn, prevents forecasters from receiving meaningful and 

reliable feedback on their performance and may lead to communication problems between 

forecasters and recipients with regard to their performance expectations. Another problem is the 

inability to prepare for various scenarios. Take, for example, a forecast of the quarterly revenue a 

certain division is expected to generate. In order for the division to remain profitable for its 

company, it must generate at least $1 million in revenues in the next quarter. The quarterly 

revenue forecast, in a point prediction format, is $1.1 million. However, the level of uncertainty 

surrounding this estimate may make revenues between $800,000 and $1 million as likely, if not 

more than revenues between $1 million and $1.2 million. Knowing this fact may change the 

perceived risk associated with keeping the division, and thus also the company’s strategic 

decisions about it, but the point prediction format does not provide this information. Similarly, 

medical patients rehabilitating from surgery are given prognoses for the time it should take them 

to fully recover. However, for a patient for whom the most likely recovery time is six months, a 

six week upward error might have very different implications than a six week downward error. 

Only an estimate in a range format can provide this important information.  
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The first step, then, on the way to improving forecasting in the field, is to move from a 

point prediction format to a range format. Once range estimates are accepted as the default 

estimate format, then methods for improving these estimates could be implemented. In this 

dissertation, I propose that the SPIES method, which my advisors and I have developed, can 

provide a simple, intuitive way to significantly improve range estimates.   
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Tables 

Table 1. Range Width and Grain Size Condition Assignment in Experiment 2  
 
Range Width Number of Intervals Grain Size  Extreme Intervals 

Narrow (100ºF) 20 + 2 extreme intervals Fine (5ºF) -16°F or lower 

85°F or higher 

Narrow (100ºF) 10 + 2 extreme intervals Medium (10ºF) -16°F or lower 

85°F or higher 

Wide  (200ºF) 20 + 2 extreme intervals Medium (10ºF) -66°F or lower 

135°F or higher 

Wide  (200ºF) 10 + 2 extreme intervals Coarse (20ºF) -66°F or lower 

135°F or higher 
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Table 2. 90% SPIES hit-rates by range width and grain size in Experiment 2  
 

  Range Width 

  Narrow Wide 

Number of 

Intervals 

10 80.95% (40.24%) 83.33% (38.07%) 

20 61.90% (49.76%) 69.23% (47.07%) 
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Table 3. 90% SPIES width by range width and grain size in Experiment 2  
 

  Range Width (SD) 

  Narrow Wide 

Number of 

Intervals 

10 33.40 (16.58) 44.95 (11.80) 

20 25.48 (11.12) 33.50 (12.93) 
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Table 4. The order of estimates made by the four groups in Experiment 4. 
 
Group First estimate 

population range 
(method) 

Second estimate 
population range 
(method) 

Same population,  
SPIES-first 

341 – 440 (SPIES) 341 – 440 (90% 
confidence interval) 
 

Same population, 
SPIES-second 

341 – 440 (90% 
confidence interval) 
 

341 – 440 (SPIES) 

Different populations, 
SPIES-first 

731 – 830 (SPIES) 341 – 440 (90% 
confidence interval) 
 

Different populations, 
SPIES-second 

731 – 830 (90% 
confidence interval) 
 

341 – 440 (SPIES) 
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Table 5. The type of distribution of the estimated value population and elicitation method of each 
estimate, by group, in Experiment 5. 
 
Practice Estimate Test Estimate 
Distribution Elicitation method Distribution Elicitation method 

Narrow SPIES 

Moderate 90% confidence 
interval 

Narrow 90% confidence 
interval 

Flat SPIES 

Flat 90% confidence 
interval 
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Table 6. Absolute width, inclusiveness and density of 90% SPIES by group in Experiment 6. 
Standard deviations are in parentheses. 
 
 90% SPIES 

absolute width  
90% SPIES 
inclusiveness  

SPIES     
average error 

90% SPIES 
density  

Short exposure 73.77 (23.23) 87.42 (27.61) 11.15 (3.22) 1.17 (0.44) 
 

Medium exposure 83.66 (10.61) 99.47 (1.23) 10.10 (2.08) 1.21 (0.21) 
 

Long exposure 68.37 (19.64) 90.44 (18.94) 8.49 (3.43) 1.38 (0.45) 
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Figures 

Figure 1. Illustration of hypothetical estimates using SPIES and a 90% confidence interval for 
the daily high temperature in Washington, DC, one month in the future. The 90% SPIES ranges 
from 15ºF to 54ºF, whereas a 90% confidence interval ranges from 25ºF to 40ºF. 
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Figure 2. Hit-rates displayed by 90% confidence intervals, fractiles and 90% SPIES in 
Experiment 1.  Error bars indicate ±1 SE. 
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Figure 3. Hit-rates displayed by SPIES of different range widths and grain sizes and by 90% 
confidence intervals in Experiment 2. Error bars indicate ±1 SE. See Table 2 for hit-rates of the 
different SPIES configurations. 
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Figure 4. Estimate-by-estimate mean widths of 90% confidence intervals made in the first set of 
estimates (before SPIES), compared to those of 90% confidence intervals in the second set of 
estimates, after having made SPIES in the first set in Experiment 3. 
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Figure 5. A hypothetical subjective probability density function for a time estimate. Intervals J 
and K represent opposite 10-year errors in estimating the interval I, which is perfectly calibrated 
with the requested probability of the estimate. This graph appears in Soll & Klayman, (2004). 
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Figure 6. A value population, as presented in Experiments 4, 5, and 6. The order of the values in 
the population was randomized between participants in all experiments.  
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Figure 7. A SPIES task for estimating a value population, as presented in Experiments 4, 5, and 
6.   
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Figure 8. Percentage of values from the estimated population included in participants’ 90% 
confidence intervals, by value population similarity and method order in Experiment 4. Error 
bars represent ±1 SEM. 
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Figure 9. Inclusiveness of 90% confidence intervals in test estimates, by distribution and 
elicitation method used in practice estimates in Experiment 5. Error bars represent ±1 SEM. 
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Figure 10. Inclusiveness of 90% confidence intervals by group in Experiment 6. Error bars 
represent ±1 SEM. 
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