
A “Hitchhiker’s” Guide to Fast and Efficient Data
Reconstruction in Erasure-coded Data Centers

K. V. Rashmi1, Nihar B. Shah1, Dikang Gu2, Hairong Kuang2, Dhruba Borthakur2, and Kannan
Ramchandran1

1UC Berkeley 2Facebook

{rashmikv, nihar, kannanr}@eecs.berkeley.edu, {dikang, hairong, dhruba}@fb.com

ABSTRACT
Erasure codes such as Reed-Solomon (RS) codes are being
extensively deployed in data centers since they offer signif-
icantly higher reliability than data replication methods at
much lower storage overheads. These codes however man-
date much higher resources with respect to network band-
width and disk IO during reconstruction of data that is miss-
ing or otherwise unavailable. Existing solutions to this prob-
lem either demand additional storage space or severely limit
the choice of the system parameters.

In this paper, we present Hitchhiker, a new erasure-coded
storage system that reduces both network traffic and disk IO
by around 25% to 45% during reconstruction of missing or
otherwise unavailable data, with no additional storage, the
same fault tolerance, and arbitrary flexibility in the choice of
parameters, as compared to RS-based systems. Hitchhiker
“rides” on top of RS codes, and is based on novel encoding
and decoding techniques that will be presented in this paper.
We have implemented Hitchhiker in the Hadoop Distributed
File System (HDFS). When evaluating various metrics on
the data-warehouse cluster in production at Facebook with
real-time traffic and workloads, during reconstruction, we
observe a 36% reduction in the computation time and a 32%
reduction in the data read time, in addition to the 35% re-
duction in network traffic and disk IO. Hitchhiker can thus
reduce the latency of degraded reads and perform faster re-
covery from failed or decommissioned machines.

1. INTRODUCTION
Data centers storing multiple petabytes of data have be-

come commonplace today. These data centers are typically
built out of individual components that can be unreliable,
and as a result, the system has to deal with frequent failures.
Various additional systems-related issues such as software
glitches, machine reboots and maintenance operations also
contribute to machines being rendered unavailable from time
to time. In order to ensure that the data remains reliable
and available despite frequent machine unavailability, data
is replicated across multiple machines, typically across mul-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00
http://dx.doi.org/10.1145/2619239.2626325

a b

a
+
b

a
+
2b

… … … …

machine 1 machine 2 machine 3 machine 4

TOR TOR TOR TOR

Router

a
 +

 b
 b

Figure 1: High network usage during reconstruction
of erasure-coded data: reconstructing a single miss-
ing unit ‘a’ in this example requires transfer of twice
the amount of data through the top-of-rack (TOR)
switches.

tiple racks as well. For instance, the Google File System [10]
and the Hadoop Distributed File System (HDFS) [28] store
three copies of all data by default. Although disk storage
seems inexpensive for small data sizes, this assumption is
no longer true when storing multiple copies at the massive
scales of operation of today’s data centers. As a result, sev-
eral large-scale distributed storage systems [4,10] now deploy
erasure codes, that provide higher reliability at significantly
lower storage overheads, with the most popular choice being
the family of Reed-Solomon (RS) codes [23].

An RS code is associated with two parameters: k and r.
A (k, r) RS code encodes k units of data into r parity units,
in a manner that guarantees the recoverability of all the k
data units from any k out of these (k + r) units. It thus
allows for tolerating unavailability of any r of its (k + r)
units. This collection of (k+ r) units is called a stripe. In a
system deploying an RS code, the (k+ r) units belonging to
a stripe are stored on distinct machines in order to maximize
diversity and tolerate maximum machine unavailability. In
addition, these machines are chosen from distinct racks in
order to maximize tolerance to rack failures. An example
of such a setting is depicted in Fig. 1, with an RS code
having parameters (k = 2, r = 2). Here {a, b} are the two
data units, which are encoded to generate two parity units,
(a+b) and (a+2b). The figure depicts these four units stored
across four machines on different racks. The data-warehouse
cluster at Facebook employs an RS code with parameters
(k = 10, r = 4), thus resulting in a 1.4× storage overhead. In
contrast, for similar levels of reliability, a replication-based
system would require a 3× storage overhead.

We posit that the primary reason that makes RS codes
particularly attractive for large-scale distributed storage sys-
tems is its two following properties:
P1: Storage optimality. A (k, r) RS code entails the min-
imum storage overhead among all (k, r) erasure codes that

tolerate any r failures.1 This property is particularly rele-
vant for large-scale storage systems since disk space usage is
quickly becoming the dominant factor in these systems.
P2: Generic applicability. RS codes can be constructed
for arbitrary values of the parameters (k, r), thus allowing
complete flexibility in the design of the system.

Although RS codes improve storage efficiency in data cen-
ters, they cause a significant increase in the disk and network
traffic. This is due to the heavy download requirement dur-
ing reconstruction of any missing or otherwise unavailable
unit, as elaborated below. In a system that performs repli-
cation, a data unit can be reconstructed simply by copying
it from another existing replica. However, in an RS-coded
system, there is no such replica. To see the reconstruction
operation under an RS code, let us first consider the exam-
ple of a (k = 2, r = 2) RS code as in Fig. 1. The figure
depicts the reconstruction of the first data unit “a” (machine
1) from machines 2 and 3. Observe that this reconstruction
operation requires transfer of two units across the network.
In general, under a (k, r) RS code, reconstruction of a single
unit involves the download of k of the remaining units. An
amount equal to the logical size of the data in the stripe is
thus read from the disks and downloaded through the net-
work, from which the missing unit is reconstructed. This is
k times the size of the data to be reconstructed.

We have performed extensive measurements on
Facebook’s data-warehouse cluster in production, which
consists of multiple thousands of nodes, and which stores
multiple Petabytes of RS-encoded data. These
measurements reveal that a median of more than 50
machine-unavailability events occur per day, and a median
of 95,500 blocks of RS-encoded data are recovered each day
(the typical size of a block is 256 Megabytes (MB)). The
reconstruction operations for RS-encoded data consume a
large amount of disk and cross-rack bandwidth: a median
of more than 180 Terabytes (TB) of data is transferred
through the top-of-rack switches every day for this
purpose. For more details, the reader is referred to our
earlier work [20].

In addition to the increased toll on network and disk re-
sources, the significant increase in the amount of data to be
read and downloaded during reconstruction affects RS-based
storage systems in two ways. First, it drastically hampers
the read performance of the system in “degraded mode”, i.e.,
when there is a read request for a data unit that is missing
or unavailable. Serving such a request is called a ‘degraded
read’. In a replication based system, degraded reads can
be performed very efficiently by serving it from one of the
replicas of the requisite data. On the other hand, the high
amount of data read and downloaded as well as the computa-
tional load for reconstructing any data block in an RS-based
system increases the latency of degraded reads. Second, it in-
creases the recovery time of the system: recovering a failed
machine or decommissioning a machine takes significantly
longer than in a replication-based system. Based on con-
versations with teams from multiple enterprises that deploy
RS codes in their storage systems, we gathered that this in-
creased disk and network traffic and its impact on degraded
reads and recovery is indeed a major concern, and is one of
the bottlenecks to erasure coding becoming more pervasive
in large-scale distributed storage systems.

1In the parlance of coding theory, an RS code has the prop-
erty of being ‘Maximum Distance Separable (MDS)’ [16].

Storage optimality and generic applicability:
Storage requirement Same (optimal)
Supported parameters All
Fault tolerance Same (optimal)

Data reconstruction:
Data downloaded (i.e., network traffic) 35% less
Data read (i.e., disk traffic) 35% less
Data read time (median) 31.8% less

Data read time (95th percentile) 30.2% less
Computation time (median) 36.1% less

Encoding:
Encoding time (median) 72.1% more

Table 1: Performance of Hitchhiker as compared to
Reed-Solomon-based system for default HDFS pa-
rameters.

The problem of decreasing the amount of data required to
be downloaded for reconstruction in erasure-coded systems
has received considerable attention in the recent past both
in theory and practice [7,11–14,17,19,21,22,26,27,29,30,32].
However, all existing practical solutions either demand ad-
ditional storage space [7, 12, 17, 21, 26, 27]), or are appli-
cable in very limited settings [11, 15, 30, 32]. For exam-
ple, [7, 12,17] add at least 25% to 50% more parity units to
the code, thereby increasing the storage overheads, [21, 27]
necessitate a high redundancy of r ≥ (k − 1) in the system,
while [11,15,30,32] operate in a limited setting allowing only
two or three parity units.

In this paper, we present Hitchhiker, an erasure-coded
storage system that fills this void. Hitchhiker reduces both
network and disk traffic during reconstruction by 25% to 45%
without requiring any additional storage and maintaining the
same level of fault-tolerance as RS-based systems.2 Further-
more, Hitchhiker can be used with any choice of the sys-
tem parameters k and r, thus retaining both the attractive
properties of RS codes described earlier. Hitchhiker accom-
plishes this with the aid of two novel components proposed
in this paper: (i) a new encoding and decoding technique
that builds on top of RS codes and reduces the amount of
download required during reconstruction of missing or oth-
erwise unavailable data, (ii) a novel disk layout technique
that ensures that the savings in network traffic offered by
the new code is translated to savings in disk traffic as well.

In proposing the new storage code, we make use of a re-
cently proposed theoretical framework [22] called the ‘Piggy-
backing framework’. In this paper, we employ this theoreti-
cal framework of piggybacking to design a novel erasure code
that reduces the amount of data required during reconstruc-
tion while maintaining the storage optimality and generic
applicability of RS codes. Our design offers the choice of
either using it with only XOR operations resulting in sig-
nificantly faster computations or with finite field arithmetic
for a greater reduction in the disk and network traffic during
reconstruction. Interestingly, we also show that the XOR-
only design can match the savings of non-XOR design if the
underlying RS code satisfies a certain simple condition.

The proposed storage codes reduce the amount of down-
load required for data reconstruction, and this directly trans-

2It takes a free-ride on top of the RS-based system, retaining
all its desired properties, and hence the name ‘Hitchhiker’.

lates to reduction in network traffic. In the paper, we then
propose a novel disk layout which ensures that the savings
in network resources are also translated to savings in disk re-
sources. In fact, this technique is applicable to a number of
other recently proposed storage codes [11,15,19,21,26,27,29]
as well, and hence may be of independent interest. The pro-
posed codes also help reduce the computation time during
reconstruction as compared to the existing RS codes.

Hitchhiker optimizes reconstruction of a single unit in a
stripe without compromising any of the two properties of
RS-based systems. Single unit reconstruction in a stripe is
the most common reconstruction scenario in practice, as
validated by our measurements from Facebook’s
data-warehouse cluster which reveal that 98.08% of all
recoveries involve recovering a single unit in a stripe (see
§6.5). Moreover, at any point in time, Hitchhiker can
alternatively perform the (non-optimized) reconstruction of
single or multiple units as in RS-based systems by
connecting to any k of the remaining units. It follows that
any optimization or solution proposed outside the erasure
coding component of a storage system (e.g., [3, 5, 18]) can
be used in conjunction with Hitchhiker by simply treating
Hitchhiker as functionally equivalent to an RS code,
thereby allowing for the benefits of both solutions.

We have implemented Hitchhiker in the Hadoop
Distributed File System (HDFS). HDFS is one of the most
popular open-source distributed file systems with
widespread adoption in the industry. For example, multiple
tens of Petabytes are being stored via RS encoding in
HDFS at Facebook, a popular social-networking company.

We evaluated Hitchhiker on two clusters in Facebook’s
data centers, with the default HDFS parameters of (k =
10, r = 4). We first deployed Hitchhiker on a test cluster
comprising 60 machines, and verified that the savings in the
amount of download during reconstruction is as guaranteed
by theory. We then evaluated various metrics of Hitchhiker
on the data-warehouse cluster in production consisting of
multiple thousands of machines, in the presence of ongoing
real-time traffic and workloads. We observed that Hitch-
hiker reduces the time required for reading data during re-
construction by 32%, and reduces the computation time dur-
ing reconstruction by 36%. Table 1 details the comparison
between Hitchhiker and RS-based systems with respect to
various metrics for (k= 10, r= 4).3 Based on our measure-
ments [20] of the amount of data transfer for reconstruction
of RS-encoded data in the data-warehouse cluster at Face-
book (discussed above), employing Hitchhiker would save
close to 62TB of disk and cross-rack traffic every day while
retaining the same storage overhead, reliability, and system
parameters.

In summary, we make the following contributions:

• Introduce Hitchhiker, a new erasure-coded storage system
that reduces both network and disk traffic during recon-
struction of missing or otherwise unavailable data by 25%
to 45% without requiring any additional storage and main-
taining same level of fault-tolerance as RS-based systems.
It can be used with any choice of the system parameters
k and r. To the best of our knowledge, this is the first
practical solution available in literature that reduces the
disk and network traffic during reconstruction without in-

3More specifically, these numbers are for the ‘Hitchhiker-
XOR+’ version of Hitchhiker.

creasing the storage overhead or (severely) limiting the
system design.

• Propose a new storage code built on top of RS that makes
use of the theoretical framework of piggybacking to reduce
the amount of data required for reconstruction.

• Propose a novel disk layout technique that ensures that
the savings in network traffic are translated to savings in
disk traffic as well. This technique is general and can also
be used to save disk resources in other storage codes.

• Implement Hitchhiker in HDFS, and test it by deploying
it on a test cluster with 60 machines in a data center
at Facebook and verify the theoretical guarantees of 35%
savings in network and disk traffic during reconstruction.

• Evaluate the read time and compute time metrics of
Hitchhiker on the data-warehouse cluster in production
at Facebook consisting of multiple thousands of machines
with ongoing real-time traffic and workloads, showing a
32% reduction in time to read data and a 36% reduction
in computation time during reconstruction. This
establishes that Hitchhiker can reduce the latency of
degraded reads, and also perform faster recovery from
machine failures and decommissioning.

2. THEORETICAL BACKGROUND
2.1 Reed-Solomon (RS) codes

As discussed briefly in §1, a (k, r) RS code [23] encodes k
data bytes into r parity bytes. The code operates on each set
of k bytes independently and in an identical fashion. Each
such set on which independent and identical operations are
performed by the code is called a stripe. Fig. 2 depicts ten
units of data encoded using a (k = 10, r = 4) RS code that
generates four parity units. Here, a1, . . . , a10 are one byte
each, and so are b1, . . . , b10. Note that the code is operating
independently and identically on the two columns, and hence
each of the two columns constitute a stripe of this code.

We use the notation a = [a1 · · · a10] and b = [b1 · · · b10].
Each of the functions f1, f2, f3 and f4, called parity func-
tions, operate on k = 10 data bytes to generate the r = 4
parities. The output of each of these functions comprises one
byte. These functions are such that one can reconstruct a
from any 10 of the 14 bytes {a1, . . . , a10, f1(a), . . . , f4(a)}.
In general, a (k, r) RS code has r parity functions gener-
ating the r parity bytes such that all the k data bytes are
recoverable from any k of the (k + r) bytes in a stripe.

In the above discussion, each unit is considered indivisible:
all the bytes in a unit share the same fate, i.e., all the bytes
are either available or unavailable. Hence, a reconstruction
operation is always performed on one or more entire units.
A unit may be the smallest granularity of the data handled
by a storage system, or it may be a data chunk that is always
written onto the same disk block.

Reconstruction of any unit is performed in the following
manner. Both the stripes of any 10 of the remaining 13
units are accessed. The RS code guarantees that any desired
data can be obtained from any 10 of the units, allowing
for reconstruction of the requisite unit from this accessed
data. This reconstruction operation in the RS code requires
accessing a total of 20 bytes from the other units.

2.2 Theoretical Framework of Piggybacking
In this section, we review a theoretical framework pro-

posed in [22] for the construction of erasure codes, called the

unit 1

Data
...

unit 10

unit 11

Parity unit 12

unit 13

unit 14

1 byte←−−−→ 1 byte←−−−→

a1 b1
...

...

a10 b10

f1(a) f1(b)

f2(a) f2(b)

f3(a) f3(b)

f4(a) f4(b)︸ ︷︷ ︸
stripe

︸ ︷︷ ︸
stripe

Figure 2: Two stripes of a (k=10, r=
4) Reed-Solomon (RS) code. Ten
units of data (first ten rows) are en-
coded using the RS code to generate
four parity units (last four rows).

1 byte←−−−−−−→ 1 byte←−−−−−−→

a1 b1+g1(a)
...

...

a10 b10+g10(a)

f1(a) f1(b)+g11(a)

f2(a) f2(b)+g12(a)

f3(a) f3(b)+g13(a)

f4(a) f4(b)+g14(a)︸ ︷︷ ︸
1st substripe

︸ ︷︷ ︸
2nd substripe︸ ︷︷ ︸

stripe

Figure 3: The theoreti-
cal framework of Piggyback-
ing [22] for parameters (k=
10, r=4). Each row represents
one unit of data.

1 byte←−−−−−−→ 1 byte←−−−−−−→

a1 b1
...

...

a10 b10

f1(a) f1(b)

f2(a) f2(b)⊕a1⊕a2⊕a3
f3(a) f3(b)⊕a4⊕a5⊕a6
f4(a) f4(b)⊕a7⊕a8⊕a9⊕a10︸ ︷︷ ︸

1st substripe
︸ ︷︷ ︸

2nd substripe︸ ︷︷ ︸
stripe

Figure 4: Hitchhiker-XOR code for
(k=10, r=4). Each row represents
one unit of data.

Piggybacking framework. The framework operates on pairs
of stripes of an RS code (e.g., the pair of columns depicted
in Fig. 2). The framework allows for arbitrary functions of
the data pertaining to one stripe to be added to the second
stripe. This is depicted in Fig. 3 where arbitrary functions
g1, . . . , g14 of the data of the first stripe of the RS code a
are added to the second stripe of the RS code. Each of these
functions outputs values of size one byte.

The Piggybacking framework performs independent and
identical operations on pairs of columns, and hence a stripe
consists of two columns. The constituent columns of a stripe
will be referred to as substripes (see Fig. 3).

Irrespective of the choice of the Piggybacking functions
g1, . . . , g14, the code retains the fault tolerance and the stor-
age efficiency of the underlying RS code. To see the fault
tolerance, recall that RS codes allow for tolerating failure of
any r units. In our setting of (k= 10, r= 4), this amounts
to being able to reconstruct the entire data from any 10 of
the 14 units in that stripe. Now consider the code of Fig. 3,
and consider any 10 units (rows). The first column of Fig. 3
is identical to the first stripe (column) of the RS code of
Fig. 2, which allows for reconstruction of a from these 10
units. Access to a now allows us to compute the values of
the functions g1(a), . . . , g14(a), and subtract the respective
functions out from the second columns of the 10 units un-
der consideration. What remains are some 10 bytes out of
{b1, . . . , b10, f1(b), . . . , f4(b)}. This is identical to the second
stripe (column) of the RS code in Fig. 2, which allows for the
reconstruction of b. It follows that the code of Fig. 3 can also
tolerate the failure of any r = 4 units. We will now argue
storage efficiency. Each function gi outputs one byte of data.
Moreover, the operation of adding this function to the RS
code is performed via “finite field arithmetic”, and hence the
result also comprises precisely one byte.4 Thus the amount
of storage is not increased upon performing these operations.
It is easy to see that each of these arguments extend to any
generic values of the parameters k and r.

The theoretical framework of Piggybacking thus provides
a high degree of flexibility in the design of the erasure code

4We do not employ any special properties of finite field arith-
metic in the paper, and do not assume the reader to be
conversant of the same.

by allowing for an arbitrary choice of the functions gi’s.
When using this framework for constructing codes, this
choice must be made in a manner that imparts desired
features to the erasure code. In this paper we design these
functions to increase the efficiency of reconstruction.

3. HITCHHIKER’S ERASURE CODE
One of the main components of Hitchhiker is the new era-

sure code proposed in this paper. The proposed code reduces
the amount of data required during reconstruction, without
adding any additional storage overhead. Furthermore, the
code can be used for any values of the system parameters
k and r, thus maintaining both (P1) storage optimality and
(P2) generic applicability properties of RS codes. This code
is based on the recently proposed theoretical framework of
piggybacking ([22];§2).

The proposed code has three versions, two of which re-
quire only XOR operations in addition to encoding of the
underlying RS code. The XOR-only feature of these era-
sure codes significantly reduces the computational complex-
ity of decoding, making degraded reads and failure recovery
faster (§6.3). Hitchhiker’s erasure code optimizes only the
reconstruction of data units; reconstruction of parity units
is performed as in RS codes.

The three versions of Hitchhiker’s erasure code are de-
scribed below. Each version is first illustrated with an ex-
ample for the parameters (k = 10, r = 4), followed by the
generalization to arbitrary values of the parameters. With-
out loss of generality, the description of the codes’ oper-
ations considers only a single stripe (comprising two sub-
stripes). Identical operations are performed on each stripe
of the data.

3.1 Hitchhiker-XOR
As compared to a (k = 10, r = 4) RS code, Hitchhiker-

XOR saves 35% in the amount of data required during the
reconstruction of the first six data units and 30% during the
reconstruction of the remaining four data units.

3.1.1 Encoding
The code for (k = 10, r = 4) is shown in Fig. 4. The fig-

ure depicts a single stripe of this code, comprising two sub-

stripes. The encoding operation in this code requires only
XOR operations in addition to the underlying RS encoding.

3.1.2 Reconstruction
First consider reconstructing the first unit. This requires

reconstruction of {a1, b1} from the remaining units.
Hitchhiker-XOR accomplishes this using only 13 bytes
from the other units: the bytes belonging to both the
substripes of units {2, 3} and the bytes belonging to only
the second substripe of units {4, . . . , 12}. These 13 bytes
are {a2, a3, b2, b3 . . . , b10, f1(b), f2(b) ⊕ a1 ⊕ a2 ⊕ a3}. The
decoding procedure comprises three steps. Step 1: observe
that the 10 bytes {b2, . . . , b10, f1(b)} are identical to the
corresponding 10 bytes in the RS encoding of b (Fig. 2).
RS decoding of these 10 bytes gives b (and this includes
one of the desired bytes b1). Step 2: XOR f2(b) with the
second byte (f2(b) ⊕ a1 ⊕ a2 ⊕ a3) of the 12th unit. This
gives (a1 ⊕ a2 ⊕ a3). Step 3: XORing this with a2 and a3
gives a1. Thus both a1 and b1 are reconstructed by using
only 13 bytes, as opposed to 20 bytes in RS codes,
resulting in a saving of 35%.

Let us now consider the reconstruction of any unit i ∈
{1, . . . , 10}, which requires reconstruction of {ai, bi}. We
shall first describe what data (from the other units) is re-
quired for the reconstruction, following which we describe
the decoding operation. Any data unit i ∈ {1, 2, 3} is re-
constructed using the following 13 bytes: the bytes of both
the substripes of units {1, 2, 3}\{i}, and the bytes belong-
ing to only the second substripe from units {4, . . . , 12}.5
Any data unit i ∈ {4, 5, 6} is also reconstructed using only
13 bytes: the bytes belonging to both the substripes of
units {4, 5, 6}\{i}, and the bytes belonging to only the sec-
ond substripe of units {1, 2, 3, 7, . . . , 11, 13}. Any data unit
i ∈ {7, 8, 9, 10} is reconstructed using 14 bytes: both sub-
stripes of units {7, 8, 9, 10}\{i}, and only the second sub-
stripe of units {1, . . . , 6, 11, 14}.
Three-step decoding procedure:
Step 1: The set of 10 bytes {b1, . . . , b10, f1(b)}\{bi} be-
longing to the second substripe of the units {1, . . . , 11}\{i}
is identical to the 10 corresponding encoded bytes in the RS
code. Perform RS decoding of these 10 bytes to get b (which
includes one of the desired bytes bi).
Step 2: In the other bytes accessed, subtract out all com-
ponents that involve b.
Step 3: XOR the resulting bytes to get ai.

Observe that during the reconstruction of any data unit,
the remaining data units do not perform any computation.
In the parlance of coding theory, this property is called
’repair-by-transfer’ [26]. This property carries over to all
three versions of Hitchhiker’s erasure code.

3.2 Hitchhiker-XOR+
Hitchhiker-XOR+ further reduces the amount of data re-

quired for reconstruction as compared to Hitchhiker-XOR,
and employs only additional XOR operations. It however re-
quires the underlying RS code to possess a certain property.
This property, which we term the all-XOR-parity property,
requires at least one parity function of the RS code to be
an XOR of all the data units. That is, a (k, r) RS code
satisfying all-XOR-parity will have one of the r parity bytes
as an XOR of all the k data bytes. For (k = 10, r = 4),
5For any set A and any element i ∈ A, the notation A\{i}
denotes all elements of A except i.

Hitchhiker-XOR+ requires 35% lesser data for reconstruc-
tion of any of the data units as compared to RS codes.

3.2.1 Encoding
The (k = 10, r = 4) Hitchhiker-XOR+ code is shown

in Fig. 5. The Hitchhiker-XOR+ code is obtained by per-
forming one additional XOR operation on top of Hitchhiker-
XOR: in the second parity of Hitchhiker-XOR, the byte of
the second substripe is XORed onto the byte of the first sub-
stripe to give Hitchhiker-XOR+. The underlying RS code in
this example satisfies the all-XOR-parity property with its
second parity function f2 being an XOR of all the inputs.

We now argue that this additional XOR operation does
not violate the fault tolerance level and storage efficiency. To
see fault tolerance, observe that the data of the second par-
ity unit of Hitchhiker-XOR+ can always be converted back
to that under Hitchhiker-XOR by XORing its second sub-
stripe with its first substripe. It follows that the data in any
unit under Hitchhiker-XOR+ is equivalent to the data in the
corresponding unit in Hitchhiker-XOR. The fault tolerance
properties of Hitchhiker-XOR thus carry over to Hitchhiker-
XOR+. Storage efficiency is retained because the additional
XOR operation does not increase the space requirement.

3.2.2 Decoding
The recovery of any unit i requires 13 bytes from the other

units. The choice of the bytes to be accessed depends on the
value of i, and is described below. The bytes required for the
reconstruction of any data unit i ∈ {1, . . . , 6} are identical
to that in Hitchhiker-XOR. Any data unit i ∈ {7, 8, 9} is
reconstructed using the following 13 bytes: the bytes of both
substripes of units {7, 8, 9}\{i}, and the bytes of only the
second substripes of units {1, . . . , 6, 10, 11, 14}. The tenth
unit is also reconstructed using only 13 bytes: the bytes of
only the second substripes of units {1, . . . , 9, 11, 13, 14}, and
the byte of only the first substripe of unit 12. The decoding
procedure that operates on these 13 bytes is identical to the
three-step decoding procedure described in §3.1.2.

3.3 Hitchhiker-nonXOR
We saw that Hitchhiker-XOR+ results in more savings

as compared to Hitchhiker-XOR, but requires the
underlying RS code to have the all-XOR-parity property.
Hitchhiker-nonXOR presented here guarantees the same
savings as Hitchhiker-XOR+ even when the underlying RS
code does not possess the all-XOR-parity property, but at
the cost of additional finite-field arithmetic.
Hitchhiker-nonXOR can thus be built on top of any RS
code. It offers a saving of 35% during the reconstruction of
any data unit.

3.3.1 Encoding
The code for (k = 10, r = 4) is shown in Fig. 6. As

in Hitchhiker-XOR, in the second parity, the first byte is
XORed with the second byte. The final value of the second
parity as shown in Fig. 6 is a consequence of the fact that
f2(a) ⊕ f2(a1, a2, a3, 0, . . . , 0) = f2(0, 0, 0, a4, . . . , a10) due
to the linearity of RS encoding (this is discussed in greater
detail in §5.2.2).

3.3.2 Decoding
Recovery of any unit requires only 13 bytes from other

units. This set of 13 bytes is the same as in Hitchhiker-

unit 1
...

unit 10

unit 11

unit 12

unit 13

unit 14

a1 b1
...

...

a10 b10

f1(a) f1(b)⊕10
i=4ai⊕

⊕10
i=1bi

⊕10
i=1bi⊕

⊕3
i=1ai

f3(a) f3(b)⊕
⊕6

i=4ai

f4(a) f4(b)⊕
⊕9

i=7ai

Figure 5: Hitchhiker-XOR+ for (k=10,r=4).
Parity 2 of the underlying RS code is all-XOR.

a1 b1
...

...

a10 b10

f1(a) f1(b)

f2(0,0,0,a4,...,a10)⊕f2(b) f2(b)⊕f2(a1,a2,a3,0,...,0)

f3(a) f3(b)⊕f2(0,0,0,a4,a5,a6,0,...,0)

f4(a) f4(b)⊕f2(0,...,0,a7,a8,a9,0)

Figure 6: Hitchhiker-nonXOR code for (k=10,r=4). This
can be built on any RS code. Each row is one unit of data.

XOR+. The decoding operation is a three-step procedure.
The first two steps are identical to the first two steps of the
decoding procedure of Hitchhiker-XOR described at the end
of §3.1.2. The third step is slightly different, and requires
an RS decoding operation (for units 1 to 9), as described
below.

During reconstruction of any unit i ∈ {1, 2, 3}, the
output of the second step is the set of three bytes
{a1, a2, a3, f1(a1, a2, a3, 0, . . . , 0)}\{ai}. This is equivalent
to having some 10 of the 11 bytes of the set
{a1, a2, a3, 0, . . . , 0, f1(a1, a2, a3, 0, . . . , 0)}. Now, this set of
11 bytes is equal to the set of first 11 bytes of the RS
encoding of {a1, a2, a3, 0, . . . , 0}. An RS decoding
operation thus gives {a1, a2, a3} which contains the desired
byte ai. Recovery of any other unit i ∈ {4, . . . , 9} follows
along similar lines.

During the reconstruction of unit 10, the output of the
second step is f1(0, . . . , 0, a10). Hence the third step involves
only a single (finite-field) multiplication operation.

3.4 Generalization to any (k, r)

The encoding and decoding procedures for the general
case follow along similar lines as the examples discussed
above, and are formally described in the Appendix. In each
of the three versions, the amount of data required for re-
construction is reduced by 25% to 45% as compared to RS
codes, depending on the values of the parameters k and
r. For instance, (k = 6, r = 3) provides a saving of 25%
with Hitchhiker-XOR and 34% with Hitchhiker-XOR+ and
Hitchhiker-nonXOR; (k = 20, r = 5) provides a savings
of 37.5% with Hitchhiker-XOR and 40% with Hitchhiker-
XOR+ and Hitchhiker-nonXOR.

4. “HOP-AND-COUPLE” FOR DISK EFFI-
CIENCY

The description of the codes in §2 and §3 considers only
two bytes per data unit. We now move on to consider the
more realistic scenario where each of the k data units to
be encoded is larger (than two bytes). In the encoding pro-
cess, these k data units are first partitioned into stripes, and
identical encoding operations are performed on each of the
stripes. The RS code considers one byte each from the k
data units as a stripe. On the other hand, Hitchhiker’s era-
sure code has two substripes within a stripe (§3) and hence
couples pairs of bytes within each of the k data units to form
the substripes of a stripe. We will shortly see that the choice
of the bytes to be coupled plays a crucial role in determining
the efficiency of disk reads during reconstruction.

A natural strategy for forming the stripes for Hitchhiker’s
erasure code is to couple adjacent bytes within each unit,
with the first stripe comprising the first two bytes of each of
the units, the second stripe comprising the next two bytes,
and so on. Fig. 7a depicts such a method of coupling for
(k = 10, r = 4). In the figure, the bytes accessed during
the reconstruction of the first data unit are shaded. This
method of coupling, however, results in highly discontigu-
ous reads during reconstruction: alternate bytes are read
from units 4 to 12 as shown in the figure. This high degree
of discontinuity is detrimental to disk read performance, and
forfeits the potential savings in disk IO during data recon-
struction. The issue of discontiguous reads due to coupling
of adjacent bytes is not limited to the reconstruction of the
first data unit - it arises during reconstruction of any of the
data units.

In order to ensure that the savings offered by Hitchhiker’s
erasure codes in the amount of data read during reconstruc-
tion are effectively translated to gains in disk read efficiency,
we propose a coupling technique for forming stripes that we
call hop-and-couple. This technique aims to minimize the
degree of discontinuity in disk reads during the reconstruc-
tion of data units. The hop-and-couple technique couples a
byte with another byte within the same unit that is a cer-
tain distance ahead (with respect to the natural ordering of
bytes within a unit), i.e., it couples bytes after “hopping” a
certain distance. We term this distance as the hop-length.
This technique is illustrated in Fig. 7b, where the hop-length
is chosen to be half the size of a unit.

The hop-length may be chosen to be any number that di-
vides B

2
, where B denotes the size of each unit. This condi-

tion ensures that all the bytes in the unit are indeed coupled.
Coupling adjacent bytes (e.g., Fig. 7a) is a degenerate case
where the hop-length equals 1. The hop-length significantly
affects the contiguity of the data read during reconstruction
of the data units, in that the data is read as contiguous
chunks of size equal to the hop-length. For Hitchhiker’s era-
sure codes, a hop-length of B

2
minimizes the total number

of discontiguous reads required during the reconstruction of
data units. While higher values of hop-length reduces the
number of discontiguous reads, it results in bytes further
apart being coupled to form stripes. This is a trade-off to
be considered when choosing the value of the hop-length,
and is discussed further in §7.

We note that the reconstruction operation under RS codes
reads the entire data from k of the units, and hence trivially,
the reads are contiguous. On the other hand, any erasure
code that attempts to make reconstruction more efficient
by downloading partial data from the units (e.g., [11, 15,
19, 21, 26, 27, 29]) will encounter the issue of discontiguous

…

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

coupled bytes
(encoded together)

unit 1
unit 2

unit 10

unit 14

unit 3

…

unit 4

unit 12
unit 13

…

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

hop length

unit 1
unit 2

unit 10
unit 11

unit 14

…

data
units

parity
units

unit 3

…

unit 4

unit 12
unit 13

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1 byte

coupled bytes
(encoded together)

(a) coupling adjacent bytes to form stripes (b) hop-and-couple

. . .

. . .
. . .

unit 11

data
units

parity
units

Figure 7: Two ways of coupling bytes to form stripes for Hitchhiker’s erasure code. The shaded bytes are
read and downloaded for the reconstruction of the first unit. While both methods require the same amount of
data to be read, the reading is discontiguous in (a), while (b) ensures that the data to be read is contiguous.

reads, as in Hitchhiker’s erasure code. Any such erasure
code would have multiple (say, α) substripes in every stripe
and would read a subset of these substripes from each of the
units during reconstruction. The hop-and-couple technique
can be applied to any such erasure code to translate the
network savings to disk savings as well. The hop-length can
be chosen to be any number that divides B

α
. As in the case

of Hitchhiker’s erasure codes (where α = 2), this condition
ensures that all the bytes are indeed coupled. If the bytes to
be coupled are chosen with hop-length equal to B/α, then
the hop-and-couple technique would ensure that all the bytes
of a substripe are contiguous within any unit. Reading a
substripe from a unit would then result in a contiguous disk
read, thereby minimizing the total degree of discontiguity in
disk reads during reconstruction.

5. IMPLEMENTATION
We have implemented Hitchhiker in the Hadoop Dis-

tributed File System (HDFS). HDFS-RAID [1] is a module
in HDFS that deals with erasure codes and is based on [8].
This module forms the basis for the erasure-coded storage
system employed in the data-warehouse cluster at Facebook,
and is open sourced under Apache. HDFS-RAID deployed
at Facebook is based on RS codes, and we will refer to this
system as RS-based HDFS-RAID. Hitchhiker builds on top
of RS codes, and the present implementation uses the RS
encoder and decoder modules of RS-based HDFS-RAID as
its building blocks.

5.1 Brief description of HDFS-RAID
HDFS stores each file by dividing it into blocks of a cer-

tain size. By default, the size of each block is 256MB, and
this is also the value that is typically used in practice. In
HDFS, three replicas of each block are stored in the system
by default. HDFS-RAID offers RS codes as an alternative
to replication for maintaining redundancy.

The relevant modules of HDFS-RAID and the execution
flows for relevant operations are depicted in Fig. 8. The
RAID-Node manages all operations related to the use of era-
sure codes in HDFS. It has a list of files that are to be con-
verted from the replicated state to the erasure-coded state,
and periodically performs encoding of these files via MapRe-
duce jobs. Sets of k blocks from these files are encoded to

generate r parity blocks each.6 Once the r parity blocks of a
set are successfully written into the file system, the replicas
of the k data blocks of that set are deleted. The MapRe-
duce job calls the Encoder of the erasure code to perform
encoding. The Encoder uses the Parallel-Reader to read the
data from the k blocks that are to be encoded. The Parallel-
Reader opens k parallel streams, issues HDFS read requests
for these blocks, and puts the data read from each stream
into different buffers. Typically, the buffers are 1MB each.
When one buffer-sized amount of data is read from each of
the k blocks, the Encoder performs the computations per-
taining to the encoding operation. This process is repeated
until the entire data from the k blocks are encoded.

The RAID-Node also handles recovery operations, i.e., re-
constructing missing blocks in order to maintain the relia-
bility of the system. The RAID-Node has a list of blocks
that are missing and need to be recovered. It periodically
goes through this list and reconstructs the blocks by ex-
ecuting a MapReduce job. The MapReduce job calls the
Decoder of the erasure code to perform the reconstruction
operation. The Decoder uses the Parallel-Reader to read
the data required for reconstruction. For an RS code, data
from k blocks belonging to the same set as that of the block
under reconstruction is read in parallel. As in the encoding
process, data from the k blocks are read into buffers, and
the computations are performed once one buffer size amount
of data is read from each of the k blocks. This is repeated
until the entire block is reconstructed.

HDFS directs any request for a degraded read (i.e., a read
request for a block that is unavailable) to the RAID File
System. The requested block is reconstructed on the fly
by the RAID-Node via a MapReduce job. The execution
of this reconstruction operation is identical to that in the
reconstruction process discussed above.

5.2 Hitchhiker in HDFS
We implemented Hitchhiker in HDFS making use of the

new erasure code (§3) and the hop-and-couple technique
(§4) proposed in this paper. We implemented all three
versions of the proposed storage code: Hitchhiker-XOR,
Hitchhiker-XOR+, and Hitchhiker-nonXOR. This required
implementing new Encoder, Decoder and Parallel-Reader
6In the context of HDFS, the term block corresponds to a
unit and we will use these terms interchangeably.

RAID%File%System%

Erasure%code%
Encoder%

Erasure%code%
Decoder%

Parallel%Reader%

HDFS-RAID

HDFS

RAID%Node%

Degraded read
Recovery
Encoding

Legend

Figure 8: Relevant modules in HDFS-RAID. The
execution flow for encoding, degraded reads and re-
construction operations are shown. Hitchhiker is
implemented in the shaded modules.

modules (shaded in Fig. 8), entailing 7k lines of code. The
implementation details described below pertain to
parameters (k = 10, r = 4) which are the default
parameters in HDFS. We emphasize that, however,
Hitchhiker is generic and supports all values of the
parameters k and r.

5.2.1 Hitchhiker-XOR and Hitchhiker-XOR+
The implementation of these two versions of Hitchhiker

is exactly as described in §3.1 and §3.2 respectively.

5.2.2 Hitchhiker-nonXOR
Hitchhiker-nonXOR requires finite field arithmetic oper-

ations to be performed in addition to the operations per-
formed for the underlying RS code. We now describe how
our implementation executes these operations.

Encoder: As seen in Fig. 6, in addition to the
underlying RS code, the Encoder needs to compute the
functions f2(a1,a2,a3,0...,0), f2(0,...,0,a4,a5,a6,0...,0), and
f2(0,...,0,a7,a8,a9,0), where f2 is the second parity function
of the RS code. One way to perform these computations is
to simply employ the existing RS encoder. This approach,
however, involves computations that are superfluous to our
purpose: The RS encoder uses an algorithm based on
polynomial computations [16] that inherently computes all
the four parities f1(x), f2(x), f3(x), and f4(x) for any
given input x. On the other hand, we require only one of
the four parity functions for each of the three distinct
inputs (a1,a2,a3,0...,0), (0,...,0,a4,a5,a6,0...,0) and
(0,...,0,a7,a8,a9,0). Furthermore, these inputs are sparse,
i.e., most of the input bytes are zeros.

Our Encoder implementation takes a different approach,
exploiting the fact that RS codes have the property of lin-
earity, i.e., each of the parity bytes of an RS code can be
written as a linear combination of the data bytes. Any par-
ity function f` can thus be specified as f`(x) =

⊕10
j=1 c`,jxj

for some constants c`,1, . . . , c`,10. We first inferred the values
of these constants for each of the parity functions (from the
existing “black-box” RS encoder) in the following manner.
We first fed the input [1 0 · · · 0] to the encoder. This gives
the constants c1,1, . . . , c4,1 as the values of the four parities
respectively in the output from the encoder. The values of
the other constants were obtained in a similar manner by
feeding different unit vectors as inputs to the encoder. Note
that obtaining the values of these constants from the “black-
box” RS encoder is a one-time task. With these constants,

the encoder computes the desired functions simply as linear
combinations of the given data units (for example, we com-
pute f2(a1, a2, a3, 0 . . . , 0) simply as c2,1a1⊕c2,2a2⊕c2,3a3).

Decoder: As seen in §3.3, during reconstruction of any
of the first nine units, the first byte is reconstructed by per-
forming an RS decoding of the data obtained in the inter-
mediate step. One straightforward way to implement this is
to use the existing RS decoder for this operation. However,
we take a different route towards a computationally cheaper
option. We make use of two facts: (a) Observe from the
description of the reconstruction process (§3.3) that for this
RS decoding operation the data is known to be ‘sparse’,
i.e., contains many zeros, and (b) the RS code has the lin-
earity property, and furthermore, any linear combination of
zero-valued data is zero. Motivated by this observation, our
Decoder simply inverts this sparse linear combination to re-
construct the first substripe in a more efficient manner.

5.2.3 Hop-and-couple
Hitchhiker uses the proposed hop-and-couple technique to

couple bytes during encoding. We use a hop-length of half
a block since the granularity of data read requests and re-
covery in HDFS is typically an entire block. As discussed
in §4, this choice of the hop-length minimizes the number of
discontiguous reads. However, the implementation can be
easily extended to other hop-lengths as well.

When the block size is larger than the buffer size, coupling
bytes that are half a block apart requires reading data from
two different locations within a block. In Hitchhiker, this is
handled by the Parallel-Reader.

5.2.4 Data read patterns during reconstruction
During reconstruction in Hitchhiker, the choice of the

blocks from which data is read, the seek locations, and the
amount of data read are determined by the identity of the
block being reconstructed. Since Hitchhiker uses the hop-
and-couple technique for coupling bytes to form stripes dur-
ing encoding, the reads to be performed during reconstruc-
tion are always contiguous within any block (§4).

For reconstruction of any of the first nine data blocks in
Hitchhiker-XOR+ or Hitchhiker-nonXOR or for reconstruc-
tion of any of the first six data blocks in Hitchhiker-XOR,
Hitchhiker reads and downloads two full blocks (i.e., both
substripes) and nine half blocks (only the second substripes).
For example, the read patterns for decoding blocks 1 and 4
are as shown in Fig. 9a and 9b respectively. For reconstruc-
tion of any of the last four data blocks in Hitchhiker-XOR,
Hitchhiker reads and downloads three full blocks (both sub-
stripes) and nine half blocks (only the second substripes).
For recovery of the tenth data block in Hitchhiker-XOR+ or
Hitchhiker-nonXOR, Hitchhiker reads half a block each from
the remaining thirteen blocks. This read pattern is shown
in Fig. 9c.

6. EVALUATION

6.1 Evaluation Setup and Metrics
We evaluate Hitchhiker using two HDFS clusters at Face-

book: (i) the data-warehouse cluster in production com-
prising multiple thousands of machines, with ongoing real-
time traffic and workloads, and (ii) a smaller test cluster
comprising around 60 machines. In both the clusters, ma-
chines are connected to a rack switch through 1Gb/s Ether-

block 10
block 11

block 14
256 MB

block 13
block 12

block 9
block 8
block 7
block 6
block 5
block 4

block 2
block 1

block 3

256 MB 256 MB
(a)  block 1 (b) block 4 (c) block 10

data

parity

Figure 9: Data read patterns during reconstruc-
tion of blocks 1, 4 and 10 in Hitchhiker-XOR+: the
shaded bytes are read and downloaded.

net links. The higher levels of the network tree architecture
have 8Gb/s Ethernet connections.

We compare Hitchhiker and RS-based HDFS-RAID in
terms of the time taken for computations during encoding
and reconstruction, the time taken to read the requisite data
during reconstruction, and the amount of data that is read
and transferred during reconstruction.7 Note that in par-
ticular, the computation and the data read times during re-
construction are vital since they determine the performance
of the system during degraded reads and recovery.

6.2 Evaluation Methodology
The encoding and reconstruction operations in HDFS-

RAID, including those for degraded reads and recovery, are
executed as MapReduce jobs. The data-warehouse cluster
does not make any distinction between the MapReduce jobs
fired by the RAID-Node and those fired by a user. This
allows us to perform evaluations of the timing metrics for
encoding, recovery, and degraded read operations by run-
ning them as MapReduce jobs on the production cluster.
Thus evaluation of all the timing metrics is performed in
the presence of real-time production traffic and workloads.

We deployed Hitchhiker on a 60-machine test cluster in
one of the data centers at Facebook, and evaluated the end-
to-end functionality of the system. Tests on this cluster ver-
ified that savings in network and disk traffic during recon-
struction are as guaranteed in theory by Hitchhiker’s erasure
code.

For all the evaluations, we consider the encoding param-
eters (k = 10, r = 4), a block size of 256MB (unless men-
tioned otherwise), and a buffer size of 1MB. These are the
default parameters in HDFS-RAID. Moreover, these are the
parameters employed in the data-warehouse cluster in pro-
duction at Facebook to store multiple tens of Petabytes.

In the evaluations, we show results of the timing metrics
for one buffer size. This is sufficient since the same opera-
tions are performed repeatedly on one buffer size amount of
data until an entire block is processed.

6.3 Computation time for degraded reads &
recovery

Fig. 10 shows the comparison of computation time dur-
ing data reconstruction (from 200 runs each). Note that
(i) in both Hitchhiker-XOR+ and Hitchhiker-nonXOR, re-
construction of any of the first nine data blocks entails same
amount of computation, (ii) reconstruction of any data block
7Both systems read the same data during encoding, and are
hence trivially identical on this metric.

Figure 10: A box plot comparing the computation
time for reconstruction of 1MB (buffer size) from
200 runs each on Facebook’s data-warehouse clus-
ter with real-time production traffic and workloads.
(HH = Hitchhiker.)

in Hitchhiker-XOR is almost identical to reconstruction of
block 1 in Hitchhiker-XOR+. Hence, for brevity, no separate
measurements are shown.

We can see that Hitchhiker’s erasure codes perform
faster reconstruction than RS-based HDFS-RAID for any
data block. This is because (recall from §3) the
reconstruction operation in Hitchhiker requires performing
the resource intensive RS decoding only for half the
substripes as compared to RS-based HDFS-RAID. In
Hitchhiker, the data in the other half of substripes is
reconstructed by performing either a few XOR operations
(under Hitchhiker-XOR and Hitchhiker-XOR+) or a few
finite-field operations (under Hitchhiker-nonXOR). One
can also see that Hitchhiker-XOR+ has 25% lower
computation time during reconstruction as compared to
Hitchhiker-nonXOR for the first nine data blocks; for block
10, the time is almost identical in Hitchhiker-XOR+ and
Hitchhiker-nonXOR (as expected from theory (§3)).

6.4 Read time for degraded reads & recovery
Fig. 11a and Fig. 11b respectively compare the median

and the 95th percentile of the read times during reconstruc-
tion for three different block sizes: 4MB, 64MB, and 256MB
in Hitchhiker-XOR+. The read patterns for reconstruction
of any of the first nine blocks are identical (§3.2).

In the median read times for reconstruction of blocks 1-9
and block 10 respectively, in comparison to RS-based HDFS-
RAID, we observed a reduction of 41.4% and 41% respec-
tively for 4MB block size, 27.7% and 42.5% for 64MB block
size, and 31.8% and 36.5% for 256MB block size. For the
95th percentile of the read time we observed a reduction of
35.4% and 48.8% for 4MB, 30.5% and 29.9% for 64MB, and
30.2% and 31.2% for 256MB block sizes.

The read pattern of Hitchhiker-nonXOR is identical to
Hitchhiker-XOR+, while that of Hitchhiker-XOR is the
same for the first six blocks and almost the same for the
remaining four blocks. Hence for brevity, we plot the
statistics only for Hitchhiker-XOR+.

Although Hitchhiker reads data from more machines as
compared to RS-based HDFS-RAID, we see that it gives a
superior performance in terms of read latency during recon-
struction. The reason is that Hitchhiker reads only half a
block size from most of the machines it connects to (recall
from §5) whereas RS-based HDFS-RAID reads entire blocks.

(a) Median

(b) 95th percentile

Figure 11: Total read time (in seconds) during re-
construction from 200 runs each on Facebook’s data-
warehouse cluster with real-time production traffic
and workloads. (HH = Hitchhiker.)

6.5 Computation time for encoding
Fig. 12 compares the computation time for the encoding

operation. Hitchhiker entails higher computational over-
heads during encoding as compared to RS-based systems,
and Hitchhiker-XOR+ and Hitchhiker-XOR are faster than
the Hitchhiker-nonXOR. This is expected since Hitchhiker’s
encoder performs computations in addition to those of RS
encoding. §7 discusses the tradeoffs between higher encod-
ing time and savings in other metrics.

6.6 Statistics of single block reconstruction
Hitchhiker optimizes data reconstruction in scenarios

when only one block of a stripe is unavailable. If multiple
blocks belonging to a stripe are unavailable, Hitchhiker
performs reconstruction in a manner identical to RS-based
HDFS-RAID, by reading and downloading 10 entire blocks.
We collected measurements of the number of missing
blocks per stripe across six months in the data-warehouse
cluster in production at Facebook, which stores multiple
Petabytes of RS-coded data. We observed that among all
the stripes that had at least one block to be reconstructed,
98.08% of them had exactly one such block missing, 1.87%
had two blocks missing, and the number of stripes with
three or more such blocks was 0.05%. The measurements
thus reveal single block reconstructions to be by far the
most common scenario in the system at hand.

One might alternatively think of lazily performing recon-
struction by waiting for multiple blocks in a stripe to fail and
then reconstructing them all at once, in order to amortize
the cost of disk reads and download during reconstruction.
However, such a waiting approach may not be feasible when
read performance is key: a failed systematic block must be
repaired quickly to serve future read requests. Furthermore,
degraded reads are performed on a single block in real time,
and there is no equivalent of waiting for more failures.

Figure 12: A box plot comparing the computa-
tion time for encoding of 1MB (buffer size) from
200 runs each on Facebook’s data-warehouse clus-
ter with real-time production traffic and workloads.
(HH = Hitchhiker.)

6.7 Deployment and testing
We deployed HDFS-RAID with both Hitchhiker and the

RS-based system on a 60-machine test cluster at Facebook
in order to verify Hitchhiker’s end-to-end functionality. We
created multiple files with a block size of 256MB, and
encoded them separately using Hitchhiker and RS-based
HDFS-RAID. The block placement policy of HDFS-RAID
ensures that the 14 blocks of an encoded stripe are all
stored on different machines. We then forced some of these
machines to become unavailable by stopping HDFS related
scripts running on them, and collected the logs pertaining
to the MapReduce jobs that performed the reconstruction
operations. We verified that all reconstruction operations
were successful. We also confirmed that the amount of data
read and downloaded in Hitchhiker was 35% lower than in
RS-based HDFS-RAID, as guaranteed by the proposed
codes. We do not perform timing measurements on the
test cluster since the network traffic and the workload on
these machines do not reflect the real (production)
scenario. Instead, we evaluated these metrics directly on
the production cluster itself (as discussed earlier).

7. DISCUSSION ON TRADE-OFFS
a) Three versions of the code: During encoding and recon-

struction, Hitchhiker-XOR requires performing only XOR
operations in addition to the operations of the underlying RS
code. Hitchhiker-XOR+ allows for more efficient reconstruc-
tion in terms of network and disk resources in comparison
to Hitchhiker-XOR, while still using only XOR operations
in addition to the RS code’s operations. Hitchhiker-XOR+,
however, requires the underlying RS code to satisfy the all-
XOR-parity property (§3.2). Hitchhiker-nonXOR provides
the same efficiency in reconstruction as Hitchhiker-XOR+
without imposing the all-XOR-parity requirement on the RS
code, but entails additional finite-field arithmetic during en-
coding and reconstruction.

b) Connecting to more machines during reconstruction:
Reconstruction in RS-coded systems requires connecting to
exactly k machines, whereas Hitchhiker entails connecting
to more than k machines. In certain systems, depending on
the setting at hand, this may lead to an increase in the read
latency during reconstruction. However, in our experiments
on the production data-warehouse cluster at Facebook, we
saw no such increase in read latency. On the contrary, we

consistently observed a significant reduction in the latency
due to the significantly lower amounts of data required to
be read and downloaded in Hitchhiker (see Fig. 11).

c) Option of operating as an RS-based system: The stor-
age overheads and fault tolerance of Hitchhiker are identical
to RS-based systems. Moreover, a reconstruction operation
in Hitchhiker can alternatively be performed as in RS-based
systems by downloading any k entire blocks. Hitchhiker thus
provides an option to operate as an RS-based system when
necessary, e.g., when increased connectivity during recon-
struction is not desired. This feature also ensures Hitch-
hiker’s compatibility with other alternative solutions pro-
posed outside the erasure-coding component (e.g., [3,5,18]).

d) Choice of hop-length: As discussed in §4, a larger hop-
length leads to more contiguous reads, but requires coupling
of bytes that are further apart. Recall that reconstructing
any byte also necessitates reconstructing its coupled byte.
In a scenario where only a part of a block may need to
be reconstructed, all the bytes that are coupled with the
bytes of this part must also be reconstructed even if they
are not required. A lower hop-length reduces the amount
such frivolous reconstructions.

e) Higher encoding time vs. improvement in other met-
rics: Hitchhiker trades off a higher encoding time for im-
provement along other dimensions (Table 1). Encoding of
raw data into erasure-coded data is a one time task, and
is often executed as a background job. On the other hand,
reconstruction operations are performed repeatedly, and de-
graded read requests must be served in real time. For these
reasons, the gains in terms of other metrics achieved by
Hitchhiker outweigh the additional encoding cost in the sys-
tems we consider.

8. RELATED WORK
Erasure codes have many pros and cons over

replication [25, 31]. The most attractive feature of erasure
codes is that while replication entails a minimum of 2×
storage redundancy, erasure codes can support significantly
smaller storage overheads for the same levels of reliability.
Many storage systems thus employ erasure codes for
various application scenarios [2, 3, 9, 24]. Traditional
erasure codes however face the problem of inefficient
reconstruction. To this end, several works (e.g., [3, 5, 18])
propose system level solutions that can be employed to
reduce data transfer during reconstruction operations, such
as caching the data read during reconstruction, batching
multiple recovery operations in a stripe, or delaying the
recovery operations. While these solutions consider the
erasure code as a black-box, Hitchhiker modifies this black
box, employing the new erasure code of this paper to
address the reconstruction problem. Note that Hitchhiker
retains all the properties of the underlying RS-based
system. Hence any solution proposed outside of the
erasure-code module can be employed in conjunction with
Hitchhiker to benefit from both the solutions.

The problem of reducing the amount of data accessed dur-
ing reconstruction through the design of new erasure codes
has received much attention in the recent past [7, 11, 12, 17,
19, 21, 22, 27, 30, 32]. However, all existing practical solu-
tions either require the inclusion of additional parity units,
thereby increasing the storage overheads [7,12,17,21,27], or
are applicable in very limited settings [11,15,30,32].

The idea of connecting to more machines and downloading
smaller amounts of data from each node was proposed in [6]
as a part of the ‘regenerating codes model’. However, all
existing practical constructions of regenerating codes neces-
sitate a high storage redundancy in the system, e.g., codes
in [21] require r ≥ (k − 1). Rotated-RS [15] is another class
of codes proposed for the same purpose. However, it sup-
ports at most 3 parities, and moreover, its fault tolerance
is established via a computer search. Recently, optimized
recovery algorithms [30, 32] have been proposed for EVEN-
ODD and RDP codes, but they support only 2 parities. For
the parameters where [15, 30, 32] exist, Hitchhiker performs
at least as good, while also supporting an arbitrary number
of parities. An erasure-coded storage system which also op-
timizes for data download during reconstruction is presented
in [11]. While this system achieves minimum possible down-
load during reconstruction, it supports only 2 parities. Fur-
thermore, [11] requires decode operation to be performed for
every read request since it cannot reconstruct an identical
version of a failed unit but only reconstruct a functionally
equivalent version.

The systems proposed in [7,12,17] employ another class of
codes called local-repair codes to reduce the number blocks
accessed during reconstruction. This, in turn, also reduces
the total amount of data read and downloaded during re-
construction. However, these codes necessitate addition of
at least 25% to 50% more parity units to the code, thereby
increasing the storage space requirements.

9. CONCLUSION
We have introduced a systematically-designed, new and

novel storage system called Hitchhiker that “rides” on top
of existing Reed-Solomon based erasure-coded systems.
Hitchhiker retains the key benefits of RS-coded systems
over replication-based counterparts, namely that of (i)
optimal storage space needed for a targeted level of
reliability, as well as (ii) fine-grained flexibility in the
design choice for the system. We show how Hitchhiker can
additionally reduce both network traffic and disk traffic by
25% to 45% over that of RS-coded systems during
reconstruction of missing or otherwise unavailable data.
Further, our implementation and evaluation of Hitchhiker
on two HDFS clusters at Facebook also reveals savings of
36% in the computation time and 32% in the time taken to
read data during reconstruction.

As we look to scale next-generation data centers and cloud
storage systems, a primary challenge is that of sustaining
this massive growth in the volume of data needing to be
stored and retrieved reliably and efficiently. Replication of
data, while ideal from the viewpoint of flexible access and
efficient reconstruction when faced with missing or unavail-
able nodes, is clearly not a sustainable option for all but a
small fraction of the massive volume of data needing to be
stored. Specifically, replication of data costs a redundancy
factor of at least 2×. Not surprisingly, therefore, RS-coded
systems, which can offer near-arbitrary fine-grained redun-
dancy factors between 1× and 2×, have received more trac-
tion in data centers, despite their shortcomings with regard
to large network and disk traffic requirements when faced
with reconstruction of missing or unavailable data. This un-
derscores the importance of Hitchhiker which aims at getting
the best of both worlds in a systematic and scalable manner.

10. REFERENCES
[1] HDFS-RAID.

http://wiki.apache.org/hadoop/HDFS-RAID.
[2] Seamless reliability.

http://www.cleversafe.com/overview/reliable, Feb. 2014.
[3] R. Bhagwan, K. Tati, Y. C. Cheng, S. Savage, and

G. Voelker. Total recall: System support for automated
availability management. In NSDI, 2004.

[4] D. Borthakur. HDFS and Erasure Codes (HDFS-RAID).
http://hadoopblog.blogspot.com/2009/08/
hdfs-and-erasure-codes-hdfs-raid.html, Aug. 2009.

[5] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit,
H. Weatherspoon, M. F. Kaashoek, J. Kubiatowicz, and
R. Morris. Efficient replica maintenance for distributed
storage systems. In NSDI, 2006.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and
K. Ramchandran. Network coding for distributed storage
systems. IEEE Trans. Inf. Th., Sept. 2010.

[7] K. Esmaili, L. Pamies-Juarez, and A. Datta. CORE:
Cross-object redundancy for efficient data repair in storage
systems. In IEEE International Conf. on Big data, 2013.

[8] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson.
Diskreduce: RAID for data-intensive scalable computing.
In Proceedings of the 4th Annual Workshop on Petascale
Data Storage, pages 6–10. ACM, 2009.

[9] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson.
Diskreduce: RAID for data-intensive scalable computing.
In ACM Workshop on Petascale Data Storage, 2009.

[10] S. Ghemawat, H. Gobioff, and S. Leung. The Google file
system. In ACM SOSP, 2003.

[11] Y. Hu, H. C. Chen, P. P. Lee, and Y. Tang. Nccloud:
Applying network coding for the storage repair in a
cloud-of-clouds. In USENIX FAST, 2012.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding in
Windows Azure storage. In USENIX ATC, 2012.

[13] S. Jiekak, A. Kermarrec, N. Scouarnec, G. Straub, and
A. Van Kempen. Regenerating codes: A system
perspective. arXiv:1204.5028, 2012.

[14] G. Kamath, N. Silberstein, N. Prakash, A. Rawat,
V. Lalitha, O. Koyluoglu, P. Kumar, and S. Vishwanath.
Explicit MBR all-symbol locality codes. In ISIT, 2013.

[15] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang.
Rethinking erasure codes for cloud file systems: minimizing
I/O for recovery and degraded reads. In FAST, 2012.

[16] S. Lin and D. Costello. Error control coding. Prentice-hall
Englewood Cliffs, 2004.

[17] S. Mahesh, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring elephants:
Novel erasure codes for big data. In VLDB, 2013.

[18] J. Mickens and B. Noble. Exploiting availability prediction
in distributed systems. In NSDI, 2006.

[19] D. Papailiopoulos, A. Dimakis, and V. Cadambe. Repair
optimal erasure codes through hadamard designs. IEEE
Trans. Inf. Th., May 2013.

[20] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran. A solution to the network challenges
of data recovery in erasure-coded distributed storage
systems: A study on the Facebook warehouse cluster. In
Proc. USENIX HotStorage, June 2013.

[21] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal
exact-regenerating codes for the MSR and MBR points via
a product-matrix construction. IEEE Trans. Inf. Th., 2011.

[22] K. V. Rashmi, N. B. Shah, and K. Ramchandran. A
piggybacking design framework for read-and
download-efficient distributed storage codes. In IEEE
International Symposium on Information Theory, 2013.

[23] I. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of SIAM, 1960.

[24] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: The OceanStore prototype. In
USENIX FAST, 2003.

[25] R. Rodrigues and B. Liskov. High availability in DHTs:
Erasure coding vs. replication. In IPTPS, 2005.

[26] N. Shah, K. Rashmi, P. Kumar, and K. Ramchandran.
Distributed storage codes with repair-by-transfer and
non-achievability of interior points on the
storage-bandwidth tradeoff. IEEE Trans. Inf. Theory, 2012.

[27] N. B. Shah. On minimizing data-read and download for

storage-node recovery. IEEE Communications Letters,
2013.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. In IEEE MSST, 2010.

[29] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array
codes with optimal rebuilding. IEEE Trans. Inf. Th., 2013.

[30] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for array
codes in distributed storage systems. In ACTEMT, 2010.

[31] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In IPTPS, 2002.

[32] L. Xiang, Y. Xu, J. Lui, and Q. Chang. Optimal recovery
of single disk failure in RDP code storage systems. In ACM
SIGMETRICS, 2010.

APPENDIX
Hitchhiker-XOR: The encoding procedure of Hitchhiker-XOR
first divides the k data units into (r − 1) disjoint sets of roughly
equal sizes. For instance, in the (k=10, r=4) code of Fig. 4, the
three sets are units {1, 2, 3}, units {4, 5, 6} and units {7, 8, 9, 10}.
For each set j ∈ {1, . . . , r − 1}, the bytes of the first substripe of
all units in set j are XORed, and the resultant is XORed with
the second substripe of the (j + 1)th parity unit.

Reconstruction of a data unit belonging to any set j requires
the bytes of both the substripes of the other data units in set j,
only the second byte of all other data units, and the second bytes
of the first and (j + 1)th parity units. The decoding procedure
for reconstruction of any data unit i is executed in three steps:
Step 1 : The k bytes {b1, . . . , bk, f1(b)}\{bi} belonging to the
second substripe of the units {1, . . . , k + 1}\{i} are identical to
the k corresponding encoded bytes in the underlying RS code.
Perform RS decoding of these k bytes to get b (which includes
one of the desired bytes bi).
Step 2 : In the other bytes accessed, subtract out all components
that involve b.
Step 3 : XOR the resulting bytes to get ai.

If the size of a set is s, reconstruction of any data unit in this
set requires (k + s) bytes (as compared to 2k under RS).

Hitchhiker-XOR+: Assume without loss of generality that,
in the underlying RS code, the all-XOR property is satisfied by
the second parity. The encoding procedure first selects a number
` ∈ {0, . . . , k} and partitions the first (k − `) data units into
(r − 1) sets of roughly equal sizes. On these (k − `) data units
and r parity units, it performs an encoding identical to that in
Hitchhiker-XOR. Next, in the second parity unit, the byte of the
second substripe is XORed onto the byte of the first substripe.

Reconstruction of any of the first (k−`) data units is performed
in a manner identical to that in Hitchhiker-XOR. Reconstruction
of any of the last ` data units requires the byte of the first sub-
stripe of the second parity and the bytes of the second substripes
of all other units. The decoding procedure remains identical to
the three-step procedure of Hitchhiker-XOR stated above.

For any of the first (k − `) data units, if the size of its set is
s then reconstruction of that data unit requires (k + s) bytes (as
compared to 2k under RS). The reconstruction of any of the last
` units requires (k + r + ` − 2) bytes (as compared to 2k under
RS). The parameter ` can be chosen to minimize the average
or maximum data required for reconstruction as per the system
requirements.

Hitchhiker-nonXOR: The encoding procedure is identical to
that of Hitchhiker-XOR+, except that instead of XORing the
bytes of the first substripe of the data units in each set, these
bytes are encoded using the underlying RS encoding function
considering all other data units that do not belong to the set
as zeros.

The collection of data bytes required for the reconstruction of
any data unit is identical to that under Hitchhiker-XOR+. The
decoding operation for reconstruction is a three-step procedure.
The first two steps are identical to the first two steps of the de-
coding procedure of Hitchhiker-XOR described above. The third
step requires an RS decoding operation (recall the (10, 4) case
from §3.3). In particular, the output of the second step when
reconstructing a data unit i will be equal to k bytes that would
have been obtained from the RS encoding of the data bytes in the
units belonging to that set with all other data bytes set to zero.
An RS decoding operation performed on these bytes now gives ai,
thus recovering the ith data unit (recall that bi is reconstructed in
Step 1 itself.) The data access patterns during reconstruction and
the amount of savings under Hitchhiker-nonXOR are identical to
that under Hitchhiker-XOR+.

