
A Piggybacking Design Framework for Read-and
Download-efficient Distributed Storage Codes

K. V. Rashmi, Nihar B. Shah, Kannan Ramchandran, Fellow, IEEE
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley.
{rashmikv, nihar, kannanr}@eecs.berkeley.edu

Abstract

We present a new piggybacking framework for designing distributed storage codes that are efficient in data-
read and download required during node-repair. We illustrate the power of this framework by constructing classes
of explicit codes that entail the smallest data-read and download for repair among all existing solutions for three
important settings: (a) codes meeting the constraints of being Maximum-Distance-Separable (MDS), high-rate and
having a small number of substripes, arising out of practical considerations for implementation in data centers, (b)
binary MDS codes for all parameters where binary MDS codes exist, (c) MDS codes with the smallest repair-
locality. In addition, we employ this framework to enable efficient repair of parity nodes in existing codes that were
originally constructed to address the repair of only the systematic nodes. The basic idea behind our framework is
to take multiple instances of existing codes and add carefully designed functions of the data of one instance to the
other. Typical savings in data-read during repair is 25% to 50% depending on the choice of the code parameters.

I. INTRODUCTION

Distributed storage systems today are increasingly employing erasure codes for data storage, since erasure codes
provide much better storage efficiency and reliability as compared to replication-based schemes [1]–[3]. Frequent
failures of individual storage nodes in these systems mandate schemes for efficient repair of failed nodes. In
particular, upon failure of a node, it is replaced by a new node, which must obtain the data that was previously
stored in the failed node by reading and downloading data from the remaining nodes. Two primary metrics that
determine the efficiency of repair are the amount of data read at the remaining nodes (termed data-read ) and the
amount of data downloaded from them (termed data-download or simply the download).
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Fig. 1: An example illustrating efficient repair of systematic nodes using the piggybacking framework. Two instances of a
(6,4) MDS code are piggybacked to obtain a new (6,4) MDS code that achieves 25% savings in data-read and download in
the repair of any systematic node. A highlighted cell indicates a modified symbol.
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Fig. 2: An example illustrating of the mechanism of repair of parity nodes under the piggybacking framework, using two
instances of the code of Fig. 1c. A shaded cell indicates a modified symbol.

In this paper, we present a new framework, which we call the piggybacking framework, for design of repair-
efficient storage codes. In a nutshell, this framework considers multiple instances of an existing code, and the
piggybacking operation adds (carefully designed) functions of the data of one instance to the other. We design
these functions with the goal of reducing the data-read and download requirements during repair. Piggybacking
preserves many of the properties of the underlying code such as the minimum distance and the field of operation.

We need to introduce some notation and terminology at this point. Let n denote the number of (storage) nodes
and assume that the nodes have equal storage capacities. The data to be stored across these nodes is termed the
message. A Maximum-Distance-Separable (MDS) code is associated to another parameter k: an [n, k] MDS code
guarantees that the message can be recovered from any k of the n nodes, and requires a storage capacity of 1

k of
the size of the message at every node. It follows that an MDS code can tolerate the failure of any (n− k) of the
nodes without suffering any permanent data-loss. A systematic code is one in which k of the nodes store parts of
the message without any coding. These k nodes are termed the systematic nodes and the remaining (n− k) nodes
are termed the parity nodes. We denote the number of parity nodes by r = (n− k). We shall assume without loss
of generality that in a systematic code, the first k nodes are systematic. The number of substripes of a (vector)
code is defined as the length of the vector of symbols that a node stores in a single instance of the code.

The piggybacking framework offers a rich design space for constructing codes for various different settings. We
illustrate the power of this framework by providing the following four classes of explicit code constructions in this
paper.

(Class 1) A class of codes meeting the constraints of being MDS, high-rate, and having a small number of
substripes, with the smallest known average data-read for repair: A major component of the cost of current day
data-centers which store enormous amounts of data is the storage hardware. This makes it critical for any storage
code to minimize the storage space utilization. In light of this, it is important for the erasure code employed to be
MDS and have a high-rate (i.e., a small storage overhead). In addition, practical implementations also mandate a
small number of substripes. There has recently been considerable work on the design of distributed storage codes
with efficient data-read during repair [4]–[26]. However, to the best of our knowledge, the only explicit codes that
meet the aforementioned requirements are the Rotated-RS [8] codes and the (repair-optimized) EVENODD [25],
[27] and RDP [26], [28] codes. Moreover, Rotated-RS codes exist only for r ∈ {2, 3} and k ≤ 36; the (repair-
optimized) EVENODD and RDP codes exist only for r = 2. Through our piggybacking framework, we construct a
class of codes that are MDS, high-rate, have a small number of substripes, and require the least amount of data-read
and download for repair among all other known codes in this class. An appealing feature of our codes is that they
support all values of the system parameters n and k.

(Class 2) Binary MDS codes with the lowest known average data-read for repair, for all parameters where
binary MDS codes exist: Binary MDS codes are extensively used in disk arrays [27], [28]. Through our piggybacking
framework, we construct binary MDS codes that require the lowest known average data-read for repair among all
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existing binary MDS codes [8], [25]–[29]. Furthermore, unlike the other codes and repair algorithms [8], [25]–[29]
in this class, the codes constructed here also optimize the repair of parity nodes (along with that of systematic
nodes). Our codes support all the parameters for which binary MDS codes are known to exist.

(Class 3) Efficient repair MDS codes with smallest possible repair-locality: Repair-locality is the number of
nodes that need to be read during repair of a node. While several recent works [20]–[23] present codes optimizing
on locality, these codes are not MDS and hence require additional storage overhead for the same reliability levels
as MDS codes. In this paper, we present MDS codes with efficient repair properties that have the smallest possible
repair-locality for an MDS code.

(Class 4) A method of reducing data-read and download for repair of parity nodes in existing codes that
address only the repair of systematic nodes: The problem of efficient node-repair in distributed storage systems
has attracted considerable attention in the recent past. However, many of the codes proposed [7]–[9], [19], [30]
have algorithms for efficient repair of only the systematic nodes, and require the download of the entire message
for repair of any parity node. In this paper, we employ our piggybacking framework to enable efficient repair of
parity nodes in these codes, while also retaining the efficiency of repair of systematic nodes. The corresponding
piggybacked codes enable an average saving of 25% to 50% in the amount of download and read required for
repair of parity nodes.

The following examples highlight the key ideas behind the piggybacking framework.

Example 1: This example illustrates one method of piggybacking for reducing data-read during systematic node
repair. Consider two instances of a (6, 4) MDS code as shown in Fig. 1a, with the 8 message symbols {ai}4i=1

and {bi}4i=1 (each column of Fig. 1a depicts a single instance of the code). One can verify that the message can
be recovered from the data of any 4 nodes. The first step of piggybacking involves adding

∑2
i=1 iai to the second

symbol of node 6 as shown in Fig. 1b. The second step in this construction involves subtracting the second symbol
of node 6 in the code of Fig. 1b from its first symbol. The resulting code is shown in Fig. 1c. This code has 2

substripes (the number of columns in Fig. 1c).

We now present the repair algorithm for the piggybacked code of Fig. 1c. Consider the repair of node 1. Under
our repair algorithm, the symbols b2, b3, b4 and

∑4
i=1 bi are download from the other nodes, and b1 is decoded.

In addition, the second symbol (
∑4

i=1 ibi+
∑2

i=1 iai) of node 6 is downloaded. Subtracting out the components of
{bi}4i=1 gives the piggyback

∑2
i=1 iai. Finally, the symbol a2 is downloaded from node 2 and subtracted to obtain

a1. Thus, node 1 is repaired by reading only 6 symbols which is 75% of the total size of the message. Node 2 can
be repaired in a similar manner. Repair of nodes 3 and 4 follows on similar lines except that the first symbol of
node 6 is read instead of the second.

The piggybacked code is MDS, and the entire message can be recovered from any 4 nodes as follows. If node 6

is one of these four nodes, then add its second symbol to its first, to recover the code of Fig. 1b. Now, the decoding
algorithm of the original code of Fig, 1a is employed to first recover {ai}4i=1, which then allows for removal of
the piggyback (

∑2
i=1 iai) from the second substripe, making the remainder identical to the code of Fig. 1c.

Example 2: This example illustrates the use of piggybacking to reduce data-read during the repair of parity
nodes. The code depicted in Fig. 2 takes two instances of the code of Fig. 1c, and adds the second symbol of node
6, (
∑4

i=1 ibi+
∑2

i=1 iai) (which belongs to the first instance), to the third symbol of node 5 (which belongs to the
second instance). This code has 4 substripes (the number of columns in Fig. 2). In this code, repair of the second
parity node involves downloading {ai, ci, di}4i=1 and the modified symbol (

∑4
i=1 ci +

∑4
i=1 ibi +

∑2
i=1 iai), using

which the data of node 6 can be recovered. The repair of the second parity node thus requires read and download
of only 13 symbols instead of the entire message of size 16. The first parity is repaired by downloading all 16

message symbols. Observe that in the code of Fig. 1c, the first symbol of node 5 is not used for repair of any of
the systematic nodes. Thus the modification in Fig. 2 does not change the algorithm or the efficiency of the repair
of systematic nodes. The code retains its MDS property: the entire message can be recovered from any 4 nodes by
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first decoding {ai, bi}4i=1 using the decoding algorithm of the code of Fig. 1a, which then allows for removal of the
piggyback (

∑4
i=1 ibi+

∑2
i=1 iai) from the second instance, making the remainder identical to the code of Fig. 1a.

Our piggybacking framework, enhances existing codes by adding piggybacks from one instance onto the other.
The design of these piggybacks determine the properties of the resulting code. In this paper, we provide a few
designs of piggybacking and specialize it to existing codes to obtain the four specific classes mentioned above.
This framework, while being powerful, is also simple, and easily amenable for code constructions in other settings
and scenarios.

The rest of the paper is organized as follows. Section II introduces the general piggybacking framework.
Sections III and IV then present code designs and repair-algorithms based on this framework, special cases of
which result in classes 1 and 2 discussed above. Section V provides piggyback design which result in low-repair
locality along with low data-read and download. Section VI provides a comparison of these codes and various other
codes in the literature. Section VII demonstrates the use of piggybacking to enable efficient parity repair in existing
codes that were originally constructed for repair of only the systematic nodes. Section VIII draws conclusions.

Readers interested only in repair locality may skip Sections III and IV, and readers interested only in the
mechanism of imbibing efficient parity-repair in existing codes optimized for systematic-repair may skip Sections III,
IV, and V without any loss in continuity.

II. THE PIGGYBACKING FRAMEWORK

The piggybacking framework operates on an existing code, which we term the base code. The choice of the base
code is arbitrary. The base code is associated to n encoding functions {fi}ni=1: it takes the message u as input and
encodes it to n coded symbols {f1(u), . . . , fn(u)}. Node i (1 ≤ i ≤ n) stores the data fi(u).

The piggybacking framework operates on multiple instances of the base code, and embeds information about one
instance into other instances in a specific fashion. Consider α instances of the base code. The encoded symbols in
α instances of the base code are

Node 1
...

Node n

f1(a) f1(b) ·· · f1(z)

...
...

. . .
...

fn(a) fn(b) ·· · fn(z)

where a, . . . , z are the (independent) messages encoded under these α instances.

We shall now describe the piggybacking of this code. For every i, 2 ≤ i ≤ α, one can add an arbitrary function
of the message symbols of all previous instances {1, . . . , (i−1)} to the data stored under instance i. These functions
are termed piggyback functions, and the values so added are termed piggybacks. Denoting the piggyback functions
by gi,j (i ∈ {2, . . . , α}, j ∈ {1, . . . , n}), the piggybacked code is thus:

Node 1
...

Node n

f1(a) f1(b) + g2,1(a) f1(c) + g3,1(a,b) ·· · f1(z) + gα,1(a,. ..,y)

...
...

...
. . .

...

fn(a) fn(b) + g2,n(a) f1(c) + g3,n(a,b) ·· · fn(z) + gα,n(a,. ..,y)

The decoding properties (such as the minimum-distance or the MDS nature) of the base code are retained upon
piggybacking. In particular, the piggybacked code allows for decoding of the entire message from any set of nodes
from which the base code allowed decoding. To see this, consider any set of nodes from which the message can
be recovered in the base code. Observe that the first column of the piggybacked code is identical to a single
instance of the base code. Thus a can be recovered directly using the decoding procedure of the base code. The
piggyback functions {g2,i(a)}ni=1 can now be subtracted from the second column. The remainder of this column
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is precisely another instance of the base code, allowing recovery of b. Continuing in the same fashion, for any
instance i (2 ≤ i ≤ n), the piggybacks (which are always a function of previously decoded instances {1, . . . , i−1})
can be subtracted out to obtain the base code of that instance which can be decoded.

The decoding properties of the code are thus not hampered by the choice of the piggyback functions gi,j’s. This
allows for flexibility in the choice of the piggyback functions, and these need to be picked cleverly to achieve the
desired goals (such as efficient repair, which is the focus of this paper).

The piggybacking procedure described above was followed in Example 1 to obtain the code of Fig. 1b from
Fig. 1a. Subsequently, in Example 2, this procedure was followed again to obtain the code of Fig. 2 from Fig. 1c.

The piggybacking framework also allows any invertible linear transformation of the data stored in any individual
node. In other words, each node of the piggybacked code (e.g., each row in Fig. 1b) can separately undergo a
invertible transformation. Clearly, any invertible transformation of data within the nodes does not alter the decoding
capabilities of the code, i.e., the message can still be recovered from any set of nodes from which it could be
recovered in the base code. In Example 1, the code of Fig. 1c is obtained from Fig. 1b via an invertible transformation
of the data of node 6.

The following theorem formally proves that piggybacking does not reduce the amount of information stored in
any subset of nodes.

Theorem 1: Let U1, . . . , Uα be random variables corresponding to the messages associated to the α instances
of the base code. For i ∈ {1, . . . , n}, let Xi denote the data stored in node i under the base code. Let Yi denote
the encoded symbols stored in node i under the piggybacked version of that code. Then for any subset of nodes
S ⊆ {1, . . . , n},

I
(
{Yi}i∈S ;U1, . . . , Uα

)
≥ I

(
{Xi}i∈S ;U1, . . . , Uα

)
. (1)

The proof of this theorem is provided in the appendix.

Corollary 2: Piggybacking a code does not decrease its minimum distance; piggybacking an MDS code preserves
the MDS property.

Notational Conventions: For simplicity of exposition, we shall assume throughout this section that the base
codes are linear, scalar, MDS and systematic. Using vector codes (such as EVENODD or RDP) as base codes is a
straightforward extension. The base code operates on a k-length message vector, with each symbol of this vector
drawn from some finite field. The number of instances of the base code during piggybacking is denoted by α, and
{a,b, . . .} shall denote the k-length message vectors corresponding to the α instances. Since the code is systematic,
the first k nodes store the elements of the message vector. We use p1, . . . ,pr to denote the r encoding vectors
corresponding to the r parity symbols, i.e., if a denotes the k-length message vector then the r parity nodes under
the base code store pT1 a, . . . ,p

T
r a.

The transpose of a vector or a matrix will be indicated by a superscript T . Vectors are assumed to be column
vectors. For any vector v of length κ, we denote its κ elements as v = [v1 · · · vκ]T , and if the vector itself has
an associated subscript then we its elements as vi = [vi,1 · · · vi,κ]T .

Each of the explicit codes constructed in this paper possess the property that the repair of any node entails
reading of only as much data as what has to be downloaded. 1 This property is called repair-by-transfer [24]. Thus
the amounts of data-read and download are equal under our codes, and hence we shall use the same notation γ to
denote both these quantities.

1In general, the amount of download lower bounds the amount of read, and the download could be strictly smaller if a node passes a
(non-injective) function of the data that it stores.
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III. PIGGYBACKING DESIGN 1

In this section, we present our first design of piggyback functions and associated repair algorithms. This design
allows one to reduce data-read and download during repair while having a small number of substripes. For instance,
when the number of substripes is is small as 2, we can achieve a 25 to 35% savings during repair of systematic
nodes. We shall first present the piggyback design for optimizing the repair of systematic nodes, and then move
on to the repair of parity nodes.

A. Efficient repair of systematic nodes

This design operates on α = 2 instances of the base code. We first partition the k systematic nodes into r

sets, S1, . . . , Sr. of equal size (or nearly equal size if k is not a multiple of r). For ease of understanding, let
us assume that k is a multiple of r, which fixes the size of each of these sets as k

r . Then, let S1 = {1, . . . , kr },
S2 = {kr + 1, . . . , 2kr } and so on, with Si = { (i−1)kr + 1, . . . , ikr } for i = 1, . . . , r.

Define the following k−length vectors:

q2 = [ pr,1 · · · pr, k
r

0 · · · · · · · · · · · · 0 ]T

q3 = [ 0 · · · 0 pr, k
r
+1 · · · pr, 2k

r
0 · · · · · · · · · 0 ]T

...

qr = [ 0 · · · · · · · · · 0 pr, k
r
(r−2)+1 · · · pr, k

r
(r−1) 0 · · · 0 ]T

qr+1 = [ 0 · · · · · · · · · · · · 0 pr, k
r
(r−1)+1 · · · pr,k ]T .

Also, let

vr = pr − qr

= [ pr,1 · · · · · · · · · pr, k
r
(r−2) 0 · · · 0 pr, k

r
(r−1)+1 · · · pr,k ]T .

Note that each element pi,j is non-zero since the base code is MDS. We shall use this property during repair
operations.

The base code is piggybacked in the following manner:

Node 1
...

Node k

Node k+1

Node k+2
...

Node k+r

a1 b1
...

...

ak bk

pT1 a pT1 b

pT2 a pT2 b+ qT2 a

...
...

pTr a pTr b+ qTr a

Fig. 1b depicts an example of such a piggybacking.

We shall now perform an invertible transformation of the data stored in node (k + r). In particular, the first
symbol of node (k + r) in the code above is replaced with the difference of this symbol from its second symbol,
i.e., node (k + r) now stores
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Node k+r vTr a− pTr b pTr b+ qTr a

The other symbols in the code remain intact. This completes the description of the encoding process.

Next, we present the algorithm for repair of any systematic node ` (∈ {1, . . . , k}). This entails recovery of the
two symbols a` and b` from the remaining nodes.

Case 1 (` /∈ Sr): Without loss of generality let ` ∈ S1. The k symbols {b1, . . . , b`−1, b`+1, . . . , bk, pT1 b} are
downloaded from the remaining nodes, and the entire vector b is decoded (using the MDS property of the base
code). It now remains to recover a`. Observe that the `th element of q2 is non-zero. The symbol (pT2 b+ qT2 a) is
downloaded from node (k+2), and since b is completely known, pT2 b is subtracted from the downloaded symbol
to obtain the piggyback qT2 a. The symbols {ai}i∈S1\{`} are also downloaded from the other systematic nodes in
set S1. The specific (sparse) structure of q2 allows for recovering a` from these downloaded symbols. Thus the
total data-read and download during the repair of node ` is (k+ k

r ) (in comparison, the size of the message is 2k).

Case 2 (S = Sr): As in the previous case, b is completely decoded by downloading {b1, . . . , b`−1, b`+1, . . . , bk, p
T
1 b}.

The first symbol (vTr a− pTr b) of node (k + r) is downloaded. The second symbols {pTi b+ qTi a}i stored in the
parities i ∈ {(k+ 2), . . . , (k+ r− 1)} are also downloaded, and are then subtracted from the first symbol of node
(k+ r). This gives (qTr+1a+wTb) for some vector w. Using the previously decoded value of b, vTb is removed
to obtain qTr+1a. Observe that the `th element of qr+1 is non-zero. The desired symbol a` can thus be recovered by
downloading {a k

r
(r−1)+1, . . . , a`−1, a`+1, . . . , ak} from the other systematic nodes in Sr. The total data-read and

download required in recovering node ` is (k + k
r + r − 2).

Observe that the repair of systematic nodes in the last set Sr requires more read and download as compared to
repair of systematic nodes in the other sets. Given this observation, we do not choose the sizes of the sets to be
equal (as described previously), and instead optimize the sizes to minimize the average read and download required.
For i = 1, . . . , r, denoting the size of the set Si by ti, the optimal sizes of the sets turn out to be

t1 = · · · = tr−1 =

⌈
k

r
+
r − 2

2r

⌉
:= t, (2)

tr = k − (r − 1)t . (3)

The amount of data read and downloaded for repair of any systematic node in the first (r− 1) sets is (k+ t), and
the last set is (k + tr + r− 2). Thus, the average data-read and download γsys

1 for repair of systematic nodes, as a
fraction of the total number 2k of message symbols, is

γsys
1 =

1

2k2
[(k − tr) (k + t) + tr (k + tr + r − 2)] . (4)

This quantity is plotted in Fig. 5a for various values of the system parameters n and k.

B. Reducing data-read during repair of parity nodes

We shall now piggyback the code constructed in Section III-A to introduce efficiency in the repair of parity nodes,
while also retaining the efficiency in the repair of systematic nodes. Observe that in the code of Section III-A,
the first symbol of node (k + 1) is never read for repair of any systematic node. We shall add piggybacks to this
unused parity symbol to aid in the repair of other parity nodes.

This design employs m instances of the piggybacked code of Section III-A. The number of substripes in the
resultant code is thus 2m. The choice of m can be arbitrary, and higher values of m result in greater repair-efficiency.
For every instance i ∈ {2, 4, . . . , 2m− 2}, the (r− 1) parity symbols in nodes (k+ 2) to (k+ r) are summed up.
The result is added as a piggyback to the (i + 1)th symbol of node (k + 1). The resulting code, when m = 2, is
shown below.
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Node 1
...

Node k

Node k+1

Node k+2
...

Node k+r-1

Node k+r

a1 b1 c1 d1
...

...
...

...

ak bk ck dk

pT1 a pT1 b pT1 c+
∑r

i=2(p
T
i b+ qTi a) pT1 d

pT2 a pT2 b+ qT2 a pT2 c pT2 d+ qT2 c

...
...

...
...

pTr−1a pTr−1b+ qTr−1a pTr−1c pTr−1d+ qTr−1c

vTr a− pTr b pTr b+ qTr a vTr c− pTr d pTr d+ qTr c

This completes the encoding procedure. The code of Fig. 2 is an example of this design.

As shown in Section II, the piggybacked code retains the MDS property of the base code. In addition, the
repair of systematic nodes is identical to the that in the code of Section III-A, since the symbol modified in this
piggybacking was never read for the repair of any systematic node in the code of Section III-A.

We now present an algorithm for efficient repair of parity nodes under this piggyback design. The first parity node
is repaired by downloading all 2mk message symbols from the systematic nodes. Consider repair of some other
parity node, say node ` ∈ {k + 2, . . . , k + r}. All message symbols a, c, . . . in the odd substripes are downloaded
from the systematic nodes. All message symbols of the last substripe (e.g., message d in the m = 2 code shown
above) are also downloaded from the systematic nodes. Further, the {3rd, 5th, . . . , (2m − 1)th} symbols of node
(k + 1) (i.e., the symbols that we modified in the piggybacking operation above) are also downloaded, and the
components corresponding to the already downloaded message symbols are subtracted out. By construction, what
remains in the symbol from substripe i (∈ {3, 5, . . . , 2m − 1}) is the piggyback. This piggyback is a sum of the
parity symbols of the substripe (i − 1) from the last (r − 1) nodes (including the failed node). The remaining
(r − 2) parity symbols belonging to each of the substripes {2, 4, . . . , 2m− 2} are downloaded and subtracted out,
to recover the data of the failed node. The procedure described above is illustrated via the repair of node 6 in
Example 2.

The average data-read and download γpar
1 for repair of parity nodes, as a fraction of the total message symbols,

is
γpar
1 =

1

2kr

[
2k + (r − 1)

((
1 +

1

m

)
k +

(
1− 1

m

)
(r − 1)

)]
.

This quantity is plotted in Fig. 5b for various values of the system parameters n and k.

IV. PIGGYBACKING DESIGN 2

The design presented in this section provides a higher efficiency of repair as compared to the previous design.
On the downside, it requires a larger number of substripes: the minimum number of substripes required under the
design of Section III-A is 2 and under that of Section III-B is 4, while that required in the design of this section
is (2r − 3). The following example illustrates this piggybacking design.

Example 3: Consider some (n = 13, k = 10) MDS code as the base code, and consider α = (2r − 3) = 3

instances of this code. Divide the systematic nodes into two sets of sizes 5 each as S1 = {1, . . . , 5} and S2 =
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{6, . . . , 10}. Define 10-length vectors q2, v2, q3 and v3 as

q2 = [p2,1 · · · p2,5 0 · · · 0]

v2 = [0 · · · 0 p2,6 · · · p2,10]
q3 = [0 · · · 0 p3,6 · · · p3,10]
v3 = [p3,1 · · · p3,5 0 · · · 0]

Now piggyback the base code in the following manner

Node 1
...

Node 10

Node 11

Node 12

Node 13

a1 b1 c1
...

...
...

a10 b10 c10

pT1 a pT1 b pT1 c

pT2 a pT2 b+ qT2 a pT2 c+ qT2 b+ qT2 a

pT3 a pT3 b+ qT3 a pT3 c+ qT3 b+ qT3 a

Next, we take invertible transformations of the (respective) data of nodes 12 and 13. The second symbol of node
i ∈ {12, 13} in the new code is the difference between the second and the third symbols of node i in the code
above. The fact that (p2 − q2) = v2 and (p3 − q3) = v3 results in the following code

Node 1
...

Node 10

Node 11

Node 12

Node 13

a1 b1 c1
...

...
...

a10 b10 c10

pT1 a pT1 b pT1 c

pT2 a vT2 b− pT2 c pT2 c+ qT2 b+ qT2 a

pT3 a vT3 b− pT3 c pT3 c+ qT3 b+ qT3 a

This completes the encoding procedure.

We now present an algorithm for (efficient) repair of any systematic node, say node 1. The 10 symbols {c2, . . . , c10, pT1 c}
are downloaded, and c is decoded. It now remains to recover a1 and b1. The third symbol (pT2 c + qT2 b + qT2 a)

of node 12 is downloaded and pT2 c subtracted out to obtain (qT2 b+ qT2 a). The second symbol (vT3 b−pT3 c) from
node 13 is downloaded and (−pT3 c) is subtracted out from it to obtain vT3 b. The specific (sparse) structure of q2

and v3 allows for decoding a1 and b1 from (qT2 b+ qT2 a) and vT3 b, by downloading and subtracting out {ai}5i=2

and {bi}5i=2. Thus, the repair of node 1 involved reading and downloading 20 symbols (in comparison, the size of
the message is kα = 30). The repair of any other systematic node follows a similar algorithm, and results in the
same amount of data-read.

The general design is as follows. Consider (2r − 3) instances of the base code, and let a1, . . .a2r−3 be the
messages associated to the respective instances. First divide the k systematic nodes into (r − 1) equal sets (or
nearly equal sets if k is not a multiple of (r − 1)). Assume for simplicity of exposition that k is a multiple of
(r− 1). The first of the k

r−1 sets consist of the first k
r−1 nodes, the next set consists of the next k

r−1 nodes and so
on. Define k-length vectors {vi, v̂i}ri=2 as

vi = ar−1 + iar−2 + i2ar−3 + · · ·+ ir−2a1

v̂i = vi − ar−1 = iar−2 + i2ar−3 + · · ·+ ir−2a1 .



10

Further, define k-length vectors {qi,j}r,r−1i=2,j=1 as

qi,j =



0
. . .

0
1
. . .

1
0
. . .

0


pi

where the positions of the ones on the diagonal of the (k × k) diagonal matrix depicted correspond to the nodes
in the jth group. It follows that

r−1∑
j=1

qi,j = pi ∀ i ∈ {2, . . . r} .

Parity node (k + i), i ∈ {2, . . . , r}, is then piggybacked to store

pTi a1 ··· pTi ar−2 pTi ar−1+
∑r−1

j=1,j 6=i−1q
T
i,jv̂i p

T
i ar+qTi,1vi ··· pTi ar+i−3+qTi,i−2vi p

T
i ar+qTi,ivi ··· pTi a2r−3+qTi,r−1vi

Following this, an invertible linear combination is performed at each of the nodes {k+2, . . . , k+r}. The transform
subtracts the last (r−2) substripes from the (r−1)th substripe, following which the node (k+i), i ∈ {2, . . . , r}, stores

pTi a1 ··· pTi ar−2 qTi,i−1ar−1−
∑2r−3

j=r pTi aj p
T
i ar+qTi,1vi ··· pTi ar+i−3+qTi,i−2vi p

T
i ar+qTi,ivi ··· pTi a2r−3+qTi,r−1vi

Let us now see how repair of a systematic node is performed. Consider repair of node `. First, from nodes
{1, . . . , k+1}\{`}, all the data in the last (r−2) substripes is downloaded and the data ar, . . . ,a2r−3 is recovered.
This also provides us with the desired data {ar,`, . . . , a2r−3,`}. Next, observe that in each parity node {k+2, . . . , k+

r}, there is precisely one ‘q’ vector that has a non-zero first component. From each of these nodes, the symbol having
this vector is downloaded, and the components along {ar, . . . ,a2r−3} are subtracted out. Further, we download
all symbols from all other systematic nodes in the same set as node `, and subtract this out from the previously
downloaded symbols. This leaves us with (r−1) independent linear combinations of {a1,`, . . . , ar−1,`} from which
the desired data is decoded.

When k is not a multiple of (r − 1), the k systematic nodes are divided into (r − 1) sets as follows. Let

t` =

⌊
k

r − 1

⌋
, th =

⌈
k

r − 1

⌉
, t = (k − (r − 1)t`) . (5)

The first t sets are chosen of size th each and the remaining (r − 1 − t) sets have size t` each. The systematic
symbols in the first (r − 1) substripes are piggybacked onto the parity symbols (except the first parity) of the last
(r − 1) stripes. For repair of any failed systematic node ` ∈ {1, . . . , k}, the last (r − 2) substripes are decoded
completely by reading the remaining systematic and the first parity symbols from each. To obtain the remaining
(r−1) symbols of the failed node, the (r−1) parity symbols that have piggyback vectors (i.e., q’s and v’s) with a
non-zero value of the `th element are downloaded. By design, these piggyback vectors have non-zero components
only along the systematic nodes in the same set as node `. Downloading and subtracting these other systematic
symbols gives the desired data.

The average data-read and download γsys
2 for repair of systematic nodes, as a fraction of the total message symbols

2k, is

γsys
2 =

1

2k2
[t((r − 2)k + (r − 1)th) + (k − t)((r − 2)k + (r − 1)t`)] . (6)

This quantity is plotted in Fig. 5a for various values of the system parameters n and k.
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While we only discussed the repair of systematic nodes for this code, the repair of parity nodes can be made
efficient by considering m instances of this code. A procedure analogous to that described in Section III-B is
followed, where the odd instances are piggybacked on to the succeeding even instances. As in Section III-B, higher
a value of m results in a lesser amount of data-read and download for repair. In such a design, the average data-read
and download γpar

2 for repair of parity nodes, as a fraction of the total message symbols, is

γpar
2 =

1

r
+

r − 1

2r − 3

[
(m+ 1)(r − 2)k + (m− 1)(r − 2)(r − 1) +

⌈m
2

⌉
k +

⌊m
2

⌋
(r − 1)

]
. (7)

This quantity is also plotted in Fig. 5b for various values of the system parameters n and k.

V. PIGGYBACKING DESIGN 3

In this section, we present a piggybacking design to construct MDS codes with a primary focus on the locality
of repair. The locality of a repair operation is defined as the number of nodes that are contacted during the repair
operation. The codes presented here perform the efficient repair of any systematic node with the smallest possible
locality for any MDS code, which is equal to (k + 1). 2 The amount of read and download is the smallest among
all known MDS codes with this locality, when (n− k) > 2.

This design involves two levels of piggybacking, and these are illustrated in the following two example construc-
tions. The first example considers α = 2m instances of the base code and shows the first level of piggybacking, for
any arbitrary choice of m > 1. Higher values of m result in repair with a smaller read and download. The second
example uses two instances of this code and adds the second level of piggybacking. We note that this design deals
with the repair of only the systematic nodes.

Example 4: Consider any (n = 11, k = 8) MDS code as the base code, and take 4 instances of this code. Divide
the systematic nodes into two sets as follows, S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 8}. We then add the piggybacks as
shown in Fig. 3. Observe that in this design, the piggybacks added to an even substripe is a function of symbols
in its immediately previous (odd) substripe from only the systematic nodes in the first set S1, while the piggybacks
added to an odd substripe are functions of symbols in its immediately previous (even) substripe from only the
systematic nodes in the second set S2.

2A locality of k is also possible, but this necessarily mandates the download of the entire data, and hence we do not consider this option.

Node 1
...

Node 4

Node 5
...

Node 8

Node 9

Node 10

Node 11

a1 b1 c1 d1
...

...
...

...

a4 b4 c4 d4

a5 b5 c5 d5
...

...
...

...

a8 b8 c8 d8

pT1 a pT1 b pT1 c pT1 d

pT2 a pT2 b+a1 + a2 pT2 c+b5 + b6 pT2 d+c1 + c2

pT3 a pT3 b+a3 + a4 pT3 c+b7 + b8 pT3 d+c3 + c4

Fig. 3: Example illustrating first level of piggybacking in design 3. The piggybacks in the even substripes (in blue) are a
function of only the systematic nodes {1, . . . , 4} (also in blue), and the piggybacks in odd substripes (in green) are a function
of only the systematic nodes {5, . . . , 8} (also in green). This code requires an average data-read and download of only 71%
of the message size for repair of systematic nodes.
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We now present the algorithm for repair of any systematic node. First consider the repair of any systematic
node ` ∈ {1, . . . , 4} in the first set. For instance, say ` = 1, then {b2, . . . , b8, pT1 b} and {d2, . . . , d8, pT1 d}
are downloaded, and {b, d} (i.e., the messages in the even substripes) are decoded. It now remains to recover
the symbols a1 and c1 (belonging to the odd substripes). The second symbol (pT2 b + a1 + a2) from node 10 is
downloaded and pT2 b subtracted out to obtain the piggyback (a1 + a2). Now a1 can be recovered by downloading
and subtracting out a2. The fourth symbol from node 10, (pT2 d+ c1+ c2), is also downloaded and pT2 d subtracted
out to obtain the piggyback (c1 + c2). Finally, c1 is recovered by downloading and subtracting out c2. Thus, node
1 is repaired by by reading a total of 20 symbols (in comparison, the total total message size is 32). The repair
of node 2 can be carried out in an identical manner. The two other nodes in the first set, nodes 3 and 4, can be
repaired in a similar manner by reading the second and fourth symbols of node 11 which have their piggybacks.
Thus, repair of any node in the first group requires reading and downloading a total of 20 symbols.

Now we consider the repair of any node ` ∈ {5, . . . , 8} in the second set S2. For instance, consider ` = 5.
The symbols

{
a1, . . . , a8, pT1 a

}
\{a5},

{
c1, . . . , c8, pT1 c

}
\{c5} and

{
d1, . . . , d8, pT1 d

}
\{d5} are downloaded in

order to decode a5, c5, and d5. From node 10, the symbol (pT2 c+ b5 + b6) is downloaded and pT2 c is subtracted
out. Then, b5 is recovered by downloading and subtracting out b6. Thus, node 5 is recovered by reading a total of
26 symbols. Recovery of other nodes in S2 follows on similar lines.

The average amount of data read and downloaded during the recovery of systematic nodes is 23, which is 71% of
the message size. A higher value of m (i.e., a higher number of substripes) would lead to a further reduction in the
read and download (the last substripe cannot be piggybacked and hence mandates a greater read and download;
this is a boundary case, and its contribution to the overall read reduces with an increase in m).

Example 5: In this example, we illustrate the second level of piggybacking which further reduces the amount
of data-read during repair of systematic nodes as compared to Example 4. Consider α = 8 instances of an
(n = 13, k = 10) MDS code. Partition the systematic nodes into three sets S1 = {1, . . . , 4}, S2 = {5, . . . , 8},
S3 = {9, 10} (for readers having access to Fig. 4 in color, these nodes are coloured blue, green, and red
respectively). We first add piggybacks of the data of the first 8 nodes onto the parity nodes 12 and 13 exactly as

Node 1
...

Node 4

Node 5
...

Node 8

Node 9

Node 10

Node 11

Node 12

Node 13

a1 b1 c1 d1 e1 f1 g1 h1
...

...
...

...
...

...
...

...

a4 b4 c4 d4 e4 f4 g4 h4

a5 b5 c5 d5 e5 f5 g5 h5
...

...
...

...
...

...
...

...

a8 b8 c8 d8 e8 f8 g8 h8

a9 b9 c9 d9 e9 f9 g9 h9

a10 b10 c10 d10 e10 f10 g10 h10

pT1 a pT1 b pT1 c pT1 d pT1 e+a9+a10 pT1 f+b9+b10 pT1 g+c9+c10 pT1 h+c9+c10

pT2 a pT2 b+a1+a2 pT2 c+b5+b6 pT2 d+c1+c2 pT2 e pT2 f+e1+e2 pT2 g+f5+f6 pT2 h+g1+g2

pT3 a pT3 b+a3+a4 pT3 c+b7+b8 pT3 d+c3+c4 pT3 e pT3 f+e3+e4 pT3 g+f7+f8 pT3 h+g3+g4

Fig. 4: An example illustrating piggyback design 3, with k = 10, n = 13, α = 8. The piggybacks in the first parity node
(in red) are functions of the data of nodes {8, 9} alone. In the remaining parity nodes, the piggybacks in the even substripes
(in blue) are functions of the data of nodes {1, . . . , 4} (also in blue), and the piggybacks in the odd substripes (in green) are
functions of the data of nodes {5, . . . , 8} (also in green), and the piggybacks in red (also in red). The piggybacks in nodes 12
and 13 are identical to that in Example 4 (Fig 3). The piggybacks in node 11 piggyback the first set of 4 substripes (white
background) onto the second set of number of substripes (gray background)

.
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done in Example 4 (see Fig. 4). We now add piggybacks for the symbols stored in systematic nodes in the third
set, i.e., nodes 9 and 10. To this end, we parititon the 8 substripes into two groups of size four each (indicated
by white and gray shades respectively in Fig. 4). The symbols of nodes 9 and 10 in the first four substripes are
piggybacked onto the last four substripes of the first parity node, as shown in Fig. 4 (in red color).

We now present the algorithm for repair of systematic nodes under this piggyback code. The repair algo-
rithm for the systematic nodes {1, . . . , 8} in the first two sets closely follows the repair algorithm illustrated
in Example 4. Suppose ` ∈ S1, say ` = 1. By construction, the piggybacks corresponding to the nodes in
S1 are present in the parities of even substripes. From the even substripes, the remaining systematic symbols,
{bi, di, fi, hi}i={2,...,10}, and the symbols in the first parity, {pT1 b, pT1 d, pT1 f + b9 + b10, pT1 h + d9 + d10}, are
downloaded. Observe that, the first two parity symbols downloaded do not have any piggybacks. Thus, using the
MDS property of the base code, b and d can be decoded. This also allows us to recover pT1 f , pT1 h from the
symbols already downloaded. Again, using the MDS property of the base code, one recovers f and h. It now
remains to recover {a1, c1, e1, g1}. To this end, we download the symbols in the even substripes of node 12,
{pT2 b+a1 + a2, pT2 d+c1 + c2, pT2 f+e1 + e2, pT2 h+g1 + g2}, which have piggybacks with the desired symbols.
By subtracting out previously downloaded data, we obtain the piggybacks {a1+a2, c1+c2, e1+e2, g1+g2}. Finally,
by downloading and subtracting a2, c2, e2, g2, we recover a1, c1, e1, g1. Thus, node 1 is recovered by reading 48

symbols, which is 60% of the total message size. Observe that the repair of node 1 was accomplished by downloading
data from only (k+1) = 11 other nodes. Every node in the first set can be repaired in a similar manner. Repair of
the systematic nodes in the second set is performed in a similar fashion by utilizing the corresponding piggybacks,
however, the total number of symbols read is 64 (since the last substripe cannot be piggybacked; such was the case
in Example 4 as well).

We now present the repair algorithm for systematic nodes {9, 10} in the third set S3. Let us suppose ` = 9.
Observe that the piggybacks corresponding to node 9 fall in the second group (i.e., the last four) of substripes.
From the last four substripes, the remaining systematic symbols {ei, fi, gi, hi}i={1,...,8,10}, and the symbols in the
second parity {pT1 e, pT1 f + e1+ e2, pT1 g+f1+f2, pT1 h+ g1+ g2, } are downloaded. Using the MDS property of
the base code, one recovers e, f , g and h. It now remains to recover a9, b9, c9 and d9. To this end, we download
{pT1 e+ a9 + a10, p

T
1 f + b9 + b10, p

T
1 g+ c9 + c10, p

T
1 h+ d9 + d10} from node 11. Subtracting out the previously

downloaded data, we obtain the piggybacks {a9 + a10, b9 + b10, c9 + c10, d9 + d10}. Finally, by downloading
and subtracting out {a10, b10, c10, d10}, we recover the desired data {a9, b9, c9, d9}. Thus, node 9 is recovered by
reading and downloading 48 symbols. Observe that the repair process involved reading data from only (k+1) = 11

other nodes. Node 10 is repaired in a similar manner.

For general values of the parameters, n, k, and α = 4m for some integer m > 1, we choose the size of the three
sets S1, S2, and S3, so as to make the number of systematic nodes involved in each piggyback equal or nearly
equal. Denoting the sizes of S1, S2 and S3, by t1, t2, and t3 respectively, this gives

t1 =

⌈
1

2r − 1

⌉
, t2 =

⌈
r − 1

2r − 1

⌉
, t3 =

⌊
r − 1

2r − 1

⌋
. (8)

Then the average data-read and download γsys
3 for repair of systematic nodes, as a fraction of the total message

symbols 4mk, is

γsys
3 =

1

4mk2

[
t1

(
k

2
+
t1
2

)
+ t2

(
k

2
+

t2
2(r − 1)

)
+ t3

((
1

2
+

1

m

)
k +

(
1

2
− 1

m

)
t3

(r − 1)

)]
. (9)

This quantity is plotted in Fig. 5a for various values of the system parameters n and k.

VI. COMPARISON OF DIFFERENT CODES

We now compare the average data-read and download entailed during repair under the piggyback constructions
with various other storage codes in the literature. As discussed in Section I, practical considerations in data centers
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require the storage codes to be MDS, high-rate, and have a small number of substripes. The table below compares
different explicit codes designed for efficient repair, with respect to whether they are MDS or not, the parameters
they support and the number of substripes. Shaded cells indicate a violation of the aforementioned requirements.
The parameter m associated to the piggyback codes can be chosen to have any value m ≥ 1. The base code for
each of the piggyback constructions is a Reed-Solomon code [31].

Code MDS k, r supported Number of substripes

High-rate Regenerating [7], [9] Y r ∈ {2, 3} r
k

r

Product-Matrix MSR [5] Y r ≥ k − 1 r

Local Repair [20]–[23] N all 1

Rotated RS [8] Y r ∈ {2, 3}, k ≤ 36 2

EVENODD, RDP [25]–[28] Y r = 2 k

Piggyback 1 Y all 2m

Piggyback 2 Y r ≥ 3 (2r − 3)m

Piggyback 3 Y all 4m

The piggyback, rotated-RS, (repair-optimized) EVENODD and RDP codes satisfy the desired conditions. Fig. 5
shows a plot comparing the repair properties of these codes. The plot corresponds to the number of substripes
being 8 in Piggyback 1 and Rotated-RS, 4(2r − 3) in Piggyback 2, and 16 in the Piggyback 3 codes. We observe
from the plot that piggyback codes require a lesser (average) data-read and download as compared to Rotated-RS,
(repair-optimized) EVENODD and RDP.

VII. REPAIRING PARITIES IN EXISTING CODES THAT ADDRESS ONLY SYSTEMATIC REPAIR

Several codes proposed in the literature [7], [8], [19], [30] can efficiently repair only the systematic nodes, and
require the download of the entire message for repair of any parity node. In this section, we piggyback these codes
to reduce the read and download during repair of parity nodes, while also retaining the efficiency of repair of
systematic nodes. This piggybacking design is first illustrated with the help of an example.

Example 6: Consider the code depicted in Fig. 6a, originally proposed in [19]. This is an MDS code with
parameters (n = 4, k = 2), and the message comprises four symbols a1, a2, b1 and b2 over finite field F5. The
code can repair any systematic node with an optimal data-read and download. Node 1 is repaired by reading and
downloading the symbols a2, (3a1 + 2b1 + a2) and (3a1 + 4b1 + 2a2) from nodes 2, 3 and 4 respectively; node 2

is repaired by reading and downloading the symbols b1, (b1 +2a2 +3b2) and (b1 +2a2 + b2) from nodes 1, 3 and
4 respectively. The amount of data-read and downloaded in these two cases are the minimum possible. However,
under this code, the repair of parity nodes with reduced data-read has not been addressed.

In this example, we piggyback the code of Fig. 6a to enable efficient repair of the second parity node. In
particular, we take two instances of this code and piggyback it in a manner shown in Fig. 6b. This code is obtained
by piggybacking on the first parity symbol of the last two instance, as shown in Fig. 6b. In this piggybacked code,
repair of systematic nodes follow the same algorithm as in the base code, i.e., repair of node 1 is accomplished by
downloading the first and third symbols of the remaining three nodes, while the repair of node 2 is performed by
downloading the second and fourth symbols of the remaining nodes. One can easily verify that the data obtained
in each of these two cases is identical to what would have been obtained in the code of Fig. 6a in the absence of
piggybacking. Thus the repair of the systematic nodes remains optimal. Now consider repair of the second parity
node, i.e., node 4. The code (Fig. 6a), as proposed in [19], would require reading 8 symbols (which is the size of the
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(c) Overall

Fig. 5: Average data-read and download for repair of systematic, parity, and all nodes in the three piggybacking designs,
Rotated-RS codes [8], and (repair-optimized) EVENODD and RDP codes [25], [26]. The (repair-optimized) EVENODD and
RDP codes exist only for (n− k) = 2, and the data-read and download required for repair are identical to that of a rotated-RS
codes with the same parameters. While the savings plotted correspond to a relatively small number of substripes, an increase
in this number improves the performance of the piggybacked codes.

Node 1

Node 2

Node 3

Node 4

a1 b1

a2 b2

3a1+2b1+a2 b1+2a2+3b2

3a1+4b1+2a2 b1+2a2+b2

(a) An existing code [19] originally de-
signed to address repair of only systematic
nodes

a1 b1 c1 d1

a2 b2 c2 d2

3a1+2b1+a2 b1+2a2+3b2
3c1+2d1+c2

+(3a1+4b1+2a2)
d1+2c2+3d2
+(b1+2a2+b2)

3a1+4b1+2a2 b1+2a2+b2 3c1+4d1+2c2 d1+2c2+d2

(b) Piggybacking to also optimize repair of parity nodes

Fig. 6: An example illustrating piggybacking to perform efficient repair of the parities in an existing code that originally
addressed the repair of only the systematic nodes. See Example 6 for more details.
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entire message) for this repair. However, the piggybacked version of Fig. 6b can accomplish this task by reading and
downloading only 6 symbols: c1, c2, d1, d2, (3c1+2d1+c2+3a1+4b1+2a2) and (d1+2c2+3d2+b1+2a2+b2). Here,
the first four symbols help in the recovery of the last two symbols of node 4, (3c1+4d1+2c2) and (d1+2c2+d2).
Further, from the last two downloaded symbols, (3c1+2d1+ c2) and (d1+2c2+3d2) can be subtracted out (using
the known values of c1, c2, d1 and d2) to obtain the remaining two symbols (3a1+4b1+2a2) and (b1+2a2+ b2).
Finally, one can easily verify that the MDS property of the code in Fig. 6a carries over to Fig. 6b as discussed in
Section II.

We now present a general description of this piggybacking design. We first set up some notation. Let us assume
that the base code is a vector code, under which each node stores a vector of length µ (a scalar code is, of course,
a special case with µ = 1). Let a = [aT1 aT2 · · · aTk ]T be the message, with systematic node i (∈ {1, . . . , k})
storing the µ symbols aTi . Parity node (k + j), j ∈ {1, . . . , r}, stores the vector aTPj of µ symbols for some
(kµ× µ) matrix Pj . Fig. 7a illustrates this notation using two instances of such a (vector) code.

We assume that in the base code, the repair of any failed node requires only linear operations at the other nodes.
More concretely, for repair of a failed systematic node i, parity node (k + j) passes aTPjQ

(i)
j for some matrix

Q
(i)
j .

The following lemma serves as a building block for this design.

Lemma 1: Consider two instances of any base code, operating on messages a and b respectively. Suppose there
exist two parity nodes (k + x) and (k + y), a (µ× µ) matrix R, and another matrix S such that

RQ(i)
x = Q(i)

y S ∀ i ∈ {1, . . . , k} . (10)

Then, adding aTPyR as a piggyback to the parity symbol bTPx of node (k + x) (i.e., changing it from bTPx to
(bTPx + aTPyR)) does not alter the amount of read or download required during repair of any systematic node.

Proof: Consider repair of any systematic node i ∈ {1, . . . , k}. In the piggybacked code, we let each node pass
the same linear combinations of its data as it did under the base code. This keeps the amount of read and download
identical to the base code. Thus, parity node (k + x) passes aTPxQ

(i)
x and (bTPx + aTPyR)Q

(i)
x , while parity

node (k + y) passes aTPyQ
(i)
y and bTPyQ

(i)
y . From (10) we see that the data obtained from parity node (k + y)

gives access to aTPyQ
(i)
y S = aTPyRQ

(i)
x . This is now subtracted from the data downloaded from node (k+ x) to

obtain bTPxQ
(i)
x . At this point, the data obtained is identical to what would have been obtained under the repair

algorithm of the base code, which allows the repair to be completed successfully.

An example of such a piggybacking is depicted in Fig. 7b.

Under a piggybacking as described in the lemma, the repair of parity node (k + y) can be made more efficient
by exploiting the fact that the parity node (k+ x) now stores the piggybacked symbol (bTPx+ aTPyR). We now
demonstrate the use of this design by making the repair of parity nodes efficient in the explicit MDS ‘regenerating
code’ constructions of [7], [9], [19], [30] which address the repair of only the systematic nodes. These codes have
the property that

Q(i)
x = Qi ∀ i ∈ {1, . . . , k}, ∀ x ∈ {1, . . . , r}

i.e., the repair of any systematic node involves every parity node passing the same linear combination of its data
(and this linear combination depends on the identity of the systematic node being repaired). It follows that in these
codes, the condition (10) is satisfied for every pair of parity nodes with R and S being identity matrices.

Example 7: The piggybacking of (two instances) of any such code [7], [9], [19], [30] is shown in Fig. 7c (for
the case r = 3). As discussed previously, the MDS property and the property of efficient repair of systematic nodes
is retained upon piggybacking. The repair of parity node (k + 1) in this example is carried out by downloading
all the 2kµ symbols. On the other hand, repair of node (k + 2) is accomplished by reading and downloading b

from the systematic nodes, (bTP1 + aTP2 + aTP3) from the first parity node, and (aTP3) from the third parity
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Node 1
...

Node k

Node k+1

Node k+2
...

Node k+r

aT1 bT1
...

...

aTk bTk

aTP1 bTP1

aTP2 bTP2

...
...

aTPr bTPr

(a) Two instances of the vector base
code.

aT1 bT1
...

...

aTk bTk

aTP1 bTP1 + aTP2R

aTP2 bTP2

...
...

aTPr bTPr

(b) Illustrating the piggybacking
stated in Lemma 1. The parities
(k + 1) and (k + 2) respectively
correspond to (k+x) and (k+y)
of the Lemma.

Node 1
...

Node k

Node k+1

Node k+2

Node k+3

aT1 bT1
...

...

aTk bTk

aTP1 bTP1 + aTP2 + aTP3

aTP2 bTP2

aTP3 bTP3

(c) Piggybacking the ‘regenerating code’ constructions
of [7], [9], [19], [30] for efficient parity repair

Fig. 7: Piggybacking for efficient parity-repair in existing codes originally constructed for repair of only systematic nodes.

node. This gives the two desired symbols aTP2 and bTP2. Repair of the third parity is performed in an identical
manner, except that aTP2 is downloaded from the second parity node. The average amount of download and read
for the repair of parity nodes, as a fraction of the size kµ of the message, is thus

2k + 2

3k
which translates to a saving of around 33%.

In general, the set of r parity nodes is partitioned into

g =

⌊
r√
k + 1

⌋
sets of equal sizes (or nearly equal sizes if r is not a multiple of g). Within each set, the encoding procedure of
Fig. 7c is performed separately. The first parity in each group is repaired by downloading all the data from the
systematic nodes. On the other hand, as in Example 7, the repair of any other parity node is performed by reading
b from the systematic nodes, the second (which is piggybacked) symbol of the first parity node of the set, and the
first symbols of all other parity nodes in the set. Assuming the g sets have equal number of nodes (i.e., ignoring
rounding effects), the average amount of read and download for the repair of parity nodes, as a fraction of the size
kµ of the message, is

1

2
+
k + ( rg − 1)2

2k
(
r
g

) .

VIII. CONCLUSIONS AND OPEN PROBLEMS

We present a new piggybacking framework for designing storage codes that require low data-read and download
during repair of failed nodes. This framework operates on multiple instances of existing codes and cleverly adds
functions of the data from one instance onto the other, in a manner that preserves properties such as minimum
distance and the finite field of operation, while enhancing the repair-efficiency. We illustrate the power of this
framework by using it to design the most efficient codes (to date) for three important settings. In the paper, we also
show how this framework can enhance the efficiency of existing codes that focus on the repair of only systematic
nodes, by piggybacking them to also enable efficient repair of parity nodes.

This simple-yet-powerful framework provides a rich design space for construction of storage codes. In this paper,
we provide a few designs of piggybacking and specialize it to existing codes to obtain the four specific classes of
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code constructions. We believe that this framework has a greater potential, and clever designs of other piggybacking
functions and application to other base codes could potentially lead to efficient codes for various other settings as
well. Further exploration of this rich design space is left as future work. Finally, while this paper presented only
achievable schemes for data-read efficiency during repair, determining the optimal repair-efficiency under these
settings remains open.
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APPENDIX

Proof of Theorem 1: Let us restrict our attention to only the nodes in set S, and let |S| denote the size of this
set. From the description of the piggybacking framework above, the data stored in instance j (1 ≤ j ≤ α) under
the base code is a function of Uj . This data can be written as a |S|-length vector f(Uj) with the elements of this
vector corresponding to the data stored in the |S| nodes in set S. On the other hand, the data stored in instance
j of the piggybacked code is of the form (f(Uj) + gj(U1, . . . , Uj−1)) for some arbitrary (vector-valued) functions
‘g’. Now,

I
(
{Yi}i∈S ; U1, . . . , Uα

)
= I

(
{f(Uj) + gj(U1, . . . , Uj−1)}αj=1 ; U1, . . . , Uα

)
(11)

=

α∑
`=1

I
(
{f(Uj) + gj(U1, . . . , Uj−1)}αj=1 ; U`

∣∣∣ U1, . . . , U`−1

)
(12)

=

α∑
`=1

I
(
f(U`) , {f(Uj) + gj(U1, . . . , Uj−1)}αj=`+1 ; U`

∣∣∣ U1, . . . , U`−1

)
(13)

≥
α∑
`=1

I ( f(U`) ; U` | U1, . . . , U`−1) (14)

=

α∑
`=1

I (f(U`) ; U`) (15)

= I
(
{Xi}i∈S ;U1, . . . , Uα

)
. (16)

where the last two equations follow from the fact that the messages U` of different instances ` are independent.


