

SECRET SHARE DISSEMINATION ACROSS A NETWORK

NIHAR B. SHAH

K. V. RASHMI

KANNAN RAMCHANDRAN

Shamir's Secret Sharing Scheme

- A dealer has a secret s
- Distribute shares (functions of s) to n participants such that
 - any k can recover s
 - any (k-1) get no information about s

Example: k = 2

 Most protocols assume dealer has direct links to all participants

Problem

What if they are part of a general communication network?

Applications

- Secure multiparty function computation
- Secure key distribution
- General Byzantine agreement between all nodes
- Archival storage
- Generating common random number across a network
- Proactive secret sharing

Literature

- Using pairwise agreement protocols (above)
- Another option: network coding
 - Eavesdropping nodes: hard

New Algorithm

- Distributed
- Deterministic (guaranteed)
- Communication optimal
- Computation efficient
- Distinctive instance of a network-coding algorithm that is both distributed and deterministic
 - Solution to nodal eavesdropping
- Works for a wide subclass of networks

Toy Example of the Algorithm

References

 $(s+4r)+6(r+4r_a)$

- "Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction",
 K. V. Rashmi, N. B. Shah and P. V. Kumar, IEEE Transactions on Information Theory, August 2011.
- "Information-theoretically Secure Regenerating Codes for Distributed Storage", N. B. Shah, K. V. Rashmi, and P. V. Kumar, Globecom 2011.
- "How to share a secret," A. Shamir, Communications of the ACM, Nov. 1979.

dealer

- "Completeness theorems for non-cryptographic fault-tolerant distributed computation," M. Ben-Or, S. Goldwasser, and A. Wigderson, STOC 1988.
- "Secret share dissemination across a network," N. B. Shah, K. V. Rashmi, K. Ramchandran, available on arXiv.