A Piggybacking Design Framework
for Read-and-Download-efficient
Distributed Storage Codes

K. V. Rashmi, Nihar B. Shah, Kannan Ramchandran

Outline

Introduction & Motivation
— Measurements from Facebook’s Warehouse cluster

The Piggybacking framework

Via the Piggybacking framework

— Best known codes for several settings
— Comparison with other codes

— Preliminary practical experiments

Summary & future work

Outline

 Introduction & Motivation
— Measurements from Facebook’s Warehouse cluster

Redundancy: replication, erasure codes

 Redundancy for reliability & availability
* Replication: expensive for large scale data
* Erasure codes: storage-efficient

a a

a b

b a+b
b a+2b

Replication (4, 2) Reed-Solomon code

-

_

N

However...

RS codes increase disk 10 and download during repair
/

Repair: increased disk 10 & download

Replication RS code
e W ?
a
A PuE
A IO & Download b
1x a+b |O & Download
2X
b a+b
b a+2b
4)

Typical RS repair:
IO & download = size of message

Motivation: Facebook’s Warehouse
Cluster Measurements

 Multiple tens of PBs and growing
 Multiple thousands of nodes

[Rashmi et al., USENIX HotStorage 2013]
“A solution to the network challenges of data recovery in erasure-coded
distributed storage systems: A study on the Facebook warehouse cluster”

Motivation: Facebook’s Warehouse
Cluster Measurements

* Multiple tens of PBs and growing
 Multiple thousands of nodes

[Reducing storage requirements is of high importance J

e Uses (14, 10) RS code for storage efficiency
— on less-frequently accessed data

 Multiple PBs of RS coded data

[Rashmi et al., USENIX HotStorage 2013]
“A solution to the network challenges of data recovery in erasure-coded
distributed storage systems: A study on the Facebook warehouse cluster”

Breakdown of repairs

repairs % of repairs
[1 98.08
2 1.87
3 0.036
4 9x 10
>5 9 x 107°

Dominant scenario: Single repairs

Rashmi et al., USENIX HotStorage 2013

Amount of transfer

250 TBF
o ©
£ 200 TB @
5 g
Q@ o
£ 150 TB| @
E wn
s S
S l 3
© 100 TBp re)
" | %
%] |)
o L T
& 50TBf,| *
.,’ — # cross-rack transfer bytes |H60 K
Y - - # HDFS blocks recovered
OTBO 5 10 15 20 25

Day

 Median of 180 TB transferred across racks per day for repair
* Around 5 times that under 3x replication

Rashmi et al., USENIX HotStorage 2013

Outline

 The Piggybacking framework

Piggybacking RS codes: Toy Example

Step 1: Take 2 stripes of (4, 2) Reed-Solomon code

systematic 1 a, b,

systematic 2 a, b,
parity 1 a,+a, b,+b,
parity 2 a;+2a, b,+2b,

Piggybacking RS codes: Toy Example

Step 2: Add ‘piggybacks’

a, b,

a, b,
a,+a, b,+b,
a,+2a, b,+2b,+a,

No additional storage!

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate any 2 failures

a,+a, b,+b,

a,+2a, b,+2b,+a,

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate failure of any 2 nodes

a,+2a, b,+2b,+a,

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate failure of any 2 nodes

_— subtract

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate failure of any 2 nodes

4 NT 7~ N
a,+a, b,+b,
a,+2a, b,+2b,

Repair

a,+a, b,+b,

a,+2a, b,+2b,+a,

Repair

1O & Download =3
(instead of 4 as in RS)

~ ~ b,+2b,+a,

a,+a, b,+b,

a,+2a, gb1+2b2+a1 Y,

Repair

IO & Download =3
(instead of 4 as in RS) subtract

-7

b,

— ~ b,+2b,+a,

a,+a, b +b2

a,+2a, gb1+2b2+a1 Y,

Repair

1O & Download =3
(instead of 4 as in RS)

subtract
a,+a, b,+b,

a,+2a, gb1+2b2+a1 Y,

General Piggybacking Framework

Step 1: Take 2 (or more) stripes of (n, k) code C

General Piggybacking Framework

Step 2: Add Piggybacks’

a1 b1
ay b,
f.(a,...,a,) f.(by,...,0) + p,(a;,...,a,)

General Piggybacking Framework

Decoding: use decoder of C

2k b,
A by
f.(a,...,a,) f.(by,...b) + p,(a;,...,a)
f (a,...,a) f (by,...b) + p, (a;,...,8)
A\ J/ (g J/
~ ~
recover a,,...,a, asin C subtract piggybacks;

recover by,...,.b, asin C

General Piggybacking Framework

Piggybacking does not reduce
minimum distance

". Can choose arbitrary functions for piggybacking

Theorem 1: LetUy,..., U, be random variables correspond-
ing to the messages associated to the « stripes of the base code.
For i € {1,...,n}, let X; denote the (encoded) data stored in
node ¢ under the base code. Let Y; denote the (encoded) data
stored in node ¢ upon piggybacking of that base code. Then
for any subset of nodes S C {1,...,n},

€7 T SO 7\ & € . I O 1%

General Piggybacking Framework

Piggybacking functions should be designed
such that they can be used for repair

e.g.’ %
a RY
a4, b,

a,+a, b,+b,

a,+2a, \b1+2b2+a1)

 We propose 3 designs of piggyback functions

— details in the paper

Outline

* Via the Piggybacking framework
— Best known codes for several settings
— Comparison with other codes
— Preliminary practical experiments

Via the Piggybacking framework...

@ Practical” High-rate MDS codes:

Lowest known IO & download during repair

e Storage constrained systems: MDS & high-rate

* Then, why not high-rate Minimum Storage
Regenerating (MSR) codes ?

— Require block length exponential in k (Tamo et al. 2011)

Block length:

e number of sub-divisions of data units

* need high granularity of data

* low read efficiency

< >
block length

Comparison with High-rate MSR

IO & Download
Block length o :
n k (% of message size)
RS | Piggy-RS | MSR RS Piggy-RS | MSR
16 14 1 4 128 100 77 54
25 22 1 4 3154 100 69 36

210 | 200 | 1 4 102 | 100 56 11

Comparison With Other Codes

Code MDS Parameters Block length (in k)
High-rate MSR Y all
Product-matrix MSR etc. Y low rate linear
Rotated-RS Y < 3 parities constant
EVENODD/RDP Y < 2 parities linear
MBR “ all linear
Local repair “ all constant
Piggyback Y all constant / linear

Comparison With Other Codes

Piggyback Y all constant / linear

Comparison With Other Codes

—»— RRS, EVENODD, RDP
—~A— Piggyback

Piggyback2
—— Piggyback3

70

Average data-read & download as % of message size

33, 10) (14, 12) (15, 12) (12, 9) (16, 12) (20, 15) (24, 18)
Code Parameters: (n, k)

]]

Via the Piggybacking framework...

€@ Binary MDS (vector) codes

— lowest known 10 & download during repair

— for all parameters where binary MDS (vector) codes
exist

— (lowest when #parity > 3;
En Gad et al. ISIT 2013 for #parity=2)

Via the Piggybacking framework...

© Enabling parity repair in regenerating codes

designed for only systematic repair

— efficiency in systematic repair retained

— parity repair improved

Example...

 Regenerating code that repairs systematic nodes efficiently
* Parity node repair performed by downloading all data

aXC a C

=
b d

RC systematic
2a+b+2c || 2b+c+d download = 1.5x

a+b+2c l,a+2b+4d

. > 4

* Take two stripes of this code

a C a C

b d b’ d’
2a+b+2c | 2b+c+d ||2a’+b’+2c’| 2b’+c’+d’
a+b+2c | a+2b+4d || a’+b’+2C’ [a’+2b’+4d’

* Add Piggybacks of parities from first stripe onto second stripe

a C a C

b d b’ d’
2a+b+2c | 2b+c+d |[2a’+b’+2C’| 2b’+c’'+d’
+ a+b+2c |+a+2b+4d
a+b+2c | a+2b+4d || @’+b’+2c’ |a’+2b’+4d’

* Systematic repair: same efficiency as original code
(Piggyback can be subtracted off in the downloaded data)

a C Xa’ c’

d b’ d’

RC systematic
2a+b+2c | 2b+c+d (2a’+b’+2c¢’|l2b’+c’+d’ download = 1.5x

+ a+b+2c |fFa+2b+4d

a+b+2c | a+2b+4d || a’+b’+2c’ |a’+2b’+4d’

* Parity repair as in the original code requires 2x download

a C a C

b d b’ d’
2a+b+2c | 2b+c+d |[2a’+b’+2C’| 2b’+c’'+d’
+ a+b+2c |+a+2b+4d
a+b+2c a+2b+4&a’+b’+2c’ a+2b’+4d’

Original RC parity repair
download = 2x

* Using the Piggybacks, need only 1.5x download

a C

b d
2a+b+2c | 2b+c+d |[2a’+b’+2C’| 2b’+c’'+d’
a+b+2c +a+2b+4d
a+b+2c a+2b+4&a’+b’+2c’ a'+2b’+4d’

Second parity
repair using
Piggyback:

download = 1.5x

Via the Piggybacking framework...

@O Currently implementing (14, 10) Piggyback-RS
iIn HDFS

— 30% reduction in 10 and download

— same storage & fault tolerance

(14,10) Piggybacked-RS code

Step 1: Take a (14, 10) Reed-Solomon code

a, b,

ag b,
f(@,..,a,0) f.(b,,...,.0;0)
f.(a;,...,a;,) f,(0,mms010)
fi(a,,..a,) fo(Dyyeesbyg)
f,(a;,...,a;,) f,(b,,...,.0;0)

(14, 10) Piggybacked-RS code

Step 2: Add Piggybacks’

a, b,

g by
f(@,..,a,0) f.(b,,...,.0;0)
f(ay,..,a,0) f,(b,,...b;0) + f,(a;,a,,a5,0,...,0)
f.(a;,...,a;,) f.(b,,...,b,4) + £,(0,...,0,a,,a,a,,0,...,0)
f,(a;,...,a;,) f,(b,,....b;0) + £,(0,...,0,a,,a,,a,,0)

(14, 10) Piggybacked-RS code

Tolerates any 4 block failures

a, b,

g by
f(@,..,a,0) f.(b,,...,.0;0)
f(ay,..,a,0) f,(b,,...b;0) + f,(a;,a,,a5,0,...,0)
f.(a;,...,a;,) f.(b,,...,b,4) + £,(0,...,0,a,,a,a,,0,...,0)
f,(a;,...,a;,) f,(b,,....b;0) + £,(0,...,0,a,,a,,a,,0)

(14, 10) Piggybacked-RS code

Tolerates any 4 block failures

a, b,
g by
f(@,..,a,0) f.(b,,...,.0;0)
f(ay,..,a,0) f,(b,,...b;0) + f,(a;,a,,a5,0,...,0)
f.(a;,...,a;,) f.(b,,...,b,4) + £,(0,...,0,a,,a,a,,0,...,0)
f,(b,,....b;0) + £,(0,...,0,a,,a,,a,,0)

recover a,,...,a
like in RS

\ f,(a;,...,a;,)

(14, 10) Piggybacked-RS code

Tolerates any 4 block failures

a, b,
- N\
g by
f(@,..,a,0) f.(b,,...,.0;0)
f(ay,..,a,0) f,(b,,...b;0) + f,(a;,a,,a5,0,...,0)
f.(a;,...,a;,) f.(b,,...,b,4) + £,(0,...,0,a,,a,a,,0,...,0)
f,(b,,....b;0) + £,(0,...,0,a,,a,,a,,0)

recover a,,...,a
like in RS

\ f,(a;,...,a;,)

(14, 10) Piggybacked-RS code

Tolerates any 4 block failures

a1 b1
-

g by
f(@,..,a,0) f.(b,,...,.0;0)
f(ay,..,a,0) f,(b,,....0;0)
f.(a;,...,a;) f.(b,,...,0;0)

) f,(by,..0,0)

recover a,,...,a
like in RS

\ f,(a;,...,a;,)

subtract piggybacks

(functions of a,,...,a;;)

(14, 10) Piggybacked-RS code

Tolerates any 4 block failures

a1 b1
/~ 5 ™~
. [b, \
f(@,..,a,0) f.(b,,...,.0;0)
f(ay,..,a,0) f,(b,,....0;0)
f.(a;,...,a;,) f.(b;,...,00)
\ f,(a;,...,a;,)) f,(b,,...,.0;0)
recover a,,...,ag subtract piggybacks recover b,...,b,,

like in RS (functions of a,,...,a;,) like in RS

(14, 10) Piggybacked-RS code

Efficient data-recovery

2y b,

a, b,

A0 b,
f.(a;,...,a;,) f (bg,...,00)
f.(a;,...,a;,) f,(b,,...,b;0) + f,(a,,3,,a5,0,...,0)
f.(a;,...,a;,) f.(b,,....b;0) + £,(0,...,0,a,,ac,a,,0,...,0)
f,(a,..,a,0) f,(b,,....b;0) + £,(0,...,0,a,,a,,a,,0)

(14, 10) Piggybacked-RS code

Efficient data-recovery

d, b,

ds3 by

d10 by
f.(a;,...,a;,) f (bg,...,00)
f.(a;,...,a;,) f,(b,,...,b;0) + f,(a,,3,,a5,0,...,0)

(14, 10) Piggybacked-RS code

Efficient data-recovery

a, / b,

ds b,

a1 by
HCHENS \ f.(0;,0e,010)
f.(a;,...,a;,) f,(b,,...,b;0) + f,(a,,3,,a5,0,...,0)

recover b,...,b;g
like in RS

(14, 10) Piggybacked-RS code

Efficient data-recovery

£,(by ey

recover b,...,b;g
like in RS

(14, 10) Piggybacked-RS code

Efficient data-recovery

2 by
aq byo
HCHENS \ £ (050501 0)
f.(a;,...,a;,) | + f,(a,,a,,a;,0,...,0) I
recover by,...,bg subtract f,(b,,...,by,)

like in RS

(14, 10) Piggybacked-RS code

Efficient data-recovery

2 by
aq byo
HCHENS \ £ (050501 0)
f.(a;,...,a;,) | + f,(a,,a,,a;,0,...,0) I
recover by,...,bg subtract f,(b,,...,by,)

like in RS

(14, 10) Piggybacked-RS code

Efficient data-recovery

HCHENS \ f.(0;,0e,010)

f.(a;,...,a;,) | + f,(a;,a,,a5,0,...,0) I

recover b,,...,b;, subtract f,(b,,....b,,) remove effect of a, and a,
like in RS to get a;

e (14, 10) Piggyback-RS in HDFS
— 30% reduction in |0 and download on average

— same storage & fault tolerance

* However, requires connectivity > in RS

— is this a concern ?

Is connecting to more nodes a concern ?

We performed measurements for various data-sizes in

the Facebook Warehouse cluster in production.

Piggyback-RS codes:
* Reduce primary metrics of IO & download

* Time to repair also reduces upon connecting to more

Locality/Connectivity NOT an issue in this setting

Outline

Introduction & Motivation
— Measurements from Facebook’s Warehouse cluster

The Piggybacking framework

Via the Piggybacking framework

— Best known codes for several settings
— Comparison with other codes

— Preliminary practical experiments

Summary & future work

Summary

e “Piggybacking” code design framework
e 3 piggyback function designs

* Best known codes for several settings

— MDS + high-rate + small block length
— binary MDS (vector)

— parity repair in regenerating codes

Future work & open problems

* Other Piggybacking designs / applications
* Bounds for Piggybacking approach ?

Future work & open problems

* Other Piggybacking designs / applications
* Bounds for Piggybacking approach ?

A

o x RS
: Re!
High-rate MIDS: Tradeoff S| % pigeyback
T X
petween block length & 2l o, XXx
o P29 ?? MR
O/download X .
12 - (linear) (exponential)

(constant) Block length

