THE TXDT PACKAGE—
INTERLISP TEXT EDITING PRIMITIVES

B8Y J STROTHER MOORE
January 1881
CSL-81-2

@ Copyright Xerox Corporation 1881. All Rights Reserved.

~ABSTRACT 7

The TXDT package is a collection of INTERLISP programs designed for those who wish to '
build text editors in INTERLISP. TXDT provides a new INTERLISP data type, called a buffer,
and programs for efficiently inserting, deleting, searching and mampulatmg text in buffers.
Modifications may be made undoable. A unique feature of TXDT is that an address may be"

"stuck" to a character occurrence so as to follow that character wherever it is subsequently =
moved. TXDT also has provisions for-fonts. ‘

KEY WORDS AND PHRASES

string searching, word processing, fonts, texf representation, undoing, INTERLISP, text editing .

CR CATEGORIES

3.70,3.73,3.74 .

R R E TN T M N WS

XEROX

PALO ALTO RESEARCH CENTERS
3333 Coyote Hill Road / Palo Alto / California 94304

LEMTPLNET

Table of Contents

10.
11.

14

16.
7.
18.
19.
2.
1.

Historical Preface
Introduction

Buffers and Boxed-addresses
Specifying Addresses
Buffers

Windows into the Buffer

Objects That May be Inserted

Caveats About Files and SYSOUTS

Line Terminations
Messages am.;. Fonts
Interrhpts '
Getting Smﬁed '

File Handling
Modification Functions
Addressiﬁg Functions
Printing Functions
Message Functions
Character Functions
Implementation Functions
Variables

Error Messages

Datatypes

oW D

W 0 00 ~1 N

THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES 1

1. Historical Preface

In 1971, ‘at the University of Edmburgh, Robert S. Boyer and] developed a method of
representing text that was economical in use of storage, efficient for many common operations, and
permitted the implementation of “undoable” modification. Using that representation, we
.unplemented an editor, called the 77-editor (named after the disk sector on which it resided), in the
programming language POP-2. The editor is described in [Ref 1).

In 1973, 1 moved to Xerox Palo Alto Research Center where I implemented the editor in
INTERLISP-10. That early implementation became the basis of an experimental text editor
patterned after POET implemented by Warren Teitelman, Warren gradually evolved the idea of a
friendly display-based editor into a full-fledged interface to Interlisp [Ref 2] and I evolved my editor .
primitives to suit his needs. The entire system of editing primitives was implemented several times
from the ground up and in 1975 I documented (in an unpublished PARC report) an early version of
the "TXDT package™.

In 1976, 1 left PARC and joined SRI but Warren and I continued informally in our established
roles for several years. Many fearures were added during that time, including multiple buffers and
fonts. Eventually the package stabilized to what is described here.

In 1979, while working as an SRI consultant to Xerox PARC, I instructed Bill Laaser of PARC
in the implementation of TXDT: Bill has repaired the occasional bugs discovered since and has
implemented TXDT on the Dolphin/Dorado series of machines. Richard Burton, of Xerox PARC,
carefully read a manuscript of this manual and suggested many improvements.

2. Introduction B

The TXDT package is 2 collection of INTERLISP programs designed to support those who wish
to build text editors in INTERLISP. Strictly speaking, all TXDT provides is a new INTERLISP
datatype called a "buffer” which, like a file or string, contains a sequence of ascii characters. Unlike
INTERLISP files and strings, buf‘fers are efficiently expanded and contracted as characters are
- inserted and deleted.

Arbitrary locations in a buffer may be addressed and may be the target for insertions, deletions,
etc. A unique feature of TXDT is that addresses can be “stuck™ to characters so that they follow the
character wherever it is moved. All modifications made to buffers are undoable. Finally, where
possible, all operations are symmetric with regard to direction of scan through a buffer. That is, one
can move, search, substitute,.etc., backwards as well as forwards.

It should be understood from the outset that there is much to a good text editor beyond what is
provided here. ~For example, buffers have no structure—TXDT sees them only as character
sequences, not sentences, paragraphs, words or S-expressions. TXDT knows nothing about i/o
devices or user interaction. It maintains no screens and monitors no mouse buttons or keys. The
designer/implementor of a TXDT-based text editor is responsible for implementing these. higher
level features using INTERLISP and the TXDT primitives.

2 THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES

This document is organized as follows. The first few sections informally describe how TXDT
looks to the user and what its most important features and limitations are. Then follow a series of
more precisely written sections which specify the functions in the TXDT package. Functions are
grouped according to the kind of operation they perform. A table of contents and index are
“provided. After the main TXDT functions are specified, the underlying implementation is described
~ so the user can have a better idea of where the inefficiencies lie and why certain things can or
cannot be donme. Also specified are several functions which expose a certain amount of the
implementation—but which are sometimes useful. The document concludes with sections listing the
TXDT "error messages, variables of interest to the user, and datatypes used by TXDT, It is
sometimes necessary to distinguish the PDP-10 implementation of TXDT from the Dolphin/Dorade
implementation. We therefore sometimes talk about INTERLISP-10 or IN'I'ERLISP-D as opposed
to INTERLISP, and TXDT-10 as opposed to TXDT.

3. Buffersand Boxed-address&s

An arbitrary number of buffers may be maintained at once. It is possible to modify or -
“otherwise operate upon any buffer at any time. To operate upon a buffer, one must have an
address” into it, indicating where the operation is to take place. The most efficient and primitive
form of address in TXDT is the “boxed address whmh is an instance of an INTERLISP user
datatype na.med 'TXDTADDR.

' Unlike many editors (e.g. TECO), where an "address” into a buffer is just a . character count

from the top to the given point, TXDT boxed addresses are actually attached to the text. In fact,
- they are attached to the single character to which they point It is convenient to construct the
following model of a buffer in order to provide an intuitive explanation for what a boxed address is
and how it behaves. A buffer is analogous to a row of toy blocks, each block representing some
letter or character. To insert some new text at some location, the new text is assembled as a row of
blocks, ‘the old text is parted at the appropriate place and the new is inserted. To deletz some
“segment of text, the buffer is parted at each end of the segment, the segment is shpped out. and the
gap is closed by pushmg the two halves of the buﬁ'er together

A boxed address is just an 1dent1ﬁcauon of a pammzlar block. That is, if we seamh the buffer
and find some occurrence of the word "FOO", and obtain the boxed address, ADDR, of the first
character, "F", we can imagine ourselves having tied a string to the particular block in. the buffer
representing that “F". Now let us consider what happens under various operations on the buffer.

If we insert text anywhere in the buffer we will find that ADDR still references that very same
“F", in the sense that the string is still tied to the same block. It does not matter that. the block may
- have changed its relative position from some point, or that it may no longer be followed by "0O".

_If we delete a segment of the buffer, ADDR will still point to the "F", if it is still in the buffer.
If the "F" has beén deleted, an attempt to use ADDR will generate the error TXDT ADDRESS.
INTO DELETED AREA 1 ‘The way this is done is as follows: when a segment of the buf‘t‘er is

L 'l'he TXDT €ITor messages are reassuringly verbose. A oomplete list of the TXDT error messages is mcluded in the
section “Error Messages”,

THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES 3

deleted, the characters in that segment are marked as such. Any attempt to use 2 boxed address
-which references a marked character causes the error.?

Finally, TXDT supplies the necessary functions for grabbing a segment of the buﬁ‘er (deletmg it
-from the buffer but returning a pointer to it) and later inserting that segment (that is, the very same
row of blocks) elsewhere. In this case, a boxed address referencing the. text deleted. is considered
invalid until the fext has been reinserted; once the segment has been reinserted, all addresses into it
are valid again, -and reference the very same characters as before. For example, if the text around

thie "F" to which ADDR peints is grabbed and later inserted elsewhere, ADDR would reference that
same "F" in its new location.

‘The section "Implementation Functions” describes the actual representation of buﬁ‘ers and
boxed addresses.

4. Specifying Addresses

Given a hoxed address into. a buffer, the buffer may be the subject of any TXDT operation.
However, TXDT permits one buffer to -be distinguished as the "current” buffer. A buffer is
designated as the current one using the functions TXDTCURBUFF. The current buffer may be
addressed with boxed addresses (as usual) but it may also be addressed with any of the follomng'
forms of “unmboxed addresses™:

TOP—-denetes the address of the first character in the current buffer.
BTM——denotes the address followmg the Iast character in the current buffer.

n, where D isan mteger—-—denotes the begmmng of the nth line in the current buffer, counted from
the top. Nonposxtwe values of » are treated as TOP. Excessively large values ofn
~ are treated as BTM.

(n c) where 0 and ¢ are mtegers—denotes the character addressed by moving to the nth hne ('m'
the sense described above) and then moving forward or backward c—1 characters,
" depending on the sign of c. Thus (20 . 15) is the 15th character after the beginning-
of the 20th line—which may or may not be the 15th character of the 20th lme,.
depending on whether the 20th line has at least 15 characters in it

(NIL '¢), where ¢ is an integer—denotes the address of the cth character: in the current ‘buﬂ’er'
counting from the top. Nonpositive values of ¢ address TOP and excesswely large
values of ¢ address BTM

- All '{XD'I‘ functions which take addresses’ as arguments accept either boxed addresses or the
objects described above.. When an -unboxed address is used, the address implicitly refers to the
current buffer. Because characters have to be fewched and inspected before a line or character
address can be used, boxed addresses—which point directly into the buffer—are considerably more
. efficient than finé or character addrésses. The user should therefore pass boxed addresses whenever '
possible. Ail TXDT functions whlch return addresses actually return boxed. addresses. '

I

2 The delete routine does not have to visit every character defeted to achieve the effect of marking them al!. Also, the
’ markmg is undone if the delete 1s undone, thereby rendering the address \'ahd agam.

4 THE TXDT PACKAGE~-INTERLISP TEXT EDITING Pm'ﬁg

The function txdtbox takes an address of the type described above and produces a boxed

address that points 1o the ‘1o the location indicated. The function txdtunbox maps boxed addresses into line
or character specifications.

Note that BTM is a very special address. Unlike all other addresses it does not reference a
character; it points to immediately behind the last character in the buffer. BTM is supplied because
the insertion functions insert text immediately before the character referenced by the "target

,address " The on]y way 10 insert text after the Iast character in the buffer is to use BTM as the
target address.

. When the buffer is empty, TOP and BTM reference the same location. Either may therefore be
used as the target address for the first insertion into the current buffer.

5. Buffers

- A TXDT buffer.is an instance of the datatype TXDTBUFFER. Buffers aré constructed by the
function wdicurbuf. There may exist any number of buffers, However, one buffer is always
designated as the "current” one. The current buffer is the one used when addresses are specified as
line and character numbers ("unboxed” addresses). The current buffer has no ot.her d:sungmshed
role. Any buffer may be modified at any time.

In addition to the text in the buffer, each buffer contains three fields used to help decode line
and character addresses when that buffer:is the-current buffer. The names of these fields are
TXDT$, TXDTPOETDOTADDR, and TXDTPOETDOT. TXDTS$ must contain the number of line
‘términations in the buffer, 'I‘XDTPOE’I‘DOTADDR must be a boxed address in the buffer. It may
be thought of as the curreat “cursor position™ in many editors. - :'I'XD'I‘POE’I'DOT must be a pair,
{1 . ¢), giving the unboxed address equivalent to TXDTPOETDOTADDR. When the buffer is the
current ‘one, the ‘contents of these three fields are -stored -in the global variables txdt$,
txdtpoetdotaddr. and txdrpoetdot. If the global flag xdtpoetflg is nonNIL, these three globals are
used to make the decoding of line and character addresses more efﬁc1ent. (See dtbox.) mxdtpoetflg
is- 1n1ua11y NI{. ‘ : : :

Itis up to the unplementor of the larger edmng system to maintain these global variables and
the contents of the three fields TXDTS, TXDTPOETDOTADDR and TXDTPOETDOT in each
buffer. The fields may be updated with the re replace operator of the record package. The values of
the variables are important only when unboxed addresses are used while xdtpoetflg is on. The
values of the fields in a buffer are important only when the buffer is made current. At that time,
the contents. of the three ﬁelds are stored in the three global variables for use by the TXDT unboxed
address decoding function, xdtbox. . , _

" Note Lhat TXDT 1r.self never sets the contents of the fields in a buffer (except as ‘noted in’
txdtcurbuﬂ When the user of TXDT makes a new buffer the ccurrent one, the user must update the
contents of the old buffer's fields. if desired. When a TXDT function is used to modify a buffer
that is not current, the user must update the buffer's fields, if desired. TXDT does not assume
responsibility for these fields because they may not always be necessary, For example, the
implementor may know that a ceriain buffer will never be addressed except with boxed addresses or
when txdtpoetflg is NIL, When a noncurrent buffer is modified, the implementor may choose to

THE TXDT PACKAGE—INTERLISP TEXT EDI'ITS'G PRIMITIVES 5

delay the computation of the correct field contents until just before that buffer is made current. To
aid the implementor in maintaining these fields and variables, all TXDT functions which modify
buffers can be asked to keep track of how many lines and characters are added or deleted.

txdt.curbuf[buf undoably;defaultflg;msg]

- If buf is NIL, a npew empty buffer is constructed. The message msg is attached to an
“invisible" address just beyond the top of the buffer (see the section "Messages and Fonts™).
_ This has the effect of propagating msg as the message governing any otherwise ungoverned
text inserted at the top of the buffer. The TXDTS field of the new buffer is set to 0; the
TXDTPOETDOTADDR is set to the bottom; the TXDTPOETDOT field is set to line 1,
character 1. Then the new buffer is made current by setting the global variable txdtcurbuf
to the buffer and appropriately setting the txdt$, xdipoerdotaddr and txdrpoetdot | variables.
" These settings are made undoable {via INTERLISP’'s UNDO command) iff u ndoablg is

- nonNIL. The new buffer is returned.

"If buf is not NIL, it is assumed to be a buffer previously constructed by txdicurbuf. If
defaultflg is nonNIL, the TXDT$, TXDTPOETDOTADDR, and TXDTPOETDOT fields of
buf are set to default values computed by TXDTCURBUF. TXDTS is set to the number of
Tine terminations in buf; TXDTPOETDOTADDR and TXDTPOETDOT are set to the
‘bottom of the buffer. Note that these fields of buf are smashed and the old values are lost.
Then buf is made current as described above, undoably if so specified. Buf is retumed as
the value.

txdtkﬂlbuf[buf undoably;currentflg]
- If buf is a buffer, it is killed in the sense that all the text in it is deleted and all the
structures referenced by the representation of the text are freed for garbage collection. All
fields of buf itself are smashed to the atom KILLED. The operauon is undoable iff
.undoablg is noanL.

If buf is NIL or a list, every element of buf is killed. If buf is the atom ALL, all buffers
are killed.

If an attempt is made 1o kill the current buffer an error is caused unless currentflg is on (or
‘buf is ALL). If currentflg is on, or buf is ALL, the current buffer will ‘be killed—with

* unspecified consequences if TXDT is directed to use the current buffer before 2 new current
buffer is deslﬂrnated.

To detect whether a buffer has been kﬂled, one may ask if (fetcch TXDTS of buf) is the atom
KILLED.

txdtbufﬁ[but]

Returns buf if buf'is a buffer and NIL otherwise.

txdtemptyp{but]
Rewrns T or NIL according to whether buf is empty or has been killed. If buf is NIL, it

~ defaults -to the current buffer.

6 THE TXDT PACEAGE—INTERLISP TEXT EDITING PRIVITIVES

txdtwhereis[addr]

If addr is a valid address, txdtwhereis returns the buffer containing addr Otherwme.
txdtwherets causes an eIror. o

6. Windows into'the Buffer -

Some of the 'IXDT funcnons operate on the segment of text between two addresses Such
,segments of the buffer are ‘called_"windows". For example, txdtdelete takes two addresses and
_'deletes the text in the wmdow defined by then.

Usually the first address defaults to TOP (of the current buffer) when 1t is NIL, and the second
__:;to BTM Departures from tlns w:]l be noted in the descriptions of the ﬁmcuons ooncemed.

The text in a window is defined to be that segment of the buffer stamng wrth the character

referenced by-the first address and endlng at (but not including) the one referenced by the second
-address. - S

Wrndows are therefore somewhat hke open mterva]s. The wmdow deﬁned by two addresses
'rncludes the character referenced by ‘the, ﬁrst address, but not that referenced by the seoond. This is
,‘actually qutte natural, as use of the. TXDT package wﬂl cooﬁrm. (Addresses could be thought of as
-pomtrng to the interstices between characters——but then’ 1t is a little harder to model how boxed
addresses are Stuck t0 characters.) :

. .For example if one obtains the address of line 30, and the ‘address of line 1, and grves these' __
, two addresses to txdtdelete (or eqmvaleuﬂy, if one Just executes txdtdelete[30 31D, then all -of line 30 -
{1s deleted, and hne 31 remarns unchanged. _ : o . _

If the two addresses are 0 deﬁne a wmdow the second must be greater than of equal 0 the _
first, in the sense that the second .is encountered in a forward scan of the buffer starung at the first.
Otherwise rhe window is ill-defined. Note that both addresses must be into the same buﬁ'er 1f the
wmdow is to be well-deﬁned.

: Most of‘ r.he TXDT funcuons whrch operate over wmdows -do not verify that the wmdow is weil-
f_deﬁned. Instead they start their ‘operation at one of the addresses and continue until hitting the
other or the top or bottom of the buffer (depending on the direction of scan)3 The only functions
which verify that the window is well-defined are those that modify text in the window. An efror
-will ocenr if these functions are given addresses which do not well-define a window.

-3 This was an implementation decision made for efficiency and relying on the assumption that the TXDT funtnous wﬂl
;be ernbed_ded in & fairly -sophisticated system -designed by the user. In this case; the user will cften know- that &

- -window-is well-defined because- of the ‘process. used- 10 ferch the two addresses. ‘For> example, the first will be
obtained. and then the second will be obtained with some operaton that starts- at the first and moves forwa.rd
through the buffer. Two addresses obtained in this way must well-define 2 window.

THE TXDT PACKAGE-—II\TERLISP TEXT EDITING PRIMITIVES 7

Occasionally the user will have two addresses and not know which follows which. Two

predicates, txdtequal and txdtgreaterp, are provided for ordering addresses in the ‘sense defined
‘above. ' o _

Finally, those functions which operate on windows decode the two addresses independently.
Thus, txdideletef30;31] makes two calls to xdtbox, one 10 count from the top to line 30, and one to
count from the top to line 31. If some relationship between the two addresses can be exploited o
save time, the user is responsible for exploiting it. For example, in the case just cited, it would be

_more efficient to first obtain the boxed address of line 30 and then move one line down from there
to obtain the boxed address of line 31. - ' '

.. ~The reiation.'c.hip between two addresses =givén as line numbers is not automatically exploited by
‘the windowing functions because in general both addresses will not be line numbers. : '

7. Objects That May be Inserted

Chaﬁctcr: $équeﬁées to be inserted into .a buffer (either via the insertion or subsﬁmﬁ_on
functions) may be obtained from a variety of sources. The various INTERLISP objects which may
be inserted and their interpretation are as follows: '

grabbed object. According to our toy block analogy for buffers, a grabbed object is a row of blocks
" previously removed from some buffer. Technically, grabbed objects are records of
- type TXDTGRABBEDOBJ and are copstructed by the function txdtgrab. A

grabbed’ object représents the fext in the window that was grabbed. See txdtgrab for -

more details. o , A

file segment. A file segment is a listp object whose car is eq to the value of the variable

txduinsertfilekey. Such a list denotes a window into the file named by the second

- element of the list. The window starts at the byte position indicated by the: third

element and extends to that indicated by the fourth element.- For example, to insert

the portdon of the file {MOORB>FOO.BAR from byte positions 1000 to byte

. position 7000, the apprepriate file segment could be constructed by:.
' * fisdxdtinsertfilekey;

‘CMOORE>FOO.BAR;1000;7000) _
If the third element is NIL (or nonexistent) it defaults to the current file poihter for
the named file. If the fourth element is NIL (or nonexistent) it defaults to the end
of file pointer for the file. Note that lisytxdinsertfilekey:file;0] causes the entire file
to be inserted. An ill-formed segment 1S equivalent to an empty segment.

listp other than a file segment. A listp other than one whose car is mdtinsertfilekey denotes the
sequence obtained by calling prin3 on each element in the list. (Note that this is
not the same as calling prin3 on the list itself—the outer parentheses and separating
spaces are omitted) :

other. Any other object denotes the sequeﬁce obtained by calling prin3 on the (jbject_.

] THE TXDT PACKAGE—~INTERLISP TEXT tDITLVG PRIMITIVES

. When the sequence denoted by an object must be obtained' with prin3, the printing is done to a
scratch file maintained-by TXDT. Then TXDT behaves just as though a file segment were to be
inserted.

8. Caveats About Files and SYSOUTS

Pieces of many different files may be inserted at any one time.*” Any given file may be inserted
as many times as desired. TXDT contains some fairly sophisticated software to handle the insertion
of files. When a file is read into the buffer, the characters are not actually copied into core. In fact,
* the characters are not inspected at all. Instead, each page of the file is referenced through an object
not unlike an INTERLISP string pointer, which gives the file name and page number concerned.
Whenever the characters of a particular page must be inspected, that page is PMAPped (by a 'I‘XDT
paging mechanism) into one of several scratch pages maintained by TXDT for this purpose

“The effect of this arrangement is that during operations that scan 1arge amounts of a buffer, such_
‘as searches from top to bottom, the pages of inserted files will be PMAPped in and out. But when a
_ particular area has been smgled out, it and nelghbonng pages are actually in core (for all pracncal :
purposes). _

Changes made in a file being edited are not actually visited upon t.he file itself. The changes are
. 'a::mally represented by the state of the buffer. Hence, changes can be easily undoné by restoring
‘the state of the buffer. However, it is dangerous to undo operations out of order. (See the section
"I.mplementamn Funcuons .} Should the system crash- dunng a session in whlch TXDT functions
were being used to edit a file, all of the changes made since the last write will be lost. Of course, a

buffer may be written to a ﬁle at any time, and the file written will contain all of the modlﬁcauons ‘
made o

Because files which have been inserted may be PMAPped in, the normal INTERLISP file
- closing primitives will not operate properly. Furthermore, since inserted files are referenced by their
JFNs, closing and reopening a file (which will most likely assign it a new JFN) typically has
- disastrous consequences on all buffers using the old JFN. Finally, because of these JFN and PMAP -
issues, the INTERLISP function svsout does not produce a useable core image. TXDT has facxlmes
for dealing with these issues. The reader should see the section “Fﬂe handling”. - . °

9, Li_ne' Terminations

g _Thg INTERLISP-10" version of TXDT must contend with a war between TENEX and
INTERLISP-10 over the line termination protocol.

" TENEX uses the carriage teturn character followed by line feed (CR/LF) to terminate lines in
files. INTERLISP-10 uses the end of line (EOL) character in strings and CR/LF in files. When

4. INTERLISP-10 files must remain open while they are being edited. Since INTERLISP-30 restricts the number of
open files to 16.-at most 16 different files may be manipulated by the INTERLISP-10 version of TXDT.

5. A page is not PMAPped into one of these areas if it already occupies one: steps are taken o prevent 2 page which
has recently experienced heavy use from being swapped out.

THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIVITTIVES 9

INTERLISP-10 prints an EOL 10 a file (as with PRIN3), it deposits a CR/LF pair. Unless the user
has inserted single CR’s or LF's, all lines in TXDT buffers and in files created by TXDT-10
terminate with CR/LF.

When counting lines, TXDT-10 treats LF as the line terminator.
When searching for a string containing an EQOL, TXDT-10 accepts CR/LF as a match.

TXDT-D, on the other hand, naturally uses EOL uniformly 1o define line terminations.

10. Messages and Fonts 7

To facilitate the handling of special information like fonts, TXDT permits a "message” to be
stored at an address. A message is either NIL, a single character atom (other than the one whose
ascii code is 0), or a list of up to 126 such atoms.

Conceptually the messages in a buffer divide the text into regions; each character or address in a
given region is considered “governed” by the message stored at the address at the front of that
region. Typically, messages can be used to specify the font of the region governed.

Unless otherwise specified, text inserted into a buffer inherits the message governing the point of
insertion. Each buffer has a message stored "above the top™ that governs otherwise ungoverned
insertions at the top. (See mxdtcurbuf) However, text 1o be inserted may contain special characters,
called "message sequences”, which specify the messages and message regions of the inserted text.

A message sequence is a sequence of characters beginning with the character contained in the
variable txdiescapechar (hereafter called the “escape character™). Suppose the escape character
. occurs in text to be inserted. Here is how the message is parsed.

If the character following the escape character has ascii code 0, then the character code, n,
following the 0 is taken as the message length and the message is a list containing the next n
characters. If the character following the escape characters has ascii code 127, it is a signal that the
escape character itself is to be inserted (and the 127 is deleted). If the character following the escape
character has an ascii code other than 0 or 127, then that character is the message.

For example, suppose that @ is the escape character and that the following symbo]s have the
associated ascii codes®

symbol ascii code
0
b) 127
2 2

6. We have here associated the codes (), 127, and 2 to ascii characters other than their true ones because their true ones -
usually require more than one space to write down,

10 THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES

Then inserting the following sequence . _ |
@ATHE_@#2AIESCAPE_CHARACTER@A_IS_@#.

has the effect of inserting the text |
THE_ESCAPE_CHARACTER_IS_@.

and artaching the message A at the T in THE, the message (A I) at the first E in’ ESCAPE and the
message A at the space before IS.

This interpretation of inserted characters is disabled if txdtescapechar is set to NiL.
“To store a message at an addtess in a buffer the function xdtputmsg may beused.
‘ Whi_en text ﬁom'.a buﬁ'er is printed to a file (usually the terminal) with txdtprint, the messages in
it are passed to the function mxdtprintuserfn as they are encountered. Initially dtprintuserfn is a

‘noop but it may be defined by the user (e.g., to cause subsequent text to be printed in a different
font). See xdtwrite and txdtprint for details. B ' " R

‘11, Interrupts .-

" During ceruin critical sections of TXDT code, unexpected interrupts could result in mangled
data structures and cause irreparable damage 1o the current TXDT start up. Thus, certain critical
"TXDT operations either temporarily disable interrupts or take steps to recover from them after the
fact. The user should.arrange for the function txdtresetformfn to be called after-any emor or CTRL-"
D interrupt inside a TXDT function and before any other TXDT function is called. It is safe to call -
it anytime. One suggestion is.to keep a call of txdresetformfaf] on the INTERLISP reset list. The
fanction rewrns NIL. ' '

12 Getting Started
" Before any other TXDT function can be called txdtinit must be called.

wxdtinit]] . ' 3 | S

" This function initializes the TXDT package. It declares the TXDT user datatypes if
necessarv; opens the scratch file as a temporary io file and stores the name in the global
variable txdiscratchfile: initializes the swapping buffers: closes all previously inserted files;
kills all existing buffers; sets up one new empty buffer; makes it the current buffer; and
stores that buffer in the global variable wxdicurbuf. '

If TXDT has already been ‘started, xdtinit has the effect of releasing all the space associated - -
_with the old start up and starting Over. - : :

THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES , 1

"13. File Handling

txdtread[file;addr;behind;countlc;oldbox]-
Reads the file file into-a buffer, Equivalent to o _
txdtinsert/obiect;addr;behirid:countlc;oldbox] . L \
where object is lisjuxdtinsertfilekey; _ﬁ_lg] ' ' o

txdtcloseﬁﬁle] ‘ ' '
Closes the file named ﬁle (in TXDT-lO if file i is an mteger it is treated as a JFN) Returns -
the full file name of the file closed. If the file was not open, NIL is returned.

txdtclosea]][]
Closes all files ever mserted intoa TXDT buffer.

Because of PMAP consxderauons (see "Caveats About Files"), txdtclosef and bcdtclosea]l ane the
only proper ways to close files that have been inserted into a TXDT buffer.

The rest.of t.’ms section pertams to TXD'I‘-IG only

A buffer may not be used whﬂe any ﬁle nserted in it is closed. An attempt to use such a buffer_;_' '

e may cause arbitrary chaos, mcludmg the dreaded TRAP AT I_DCA'IION

txdmnpmap[] . | ! ' ' _
- UnPMAPs: al ﬁ]es currenﬂy mapped in by TXDT. A.fcer ‘this. operauon they may be closed
. nonnally . ,

' txdtsubstjfns[ahst buﬂst] S) o S
.alist must be a list contammg elements of the form (o]d]fn nevqfn) where oldjfn is the JFN :
of a file that was previously imserted into some buffer and then closed: and new_lfn is: the',
JEN- a551gned when that file was reopened. - It is assumed that each file. s open and “Was

E _reopened in. exactly the same mode (eg INPUT OUTPUT, BOTH)

- buﬂst must be a buffer a nonempty hst of buffers, or NIL whxch means all unkllled buffers. _ '

. txdtsubsgfn smultaneously subsututes each new JFN for every occurrence of each oId .IFN :
_m each buffer m buﬂst.

o I-‘or example suppose it'is desued o make a SYSOUT of‘ a TXDT]ob One should ﬁrst save
* the names. JFNs, and modes of every open file. Then the files should be closed with txdtclosef and

_.:"'_f_-f’-fthe SYSOUT made. Upon restarting ‘that SYSOUT one should reopen alt the files in exactly the.
~. -same mode and. then Dtdtsubsqm s the néw JFNs for t.‘ne old- JFNs in all buffers Such- 2 sysout

- facility is not. provlded explicitly in TXDT because it is expected that the edrtor mplementor will -

1-"-'-7”have addmonal mvanants to mamtam.

Cauuon buffers are net the only TXDT ObjeCIS that reference IFNs Both grabbed objects and

undo information may contain JFNs. Thus, aftér a SYSOUT of the kind descnbed above, previously
f.grabbed objects miust not be used nor should previously executed operauo be.undone, This'
- limittion has been found acceptable because ‘xdwsubstifns s usualiy used merely 10 save an. -
"'1ualized core. 1mage for user convemence Edmng sessrons are generally _ parually edlted'

n THE TXDT PACKAGE~INTERLISP TEXT EDITING PRIMITIVES

14. Modification Functions

udtmsert[object addr;behind;countlc; oldbox] ,
Inserts the characters of oblec in front of the character referenced by the address addr If.
behind is NIL, txdtinsert returns the address of the first character inserted. If behind is the
atom BOTH wdtinsert returns a dotted pair, consisting of the address of the first character’

" inserted and the address immediately following the last character inserted. Otherwise, it
- reurns the address of the character immediately folldwing the last character inserted.

If oldbox is a boxed address, it is reused. (1 e., its fields are smashed) 10 represent (one of)
the answer add:ess(es)

Before object is mserted, the message governing addr is stored at addr (creaung two ad}aeent,
regions with identical messages). Then the characters in object are inserted. - Finally, if
txdrescapechar is nonNIL and object is not a grabbed object, any message. sequences in it
are’ processed and deleted as described in the section “Messages and FOnts"-

countlc may be used to determine the number of lines or characters inserted. If countlc is -
CHARS the global varizble txdtdelta is set to the number of characters in the insertion. If
- -countle is LINES, the total number of lines (line terminations) in‘the insertion is counted
. -and put in xdtdelta. . If countl¢ is BOTH, txdidelta is set to (1 . ¢) where-1 is the: npmber.. of
lines inserted and ¢ is the number of characters inserted on the last line. If countle is NIL,
txdidelta is left. uncha.nged. Note that characters and lines are counted after any message
- sequences have . been:processed. . If object is a grabbed object, it musi nét.currenty be
- inserted or the error ATTEMPT TO REINSERT INSERTED GRABBED OBJECT will be
. _- generated.

If addr isa boxed address, the address of the character 1mmed1ate1y foﬂowmg the last character
mserted is xdtequal to addr: they reference exactly the same character. However, the two addresses
- will mot l;}e -eq and the. add:ess remmed by txdtinsert will be slightly more efﬁczent to use after the
mseruon. . . _

A grabbed object is actually a segment-of the buffer which has been removed. It represents the

text contained in that segment and may be inserted with the effect of inserting that text. However, a

‘grabbed object may be inserted-only once. because it contains pointers which link it to the adjacent
text and each of these can only point to one place. When a segment of text is grabbed, it is deleted

from the buffer. When it is deleted, it is marked as such. When a grabbed object is given to

tidtinsert, a chieck is made to insure that it is marked as deleted.” If not, an error is generated, If

the objectis marked, mxdtinsert unmarks it before inserting it. The process of unmarking prevents

- the object from being inserted a second time. When a window is grabbed, the messages in it remain
attached to their respective addresses.: Thus, the message regions in a. window are preserved when -

the mndow is grabbed and remserted.

7. ‘This is explaired in the section "Implementation Functions”. The toy block ‘model of the buffer and boxed
- . -addresses fails to provide an anzlogy here. - Essentially though, after the insertion, addr is slightly out of dae
However, it contins sufficient information to (1) make it easy to detect that it is out of date, and (2) decode it in.

" the new context !

THE TXDT PACKAGE~INTERLISP FEXT EDITING PRIMITIVES B3

Note that since the message initially governing addr is stored at addr before the insertion, the
last message in object does not “spill over" to characters beyond addr. Note also that if object is not
a grabbed object and contains no message sequences, then its characters are all governed by the
message initially governing addr. '

ntdtsubst[object Str; addrl,addrz,back count;countic;oldbox]}
Subsntutes object for sir in the window defined by addr, and addr,. 'I'he error ILL-
DEFINED WINDOW occurs and no changes are made e if | the wmdow is'not well-defined.
If back is NIL, the scan starts at addr; and proceeds forward to addr,. If back is nonNIL,
the scan starts at addr, and proceeds backward 10 addr,. If count is NIL or negative, every
occurence of str in the window is replaced by object. Otherwise, count is assumed to be the
maximurn npumber of substitutions allowed. countle may be used to determine the total
change in the number of lines or characters in the buffer due to the substitution., If countlc
is CHARS, the total change in the number of characters is put in the global variabie
txdtdelta. If countic is 1INES, the total change in the number of lines is put in txdtdelta.
If countle is BOTH, wxdtdelta is set to (1. ¢) where 1 is the total! number of lines inserted
and c is unspecified. If countlc is NIL, txdwdleta is not changed.

txdtsubst returns the address of the final substitution made. If proceeding forward, this will

be at the end of the final insertion of object. If proceeding backward, it will be at the

beginning of the final insertion of object. If oldbox is a boxed address, it is reused to

represent the answer address. Finally, the globa] variable xdtsubstent is set to the total
- number of substitutions actually made.

' Objecrt may be any insertable object; hovirev_er recall that a grabbed objed-can only be
inserted once. If str is not a string, it is converted o a string with mkstring. addrl and
addr, default 10 TOP and BTM respectively. '

~ Note that xdwsubst{object;str;addr,;addr,] replaces all occurrences of str in the window by
objec t, whﬂe wxdtsubst{object;str; addrl,addrz,N]]_ 1} replaces the first occurrence of stt by object.

The empty string cannct be ‘substituted for. (It can be found everywhere.) If str is empty, the
results are as if it could not be found in the window. Similarly, str is not searched for within the
newly inserted object.

If object is empty, the effect is that of deleting the appropriate occurrences of str.

In order to detect whether any substitutions were performed, inspect txdtsubstent. It will be 0 if
str was not found (or if count was 0 to begin with). In the case where no substitution is made, the
" resulting address is that of the starting point, either addr; or addr,, depending on the direction of :
the scan.

If the countlc option is used, txdidelta will be set to the total number of lines or charactérs
gained or lost due 1o the substitution. If xdidelta is negative, that mary lines or characters were lost
from the buffer. If xdtdelta is positive, that many were gained. Note that if xdidelta is 0, it means
there was no net change in the number of lines or characters; however, it does not mean that no
substitutions were made.

u THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES

txdtdelete[addrl,addrz,oounﬂe uldbox]

Deletes the text in the window from addr, 1o addr,. If countle is CHARS, the

- global variable txdtdelta is set to the negauon of the number er of cl characters deleted.
If countle is LINES, txd txdtdelta is set to the negation of the number of Tines deleted:
if countlc is BOTH, txdtdelta is setto (1. c) where 1 is the negauon of the number
of tines deleted and ¢ is unspemﬁed. If countlc is NIL, txdtdelr.a is unchanged. The
function returns the address of t.he character im immediately followmg the last character
deleted (reusing oldbox if it is a boxed address). " If the window is not well-defined,
an ILL-DEFINED WINDOW error is generated and no deleuon occurs. -addr,
defaults to TOP and addr, defaults o BTM.

: If addr is a boxed address the result returnied by txdtdelete will always be txdtequat to addr,.
However :t ‘will usually be sl:ghﬂy more efﬁc:ent 1o use the address remmed rather than addr2 aﬁer
‘the deletion.

-When text is deleted it is marked .as such. Any subsequent attempt to use an address
referencing deleted text will cause an error.

'D{dtgrab[addr addrz,countlc oldbox]
L : Deletes the text in the window from addr to addr and returns it as a "grabbed object" If
"~ the’ window is ‘not well-defined, -the error HL-DEFWED WINDOW is genemted. and no
“‘deletion occurs. countle’ functions just as in trdtdelete. The global variable txdtgrabaddr is
set to the address of the character unmedaately afier the last character deleted (reusing

oldbox 1f itisa boxed address). addry defaults o TOP and addr2 defaults o BTM.
J

Grabbed objects can be recognized by the predJcate mxdterabbedp. They are not addresses and
may not be used as such.

' A grabbed Ob]ect represents the text in the window deleted, in the sense that it may be mserted
with ‘txdtinsert with the same effect as inserting a siring containing the text in the window: ““In
addmon, any addresses into the window will be valid once the grabbed object is inserted, and all
messages ‘in the wmdow are preserved. :

However, a limitation is that a grabbed object may only be inserted once. ' This is because it
contains pointers that are used to link it to the text on either side of it in the buffer, and these can
only point to one place. mxdtinsert will cause an error if an attempt is made to insert a grabbed
object that has a]ready_ been inserted.

K itis necessary- to move text from one place to another, txdigrab is exceedingly well suited.
Since the text is already in the form required for insertion into a buffer, the only cost is boxing it up
long enough to pass it to the user, :

Ifitis necessary 1o insert the text several times, txdrerab is not so well sulted. Suppose the task
is to copy a given window and insert the copy elsewhere, leaving the original in place. In general,
this can be done in several ways with TXDT functions. The function xdtprint may be used to pnnt

B. Seethe discussion of this under txdtinsert or the section "Implementation Functions™.

THE TXDT PACKAGE~INTERLISP TEXT EDITING PRIVITIVES 15

the window to a file and the resulting file segment may then be iriserted as many- times as desired.
Less efficiently, the function pxdtmkstring can be used to generate a string containing the text in the
window, and that siring may then be inserted as many times as desired. A third way is 10 txdtgrab
- the window, use txdtcopy 10 copy the grabbed object, thén insert the original grabbed object in one

- place and the copy in the other. (Addresses into the grabbed object will point into the grabbed

object only and not into the copy.)

Which of these methods is most efficient in terms of storage depends on the amount of text

involved and the extent to which it has been modified since it was originally read or inserted. In

“most circumstances, the xdiprint method will be the most efficient. The secnon "Implementation
Functions" should make the details clearer.

It should be recalled that the context of this discussion is that more than oiie eo;iy owt;"a \(rrhdoiw
is to be inserted. mxdigrab is unexcelled if the text is to be merely moved to a new Iocauon since-it
 requires vurua]]y no overhead,

] u(dtgrabbedp[x] - IR ' :

Returns GRABBED ifxis a gmbbed ob]ect ‘that is ot currently mserted. Returns
GRABBED&II\ISERTED ifitisa grabbed object that is currenty mserted. Returns
- GRABBED&UNDONE if it is- the result of an undone grab If xis not a grabbed object, it
returns NIL.

'-15 Addressrng Functmns | |
- The following functions may be used 1o obt.am and mampulate addresses. s

detﬁnd[x addrl,addrz,back behind;count; anchor'oldbox]
: If anchor is NIL, txdtfind searches for the countth occurrence of the stfing x (or g x]
- if x is not a string) in the window from addr, w arddr2 If back_‘is NIL, the search proceeds
forward from addr, ‘1o addr (or the bortom if addr, is not encountered). - If back is
nonNIL, the search proceeds backwards, from adr.lr2 to ‘addr, (or the top if ‘addr, is. not
encountered)

-1f anchor is nonNIL, txdtﬁnd detefinines 1f X occurs starting at addr, (or, 1f back is nonNIL, :

- ending-at addrz} "Such an o ‘occurrence’ must be’ entirely wrr.'run thé wmdow defined by addr1
and addr,. count is 1gnored. :

If the appropnate occurrerice ‘of xis found. the -address of the begmmng or end (or both) of
that occurrence is returned. If behmd is NIL, the address of the first character is retirned.
If behind.is BOTH, a dotted . pair, ¢onsisting of the address of the first character and the
address of the character immediately following the last character, is returned. Otherwise, the
~ - address of the character imimediately following the last character is returned. - In all-cases,
oldbox is used to represent one of the answer addresses if oldbox is a boxed address.

‘ Ifan appropnate occurrence of X rs not found mthm the wmdow NIL is reu.lmed.

Whether or not count occurrences of x are found, txdtﬁndcnt is set to .the number of
occurrences found.

16 THE TXDT PACKAGE~INTERLISP TEXT EDITING PRIMITIVES

addr, and addr, default to TOP and BTM respectively. count defaults to L

" It should be pointed out that only characters strictly in the window are ‘inspected. Recall that
the character at addr, is not in the window, and hence, is not inspected. That is, if a forward search
must look at the character at addr,, then the search has failed; a backward search begins at the
character immediately preceding addr,. _ :

If x is the empty string or count is 0, the search will succeed immediately at its starting point.

If count is negative, back is negated, and abscount] occurrences are found. Thus, the direction
of the search can be specified with either back or the sign of count. '

txdtmove[n;c:addr;fig;oldbox]

Roughly speaking, this function returns the address of the character arrived at by starting at
addr and moving past n lines and then past ¢ characters. Precisely: If n is a positive
integer, the “line move” from addr moves past n line terminations, and stops immediately
after the nth one. Then, ¢ characters are counted off, backwards or forwards, depending on
the sign of ¢. If n is a non-positive integer, abs[nj+1 line terminations are counted off in
the backward direction, stopping immediately to the right of the last one. Then the same
type of character move. described above is made. In all cases, oldbox is reused to represent
the answer address if oldbox is a boxed address.

If n is NIL, no line move is made; the resulting address is just ¢ characiers from addr. Ifc

is NIL, 0 is used (i.e., no character move is made). If addr is NIL, it defaults to TOP or

BTM according 10 n and ¢: If n is zero or positive, addr defaults to TOP. If n is negative,

addr defaults to BTM. If n is NI, addr defaults to TOP when ¢ is zero or positive, and to
" BTM when c¢ is negative. ' : '

Finally, if the move would exceed the bounds of the buffer, the result returned depends on
fig. If flg is T, NIL is returned. If flg is NIL, an address xdtegual to either TOP or BTM
is remrned, depending on which was exceeded. If flg is the atom BOUNDARYERR, an
error is caused (via ERROR!). - '

Note that when n is 0, the line move is backwards to the first character in the line containing
addr. Thus, txdumove[0;0;addr] is the address of the beginning of the line containing addr,
txdtmove[--1;0;addr] is the address of the beginning of the previous line and mdmmove[1;0;addr] is
the address of the following one. '

When 1 is NIL, xdunove is just a character mover. txdtmove[NIL;—5;addr] is the address of
the character 5 to the left of the one at addr, and xdtmove[NIL;5;addr] is that 5 to the right. Note
that the character move is not bounded by the current line. Thus, xdtmove[NIL;5000] is the
address of the 5001st character in the buffer, and xxdtmove[NIL;— 5000} is the address of the 5000th
character from the end. (Note how addr defaults to TOP in the first case, and BIM in the second.)

flg should be set to nonNIL in situations in which a positive check on the validity of the move
is desired. That is, if the buffer only has 100 lines in it, and the user wishes to move past 200 lines,
then txdumove[200:NTL:addr] will move to the bottom (immediately behind the last character in the
file), while txdtmove[200;NIL:addr:T} will return NIL. ' :

THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES 17

_ Character moves are very efﬁcxenr, since the characters may be counted off a page (2560
- characters) at a time. To make line moves, the characters must be inspected.

In TXDT- 10, one bizarre aspect of xdtmove is that it a»mds returning an address that points to
the Jine feed of a CR/LF pair. If after the character move, the character addressed is such a line
feed, txdmove moves forward {or backwards, depending on the direction it has been moving) one
additional character so as not io leave the address between the CR and its LF.

The function tidtmove is used to move over a given number of lines from a given place in any
buffer. The following function, which is just a special case of txdtmove, is used to find the address
of a particular line in the current buffer.

txdtgoto[n:c:fig;oldbox]

~Rewmns the address of the cth character from the beginning of the nth line in the current
buffer. The lines are counted from the wp. If n is NIL, no line move is made and the
address returned is that of the cth character, counted from the top. The character move is
backwards or forwards depending on the sign of c. If ¢ is NIL, no character move is made.
fig plays the same role as in xdtmove, permitting a check on whether the move exceeds the
limits of the current buffer. When oldbox is a boxed address, it is used to return the answer -
address.

Because of the convention of numbering things starting at 1 rather than 0, the nth line is arrived
~ at by moving past n—1 line terminations. A similar remark can be made about the cth character.
Thus, the 1st character in a line is the one arrived at by not ‘moving from the beginning of the line,
Therefore it follows that the Oth character of a line is actually the result of moving back one.

udtcounﬂc[add:l,addrz,chaxﬂg]

Counts the number of lines and/or characters between addr, and addr,. If charflg is the
atom CHARS, the result is an integer, which is the number ¢ of characters separating the two
addresses—i.e., the character count one must give txdtmove to move from addr, to addr,. If
charflg is the atom LINES, the result is the number of line terminations between the two
addresses. Otherwise, the result is a dotted pair, car of which is the number of lines, and
cdr of which is the number of characters from the beginning of the last line to addr,. The
two addresses default to TOP and BTM respectively.

Thus, xdicountlc can be used 10 find out "where” a given address is. Note however that
txdtcountle counts the number of lines and characters between the two addresses; it does not return
- aline number when addr; happens to be TOP. Thus, if txdicountle[TOP:addr] is (45 . 4), then addr
points to the 5th character from the beginning of line number 46, Interpreted the other way, it
means there are 45 line terminations between addr and (in this particular case) TOP And there are
4 characters separaung the last line terminator and addr itself.

txdtbox[addr; ﬂg,oldbox float]
This function returns a boxed address equwalent to addr, reusing oldbox if oldbox is a
- boxed address.

If @'is an unboxed address, it is decoded with respect to the current buffer. flg is used
during the decoding in precisely the way flg is used by txdtmove o permit a positive check
on whether the bounds of the current buffer have been exceeded. :

8 THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIVITIVES

If addr addresses the bottom of its buffer and float is noaNIL, the boxed address returned is
very special: the address is actually tied to the last character of the buffer but has a mark
on it that causes it to be moved forward by one whenever it is used. The first time such an
‘address is used and the move forward does not touch the bottom, the address is smashed 50
that it is afterwards attached to the character encountered.

Normally a boxed address pointing to the bottom of its buffer will forever point to the bottom.
(Imagine the buffer as a list; boxed addresses point to successive cdrs; a boxed version of the bottom
address is analogous to NIL and denotes the end of the list no matter bow many insertions and
deletions are made.)- A boxed version of the bottom add.tess with the float flag on "floats” off the
bottom as inserts are made at the bottom.

Calling xdibox on a boxed address (with the float flag off) has two uses. First, it is a way to
smash oldbox with the contents of addr. Second, if the region addressed by addr has been heavily
“ modified since addr was obtained, the result of xdtbox will be eguivalent to addr but more efficient
to use. See the section "Implementation Functions".

txdtbox is the function used by all TXDT functions to decode line and character addresses.
When other TXDT functions call txdtbox, they specify flg and float o be NIL. Thus if the current
buffer contains 100 lines, a line address of 200 is equivalent to BTM. -

txdtbox has an optional feature which makes the decoding of lines and character addresses more
efficient in the vicinity of a particular point in the current buffer. If the global variable mdtpoetflg
is'nonNIL, the feature is activated. In this case, the global variable txdt$ is assumed to be set to the
number of line terminations in the current buffer. The global variable xdtpoetdotaddr is assumed
to be set to some boxed address in the current buffer and xdtpoetdot is assumed to be set to a pair
{1 . c) giving the line and character location of U:dtpoetdotaddr (That is, txdmoetdot is an unboxed
address eqmvalent to txdtpoetdotaddr.)

If txdipoetflg is set, then whenever a line and character address is used, the necessary number of
lines are counted from the TOP, BTM, or xdtpoetdotaddr, whichever is the fewest number of lines
away. However, this efficiency requires that the implementor properly maintain the globals txdt$,
txdtpoetdot and txdtpoetdotaddr as insertions and deletions are made into the buffer, (The insertion
and deletion functions can be made to count the number of lines and characters added or deleted.)
See wxdicurbuff. :

When xdtpoetflg is NIL, line and character addresses are always counted from the top.

txdtunbox[addr charflg; flg;oldpair]

' This function returns the line and character address of the character referenced by addr.. If
charflg is T, a pair of the form (NIL -. ¢) is returned, where ¢ is the character number of the
given character. Otherwise, a pair of the form (n . ¢) is returned, where n is the line
number of the line containing the character and ¢ is the character number within that line.
If addr is dwelf a line and character address, then flg is used to monitor boundary errors
while it is being decoded. If oldpair is a listp. it is smashed to represent the answer pair. In
TXDT-10, if the car of oldpair is a big number box, it is smashed to represent the line
count.

THE TXDT PACEAGE—INTERLISP TEXT EDITING PRIMITIVES 19

If txdtpoetflg is set and addr is in the current buffer, txdt$. txdtpoetdotaddr and txdtpoetdot are
‘used to reduce the number of lines counted. Note that if addr is not in the current buffer, then the
line and character address returned is useless until addr’s buffer is made current.

One reason for calling txdunbox on an unboxed address is to "normalize” the line count or to
convert a character address to-a line address or vice versa. For example (7 . 100) may actually be-an
"unnormalized" address equivalent to (8 . 20).

txdtcopy(x)
X may be an address or a grabbed object. It is copied and retumed.

The user should copy addresses if he wants to call 2 TXDT function that smashes the address
but wants to keep a copy of the ongmal. It is as efficient to use a copy of an address as to use the

original.-

Grabbed objects must be copied if they are to be inserted more than once. If xdtcopy is given
a grabbed object that has already been inserted, it will cause an error (because at that time it is
impossible to reconstruct the limits of the window grabbed). Copying a grabbed object is similar to
copying a list at the top- level only." ‘Since references to the characters are second level pointers, such
an object can be copied without mspectmg the characters it "contains”. Note that boxed addresses
into -2 grabbed object do not pomt mto copres of the ob_tect. ' ' ‘ '

It is merely notatlonal economy to supply one funcuon for copying both kmds of objects.
Addresses should not be confused with grabbed objects.

txdtaddrp|x]
Returns Tifxisa boxed address and NIL otherwise.

| txdtequal[addrl,addrz] |
The equality predicate for addresses Returns T if the two addresses reference the same
character, and NIL otherwise.

n:dtgreaterp[addrl,addrz] : : :
Rewrns T if the character referenced by addr, strictly follows that referenced by addr;.
Otherwise returns NIL. '

txdtvalidpfaddr; flg]
This function decodes addr and returns T if it is a valid address if addr is not an address
or references deleted text, the function returns NIL. If flg is the atom om BOUNDARYERR
and addr references a non-existent line or character {e.g., line 200 while the current buffer
has only 100 lines), the function returns NIL. If flg is anything else and addr references a
non-existent line or character, T is returned (since such a use of addr would default to TOP
or BTM) :

txdiclosesfaddr;addrlst] ’
addr is supposed to be an address and addrlst is supposed to be a list of addresses.
txdiclosest searches addrlst and returns either the address on addrlst which-is closest to addr
{in the sense of being in the same buffer and separated by the fewest number of characters)

20 _ THE TXDT PACKAGE~INTERLISP TEXT EDITING PRIMITIVES

" or returns the atom TOP or BTM if one of those two addresses is closer than any address on °
addrlst. - In all cases b:dtc_losestfomﬂg is set to T if the answer is forward from addr and
NIL otherwise. : ‘ ' '

Note that if addr points into a buffer, buf, other than the current one and ixdtclosest returns
TOP or BTM, then that result cannot be used 1o address buf until-buf is made current.

16. Printing Functions

txdtprint{addr, ;addr,;ptraddrs;ptrchars; file;mask]
Prints the text in the window from addr, to addr, to the file file.

ptraddrs and ptrchars may be used to mark certain characters in the window. ptraddrs is
supposed to be a Iist of addresses in ascending order (as ordered by mxdtgreaterp). pirchars
should be a list of atoms or strings.. Whenever a character indicated by an address on
piraddrs is about to be printed, the car of ptichars is printed to file (with prinl) first and
ptrchars is cdred. If ptrchars is NIL, xdiptrehar is printed. If puchars and txdtptrchar are
NIL, nothing is printed in response to finding the indicated character.

If ptraddrs is an address rather than a list of addi'esses, ptrziddr§ is set to listfptraddrs]. If
ptrchars is an atom instead of a list, txdtprint acts as though ptrchars were a list as long as
piraddrs each element of which was the given ptrchars. -

If mask is nonNIL, it is assumed to be an integer and is treated as an n-bit mask (o =36 in
TXDT-10 and n =32 in TXDT-D). If the ith bit (counting from 0 on the left) is on, then
when the character about to be printed has i as its ascii code, the character is not printed.
Thus, mask may be used to mask out of the printing all occurrences of any of the first n
ascii characters. This includes the standard control characters. If mask is NIL, 0. is used
(which means no character is masked out).

Finally, whenever the character about to be printed is governed by a nonNIL message
(different from the message governing the previous character) and midtescapechar is nonNIL,
the function txdtprintﬁserfn is applied 1o the message and either the JEN of file (in TXDT-
10) or the full filename of file (in TXDT-D). If mdiprintuserfn returns a value other than
NIL and that value is not the message it was given, the value is treated as a message and
overwrites the message previously stored at that address. All messages are compared using
eq. txdmprintserfn is initally defined as a noop but may be defined by the user. If the
variable txdiprintuserfnbox is nonNIL, it is assumed to be a boxed address and is smashed
1o contain the address of the character about to be printed. This address may be inspected

by txdtprintuserfn.

xdtprint returns the last character printed.
Note that simply xdrprintfaddr, :addr,] will print the text in the window 1o the terminal.

If the user wishes to print 2 mark indicating the location of some address in the window, ptraddrs
may be used. For example let the text be:

THE TXDT PACKAGE~-INTERLISP TEXT EDITING PRIMITIVES pi

Tantallon is on a high cliff above the North Sea, two miles south of the village of North
Berwick. Opposite the castle, two miles out to sea, Joom the white cliffs of the Bass Rock.
On approaching the castle, the visitor is struck by the size of the curtain wa]], stretching
nearly 300 feet across the promontory, and nearly 50 feet tall.

Let addr point to the "s” in "visitor”, and let txdtptrchar be bound to the atom ~». Then

txdtprintftxdtmove] -- 1:0:addr]
mdtmove[2:0;addr]

addr}

would print;

Berwick. Opposite the castle, two miles out to sea, loom the white cliffs of the Bass Rock.
On approaching the castle, the vi—»sitor is struck by the size of the curtain wall, stretching
nearly 300 feet across the promontory, and nearly 50 feet tall

If the user wishes to print a "cursor” in some other way, he must do that wnh mtﬂuple calls to
txdtprint or by using the funcnon txdr.magchAls. :

‘xdtwrite[file; addrl,addr] RS L
. Writes the text in the wmdow from addr to addr to 2 new version of the file named file
and returns the full file name. of the ﬁJe created. The addresses default to TOP and BTM.

If txdtescapechar is nonNIL, then whenever the character about to be printed is governed by
a different (neg) nonNIL message from the previous one, an appropriate message sequence
is written out before the character,

If file does not include an extension, the default extension is the setting of the global variable
txdtextension. This is initally NIL, which means no extension is supplied.-

When xdtwrite is called, a new file is created and opened. Pages for this new file are created
by PMAPping them in and depositing bytes from the buffer window. When .done, the file size is
computed, and the file is closed. txdtwrite is considerably faster than xdtprint.

-If it is desired to write to an already open file or to not close the file when done, txdtprint with
the appropriate JFN should be used.

If udt\ﬁite is interrupted (by CTRL-E or an error) after it has begun writing and before it has
ﬁmshed, the file is closed and deleted. The deleted file should not be undeleted by the user since.
the size field in its file descriptor block will not have been set.

If many changes have been made since the last write, it might be considered wise to use
txdtwrite to save the current version. If this is done, it would also speed subsequent searches, etc., if
the buffer were then emptied and the newly produced file read back in. (This would allow the
search function, for example, to scan whole pages at a time rather than spend a Jot of time skipping
over insertion/deletion boundaries. See the section "Implementation Functions™.) However, if this
_ is done, (1) any boxed addresses being kept would be meaningless after the old buffer had been

~_deleted and (2) it would not be possible, after the deletion, to undo changes made prior to the

deletion without undoing the deleton first. Boxed addresses could, of course, be saved by
converting them 1o line or character addresses with txdtunbox before clearing the buffer.

n THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES

xdtmkstringfaddr, ;addr,. rplstring;strptr;mask] .

- Makes a string out of the characters in the window from addr; to addr,, and’ returns it
TXDT-10 converts CR/LFs wholly contained in the window into EOLs, foliowing the
conventions on INTERLISP-10 strings. The two addresses default to TOP and BTM
respectively.

Messages encountered are written to the string as message sequences under the conditions
described in txdtwrite. mask is used to mask out characters just as in txdtprint.

rplstring and strptr are used in the construction of the answer string. Recall that an
INTERLISP string is represented by a “string pointer” which contains a byte count and
points to an address in poame space where the characters are stored. '

If rplstring is NIL, the string returned is composed of entirely new structure (both from
pname space and string pointer space). If rplstring is T, the ppame space for the answer is
obtained from an internal TXDT buffer. Thus the characters in the answer string in this
case will be smashed when a subsequent call to txdimkstring is directed to use that buffer
again. If rpistring is a stringp, the pname. space for the answer string is that of rplstring
iself. If the entire window will not fit in the space provided, all new structure is returned
but the characters in a stringp rplstring may have been smashed - :

If rplstring is nonNIL, and ‘the window- fits in. the space provided and strptr is-a stringp,
then suptr is smashed to represent the final answer; otherwise a new string pointer is
constructed, Note that if strptr is smashed, then the answer string is a substring of rplstring
- {or TXDTs intérnal buffer) and may be smashed by string operations on that parent string.

mdtmkstring is useful for copying text which must be inserted in several different places.
‘(Unlike grabbed objects, strings may be inserted as many times as desired) Note that uniike
txdtgrab, mxdtmkstring does not delete the text from the buffer. :

-17. Message Functions |

xdtgetmsgfaddr] : :
If addr is a buffer, xdtgermsg returns the message above the top of the buffer. Otherwise,
addr must be an address and this function returns the message governing addr... -

txdtputmsgfaddr;msg] A : : S
If addr is'a buffer, this function:sets the top message of the buffer to msg. Otherwise, addr
must be an address and this function stores the message msg at addr. In both cases, the
message replaced is returned.

mxdigetmsglstfaddr,;addr,)] Ce : ' :

: This function returns a list of pairs. Each pair is of the form ((NIL . ¢) . msg) where (NIL .
¢) is a character .address and.msg is the message stored. at that address. There is one such
pair for addr, and for each subsequent address in the window from addr; to addr, at which
a message is stored. The pairs.are in ascending order by address. . :

THE TXDT PACKAGE~~INTERLISP TEXT EDITING PRIMITIVES =

It is sometimes convenient. to write out a buffer to a file without cluttering the text in ‘the file
._thh message- sequences, txdtgetmsglst - permits one to save elsewhere sufficient information to
restore the messages after the file has been reinserted. xdtgetm sglst uses character addresses in its
answer - for two reasons such addresses can be decoded .quite efficiently and (in contrast to the
- -gituation obtamed had boxed addresses been used) the answer list can itself be written to a file.

udmmpmsg[addrl.addrz. ,argzl
. This-function scans the window from addr to addr,. At addr, and each nme it encounters
an address at which a message is stored, it apphes fn to the message and gg Provided the
. result is a legal message, it is undoably stored in place of the original one. When the
wmdow is exhausted, ‘NIL - is returned.

oo IffnlsNIL,txd p ngJust c_lgg glir.laddr,addrzl

©18. Character Fupctions -~ - . . o

. Fma]ly, if the address supphed is a boxed address and if oveﬂg is non-NIL, the addrees is

L desu-ucnvely modlﬁed to-point to the adjacent character. Ifm oveflg is T.or 1, the: address is

‘modified to pomt to the character followmg the one returned. If moveflg is - 1, the address

is modlﬁed 10 point to the one precedmg ‘the one returned. In TXDT-lO i moving forward

and the character at addr was a CR followed by a LF, then the address is incremented by

.+ two.(and EOL is retumed) if moving backward over a CR/LF the address is decremented
by two. o

txdtchar, when oveﬂg is set, is analogous to gnc and glc. The ability to obtain the character at
_-.an-address. ddress and simultaneously move the address pointer is. useful when one must treat the buffer as

"~ a stream of. characters.

,Recall that the bottom of a buff‘er is dlsnngumhed by not pomr.mg to any. character. . If txdtchar
_.;i.;fts -gwerl an addr pointing @ the: ‘bottom, NIL is returned. If moveflg specifies a forward move, addr ve, addr
“is not modlﬁed. Ifa backward move is specified (and addr is a boxed address) then addr is hﬁed
" off the bottom and the next wxdichar at addr will remurn the last character in the buffer.

There is one. bxzarre feature of txdtchar If a backward move is specified and addr is a boxed
address pointing to the top (ie., xdtaddr returns the first character in the buffer), then addr is
“modified to be a special address that-points just above the top. A subsequent call of D:dtchar on
:zthat‘addr will produce NIL. If such a.call specifies a backwards move from such an addr, addr is
not modxﬁed a forward move from such an addr makes addr point to the top again. Such a spec1a1
addr will cause an illegal address error if gwen to any TXDT function other than ixdichar or

Dcdtmapchars.

u _ THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES

This special treatment.of boxed addresses at the top and bottom means that ‘6ne-can detect that
the top or bottom of a buffer has been reached by askmg whether the character retumed is NIL.

txdunapchars[addrl,addrz,charcodeﬂg rnoveﬂg unulfn]
This function scans-the window defined by addr1 and addr and successwely apphes untﬂfn
to each character (or if charcodeflg is T, character code) encountered If moveflg is not -1,
the scan starts at addr; and moves to addr, {or the bottom if addr, is'not encountered). If
oveﬂg is ~1, the scan starts]ust before addr;l and moves backwards to aclc!r1 (or the top).

"When untilfn returns nonNIL, the scan stops and txd QChaI’S returns the address of the
character just beyond the one upon which untilfn returned nenNiL. (That is, the answer
address is incremented (or decremented) before untilfn is called) If undlfn never returns
nonNIL, the scan stops when the window is exhausted and the address returned is just
beyond the last character seen. In all cases, if addr; is a boxed address, it is reused to
represent the answer.

Warning: There are limitations on which TXDT functions can be called by the mappmg
function uniilfn. In particular, xdtfind, txdtsubst, xdtwrite and mxdtmapchars should not be-called
by untilfn unulfn An error may occur - if one of these fuictions is called inside txdtmagehars 1f no ervor

- OceursS, txdtmagch ars works correctly ‘The problem arises from the fact that éach of these functions
“ties down one or more of 'I'XDT’s PMAP swappmg buffers and when called in combmanons they
exhaust the supply.

ordtmagch ars will accept and may produce a specral address above top (as-described above in
‘connection with txdtchar). ocdtmapchars treats thar address just as mxdichar does: the “"character”
_seen there is NIL. Note that ordunagehars mioves forward if moveﬂg is NIL whrle txdmhar does not
moveatallrnthatease '

* In TXDT-10 txdtmapchars is roughly 20 times faster than the eqmvalent function wntten in terms of
txdtchar.

- txdteolp[] : : : :
Returns T or NIL according” to whether the: last two characters 'in the current buffer are _
CR/LF (TXDT-10) or EOL (TXDT-D) :

txdteolp is somewhat more efficient than the equivalent functions defined in terms of. txdtchar
,In fact. if no modifications have been made at the bottom of the buffer since the last time txdteolp '
was called, the computation involves only comparisons and three global variables. -

19. Implementatlon Functions

A buffer is acruaIIy a two-way list of records ‘Each reoord specifies some sequence of characters,
~ a message, and the two adjacent records.. 'Ihe concatenation of ail of the character sequences is what
appears as the text in the buffer. S .

| : TS = (#2 2 11111853)

THE TXDT PACKAGE~INTERLISP TEXT EDITING PRIVITIVES %

The character sequence in a record is specified by three fields; The first eontams 2 file name
and ﬁle page number9 This component therefore points to some source of characters. The other
two components specify what segment of this source is to be considered “in" this record. These
other: two components are just integers that give the offsets from the begmnmg of the page of the
beginning and end of the segment.

For example, let #1 and #2 represent file names and page number paus that pomt to the
followmg character sources.

 #1= ABCDEFGHUKLOMNOP ..
#)= abcdefghuk. .

: #3 012345..

- Letrhe buffer eq_iisist_of the ‘fellqwing four records (named as mdlcated) '

T, = (**TOP** 0 0 msg;)
T, = (#1 0 9 msg,)

T, =(-'~BTM** 000)
;fThere are two special records which represent the beginning -and end of the. biffer, - (It is

_; meortant to remember that the records are linked with pointers. For example, Ty pomts "forward
to T, and "backward" ‘to Tz, and they reclprocate) ‘This buffer would pnnt as; - S

ABCDEPGHchefth]k -

The top- message - of r.he buffer is msgl The cha,racters'- A‘BCDEFGH. are govel'hed.By ﬁsgz'-end

~the' remaining characters by msg3

The boxed. add.ress of TOP isa pa1r contammg T, and 0 . The boxed address of BTM contams
T4 and 0. The special address above TOP contmns T, and 0. . ‘

The boxed address of ,the character “C" contains T2 and the integer 2, .

5. In TXDT-10, the file name is encoded as a JFN.

26 : THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES

- In order 1t insert the sting "012345" in the buffer at the address of "C" we would change the
buﬂ”er to the following: : .

Ty = (**TOP** 0 0 msgl-) |
T,= (#1 02 msg,)
| Ty= (#3006 msg,)
To= (#12 9 msg,)
T, = (#2 2 11 msg;)
T, = (**BTM* 00 0)

Note that we had to "break"- T, into two parts, one to contain characters 0 to 2, and the other to
contain 2 to 9. We created a new record for the second part, ‘T This would not have been
"necessary had the insertion occurred at the beginning or end of a record. Note also that a record,
- T, was created to hold the string inserted. This buffer would print as:

AB012345CDEFGHIcdefghijk

It should now be clear that in order to undo this insertion, we merely need 0 restore the third
~ component of T, to 9, and relink T, and T,. :

- This. examp]e illustrates why it is more efficient to use the boxed - address returned by txdtinsert n:dtmsert
-than 10 use the old boxed address. of "C" after the. insertion. If behmd were T .in the call to
txdtmsert, the address remmed would be a box pointing to the character in position 2 of Te. Recall
that before the insertion the boxed address of "C" is a box pointing to the character at posmon 2 of
T But afier the insertion, 2 is not a legal position in T,, because after the insertion, T, contains
only the characters at positions 0 and 1. If given this boxed address however, the low-level TXDT
.address decoding function can quickly recognize that it is out of date, since the position specified in
‘the boxed address is not consistent with the offSet information stored in the triple pointed to by the
boxed address. To decode the address, the TXDT decoding function looks for a record with the
indentical first component (in this case a first component of #1) with offset components that. mclude :
the position in question. In the current example, this would yield the triple T

Now let us illustrate a deletion. Suppose we wish to delete the segment "EFGHche“ from the
buffer shown above. This creates the buffer:

T; = (**TOP** 0 0 msg,)
T, = (#1 0 2 msg,)
T, = (#3 0 6 msg,)
T6=(#1 2 4 msg,)
Ty=(#251 msgy)

T, = (**BTM** 0 0 0)

'falrly high levt

THE TXDT PACKAGE~~INTERLISP TEXT EDITING PRIVITIVES o

. 'I'lus buﬁ‘er pnnts as: .

A301234SCnghuk
' Note that in this case all we had to do was reset the terminal offset of Tg and the initial offset of

' T3 In general, we might also have 10 relink two records so as to delete a segment of records.

. It is clear how to undo a delete. However, consider what happens if we undo the insertion
without undoing the deletion. Recall that undoing the insertion consists of restoring the third
component of T, t0 9, and rehnkmg T, and T3 If we do this we get a buffer whlch prints as:

' ABCDEFGHIfghijk

" which shows ﬂ'iat' in addition to the insertion, .'part, but not all, of the deletion was undone. (The

“EFEGHI" was restored, but the “cde” was not.) Undcing out of order is therefore dangerous, since
it can affect text that does not overlap or even adjom with the text modified by the operauon
undone. A , _

From this d1scussmn of the representation, it should be obvious that insertion and deletion are
ations that are.not concerned with the number of characters involved. This is -
why reading in Iarge ﬁles for example, is'so fast. The work must be done by those functions which

. must scan this structure and pretend it 1s a connnuous stream- of characters.

‘In, order to make th1s pretense reasonably fast in 'I’}CDT-IO these functlons are all written in
LAP ~ These functions include the search function, the character and line counters, the printing

- functions,-and others. - These functions construct byte pointers into the segment of text contained in
.the current triple, and use byte manipulation instructions to inspect successive characters. When the

end of the segment is reached, they climb over to the next record and continue.

When these functions start on a new record, they call a special function. that returns a base

‘address for the source of characters for that record. This base address is used by the processing
- function to create byte pointers, The function that computes this base address asks if the relevant

page of the relevant file:is currently PMAPped in, and if so, returns the base address of the scratch
page it is on. If it is not currently in, it is brought into a free scratch page and the address of that

'page is returned to tlle processmg functlon.

Note that t.he efﬁcwncy of window scanmng funcuons is dlmmxshed as: the text in a buffer gets
fragmented into records. At most one page of text may be contained in a record.(so that the offsets
may be coded as small integers). Thus each page of inserted text requires a new record. Since the
only way to store a message is in a record, every txdtputmsg or message sequence in inserted text
requires -a new record. Finally, every insertion and deletion may cause records.to. fragment. The
function xdtcontigify is provided to overcome this problem. :

" The details of this representation were worked out and implemented by Robert S. Boyer and
J Strother Moore, in the “77 Editor", at the University of Edinburgh in August, 1972

The following functions expose a certain amount of the implementation of TXDT.

28 THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIVITIVES

txdtpiecefaddr;oldbox] ,
Returns the address of the first character contained on the record contam.mg addr Reuses
oldbox if oldbox is a boxed address. ,

xdtnextpiecefaddr;oldbox] ' :
‘Returns the address of the first character contamed on the record after the one containing
addr. Reuses oldbox if oldbox is a boxed address. If addr pomts to the bottom, the answer
is equwalent to addr.

txdtprevpiece[addr;oldbox] ' '
Returns the address of the first character contamed on rhe record before the one containing
addr. Reuses oldbox if oldbox is a boxed address. If addr is in the record containing the
first character of the buffer, then the answer points to 0 the first character of the buffer.

Because of the implementation of messages, txdtpiece is a way of finding the address at which
the message governing a given address is stored. txdiprevpiece and xdimextpiece permit one to
move to the next possible address at which the message might change.

txdtcountpreees[addrl,addrz] - - L
' Counts the number of preces in the window from addr1 up to and including addr2

txdtnonugp[addrl,addr oldcons] :
If all the characters in the window from addr, w addr are contamed contlguously on some
~ file, this function returns a pair of the form | (ﬁ]e So) where file is the full file name of the
- file containing the window and c is the byte position (a la setfileptr) of the first character in
- the window. 'If the window is not contiguous on one file, NIL is returned. When a pair is
returned, oldcons is reused (if it'is a listp) to represent the answer and 1ts cdris smashed'
with sem if it is a big number. :

r:acdtr:or:n:lgr131[addr1 ;addr,;file;behind;oldbox] - ' ' ' ' _
Writes the window from addr; to addr to the end of the file file, deletes the window and
inserts the just written ‘text. Retums the address of the beginning or end of the new window
(accordmg to - whether’ behmd is NIL or T) reusmg oldbox 1f it is- a boxed addrm

Note that txdtcontigify is a way to minimize the number of pieces in a wmdow or. buffer _

- However, any boxed address into the window (including addrl) will be invalid after the operation
since that area was deleted. addr, will be unaffected since it is (just) outside the wmdow addr, can

be saved by setting behind to NIL and usmg add.r for oldbox - - :

In general, boxed addresses into the window can be saved by the user by unboxmg them (wlth
charflg T for maximum efficiency) before the operatton and boxing them after, See txdtunbox and
txdtbox. : :

Note that if the window contains messages and TXDTESCAPECHAR is nonNIL, then the .
window "contigified” will not actually be txdtconfigp..

wdtfileposition{addr; oldcons] -
Returns a pair (file . ¢} where file is the fulI ﬁIe name of the file conrammg the character at
addr and is the byte position of that character in file. If gldcons is a listp, it is reused to
represent the answer cons and its cdr is smashed with setn if it is a big number.

THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES 23

_ .t20 Vanahles

The followmg variables are of interest to the normal user. The reader should see the
descriptions of the relevant functions for more precise s-pemﬁcanons of the roles of these variables.

",'_,_D:dtdelta—set by the functions described in the section "Modification Functions™ to “indicate how

many lines and characters were. added or lost due to a given insertion or deletion.

7-_:txdtextenslon-the default file name extension for files created by txdtwrite. Initially NIL, which -

: means no extension.

~-txdtptrchar—the default pointer character used by txdtprint. Initially +.
'txdfsubstcnt—-set by xdtsubst to indicate how many substitutions were made.

B _n(dtpoetﬁg—used 10 speed up the decoding of line and character addresses in the vicinity of a

"cursor” in the current buffer, See the section “Buffem“

:ixdlpoetdot-—-used to speed up the decoding of line and character addresses in the vicinity of a

“cursor” in the current buffer See the section "Buffers".

ucdtpoetdotaddr—used to speed up the decoding of line and character addresses in the vicinity of a

“cursor” in the current buffer, See the section "Buffers”.

dt$—used to speed up the decoding of line and character addresses in the v1c1mty of a "cursor” in
the current buffer. See the section “Buffers”.

txdtclosestforwflg—indicates the direction from addr of the closest address found by. txdtblosest.
txdtfindent-~set by txdtfind to the number of occurrences of the search string found.

txdtscratchfile—always set to the full file name of the temporary file to which TXDT prints strings
_ prior to insertion. The user may also write text in this file provided the file pointer
is manually set to the bottom of the file before each write. The file must always be
open for both input and output. The user may set the file pointer arbitrarily to read
from the file and may leave the file pointer anywhere.

txdtcurbuflst—set to the list of all buffers constructed and not yet killed.
txdtcurbuf—set to the current buffer.

txdtinsertfilekey—the item used to mark lists that are to be interpreted upen insertion as file
segments, See "Objects That May be Inserted". Inidally a string
"TXDTINSERTFILEKEY"

txdtescapechar—the single character atom used to mark message sequences in text to be inserted.
Initally set to NIL, meaning message sequences are not to be looked for. See
“"Messages and Fonts."

K THE TXDT PACKAGE~INTERLISP TEXT EDITING PRIMITIVES

txdtprintuserfnbox—used by txdtprint to store the current address at the time txdtprintuserfn is
invoked,

21. Error Messages

Below are listed the TXDT error messages a normal user may expect to see. Since TXDT
functions do not always check that their arguments are of the right type, normal INTERLISP errors
will be generated under some conditions—as in attempting a nonnumeric nonNIL line move. In
addition TXDT has severat error messages caused by internal consistency checks. These should not
occur in normal usage and their generation indicates either bugs in TXDT itself or a smashed core
image. Internal errors are always preceded by the phrase INTERNAL TXDT ERROR and are not
listed below. Their occurrence should be reported to Moore (currently MOORECSRI KL) along "
with enough information to- reproduce the error from a clean core image.

_ Here are the normal 'I-‘XDT error messages with parenthesized explanations when necessary.

TXDT ADDRESS INTO DELETED AREA

TXDT ADDRESS NOT RECOGNIZED (caused when an object other than a boxed address, TOP
BTM, a line number, or a line and character address is passed to a TXDT function

. in place of an address)

CANNOT COPY INSERTED GRABBED OBJECI‘

CANNOT COPY RESULT OF AN UNDONE GRAB

CANNOT COPY INVALID ADDRESS B

ATTEMPT TO REINSERT INSERTED ;GRABBED OBJECT

ATTEMPT TO INSERT THE RESULT OF AN UNDONE GRAB

ATTEMPT TO INSERT MYSTERIOUSLY MUNGED GRABBED OBJECT

ATTEMPT TO INSERT A SEGMENT OF FILE T

ATTEMPT TO INSERT ILLEGAL MESSAGE

ILL-DEFINED WINDOW (generated by mxdtdelete, txdtgrab and txdtsubst when the two addresses

supplied do not properly define a window—i.e., when the second address is not
greater than the first.)

T?fDTWRITE INTERRUPTED—FILE CLOSED AND DELETED (caused in response to an ervor
or user interrupt while TXDTWRITE is transfering characters to the file.)

CANNOT REINSTATE KILLED BUFFER

- THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIVITIVES o

B '. ‘ CANNOT KILL CURRENT BUFFER WITHOUT EXPRESS PERMISSION
-,UNRECOGNIZED BUFFER LIST (caused by txdtsubstifn when the buffer list supplied is neither -
. a buffer, a listp, or NIL.)
'_22 Datatypes
'Ihe TXDT package declares four user datatypes.

_ "I'XDTRECORD—used to. represent the two-way linked lists representing text. The user. shoold
K : never see an object of this type :

';TXDTADDR——used 1o represent boxed addresses The user may use type? to recognize boxed
_ addresses (or ocdtadd_.l'g) but should not access or set the components of such a
record. .

TXDTGRABBEDOBJ—-usedtto represent grabbed objects. The user may use _t_xp__ to recogmze
grabbed obJects but should not’ aecegs or set the componenrs of such a record. '

T}GDTBUFFER—used to represent a buﬁ'er The 'user may use gg to recognjze buffers and may -'
;.. .- apcess and set the followmg three fields TXDTS, TXDTPOETDOTADDR, and
T)ﬂZ)TPOEI‘DOT as descnbed in--the secuon “Buffers A SRR

o _\.References : T
L@ RS Boyer I S. Moore, D. J. M. Davies, “The 77-Editor," Technical 'ﬁeoorﬁ‘-ﬁﬁ;-
e -‘Department of Computational Loglc Umvemty of Edinburgh, 1973. : .
L W Teitelman, "A Display Onented Programmer’s Assistant,” Proceedmgs of the Sth-
'~ International Joint Conference on Artificial Intelligence, Department of Computer Screnoe,
Camegre-Me]lon Umvemrty, p 903 915 1977. :

Index

boxed address, 2
BTM, 3

datatypes 30

erTor messages, 29
filesegment, 7
-grabbed object, 7

message sequence, 9

- TOP, 3
txde$, 28 _
txdtaddrp, 19

- - txdtbox, 17

txdtbufp, 5
‘txdtchar, 22
txdicloseall, 10 -
" wxdtclosef, 10
txdwclosest, 19

txdrclosestforwilg, 28

txdcopy, 18
wdtcountle, 17
wxdicountpieces, 27
txdtcontigify, 27
txdtcontigp, 27
txdicurbuf, 4, 29
wxdtcurbuflst, 29
txdidelete, 13
txddelta, 28 s

' xdtemp

' n:dteolp,%g,
wdtequal; 19+ .
txdtescapechar, 29
txdrextension, 28
txdifileposition, 28
txdifing, 15 :
txdtfindent, 28

‘txdigetmsg, 22

THE TXDT PACKAGE—INTERLISP TEXT EDITING PRIMITIVES

txdtgetmsglst, 22
txdtgoto, 16
txdtgrab, 14

" txdtgrabbedp, 14

txdtgreaterp, 19

~ txdtinit, 10

txdtinsert, 11 -
txdtinsertfilekey, 29

txdtkillbuf, 5

txdtmiapchars, 23

. txdtmapmsg; 22

txdtmkstring, 21
txdtmove, 15
txdtnextpiece, 27

- txdtpiece, 27 -

Dcdtpoetdot, 28

- pxdipoetdotaddr, 28

txdtpoetflg, 28

* “trdtprevpiece, 27
" txdiprint, 19 - -

txdtprintuserfnbox, 29
txdtptrchar, 28
txdtputmsg, 22
txdtread, 10

" txdtresetformfn, 10
- xdtseratchfile, 29

txdisubst, 12

- txdtsubstent, 28
* txdtsubstjfns, 11
"~ xdtunbox, 18

txdtunpmap, 10
txdtvalidp, 19
txdtwhereis, 5.

txdiwrite, 20

unboxed addresses, 3
variables, 28

