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• In high school chemistry, we learn that 
electrons bound to the nucleus of an 
atom move in closed orbits around the 
nucleus , and quantum mechanics then 
fixes their energies to only  be one of a 
discrete set of energy levels.
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The rotational symmetry of the 
spherical atom means that there 
are some energy levels at which 
there are more than one state



• This picture (which follows from the Heisenberg uncertainty 
principle) is completed by the Pauli exclusion principle, which 
says that no two electrons can be in the same state or “orbital”
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An additional ingredient is that electrons 
have an extra parameter called “spin” 

which takes values “up” ( ↑) and 
“down” (↓)
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Occupied 
orbitals of the 
Calcium atom 
(12 electrons)

This allows two  electrons  (one  ↑, one↓)
to occupy each orbital



• If electrons which are not bound to atoms are free to 
move on a two-dimensional surface, with a magnetic field 
normal to the surface, they also move in circular orbits 
because there a magnetic force at right angles to the 
direction in which they move

• In high magnetic fields, all electrons have spin  ↑ pointing in 
the direction of the magnetic field
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force F = evB

center of 
circular orbit

As in atoms,  the (kinetic) energy of the 
electron can only take one of a finite set of 

values, and now determines the radius of the 
orbit (larger radius = larger kinetic energy)

surface on 
which the 
electrons 

move



• As with atoms, we can draw an energy-level diagram:

unlike atoms, the number 
of orbitals in each 
“Landau level” is huge!
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(London) quantum of magnetic flux
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number of orbitals is proportional to area of surface!↑
↓

(spin direction is fixed in each level)

↑



• For a fixed density of electrons  let’s choose the 
magnetic field B just right, so the lowest level is filled:
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• This appears to describe the integer quantum Hall states 
discovered by Klaus von Klitzing (Nobel Laureate 1985)

• BUT: seems to need the magnetic field to be “fine-tuned”.    

• In fact,  this is a “topological state” with extra physics at edges of the system that fix this 
problem

independent of 
details



• counter-propagating “one-
way” edge states (Halperin)

• confined system with edge 
must have edge states!
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don’t need to fine-tune
 magnetic field



K. von Klit zing

MAGNETIC  FIELD  ( T )

• The integer quantum Hall effect (1980) 
was the first “topological quantum 
state” to be experimentally discovered 
(Nobel Laureate1985, Klaus von 
Klitzing)

• Hall conductance

jx = �HEy

dissipationless current
flows at right angles to electric field

current

~E
�H = ⌫

e2

2⇡~
⌫ = integer

(number of filled Landau levels)



• Von Klitzing’s system is much dirtier that 
the theoretical toy model and work in the 
early1980‘s focussed on difficult problems 
of disorder, random potentials and localized 
states

• David Thouless had the idea to study the 
effect of a periodic potential in perturbing 
the flat Landau levels of the integer 
quantum Hall states:
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Toy model!

smeared
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Bob Laughlin (Laureate 1998 for fractional QHE ) gave a clear argument 
for quantization of the Hall conductance in this case



• In 1982 David Thouless with three postdoc 
collaborators (TKNN) asked how the presence of a 
periodic potential would affect the  integer quantum 
Hall effect of an electron moving in a uniform magnetic 
field

• They found a remarkable formula .....

Quantized Conductance in a Two-Dimensional Periodic Potential

Physical Review Letters 49, 405 (1982)

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs

The TKNN or TKN2 paper



• David became particularly interested in an 
interesting “toy model”, of a crystal in a 
magnetic field, a family of models including 
the “Hofstadter Butterfly”



• Harper’s equation (square 
symmetry) or

• “Hofstadter’s Butterfly” splits 
the lowest Landau level into 
bands separated by gaps.

• The band are very narrow, and 
the gaps wide, for low magnetic 
flux per cell (like Landau levels)
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• TKNN  pointed out that 
Laughlin’s argument just 
required a bulk gap at the 
Fermi energy for the Hall 
conductance to be 
quantized as integers

• So it should work in gaps 
between bands of the 
“butterfly”

• so what was the integer?
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• Starting from the fundamental Kubo formula for electrical 
conductivity, TKNN obtained a remarkable formula that 
does not depend in any way on the energy bands, 
but just on  the Bloch wavefunctions:

• Bloch’s theorem for a particle in a periodic 
potential

periodic factor that varies over 
the unit cell of the potential

�H =
ie2

2⇡h

X

n

Z
d2k

Z
d2r

✓
@u⇤

n

@k1

@un

@k2
� @u⇤

n

@k2

@un

@k1

◆

 kn(r) = un(k, r)e
ik·r

Sum over fully-occupied bands 
below the Fermi energy

TKNN first form

Brillouin
 zone unit cell



• Shortly after the  TKNN paper was published, 
Michael Berry (1983) (Lorentz Medal, 2014) 
discovered his famous geometric  phase in 
adiabatic quantum mechanics.    

• (The Berry phase is geometric,  not topological, but many consider this 
extremely influential work a contender for a Nobel prize).

S
!
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• Berry’s example: a spin S aligned along an axis

direction of spin moves on closed
path on unit sphere

ei�� = eiS!

solid angle enclosed is ambiguous modulo 4π
 so 2S must be an integer

Berry phase



• the mathematical physicist Barry Simon (1983) 
then recognized the TKNN expression as an 
integral over the (Berry) curvature associated 
with the Berry’s phase, on a compact manifold: 
the Brillouin zone.

• This is mathematical extension of Carl Friedrich 
Gauss’s* 1828 Theorema Egregium

“remarkable theorem”

*foreign member of Royal Swedish 
Academy of Sciences



• geometric properties (such as curvature) are 
local properties

Gauss-Bonnet (for a closed surface)

• trivially true for a sphere, but non-trivially true 
for any compact 2D manifold

• but integrals over local geometric properties may 
characterize global topology!

Z
d2r(Gaussian curvature) = 4⇡(1� genus)

= 2⇡(Euler characteristic)
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Topology promises to solve the 
problem of errors that inhibit 

the experimental realisation of 
quantum computers… 

Topological quantum computers: Why? 

…and it is a lot of fun :-) 
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• The two-dimensional 1982 TKNN formula 

This is an integral over a 
“doughnut”: the torus define by a 
complete electronic band in 2D

Interestingly  It emerged in 1999 that a (non-topological) 3D version 
of this form applied to the anomalous Hall effect in ferromagetic 
metals can be found in a 1954 paper by Karplus and Luttinger that 
was unjustly denounced as wrong at the time! 



• first form of the TKNN formula
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• TKNN give the formula as

I learned from Marcel den Nijs, and Peter Nightingale that 
their memory is that the inclusion of this explicit general 
formula (in a single paragraph) was an “afterthought” while 
writing the paper, which was focussed on the specific values of 
the integers for the Hofstadter model! 

• Another quote from Marcel: “the genius of David Thouless to choose 
the periodic potential generalization[to split the Landau level] not the 
random potential one was the essential step”
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• We finally arrive at the central TKNN result:

Integral of  the (Berry) curvature over the 
2D Brillouin zone = 2π times an integer C

�H =
e2

h
⇥ CHall conductance:

Chern number



• The  1982 TKNN paper considered the 
effect of a periodic potential on Landau 
Levels due to a strong magnetic field

• In 1988, I for reasons that are too long to 
describe here, I found that the Landau 
levels could be dispensed with altogether,  
provided some magnetism (broken time-
reversal symmetry) was present.

QHE without Landau levels



• This was a model for a “quantum 
Hall effect without Landau 
levels” (FDMH 1988), now 
variously known as the “quantum 
anomalous Hall effect” or “Chern 
insulator”.

• It just involves particles hopping on 
a lattice (that looks like graphene)  
with some complex phases that 
break time reversal symmetry.

• By removing the Landau level 
ingredient,  replacing it with a more 
standard crystalline model the 
“topological insulators” were born

The 2D Chern insulator 



• gapless graphene “zig-
zag” edge modes

Broken
inversion

Broken
time-reversal

(Chern insulator)



Kane and Mele 2005
• Two conjugate copies of the 1988 spinless 

graphene model, one for spin-up, other for 
spin-down

At edge,  spin-up moves
 one way, spin-down

the other way

If the 2D plane is a plane of mirror symmetry, spin-
orbit coupling preserves the two kind of spin.   
Occupied spin-up band has chern number +1, 

occupied spin-down band has chern-number -1.

E

k k

B=0
Zeeman coupling 

opens gap



• Integer and half-integer quantum 
Antiferromagnetic Chains, “Quantum 
Kosterlitz-Thouless”and the “lost preprint”.

From the account of Marcel Den Nijs, the TKNN 
formula was found unexpectly “by accident” because 
David picked just the right “toy model” to study

In 1981, I made a similar “unexpected discovery” that 
may be the simplest example of “topological matter



• ILL preprint SP81-95 (unpublished) (now available on arXiv)

• This original preprint was rejected by two journals and when  the 
result was finally published, the connection to the Kosterlitz-
Thouless work has been removed.

• The original preprint was lost, but now is found!



• Conventional magnetic ground states have 
long-range order, without  significant 
entanglement (modeled by product states)

spin direction is 
arbitrary, but same 

for all spins

H = �J
X

hi,ji

~Si · ~Sj

Ferromagnet

H = J
X

hi,ji

~Si · ~Sj

Antiferromagnet

neighbors

A B AA AA BBBB

spin direction is arbitrary, 
but same for all spins on 
same sublattice, opposite 

lattice spins are antiparallel

spin direction is 
arbitrary, but same 

for all spins



• Has a conserved order 
parameter direction 
(conserved total spin 
angular momentum)

H = �J
X

hi,ji

~Si · ~Sj

Ferromagnet

H = J
X

hi,ji

~Si · ~Sj

Antiferromagnet

neighbors

A B AA AA BBBB

•  order parameter direction is 
NOT conserved (zero total 
spin angular momentum)

• quantum fluctuations destroy 
true long range order in one 
spatial direction



• For a long time the conventional wisdom assumed 
the one-dimensional antiferromagnetic systems 
behaved like the ordered 3D systems, with a 
harmonic-oscillator treatment of small 
fluctuations around the  ordered state.

• This was partly due to a misinterpretation of a 
remarkable exact solution in 1931 of the S=1/2 
chain by Hans Bethe* (before he moved on to 
nuclear physics!) The full understanding of Bethe’s 
solution required almost fifty years!

* David Thouless’s Thesis Advisor at Cornell!



• In the mid-1970’s, another piece of work 
from the 1930’s  (the Jordan-Wigner 
transformation) provided another more 
standard way to analyze the spin-1/2 chain 
without Bethe’s method.
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S+| "i = 0 c†|1i = 0

S+
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j<i

(�1)njc†i

needed so that [S+
i , S+

j ] = 0

fermion operators 
on different sites 

anticommute!



• This converts the spin-1/2 chain into a 
fermion problem
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• Converting to a  field theory (Luther and Peschel:)
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• Around that time I developed the 
“Luttinger liquid theory”  (a fit of 
microscopic models to an effective  
Tomonaga/Luttinger model), an 
Abelian precursor to the later-
developed and more general 
conformal field theory, and applied it 
to this model:

• From the numerical results using 
Bethe’s methods it the presence of 
the till-then missed Umklapp term 
was obvious, and driving a quantum 
analog of the Kosterlitz-Thouless 
transition, but with a “double vortex” 
rather than a single vortex

25 RAPID COMMUNICATIONS 4927

J2/J) DIME R BOUND STATES
PRESENT

FIG. 2. (Schematic. ) Ground-state phase diagram in the
(Jpl jt, I hl) plane. For I 5I ( 1, J2 ( J2 (5), the system is
in the gapless spin-j7uid phase with in-plane spin-correlation
exponent g (1 (lines of constant q are depicted). The um-
klapp coupling y2 vanishes along the broken line, and along
its continuation separating the broken-symmetry dimer and
Neel phases, with critical correlation exponent q & 1. In
these latter phases, the ground state is doublet, with a gap
for excitation of pairs of S'=+ 2 solitons (topological de-
fects); the region where S'=0 breather bound states are
present in the gap is shown. The soluble model with
J2=-J~ is marked with an asterisk.2

In the isotropic model ( I hI = I), the fundamental
excitations in the spontaneously dimerized state are
S=—, soliton states, created only in pairs; the lowest
excitations above the doubly degenerate (moments
P =0, + m) ground states of an even-membered ring
of spins are thus a continuum of degenerate S=0, 1
pair states, with the gap minima at P =0, +m, the
identification of the isotropic dimer state with the
P2 = 8m SG system rules out breathers or soliton-
antisoliton bound states in the gap near P =0, + m.
Shastry and Sutherland have recently reported such
bound states in a region near the gap maxima (at
P = +

2 n) for the special model with J2/Jt = ~, in
this range lattice effects are important, and it is out-
side the scope of the long-wavelength —low-energy
SG description used here. The low-energy spectrum
deduced here for the dimer state is in complete ac-
cord with Ref. 3.

Finally, it is interesting to contrast spontaneously
dimerized states with those due to an externally im-
posed symmetry-breaking term X'=g g (—1)"
x S„~S„+~, as considered in the spin-Peierls problem. "
As noted by Cross and Fisher, "when translated into
fermion variables, this term gives rise to a new SG

problem, this time with P' = 2m g ', describing an
instability leading to a singlet pinned ground state
commensurate with the external dimerizing potential,
with soliton excitations that now carry S'= +1. The
isotropic model here corresponds to a P'=2m SG
system, and the scaling theory shows the dimer gap
d. d opens as IgI' '." It is interesting to note that
P'=2m is precisely that value where the SG has just
two S'=0 breather excitations, ' with opposite parity,
and where the lowest (even parity} breather is pre-
cisely degenerate with the S'= +1 soliton doublet,
forming an S = I triplet; the second (odd parity)
breather is a singlet S=0 state with a gap J3b q.
These two S =0, 1 states are the only elementary ex-
citations.
If the external dimerizing potential is applied to an

already spontaneously dimerized isotropic model with
J2 & J2, a similar spectrum results: The doublet
ground-state degeneracy is lifted, and there is now an
energy cost linear in the length of regions where the
system is in the "wrong" ground state: This imposes
a linear potential (a 1D Coulomb potential) that con-
fines the S =—, solitons (i.e., boundaries separating
regions of the two now inequivalent dimer configura-
tions) into bound S =0 or S = I pairs; the lowest-
energy bound state is symmetric, with S=1.
In the model of the spin-Peierls transition" the

"external" dimerizing potential arises spontaneously
because of lattice distortion; thus topological defects
where g changes sign may be "frozen in. " ForP'( 4a, the energy gain per unit length associated
with the opening of the SG gap is finite, and an exact
(Bethe ansatz) calculation gives it as —,tan( 2 n tt)
x d,z/w„'s where v, is the spin-wave velocity in the
limit g 0, and tt=(P2/8m)/[I —(P2/gm)] =

3

when P'= 2m. Since e,/hq is also the characteristic
"healing length" for such a defect (which carries
S =—,), the defect energy is of order d q itself. In the
absence of interchain coupling, phonon dynamics
would allow tunneling motion of the defect, as in re-
cent models of solitons in polyacetylene, "and
features of the "spontaneously dimerized" spectrum
are recovered.

To conclude. The present analysis does not explain
one interesting feature of the special limit J2=—2J~ of
the isotropic model —that the correlation between di-
mers vanishes. However, it places this state in a
continuum of spontaneously dimerized states for

c 1J2) J2 = 6 J].
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RAPID COMMUNICATIONS

by a Bogoliubov transfl~rmation, and characterized by
the correlation exponent vt: as In —n'I
(S+S ) —(—1)"In —n'I ", (c„'c,) —(—1)"In
—n'I '"+' 4'i' ' q = —, for free fermions, and the
solution of the Luttinger model when @2=0 gives
g = ( 4 +pi/2n ) 't'. Isotropy of the spin-correlation
functions dictates that q approaches the value q = I
in the isotropic limit I4I =1.6 s When F2=0, the
Luttinger model approximation (3) gives vi =0.82
when I hI =1 (or 71=1 when I hI =6J2/Ji =1.76), in-
dicating that renormalizations due to nonlinear terms
other than y2 also give quantitative corrections. '0

This suggests that the special line J2(b, ) along which
y2 vanishes deviates from the value J2/Ji = —, IXI at
larger values of I 4I. The gapless, fluid character of
the Luttinger model suggests the term "spin Jluid" is
an appropriate description of the y2 =0 spin chain.
%hen y2 40, I note following Ref. 1 that the um-

klapp term can be treated by a scaling theory entirely
analogous to that used for the umklapp effects in the
spin- 2 Fermi gas. " The term y2 leads to an instabil-
ity against a 2k' doubly degenerate density-wave
state, with spontaneously broken symmetry. '2 I
identify y2 & 0 as leading to the Neel state, and
» & 0 as leading to the dimer state. [Note that the
canonical transformation i[i» exp( 4 ipsr) ifi», which
changes the sign of y2, changes g» to (i)»g» ]The.
scaling equations are of a familiar form, 2 "and in-
volve» and the correlation exponent ri(yi):

d lnD
=2(q ' —1)F2+0(y2)',

2 . 4

d(lnD) =2»+0{v,), v, =»»,
where D is an ultraviolet cutoff scale or effective
bandwidth. The familiar scaling trajectories of these
equations are shown in Fig. l. W'hen IAI = &, sym-
metry dictates that the starting point —and subsequent
evolution of the scalin—g trajectories must be identified
the critical scaling trajectories q =1+y2. For
J2 & J2 = 6 Ji, the system is described by the stable
trajectory scaling to the critical point y2 =0, q =1,
and the competing interaction J2 does not change the
character of the simple antiferromagnetic case J2 =0.
For J2 & J2, the system must be identified with the
unstable critical trajectory, leading away from the
point y2 =0, q = 1 to the strong-coupling dimer-state
fixed point. Note that systems ~here scaling starts
near the line of unstablefixed points q ' &1, F2=0,
can be identified with the sine-Gordon (SG) field
theory" with coupling parameter p'= Smq ". the iso
tropic dimer state must thus be identified with the
limiting case p2 Sm of the SG theory. The dimer
gap, order parameter g~, and inverse correlation
length will all initially grow as (J2—J2)' 'exp[ —aJi/

0
FIG. 1. (See text. } Scaling trajectories of (4}: %hen

I hI =1, initial parameter values fall on the critical lines aa',
scaling either to the limiting critical gapless spin-fluid point
y2 =0, it =1 {J2 & Jj) or to the dimer fixed point
(J2 & J2 }.Lines bb' and cc' are the loci of initial values for
I hI & 1 and I hl &1, respectively. Systems with initial
values close to (but not on} the unstable fixed line F2 =0,
q ) 1, are identified with the P2 Svr/=g sine-Gordon field
theory.

( J2—Jq) ] for Jq & J2, where a is some numerical
constant controlled by the cutoff structure. This
transition is very similar to that seen in spin-isotropic
systems such as the spin- 2 Fermi gas with back-
scattering'3 and Kondo models'4 as the coupling
changes sign.
For Id I & 1, the system will remain in the gapless

spin-fluid state that characterizes the planar Heisen-
berg chain until J2 exceeds a critical coupling J2 (I),
when the trajectories will flow to the strong-coupling
dimer fixed point. The nature of the transition will
now be of "Kosterlitz-Thouless" type, 2 with the or-
der parameter, etc. growing as exp[—b (&)/[J2
—J2 (d ) ]' ] in the dimer region; the numerical con-
stant b(A) diverges as I5I 1. For I5I ) 1, J2& J2
there is a similar transition to the Neel state, as seen
in the anisotropic chain with J2 =0.' For I 5 I ) 1, the
two density-wave regions are separated by the gapless
line J2 (5) along which the umklapp term y2 van-
ishes. Along this line, the Neel and dimer correla-
tions (S„'S*.) and ((S„S„+i)(S S,)) are the
dominant correlations at large separations, both fall-
ing off as (—1)'" " 'In —n'I ""', as easily obtained
from a Luttinger-model calculation following LP.
The critical exponent q ' continuously decreases
belo~ 1 along the critical line, Close to this line, the
system behaves as a SG system with P'= 8+vi ', the
principal elementary excitations are solitons carrying
S*=2 —, (created in pairs), but in regions adjacent to
the section of the critical line with q (—,S'= 0
"breather" bound-state excitations will also be
present (p' & 4n SG spectrum). The predicted
ground-state phase diagram in the (J2/Ji, I&I) plane
is sketched in Fig. 2.
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• The topological Kosterlitz-Thouless transition occurs in a 
“classical” system in two dimensions at finite temperature, but 
there is a well-know mapping from classical statistical mechanics 
in two spatial dimensions to quantum mechanics “(1+1) 
dimensions” (1D space + time)

• One difference is that in classical mechanics the Boltzmann 
probability is always positive, while the quantum amplitude can 
be positive, negative or complex giving rise to interference 
effects.

“vortex”
in space-time=

 winding-number
tunneling event

1d space

time
*

These spins rotate
1800 clockwise

These spins rotate
1800 anticlockwise



1d space

time
*

These spins rotate
1800 clockwise

These spins rotate
1800 anticlockwise

• The tunneling events (vortices) occur on “bonds” 
that couple neighboring spins.

• If the bonds are equal strength, and the vortex is 
moved one bond to the right, one spin that formerly 
rotated 1800 clockwise now rotates anticlockwise.

• The difference is a 3600 rotation which gives phase 
factor of -1(and destructive quantum interference) if 
the spin is half-integral, +1 if not.



• From this, it became clear that the 
progression from easy plane to easy axis 
was different for integer and half-integer 
spin antiferromagnets

half-integer S

� > 1� < 1 � = 1

easy-plane 
(XY)

easy-axis 
(Ising)

isotropic 
(Heisenberg)

gapless, topologically-ordered 
with conserved winding number

gapped long-range Ising order
(two-fold degenerate ground state)

double-vortex Kosterlitz-
Thouless transition

integer S

gapped long-range Ising order
(two-fold degenerate ground state)

gapless, topologically-ordered 
with conserved winding number

single-vortex Kosterlitz-
Thouless transition

Ising transition

non-degenerate gapped phase

“Topological
matter!”



• The new gapped phase  in a “window” 
containing the integer-spin isotropic 
Heisenberg point turned out to be the first 
example of what is now called “topological 
matter”

• The window is large for S=1, but gets very 
small for S =2, 3, .....

• The S=1 case is now classified as a 
“Symmetry-Protected Topological Phase” (the 
“protective symmetries” are time-reversal 
and spatial inversion)



• the identification of a topological “theta” term in the 
effective field theory of the Heisenberg 
antiferromagnet that distinguishes integer and half-
integer spins.  This perhaps started to popularize 
Lagrangian actions to complement Hamiltonian 
descriptions in condensed matter theory.

later developments were:

• the identification (Affleck, Kennedy, Lieb, Tasaki) of the 
“AKLT model” that provides a very simple model 
state, which explicitly exhibits the remarkable 
topological edge states and entanglement of this 
phase



• AKLT state (Affleck, Kennedy,Lieb,Tasaki) 

• regard a “spin-1”object as symmetrized product of two 
spin-1/2 spins, and pair one of these in a singlet state 
with “half” of the neighbor to the right, half with the 
neighbor to the left:

“half a spin”
left unpaired at 
each free end!

S = 1
2 S = 1

2

0

⇠

(2)

maximally 
entangled 

singlet state



• The fragments of old work presented here may have 
seemed difficult for non-experts to understand, but 
mark  the beginnings of what has turned into a 
completely now way to look at quantum properties of 
condensed matter

• A large experimental and theoretical effort is 
underway to find and characterise such new 
materials, study entanglement, and dream of new 
“quantum information technolgies”

• It has been a privilege to have contributed to these 
new ideas, and I thank the  Royal Swedish Academy of 
Sciences for honoring us and our exciting field.


