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Foreword

The 26 Chapters of Measurement Essentials are Units of Stud -v. These units evolved
during ourweekly discussions ofmeasurement on Sunday mornings from 1994 to 1998 .
Each Sunday we met at Ben's kitchen table and worked together on the explanation of a
measurement topic which had arisen in our work .

Some chapters came together quickly. Others took weeks of reconsideration. As we
worked we drew on whatever material seemed most useful . You will find excerpts
from our 1979 book, BEST TEST DESIGN . This happens when we wanted to recon-
sider fundamental material .

You will find some chapters that return to a topic already discussed in an earlier chapter.
This happens when we found we had more to say about a topic or wanted to explore a
different perspective, but saw no particular fault with our first discussion .

You will also find our notation inconsistent . Our notational variations, however, need
not trouble you. Whether the conjoint additive relation between person ability and item
difficulty is represented by "B-D", "B-D", "b-d", or "b-d" the meaning remains entirely
clear.

We enjoyed building these 26 Units of Study. We wrote them for ourselves, for our
students and for you. We hope they will be useful to you .



No discussion of scientific method is complete without an argument for the importance of
fundamental measurement - measurement of the kind characterizing length and weight . Yet, few social
scientists attempt to construct fundamental measures . This is not because social scientists disapprove
of fundamental measurement. It is because they despair of obtaining it .

The conviction that fundamental measurement is unattainable in social science and education has
such a grip that we fail to see that our despair is unnecessary. Fundamental measurement is not only
obtainable in social science but, in an unaware and hence incomplete form, is widely relied on. Social
scientists are already practicing a kind of fundamental measurement but without knowing it and hence
without enjoying its benefits or building on its strengths .

The realization that fundamental measurements can be made in social science research is usuallv
traced to Luce and Tukey (1964) who show that fundamental measurement can be constructed from an
axiomatization ofcomparisons amongresponses to arbitrary pairs of objects of two specified kinds . But
Thurstone's 1927 Law of Comparative Judgement (1928a,1928b, 1929) contains results whichare rough
examples of fundamental measurement . Fundamental measurement also occurs in Bradley and Terry
(1952) and in Rasch (1958, 1960/1980, 1966a, 1966b, 1967, 1977) .

The fundamental measurement which follows from Rasch's "specific objectivity" is developed in
Rasch 1960/1980, 1961, 1967 and 1977. Rasch's "specific objectivity" and R.A. Fisher's "estimation
sufficiency" are twosides ofthesame implementation of inference . Andersen (1977) shows that the only
measuring processes which support specific objectivity and hence fundamental measurement are those
which have sufficient statistics for their parameters . It follows that sufficient statistics lead to and are
necessary for fundamental measurement.

Several authors connect "additive conjoint" fundamental measurement with Rasch's work (Keats,
1967, 1971 ; Fischer 1968 ; Brogden, 1977) . Perline, Wright and Vainer (1977) provide two empirical
demonstrations oftheequivalence ofnon-metric multidimensional scaling (Kruskal,1964,1965) andthe
Rasch process in realizing fundamental measurement. Wright and Stone (1979) show how to obtain
fundamental measurementfrom mental tests . Wright andMasters (1982) give examples ofits successful
application to rating scales and partial credit scoring.

In spite of these publications advancing, explaining and illustrating the successful application of
fundamental measurement in social science research, most contemporary psychometric tests and much
practice are either unaware of the opportunity or mistake it for impractical .

MAINTAININGAUNIT

Thurstone says .

The linear continuum which is implied in all measurement is always an
abstraction . . . . All measurement implies the recreation or restatement of the
attribute measured to an abstract linear form .

and

1 . THE IDEA OF MEASUREMENT

There is a popular fallacy that a unit of measurement is a thing - such as a piece
of yardstick . This is not so . A unit of measurement is always a process of some



kind which can be repeated without modification in the different parts of the
measurement continuum (Thurstone, 1931, p. 257) .

Campbell (1920) specifies an addition operation as the hallmark of fundamental measurement.
At bottom it is maintaining a unit that supports addition .

Rasch (1980, 171-172) shows that, if

P = exp(b-d)IG

where

G = [1 + exp (b-d)]

	

1 .?

is the way person ability b and item difficulty d combine to 'govern the probability p of a successful
outcome and, if EventAB is person A succeeding but person B failing on a particular item, while Event
BA is person B succeeding but person A failing on the same item, then a distance between personsA and
B on a scale defined by a set of items of a single kind can be estimated by

bA -b, = logN, - logA'

where NB is the number of timesA succeeds butB fails and NB., is the number of times B succeeds but
A fails on any subset of these items.

This happens because, for any item difficulty d under Rasch's model,

PAB=PA(I-P,)=exp(b,a-d)/GAG,

	

1.4

and

so that d, GA and G, cancel out of

	

P,.q = exp(bA -b,) leaving

P,A =P,(1-PA)=exp(b,-d)/GAG,

	

1.5

log(PAB / PBA) = bA - bB = log(NA, / NBA)

	

1.6

a unit of distance which holds regardless of the value of d. This result is equivalent to Case 5 of
Thurstone's 1927 Lawof Comparative Judgment and to Bradley andTerry of 1952 andconforms to Luce
and Turkey of 1964.

Since d does not appear in this equation, estimates of the distance between A and B are modelled to
be statistically equivalent whatever the item difficulty d.

Since the unit defined by the distance betweenA andB holds over the range of the continuum defined
by whatever values d may take but is independent of the particular value of d, it follows that Rasch's
model for specifying measures is exactly the unit-maintaining process which Thurstone (1931) requires .

Whether a particular batch of data can be disciplined to follow the Rasch process can only be
discovered by applying the process to the data and examining the consequences . It is worth noticing,
however, that whenever we have deemed it useful to countright answers or to add scale ratings, we have
taken it for granted that the data concerned do, in fact, follow the Rasch process well enough to suit our
purposes . This is so because counts andadditions are exactly the sufficient statistics for the Rasch process
and for no other. When we accept the counts as useful then, however innocent our adventure, we also
accept the Rasch model as the mathematical explanation of what we are doing and also its only
mathematical justification .



If we subscribe to Thurstone's requirement, then we want data that we can govern in this way . That
means thatfitting the Raschprocessbecomes more than aconvenience. Itbecomes the essential criterion
for data good enough to support the construction of fundamental measures . The Rasch process becomes
the criterion for valid data .

VERIFYING FIT, IDENTIFYINGBIAS

How well does data have to fit the Rasch process in order to obtain fundamental measurement? The
only reasonable or useful answer is : "Well enough to serve the practical problem for which the measures
are intended, that is, well enough to maintain an invariance sufficient to serve the needs at hand."

How can we document the degree of invariance the Rasch process obtains with a particular set of
data? One method is to specify subsets of items in any way that is substantively interesting but also
independent ofthe particularperson scores we have already examined (Nns , NBA )and then to see whether
the new counts resulting from these item subsets estimate statistically equivalent distances between the
persons.

The extent to which the distance between personsA andB is invariant over challenging partitions of
items is the extent to which the data succeeds in making use of the Rasch process to maintain a unit .

A more general way to examine anddocument fit is to compose for each response .-= 0 or 1 the score
residual :

y=x-Ex=x-P

in which

	

P=exp(b -d) / [1 + exp(b - d)]

comes from the current estimates of person ability b and item difficulty d and the expected value Ex of
observation x is

in which the summation I is over the items in the designated subset .

and then to accumulate these score residuals over the item subsets chosen to challenge fit .

If (b I -bo) is defined as the. extent to which a subset of items implied by b, fails to maintain the unit
constructed by the full set of items implied by bo, then that subset sum of score residuals 1), estimates :

Ey=(bl -bo)y (d. ldb) 1.10

When the data fit the Rasch process, then the differential of v with respect to b equals the score
variance P(1 - P) so that

dy/db=dP/db=P(1-P)=q

	

1.11

Ey = (bi - b,,)Y, q

	

1.12

and

(bi -bo)=yY/y,q=g .

	

1.13
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Thus the simple statistic g = Ey / Eq estimates the logit discrepancy in scale invariance (b, - bo ) due
to the item subset specified, with g having expectation and variance

hen the data fit this unit-maintaining Rasch process.

Subsets need not be limited to items. Groups of persons can be used to review the extent to which
anv item is vulnerable to bias for or against the type of persons grouped. In general, any combination of
items andpersons thought to interact in a waythat might interfere with the unit-maintaining process can
be used to define a subset for calculating g. The resulting value of g estimates the direction and logit
magnitude of the putative disturbance to scale invariance. The stability of any particular value of g can
be evaluated from the root of its model variance, Vg =1 / Eq

CONSTRUCTING ADDITION

Eg=0 and Vg =1/Yq

	

1.14

SE, = (Zq)-v2 .

	

1.15

The way to build a linear scale is to construct an addition operation which answers the question : "If
person A has more ability bA than person B with ability be , then how much "ability" must be added to
bB to make the performance of B appear equal to the performance of AT' To be more specific . "What
, addition' to bB will cause PB = PA?"

To answer this question we must realize that the only situation in which we can observe these
probabilities of success is the one in which we expose the persons to items of the specified kind This
changes the question: "Whatchange in the situation through which we find out aboutpersons by testinZ--
them with items will give B the same probability of success as A ?" In other words:

"What `addition' to bB will cause PBl = PA; ?"

To be more explicit, "What itemjof difficulty d will make the performance of person B appear the
same as the performance of person A on item i ?"

The Rasch process specifies that when PBS = PA,. then

bB-d;=bA-d; .

	

1.16

The `addition' required to cause B to perform like A is then

bB + (bA - bB ) = bit "

	

1 .17

The way this `addition' is accomplished is to give person B an item j with difficulty

d, - d; = bA -bB .

	

1 .18



CURRENT PRACTICE

The way the success of this `addition' is evaluated is to see whether the performance of person B on
items likeJ is observed to be statistically equivalent to the performance of person A on items like i. This,
in fact, is the comparison actually checked in every detailed analysis of fit.

It has long been customary in social science research to construct scores by counting answers (scored
by their ordinal position in a sequence of ordered response possibilities) and then to use these scores and
monotonic transformations of them as measures. When the questions asked have only two answer
categories. then we count right answers. When the questions have an ordered series of answer categories,
then we count how many categories from `least' to `most' (`worst' to `best' . `weakest' to `strongest')
have been surpassed . There is scarcely any quantitative data in social science research not already in this
form or easily put so .

If there has been anyprogress in quantitative social science, then this kind of counting must have been
useful . But this has implications . Counting in this way implies ameasurement process, not any process,
but a particular one. Counting implies aprocess which derives counting as the necessary and sufficient
scoring procedure.

Now counting is exactly the unique sufficient statistic for estimating measures with the Rasch
process. Since the Rasch process constructs simultaneous conjoint measures whenever data are valid for
such aconstruction, we have, in our counting, been practicing the first steps offundamentalmeasurement
all along. All we need do now is to take this implication of our actions seriously andto complete our data
analyses by verifying the extent to which our data fit the Rasch process and so are valid for fundamental
measuring. When our data can be organized to fit well enough to be useful, then we can use the results
of counting to construct Thurstone linear scales and to make Luce andTukey fundamental measures on
them.

That we-in social science and education-have been content to useunweighted raw scores, just the
count of right answers, as our `good enough' statistic for ninety years, testifies to our latent conviction
that the data with which we work can be usefully managedwith aprocess no more complicated than the
Rasch process. It is useful to keep in mind that, among all of the intriguing mathematical possibilities
which might seem useful to transform right answer counts into measures, it is only the Rasch process
which can maintain units that support addition and so produce results that qualify as fundamental
measurement.

easier than item i, namely an item j with difficulty

di - d, = bA - bB so that 1 .19

bB + (bA - bB ) = bB +(d; - di ) = bA and 1.20

PBi
=PA i . 1.21



2. OBJECTIVITY

This chapter introduces the essentials of objectivity (also known as monotonicity, composite
transitivity, conjoint additivity andfundamental measurement), andto deduce themeasurementmodel
that objectivity requires .

The progress of science depends on the invention, construction and maintenance of useful
measures . Science lives on measurement. Measurement exists on objectivity . An everyday term for
objectivity is generality . Objectivity is the expectation and, hence, requirement that the amount and
meaning of a measure has been well enough separated from the measuring instrument and the occasion
of measurement so that the measure can be used as a quantity without qualification as to which was the
particular instrument or what was the specific occasion .

Although a measuring occasion is necessary for ameasure to result, the utility of the measure,
depends on the specifics of the occasion disappearing from consideration . It must be possible to take
the occasion for Granted and, for a time being, to forget about it . Were such a separation of meaning
from the circumstances of its occasion not possible, not only science but also commerce, and even
communication, wouldbecome impossible .

The essentials of measurement can be brought out by reviewing the characteristics of the
archetypical variable, length . When you ask aperson's height and it is reported 70 inches, you do not
demand the yardstick or to know whomade the measure, when or where . You expect, andhence require
as aprecondition for continuing communicationconcerning height, that 70 inches was obtained in the
usual way . Even though you know what the circumstances necessary to produce the measure were
necessarily fraught with unique particulars, you use the70 inch quantification oflength as though it were
entirely independent of those circumstances of its construction . In other words, you take 70 inches to
be objective . Were you unable to do that, the quantity 70 inches would become meaningless not only
to you but also to anyone, for nobody would know to what, if any, enduring state it referred .

Measuring length is so familiar andcommonplace that theway we do it seemsobvious. We are
tempted to think of length as an explicit, manifest variable that can be seen directly . But there are
essential details whichthemeasurement oflength requires . Although these details are taken for granted,
they cannot be neglected, iflength is actually to be measured . In fact, that they can be takenfor granted
signifies that we have made a solid habit of not neglecting them.

In spite of its "looks," length is not, by itself, manifest . Nor, in fact, is there any variable at all
which is manifest on its own . Variables are inventions and measurements are constructions . An agent
of measurement, aruler of some kind, is necessary to make length "visible ." Length cannot be "seen"
on its own, let alone measured, without the deployment of some kind of ruler. This requires the
measurement of length to be a conjoint operation . Thecalibrated ruler andthe thing to be measured must
be broughtinto a disciplined conjunction. The ruler, through its calibration, recapitulates the founding
definition of the variable "length ." Theruler's calibrations are the criterion definition of this variable .
The ruler, while necessarily concrete in its realization of "length," dependsfor its utility on the extent
to which it implements an abstract fiction . It must not matter at all which particular concrete realization



of a "ruler" is actually used to make the abstract measurement. It must only need be any "ruler" in good
standing .

All measurements made by all calibrated rulers mustbe quantitatively comparable without any
reference to the physical details or work histories of the particular rulers used or who used them.

SOCIALSCIENCEMEASUREMENT

These ideas are not new to social science. To be generally useful, the individual measure must
not depend on which particular test items are used .

It should be possible to omit several test questions at different levels ofthe scale without
affecting the individual score .

It should not be required to submit e\ ery subject to the whole range of the scale. The
starting point andthe terminal point . being selected by the examiner, should not directly
affect the individual score (Thurstone . 1926. p . 446) .

Nor should the measuring function of a test . that is, the calibrations of the test items, depend on
which particular persons are being measured .

The scale must transcend the group measured . One crucial experimental test must be applied
to our method of measuring attitudes before it can be accepted as valid. A measuring instrument must
not be seriously affected in its measuring function by the object of measurement . To the extent that its
measuring function is so affected, the validity of the instrument is impaired or limited .

If a yardstick measured differently because of the fact that it was arug, a picture, or a piece of
paperthat wasbeing measured, then to that extent the trustworthiness of that yardstick as a. measuring
device would be impaired .

Within the range of objects for whichthe measuringinstrument is intended, its function
must be independent of the objects of measurement (Thurstone, 1928, p. 547) .

Indeed, Thurstone's eloquent and detailed 1931 specification ofthe essentials of measurement
meetsandresolves most ofthe "big" measurementmisgivings that social scientists continue to fret about.

Measurement is Necessarily One-Dimensional :

Oneofthe most frequent questions (concerning the possibility of social measurement)
is that a score on an attitude scale, let us say the scale of attitude toward God, does not
truly describe the person's attitude .

There are so many complex factors involved in a person's attitude on any social issue
that it cannot be adequately described by a simple number such as a score on some sort
of test or scale. This is quite true, but it is also equally true of all measurement.

The measurement of any object or entity describes only one attribute of the object



measured . This is a universal characteristic of all measurement. When the height of a
table is measured, the whole table has not been described but only that attribute which
has been measured .

Similarly, in the measurement of attitudes, only one characteristic of the attitude is
described by a measurement of it .

Measurement is Necessarily Linear :

Only those characteristics canbe described by measurementwhich can be thought ofas
linear magnitudes . In this context, linear magnitudes are weight, length, volume,
temperature, amount of education, intelligence, and strength of feeling favorable to an
object . Anotherwayof saying the same thing is to note that the measurement of an object
is, in effect, to allocate the object to a point on an abstract continuum. If the continuum
is weight, then individuals may be allocated to an abstract continuum of weight, one
direction represents small weight while the opposite direction represents large weight .

Measurement is Necessarily Abstract :

Thelinear continuumwhich is implied in all measurement is always an abstraction . For
example, when several people are described as to their weight, each person is in effect
allocated to a point on an abstract continuum of weight. All measurement implies the
reduction or restatement of the attribute measured to an abstract linear form . There is
apopular fallacy that a unit ofmeasurementis a thing such as a piece of yardstick . This
is notso . Aunit ofmeasurement is always aprocess ofsome kind which canbe repeated
without modification in the different parts of the measurement continuum (Thurstone .
1931, p.257).

But no ruler in its concrete embodiment ofthe abstract idea of length does its i ob A ithout further
specification. There are rules concerning how rulers must be employed to produce acceptable measures .
The ruler and the object to be measured must be carefully aligned so that they lie parallel to one another.
Astarting point, or origin, and units to countmust be installed . The line of sight along which the viewer
reads the object againsttheruler must be determined andmaintained . Theprocedure by which coincidence
is identified and interpolation accomplished must be specified. Without care for these rules, the results
of ruler measurements become too disorderly to be useful .

AXIOMATICMEASUREMENTTHEORY

The axiomatic theory of measurement has made great strides in the past 30 years . There are
detailed andscholarly discussions of these accomplishments in print. Unfortunately these discussions
are too esoteric for most social scientists . It is hard for practitioners to see how to put axiomatic
measurement theory to work .

The heart of axiomatic measurement theory, however, can be simply put. The crucial axiom
which all measurement theorists agree is necessary for the construction of measurement is the onethey
call "monotomcity" or "conjoint additivity ."



This axiom can be useful to social scientists because it marks out exactly the condition which both
scientist and layman expect of numbers which are intended to serve as measures, namely generality or
objectivity .

Thejoint ordering of conjoint additivity is also not new to social science. Monotonicity under,
the name of "conformity" andlater "objectivity" appears in the practical work of Georg Rasch in 1953
and is defined. developed and implemented in detail in his seminal book of 1960 (Rasch, 1960/1980)
and article of 1961 (Rasch, 1961) .

A person having a greater ability than another should have the greater probability of
solving any item ofthe type in question . and similarly, oneitem being more difficult than
another onemeans that for anyperson the probability ofsolving the second item correctly
is the greater one (Rasch . 1960 . p . 117) .

Rasch "objectivity" is a Stochastic conjoint additivity . Even earlier in 1944, Louis Guttman
1944 . 19501 formulated what must be the best known, but least followed, requirement for social science
measurement . Guttman deduced that a score could not be unequivocally on a "scale," unless the
particular data from « hick the score was accumulated were completely specified by the value of the
score .

If a person endorses a more extreme statement, he should endorse all less extreme
statements if the statements are to be considered a scale.

We shall call a set of items of common content a scale if a person with a higher rank
than another person isjust as high or higher on every item than the other person (Guttman,
1950, p . 62) .

Guttman "scalability," a deterministic conjoint additivity, is impractical when applied deter-
ministically . But its stochastic version is identical to Rasch's objectivity and entirely practical, as
Raschdemonstrated in the 1950's and as has been shown so many times since for hundreds of tests and
questionnaires (Wright and Bell, 1984) .

What may not be quite as obvious is that the stochastic version of Guttman's requirement is
equivalent to Ronald Fisher's seminal definition of a sufficient statistic (1958/1922). Fisher's
"sufficient" statistic is theoneand only statistic that exhausts the information modeled in the data with
respect to the parameter to be estimated .

What this definition means is that aFisher"sufficient" statistic is the statistic that provides the
best stochastic reconstruction of the data . This is exactly Guttman's scalability criteria, expressed
stochastically . The realization that Fisher "sufficiency" is a necessary concomitant of stochastic
monotonicity may prove, in the end, to be the decisive reason for preferring sufficient statistics over
all others .

The common sense of this, so often reiterated, foundation formeasurement is plain enough.
It would seem that no sane researcher could argue or act otherwise . Yet, and strangely, few social
scientists require or even hope for conjoint additivity in the numbers they use as "measures."



The consequence ofthis innocent carelessness is a plethora of ill-defined and unstable pseudo-
quantifications and a great deal of confusion and disappointment over ambiguous and irreproducible
results .

This unhappy situation is completely unnecessary . A derivation of a practical stochastic
measurement model from the requirement of monotonicity, conjoint additivity or objectivity is easy to
follow and the resulting model for measurement is easy to apply .

Here is a simple derivation of the model necessary to meet Thurston's 1928 requirement that
a scale be independent of the objects of measurement .

THURSTONEINVARIANCE

The construction of a scale depends on the relative calibrations of the items used to define the
scale . These calibrations must be established in a way that can be made independent of which persons
happen to provide the calibration data . We begin by asking what is required so that the comparison of
any two items i andj will be independent of whatever persons are used to elicit evidence of the relative
scale standing of these two items?

Items i andj can be observed to differ only when they are answered differently . Realizing a
comparison of i and j, then, requires counting how often i is answered `yes' by persons when j is
simultaneously answered `no' and comparing this "i >j" count with the reciprocal `j > i" count of how
often the reverse occurs among other persons .

The estimation of a quantitative comparison of items i andj from this pair of reciprocal counts
requires a probability model for the occurrence of the counts which can implement an objective, i.e .
sample-free, person-invariant, comparison of their probabilities .

The pair of probabilities can be represented by

Pr[(i = yes), (j = no)]

and

Pr[(i =no), (J= yes)]

and their comparison specified by the ratio,

Pr[(i = yes), (j = no)]
Pr[(i = no), (j = yes)]

Let Pi = f(n, i) be the, as yet undefined, probability that person n succeeds on item i .

What we seek is the particular function f(n, i) which maintains Thurstone (1928) invariance and
hence Rasch (1960/1980) objectivity .



To obtain invariance the comparison ofprobabilities in Equation 1 must stay the same regardless
of which persons are involved . That is, Equation 1 must hold for any suitable persons n or
m as in,

Pr[(L= yes)jj -no)] Pni l1- P:j) - Pmi0-Pmj)

Pr[(Z = no), (j= yes)]

	

(1 - P,i )Py

	

(1 - Pmi ) Pmj

for all n and in

where n is some person, m is any other person and the symbol = specifies that the comparison of item
i with j is "defined" to remain the same w hoever the persons, n or nz .

To simplify our appreciation of the Implications of Equation 2 for P i = f(n, i) , we can choose
j = o and in = o as origins for the item and person scales so that the calibration of item i becomes its
comparison with a reference item_,. = o and the measure of person n becomes their comparison with a
reference person ni = o .

We can also align these scale D_-,.gins so that the reference person has a fifty-fifty chance to
succeed on the reference item . This makes

P,j=P,,=1/l and (1-P,)/P1

When we insert j = o and nz = o into Equation 2-2 and solve the middle and right side for the
odds of person n succeeding on item i we get

Pi

	

-	Pr �

	

= g(n)xh(i)
(1-Pni)

	

( 1- Pn) (1- PJ

(PO ) / (1-P) has a value between 0 and infinity depending only on person n, and [P; / (1 - P� i )]
has a value between 0 and infinity depending only on item i .

The measurement scale defined by Equation 2-3 is aratio scale . Zero corresponds to the measure
for a person having no chance of success on any item and also to the calibration of an item on which
there is no chance of success by any person .

The ratio scale defined by Pn ,. / (1- P,j ) can be transformed into an equal-interval linear
difference scale by taking logorithms .

log[Pni /(1-Pi)]=log[Pn, /( 1- Pn � )]+log[Poi / (1- P,i)]

= G(n) + H(i) for an interval scale

= Bn - Di for convenience
or

12

2.3

2.4



exp(B� - Di ) / [1 + exp(Bn -

where the item calibration Di depends only on the attributes of item i, which we can call its difficult,
and the measure B� depends only on the attribute of person n, which we can call his ability .

This model relating the ability ofperson n and the difficulty ofitem i to the performance ofperson
n on item i is the objective model of measurement known as the Rasch model .

This deduction arrives at the only f(n, i) which can support the construction of Thurstone
invariant or Rasch objective scales .

Equation 2-2 can be rewritten to address Thurstone's concomitant 1926 requirement that the
individual measure not depend on which particular items are used so that it becomes "possible to omit
several test questions at different levels of the scale without affecting the individual score ." This
requires that the comparison of any pair of persons n and m be invariant with respect to the particular
items employed as in

Pr[(i=yes), (j=no)] _ Pi(1- Pmi)

	

Pnj (1 - p;)
Pr[(Z = no), (./ = yes)]

	

(1 - Pni )Pmi

	

(1 - Pnj ) Pmj

for all i and j

which is equivalent to Equation 2-2 and so leads to Equation 2-5 .

2.6



3. THE IDEA OFA VARIABLE

When we make measures, we do so with the intention ofbeing accurate enough for ourpractical
purpose . We do not expect absolute precision . Our notion of "accurate" does not imply "perfect ."
Instead it implies "close enough to be useful ." We record aperson's height to some useful approximation
like the nearest half-inch. This is sufficient for most practical purposes . More precision, such as to
the nearest eighth or sixteenth of an inch, is rarely necessary and we would not ordinarily expect it to
be given.

This example reminds us that while we want to be accurate there is always an implied, if not
explicit, tolerance in our measures . Unless height measures require some particular accuracy, it is not
necessary, and without scientific instrumentation, impossible, to make measures of height more
accurate . However, we are not at all frustrated by ourlack of absolute precision because "to the nearest
half-inch" is practical and useful . We make measures which are good enough for the occasion, good
enough to satisfy our practical requirements .

Measures are based on observations . Observations are essentially qualitative. To make
measures we develop rules by which to control how these observations are best made . These rules
include specifying the degree of accuracy that we want. When measuring height, for example, we ask
people to remove their shoes, stand straight andnotwiggle in order to standardize the observations . Then
we observewhichmarks on ouryardstick they exceed andwhichthey fail to exceed . We find the marks
closest to the top of their head . We pick themark that looks closest and call their height the calibration
of that nearest mark . These rules provide the level of accuracy we need in order to make useful measures
of aperson's height. We usethe constructed functional unidimensionality of the yardstick to bringout
and record the single dimensioned height of the multidimensional person .

Measuring "ability" is analogous to measuring "height." First we bring to the fore ouridea of
the variable we want to measure. Next we determine what observations it will be useful to consider
as informativemanifestations ofthat variable . Then we construct agents, write items, intended to elicit
singular instances of this "made-to-be" unidimensional "ability" variable .

Theideaof avariable can be visualized as aline that has direction. When we think about"length"
we think about a line that is as long as necessary for ourwork. This idea is manifest in a one-foot ruler
when we expect measures to be 1 to 12 inches, in ayardstick for 1 to 36 inches, on a surveyor's ,tape
for longer distances and so on. In each of these instances the agent of measurement is a focused
manifestation of our infinite linear image of the variable "length".

With these simple ideas ofmeasurementinhand, let us turnto the problem of measuringan ability.
Consider arithmetic ability and, more specifically, the computation skills needed for thewholenumber
operations of addition, subtraction, multiplication and division .

We imagine aline of arithmetic items progressingfrom left to right with each successive item
harder than the previous one. A few items will suffice for our example . Additional items are added
to the line by designing them to fit between any two items that we have already placed upon the line and
then verifying their location by observing student responses .
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The idea of a line upon which to position arithmetic items provides us with a picture of the
arithmetic variable and shows us how to proceed in the construction of tests to measure along that
variable . We use our knowledge of arithmetic to position items along the line . Theoretical locations
for the items can be hypothesized initially by teaching experts who have experience with students
learning arithmetic . Laterwe can add andreposition items on the line as we observehow well students
actually answer these items.

CONSTRUCTINGTHELINEOFTHEVARIABLE

We begin with a single item and position it on the line of the arithmetic variable :

Can an easier item be constructed? Yes, and so we will position it somewhere to the left . A
harder item will be positioned to the right . Hence:

2

5
+7

5

Now we have three items andthe process of constructing new ones only requires hypothesizing
their expected positions among the existing items and then estimating item positions empirically by
collecting responses to them. The critical decision to make at this point is where each item belongs,
in ourbest judgment, relative to the items already positioned on the line . There is also no reason why
items cannot be repositioned according tobetter information from teachers about their difficulty relative
to other items . Item construction thus proceeds in an orderly fashion guided by the idea of a line and
the successive placement of items on the line according to our best expectations of their relative
difficulty . These items now serve as the agents designed to evoke manifestations of our arithmetic
variable .

The line of our variable can be made as long as necessary to describe the variable . It can be
divided into segments for ease in handling . It can be abbreviated according to ourpractical needs for
administration in exactly thesame waythat we partition ouridea of length into measuringtools - rulers,
yardsticks, tapes of various extension - all to facilitate the measurement of various lengths .

The idea of a line helps us to determine item positions by considering each item relative to the
items already positioned on the line . This determination canbe done by comparingpairs of items with
respect to their relative difficulties along the line . Each successive item position as we move to the
right indicates "more" of the variable to be measured .

The idea of the variable becomes defined by the construction of the items which work to elicit
indications of the variable . As we define the variable with more and more instances, using more and
more items, ourwork of building the variable proceeds in a logical manner and ourconceptualization
of the variable becomes ever more clearly defined.
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Once the variable is constructed by the line of items, we can proceed to position students on this
same line . Their probable positions can be specified initially by our best guess as to their ability to
correctly answer the items which define the variable . The line of our variable shows both the positions
of items and the positions of students . Eventually the positions of students will become more explicit
and more empirical as we observe what items they correctly answer .

Consider this picture :

Sally

	

Jim

	

Carol

2

	

5

	

29
+2 ±7

	

+19

Sally's position on the variable is indicated by an expected correct response to Item 1 but an
expected incorrect responses to Items 2 and 3 . Her differing responses to Items 1 and 2 locate her on
the variable between two items that describe her ability in arithmetic computation . She can add 2 and
2 but not 5 and 7.

Jim's position is between Items 2 and 3 because we expect him to answer Items 1 and 2 correctly
but not Item 3 . In Jim's case we have somewhat less precision in determining his arithmetic ability
because of the lack of items between Items 2 and 3 . If we had additional items in this region, we could
obtain a more accurate indication ofJim's position on the variable as defined by his responses to these
additional items.

Carol solves all three problems . Her ability is "above" Item 3 . But what her position is beyond
Item 2 remains unknown . We cannot position her more precisely on the variable because we do not know
whether her true position is only slightly above the position of Item 3 or far beyond it . If we had her
responses to additional items on the variable above Item 3, Carol's position might be indicated more
exactly .

Now we give a more specific example of how to construct a variable for arithmetic .

First, we choose 17 items and arrange them on a test form in what we expect to be their
approximate order of difficulty .

Then we administer this test form to 270 students in Grades one to six in order to obtain actual
data with which to calibrate these 17 items objectively .
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Next we calibrate these items and determine person measures for this sample. (See Wright &
Stone. 1979 . for the details of how to do this . It is not hard to do.)

The calibrations of the 17 items are used to map the items in Table 3 .1 . The variable line goes
down in difficulty from hard at the top to easy at the bottom. On the left side of Table 3 .1 is the person
count for this sample of270 students at everyraw score position, then comes the raw score, the measure
impliedby each raw score andthe associated estimation error. Items are identifiedby their item number
and text andpositioned according to the difficulties calibrated from the observations gathered from our
sample.

We have constructed an arithmetic computation variable and located items and students along
it from our observations of how these students were able to answer these items.

Our development of this emerging variable defined by items and students provides an
operational definition . Thevariable's limits are bounded only by the range of agents (items) and objects
(students) that we can position alongthe line . We can make variables of interest as dense as we need .
Thetests whichimplementthese variables canbe sparse for rough screening or dense for more specific
pinpointing.

Accuracy (i.e . reliability) of student position is givenby the standard error associated with each
measure . The unit ofmeasurementused in this table is the logit expressed as adecimal centered on 0.0
for this set of 17 items . Observe that the standard errors are smallest (most precise) where items are
most denseandwe have the most information about the measureandlargest (least precise) atthe extremes
where items are least dense and we have the least information.

Table 3 .1 can be examined to determine where we have gaps between items, where there are
too many items at a particular position andwheremore items are needed to extend the variable above
and below the items already calibrated . (For an example of this kind of variable building, see Wright
& Stone, 1979, pp . 83-93) . The map of the variable is a picture of the extent to which we have
accomplished the task of variable construction . The map also shows us what to do next.

Variable maps beginby showing item positions alongthe line of the variable as shown in Table
3 .1 . We canalso addstudents along the line of the variable andindex theirpositions on the mapby name,
grade, gender or other student characteristic . As we addto themap we enrich ourpicture of the variable
and increase its utility.

The construction of an empirical variable map enhances the value of testing. A good variable
map is self-explanatory because the visualization of the variable makes explicit what the variable
represents . The interpretation of test results is facilitated because all items calibrated and all students
measured are positioned together on the same variable - along with whatever additional information
has been added to make the map more useful .

CRITERIONREFERENCING

A variable mapis automatically criterion-referenced by the relative positions of item content.
The texts of the items in their positions along the variable describe in detail the explicit hierarchy of
contentandhencethe construct implied by the variable . This item-by-item criterion referencing ofthe
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variable applies to any measuresubsequently derived from any test composed of some itemswhichhave
been calibrated on this variable . Thus, criterion referencing is complete and the evidence of content
and construct validity is explicit .

NORMREFERENCING

Personal and demographic characteristics of any and all students tested can be added to the
variable map at the measured positions ofthese students . This provides as extensive and versatile norm
referencing as the use of tests based on items calibrated on this variable can provide. Thus, norm
referencing is also as complete as possible with the data available .



Table 3.1

The Item Map of the Arithmetic Variable
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MEAN ABILITY OFPERSONS

	

=

	

1 .03 LOGITS
STANDARD DEVIATION

	

=

	

2.56 LOGITS

Table 3.1 (Continued)

The Item Map of the Arithmetic Variable

"` Should we wish a numbering system simpler than the decimal logits, a linear conversion can be made
to positive whole numbers . See Wright & Stone, 1979, pp . 191-209 .
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OBJECTIVITY

4 . DEDUCING THE MEASUREMENT MODEL

In this chapter we deduce the Rasch Model from Thurstone's requirement that item compari-
sons be sample free . Thurstone (1928) says, "The scale must transcend the group measured . . . its
function must be independent of the object of measurement." (p . 228) . This ideal for measurement
requires that the comparison of two items i andj be independent of whatever persons are used to elicit
evidence of the scale difference between these two items .

Because of the symmetry in any person-by-item interaction, Thurstone's ideal also requires
that the comparison of any pair of persons n and m be invariant with respect to the particular items
employed. As Wright (1968) explains, "Object-free instrument calibration and instrument-free
object measurement are the conditions which make it possible to generalize measurement beyond the
particular instrument used, to compare objects measured on similar but not identical instruments, and
to combine or partition instruments to suit new measurement requirements . . . .When we compare one
item with another in order to calibrate a test, it should not matter whose responses to these items we
use for the comparison . Our method for test calibration should give us the same results regardless of
whom we try the test on. This is the only way we will ever be able to construct tests which have
uniform meaning regardless of whom we choose to measure with them." (p . 87-88) .

Rasch (1960, 1961 . 1968 . 1977) designated this measurement property objectivity . "In the
beginning of the 60's I introduced anew - or rather a more definite version of an old- epistemological
concept . I preserved the name of objectivin . for it, but since the meaning, of that word has undergone
many changes since its Hellenic origin and is still . in everyday speech as well as in scientific discourse,
used with many different contents . I added a restricting predicate : specific." (1977, p. 58) .

Let us examine this measurement goal with a simple example .

COMPARING TWO ITEMS

We require the comparison of two items to be independent of which people help us to make
that comparison. What are the possibilities?

1 .

	

Person 1 takes both items, i and j and answers them both correctly . In this case, we
cannot compare these two items on the basis of these two responses because both
responses are the same . We can see no difference between them .

2 .

	

Person 2 answers both items incorrectly . Again we cannot compare the two items for the
same reason.



3 .

	

Person 3 answers item i incorrectly but item j correctly. Now we see a difference
between the responses to items i andj and can infer that item j is probably easier than
item i for Person 3 .

4 .

	

Person 4 answers item i correctly but item j incorrectly. Again we have a difference,
although the reverse of the previous case . Now we infer that item i is probably easier for
Person 4 than item j.

Our inferences from these examples are based upon the reasonable, even necessary, require-
ment that . other factors being equal . an item solved correctly is easier than an item solved incorrectly
by the same person .

Let more and more people take this simple test of two items. The only respondents that tell
us about the difference between the two items are those who differ in their outcomes, i .e . those who
answer one item correctly but the other item incorrectly .

As the number ofpersons who take these two items becomes indefinitely large, we want to be
able to record the outcome without bothering with the exact number of persons who happen to be
involved . To do this we chance our recording from counts to percents .

Suppose, amongpersons getting one item correct butthe other incorrect, we have 10% correct
for item i but 90% correct for item j. We can use the ratio of these two percents to indicate the
difference in difficulty between items i andj: i.e . . itemj is gotten correct (90%) / (10%) = 9 times more
often than item i .

If a stable and hence useful relation betweenitems i andj exists, then we must expect the ratio
of their relative success rates to remain statistically equivalent irrespective of the people who respond
to them. Should the ratio vary substantially between different groups of people, then the differences
in ratio would have to be traced to extraneous factors differentiating the groups and thence to local
interactions between item content and group characteristics .

When varying results of this kind occur, items cannot be calibrated objectively . Then we need
to continue our investigation with contrasting groups of persons to uncover and bring under control
the extraneous factors which cause the ratios to vary and thus prevent the establishment of a sample-
free comparison of the items.

If, however, in many additional groups taking these two items, we observe a series of ratios
close to the ratio of the first group, i.e . about 9 to 1 (with minor variations like 9 .5 to 1 and 8 .5 to 1)
we may decide to interpret these ratios as statistically equivalent and to conclude that we have
observed a consistency on which to build an objective calibration of items and hence an operational
definition of a stable variable .

We may conclude that it will be useful to think of a "fixed" difference in difficulty between
these two items, one that is independent of the differences among the groups of people that produced
ratios near 9 to 1 and hence to characterize this difference between these two items in a general way
by this ratio (or, to express it explicitly as a "difference", by the logarithm of this ratio) .



Observing a comparison of i andj requires counting how often item i is answered "correct"
by persons who also answer "incorrect" to item j and comparing, by means of their ratio, this "i >j"
count with the reciprocal "j > i" count of how often the reverse occurs .

Estimating a difficulty ratio between items i andjfrom this pair of reciprocal counts requires
a probability model for the occurrence of the counts which can implement a sample-free, person-
invariant, comparison of the items.

The observed percents (i.e . relative frequencies) can be extrapolated conceptually to proba-
bilities of correct (P) and incorrect (1 - P) responses to items i and j and we can use this abstract
probability P to model what is likely to happen when any person tries items i andj.

Let the probabilities for the two outcomes to the pair of items be :

Pr[(i = yes), (j = no)] = Pj for " i > j"

and
Pr[(i = no), (j = yes)] = Pj; for " j > i"

and let the specification of the comparison of the items be the ratio:

Pr[(i = yes) . (j =no)] - P,j
Pr[(i = no) . (j = yes)]

	

P; ;

Let P;

	

f(n,i) represent the, as vet unknown but now to be deduced, probability that person
n succeeds on item i. Then the comparison of Equation 4.1 becomes :

The particular function Pni = f(n, i) which we seek is one Nvhick maintains Thurstone's
invariance or Rasch's objectivity, one which enables Equation 4.2 to be aperson-free comparison of
items i andj - a comparison independent of who person n happens to be.

To obtain Thurstone's invariance or Rasch's objectivity, the comparison of probabilities in
Equation 4.2 must stay the same regardless of which persons are involved . Equation 4.2 must,
therefore, hold for any pair of suitable persons, such as persons n and m:

Pnc(1- Pn;) _ Pm,(1-Pm;)

(1- Pnc)Pn;
(1-Pm;)Pmi

Equation 4.3 can be used to specify the odds that person n answers item i correctly as :
where the triple equal sign "=" means "this equation is required by definition ."

4.2

4.3



To obtain a general invariance, and hence a useful "objectivity," this equation must hold for
all suitable persons n and m and, by the way, also for all suitable items i and j .

The triple equals sign "-" signifies that this equality relation is "the definition" of an
"objective" comparison, i.e . the definition of sample-free item calibration and also a test-free person
measurement, i.e . Rasch's "objectivity," or Thurstone's "invariance ."

We intend to deduce the specification of P., = f(n, i) fromEquation 4.3. Since we are entirely

free to choose the particular other person m and the particular other itemj in any way that is convenient

and since the definition of even- scale requires the specification of an origin to anchor that scale, it
is particularly convenient to choose m = o to be any person with ability right at the origin of the scale
and also j = o to be any item with difficulty at the same origin . This choice completes the anchoring
of the scale by specifying thatA- hen any person takes any item with a difficulty which exactly matches
their ability . then their probability of success on that item will be exactly P = 1/2 .

Insertingj = o and m = o into Equation 4 .3 and solving the middle and right side of the equation
for the odds of person n succeeding on item i produces :

P, =(I-Po )=1 /2 .

(I - p_?

	

, (I-P:) L(1 - Pmr)
lx

; P

= g(n )= h(i)x C = g(n)x h(i)

because g(n) ---

	

`"

	

is a function of n and the choice of orgin, but not a function of i,
I - P.s

h(i) =

	

- 01

	

is a function of i and the same choice of origin, but not a function of n,
I - P,

and C --- [(1- PO,) / POJ ---1 because we chose to relate persons and items so that

Equation 4.4 specifies that the odds of person n succeeding on item i must be entirely
determined by the product of a single valued function characterizing person n and another single-
valued function characterizes item i and by nothing else . This defines a ratio scale in g(n) and h(i) .
To express the relation between person n and item i on an interval, or difference scale, in B,, and D;,
we take the logarithm of Equation 4.4 :

x [ (I - Po')
P-

(I - Pmj)

Pmj

4.4



log

Equation 4.3 can also be used to address Thurstone's concomitant 1926 requirement that the
individual measure not depend on which particular items are used so that it becomes "possible to omit
several test questions at different levels of the scale without affecting the individual score" (p . 446) .
(By "score" Thurstone denotes a generic test-free "measure" rather than a necessarily test dependent
raw score .) This requires that the comparison of any pair of persons n and m be invariant with respect
to the particular items employed for all i andj . This requirement also leads to Equation 4.3 and thence
to Equation 4.5 .

Another way to write Equation 4.5 is to solve for P so that :

This is the equation known as the "Rasch Model" because Rasch was the first person to use this
equation to construct measurements .

Most important, this specification of P, is unique in that it is both sufficient and necessary for
measurement to occur . It is the one and only P,,, = f(n, i) which can support the construction of
invariant scales meeting Thurstone's criteria, or any other measurement criteria, for objectivity in
measurement .

PARAMETER SEPARATION

=log [g(n)* h(i)] =log g(n) +log h(i)

= G(n) + H(i) = B� -D;

where Bn --- log g(n) and - D; --- log h(i) .

	

4.5

PRr = exp(Bn - D,) / [1 + exp(Bn -D;)]

	

4.6

The Rasch model can be used to seek a useful joint ordering of items and persons . The form
in which its parameters occur, (Bn -D;), linear and without interactions, permits likelihood equations
in which the relation between data and person ability parameters can be entirely contained in one
estimation equation and the relation between data and item difficulty parameters entirely in another .
This happens because the algebraic separation of parameters specified by the Rasch model enables
derivation of conditional estimation equations for either set of parameters such that the equations for
estimating item difficulties do not involve the person ability parameters and the equations for
estimating person abilities do not involve the item difficulty parameters .

SEPARATING ITEM COMPARISONS FROM PERSONS

Equation 4.6 can be used to specify the odds that person n answers item i correctly as :

[Pn~ l (1-Pnr)]=exp(B,-D,.) . 4.7



Items i andj can be compared without interference from B,, or any other B�~ by subtracting
Equation 4.8 from Equation 4.9 . This yields :

(D. - D1 ) = log{~

-D:)-(B,-D,)=

:(I - P",)] /[P. (1- P";)]}

Equation 4.10 does not involve B,. at all - exactly what Thurstone called for in 1928 .

4.10

The comparison of item i and item j in Equation 4.10 depends on the participation of relevant
persons, but not on any particular persons . Pr ,. and Pnj are both dependent on the ability of person n.

But the parameter separation which is unique to the Rasch model allows us to combine them in
Equation 4.10 so that Bn cancels out leaving the comparison (D; -Dj ) of items i and j completely
untroubled by person effects .

SEPARATING PERSON COMPARISONS FROM ITEMS

For any other person m and item i the log-odds is :

log[P.,/(1-Pm;)] =B, � -D, .

Now persons n and m can be compared by subtracting Equation 4.11 from Equation 4.8 :

(Bn-D,)-(Bm-Dc)=

4.11

(Brz-Bm)=log{lpn,(I-Pol/[Pm,(I-Pn,)1}

	

4.12

Equation 4.12 does not involve the item parameter D; at all - exactly what Thurstone called
for in 1926 .

The logarithm of Equation 4.7 is :

log,[P, /(1-Pn;)]=B.-D, . 4.8

in loQ-odds units or "loo -its."

The comparable log-odds for any other item j and the same person n is :

1o4P,; /(1-P ;)] =Bn -Dj . 4.9



The comparison of person n and person m in Equation 4.12 depends on the use of relevant
items, but not on any particular items. P,,; and P�~ ; are both dependent on the difficulty of item i. But
the parameter separation which is unique to the Rasch model allows us to combine them in Equation
4.12 so that D; cancels outleaving the comparison (B,, - B,n ) of persons n andm completely untroubled
by item effects .

The possibility of estimation equations for B,, which are free from the individual effects of

particular D; is referred to as "test-free person measurement ." The possibility of estimation equations

for D; which are free from individual effects of particular B� is referred to as "sample-free item
calibration" (Wright, 1968).

For explanations and examples of Rasch measurement applied see Wright & Stone (1979)
and Wright & Masters (1982) . For easy Rasch analysis on a PC, see Wright & Linacre (1991) .



S. TURNING SCORES INTO MEASURES

MEASURES ARE ALWAYS ANALYZED AS THOUGH THEY WERE INTERVAL

What every scientist andlayman means by a "measure" is anumber with which arithmetic can
be done, a number which can be added and subtracted and differences from which can be multiplied
and divided with results that maintain their numerical meaning. The original observations in any
science are never measures in this sense. They cannot be measures because a measure implies and
requires the previous construction andmaintenance of an abstract quantitative system which has been
shown in practice to be useful for measuring .

BUT ORIGINAL DATA IS ALWAYS ORDINAL

All data originate as ordinal, if not nominal, observations . All we can observe directly is the
presence or absence of a well-defined quality . All we can count directly are numbers of classified
occurrences .

All classifications are qualitative . Some classifications can be ordered and so become more
than nominal . Other classifications, like sex, are usually not ordered, although there may be
perspectives from which an ordering becomes useful such as more "male" or more "female." This
does not mean that nominal data cannot have explanatory power. It does mean that nominal data are
not measurement in the accepted sense of the word.

Quantitative science begins with identifying conditions and events, qualities, which, when
observed, are deemed worth counting . The resulting counts are sometimes called "raw scores" to
distinguish them from "weighted" or "scaled" scores . But usually they are just called "scores." As
such, they are no more than counts of particular concrete events that have been observed. They are
essential for the construction of measures . But they are not yet measures because they do not have
the numerical properties necessary to support arithmetic.'

Counting is the beginning of quantification . Measurement is constructed from well-defined
sets of counts . The most elementary level is to count the occurrence of a defined event. But more
information can be obtained if the conditions that identify countable events can be organized into
ordered categories which increase in status along an intended underlying variable . It then becomes
possible to count, not just the occurrence of an event, but the number of steps up the ordered set of
successive categories which is implied by the particular category observed .

When the three response categories of arating scale are labeled: "none," "plenty," "all," the
inarguable order of these labels enables their use as steps from less to more . The observation of a
"none" can be counted as 0 steps up this scale. The observation of a"plenty" can be counted as 1 step
up the scale.

Since "scores" are so often mistaken for "measures" and then misused statistically as though they were measures, we will take the
trouble to refer to "scores" as "counts" so that their empirical basis and consequent failure to be "measures" will remain explicit .
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up the scale and of an "all" as 2 . But this counting has nothing to do with any measures or numerical
weights whichmight be "assigned" to the categories . "Plenty" might have been labeled "20" or "40"
by the test author . But an "assertion" of such a numerical category label would not alter the fact that
on this rating scale "plenty" is only observable as 1 step up from "none."

Butcounting steps up aset of successive categories, up arating scale, says nothingas yet about
the distances between the ordered categories . Nor is it a requirement that all items on a test employ
the same category labels . It would make no difference to the step counting if, for some other item,
the categories were labeled, "none," "almost none" and "all." Even though the relative meanings and
impliedamounts correspondingto the alternative labels are obviously different, theirorder is the same
and so the observable step counts can only be the same. Whenever category labels share the same
ordering, no matter how the labels themselves may differ in implied amounts, progress through them
can only be observed as a series of single steps. Thepossible quantitative differences in the qualitative
labels can only be discovered later by modeling the differently labeled categories separately andthen
using relevant data to estimate their relative difficulties .

CONFUSING COUNTS WITH MEASURES

Counts of events areon aprimitive ratio scale. They have an origin at "none" andthe raw unit
of "one more of these kindsofthings ." Butthe events actually countedare unique ratherthan idealized
replicates, specific rather than general, concrete rather than abstract and thus varying rather than
uniform in thewaythey represent whatever latent variables they maybe intended to imply . Sometimes
the next "one more thing" implies a small increment as in the seemingly short step from "none" to
"almost none ." Sometimes the next "one more thing" implies abig increment as in the seemingly long
step from "none" to "plenty ." The relative sizes of these steps cannot be obtained directly, but must
be constructed from analyses of relevant data produced by observing how these steps are used in
practice .

Since all we can do in practice is to countonemore step, anyparticular raw count is insensitive
to the possibly differing implications of the steps counted. To get at reproducible empirical
magnitudes for the step sizes, we must construct an abstract measuring system based on relevant
parameterizations of coordinated sets of observed counts .

This construction requires ameasurementanalysis of the ordinal observations whichcomprise
the initial data in every science. Even counts of time-honored units like grams, centimeters and
seconds, so useful as measures in many contexts, may notfunction as measures in others (Thurstone,
1927). Counting the "milliseconds" it takes a student to react to a stimulus does not necessarily
provide a linear measure of "student responsiveness ." To construct a linear measure of "student
responsiveness" based on time elapsed we must countthe milliseconds taken by a relevant sample of
students of varying responsiveness to react to arange of relevant stimuli . Then we must analyze these
counting data to discover whether a linear measure of "student responsiveness" can be constructed
from them and, if so, what its relation to "milliseconds" may be. This relationship will probably be
monotonic. But it need not be linear .

FROM OBSERVATIONTO MEASUREMENT

Thorndike (1926) stressed the necessity of a step from counting to measuring in 1904.
Thurstone (1928) spent the 1920's developing partial solutions . Then in 1953 Rasch (1980) invented

32



a model which, upon investigation, has turned out to be necessary as well as sufficient for the
construction of measures in any science . Rasch realized that a measure must retain its abstract
quantitative status regardless of the qualitative context in which it occurs . This means an item is only
useful for measuring persons among whom it approximates a single fixed difficulty, and a person is
only useful for calibrating items among which the person approximates a single fixed ability .

Rasch also realized that the outcomes of interactions between persons and items could never
be fully pre-determined but must always involve an unpredictable element. This lead him to a
probabilistic form of Guttman's (1944) requirement that the more able the person, the more likely a
success on any item . Themore difficult the item, the less likely a success for any person . The unique
measurement model necessary for converting counts into measures follows by deduction from this
requirement.

CHOOSING AN ORIGIN

"Measurement" implies a count of "standard" (hence necessarily abstract) units from a
"standard" starting point. The most familiar picture of this is a distance between points on a line .
There is, however, no measurement requirement to find "the" point of minimum intensity or to
extrapolate a"zero mobility." It is only necessary to anchor the scale by choosing aconvenient starting
point or origin . Usually there are useful frames of reference for which particular choices are
particularly convenient.

The seemingly non-arbitrary origin of a ratio scale is theoretical rather than practical -
conceptual rather than empirical . Logarithms convert any ratio scale into an interval scale and
exponentiation converts any interval scale into aratio scale. The interval scale's origin becomes the
unit ofthe ratio scale andthe interval scale's minus infinity becomesthe ratio scale's origin . Themain
difference between the two is arithmetical preference . Do you prefer to calculate comparisons as
ratios or differences? Most of the usual statistical techniques are focused on differences rather than
ratios .

The practical convenience of measuring length from an arbitrary origin, like the end of a
yardstick, far outweighs the abstract benefit of measuring from some "absolute" origin, such as the
center of the earth or sun. Once an interval scale is constructed from relevant counts, we can always
answer ratio questions such as "Is the amount learned in first gradetwice the amount learned in second
grade?".

WHY RAW SCORES SEEM TO WORK AS MEASURES

In view of the fundamental quantitative differences between counts and measures, why do
statistical analyses ofraw score counts andLikert rating scale labels mistaken for measures sometimes
"seem to work?"

When data is complete and all data are used, then the relationship between concrete raw scores
and the abstract measures they may imply becomes monotonic. This makes covariation analyses of
raw scores and the measures they may imply appear similar.

Even for complete data, however, the relationship betweenraw scores andmeasures is ogival
because the finite interval betweentheminimumobservable score and themaximumobservable score
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must extend to an infinite interval of implied measures (See Figure 5 .1). Toward the center of this
ogive, however, the relationship between raw score andmeasure, for complete data, is approximately
linear . When statistical analysis of raw scores obtained from complete data is focused on this central
region, conclusions will be similar to those based on genuine measures.

Figure 5.1

The relationship between scores and measures .

Raw
Score

Maximum Count
Finite

The monotonic curve (function) transforming observable counts (raw scores) into implied measures is approxi-
mately linear near 50% but must curve at the extremes to bring the finite boundaries ofthe observable counts into
coincidence with the infinite extremes of the implied measures .

But the monotonicity between score and measure holds : only when data are complete, only
when every subject responds to every item, only when no responses are disqualified . This means no
missing data and no tailoring item difficulties to person abilities . Further, the approximate linearity
between central scores and their corresponding measures deteriorates increasingly as the scores
approach their observable extremes.

UNIDIMENSIONALITY

An occasional apprehension raised against the Raschmeasurementmodel is that it "requires"
unidimensionality . This objection is puzzling because "unidimensionality" is an intrinsic meaning
of the term "measurement." The necessity of Rasch's model as the only method for constructing
measures from observations is due to its deduction from the measurement requirement of unidimen-
sionality. It is the undimensionability of "measurement" which requires Rasch, not the other way
around.

In practice, unidimensionality is conceptual rather than factual, qualitative rather than
quantitative, an idea and intuition rather than an experience . No actual test can be perfectly
unidimensional . Indeed no empirical situation can completely satisfy the requirements for measure-
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ment which imply the Rasch model . But this essential "reality" is encountered and managed by every
science . Physicists' corrections for the unavoidable multidimensionality they must encounter are an
integral and essential part of their experimental technique .

If an educational test containing a mixture of arithmetic and reading items is used to make a
single admission or graduation decision, then the examination board, however inadvertently, has
decided to use the test as though it were unidimensional . This is quite beside any qualitative or
quantitative arguments which might claim or demonstrate multidimensionality . The board's practice
does not make arithmetic and reading identical or exchangeable anywhere but in their pass/fail
decisions . Their "unidimensional" behavior, however, does prove that they have decided to make
arithmetic and reading exchangeable in their decisions and hence unidimensional in their tests .

Unless each item is treated as a test in itself, every test score for which right answers are
counted is a compromise between the essential ideal of unidimensionality and the inescapable
qualitative "reality" uniqueness of the items used . These "multidimensionalities" are the unavoidable
exigencies of practice .

Before observations can be used to support quantitative research, they must be examined to
see how well they fit together and cooperate to define the intended underlying variable . Rasch
measurement provides theory and technique to accomplish this . But the extent to which any particular
set of observations can serve measurement is empirical . No total score can be accepted before
verifying that its meaning is enough in accord with the meanings of the individual scores of its item
components to lead to a measure useful for the purpose at hand. Assistance in doing this is provided
by fit statistics which report the degree to which any actual observations approximate the assumptions
necessary for constructing measurement, and hence quantify the numerical validity of the data .

The process of test evaluation can never be finished . Every time items are used to collect new
information from new persons to estimate new measures, we must verify again that the unidimension-
ality requirements of the measuring system have been well enough approximated by these new data
to maintain the intended quantitative utility ofthe measures produced . Whether aparticular set ofdata
can be used to initiate or to continue a measuring system is always empirical and must always be
verified .

This empirical question can be addressed by:

1) analyzing the relevant data according to a relevantly parameterized unidimensional
measurement model-a model implementing the essential requirements of measure-
ment-a Rasch model .

2) discovering how well and in what parts these data conform to the intention to measure and,

3) examining carefully those parts of the data which do not conform and hence cannot be used
for measuring to learn from them how to improve our observations, how to obtain better
data, and so, how to better achieve our intention to measure .

Only after interval (linear) measures have been successfully constructed, does it become
reasonable to proceed with statistical analysis in order to determine the predictive validity of measures
or to compare measures produced by different tests to see if they are measures of the same thing, like
inches and centimeters, or different things, like inches and ounces .



The definition of measurementfound in textbooks is "the assignment of numbers to objects ."
Having settled that, authors retreat to other matters . Instead, we will investigate this pregnant
proposition.

FOCUSINGINTENTION

To make ameasure it is necessary to focus attention on a single matter of interest. If we want to
measure audience attendance, we focus upon "persons in the auditorium ." We do not focus on other
matters which might be important in other contexts . Focusing requires avoiding distraction . Other
matters, important as they maybe, are nevertheless, determined to be unimportant at this time . To count
attendance is to give no attention to anything else . We act as if nothing else existed.

Measurementrequires a singular intent which, once selected, immediately requires awithdrawal
of attention from all other matters. Naturally, the choice of this singular attention is critical . In our
simple example it is easy to determine our focus of attention. In the pursuit of science, however, it is
seldom simple to determine what we should attend to . But "what to attend" is the decision that must be
made in order not to be overwhelmed by voluminous, unsorted perceptions .

COUNTINGANDMEASURING

6. HOW VARIABLESARE CONSTRUCTED

To make measurement beyond counting the persons in the auditorium, we need a model . Mea-
surement is reached by way of analogy. Some analog is required to enable ourtask . We measuretime by
moving clock hands. We measure length by concatenating unit lengths into rulers . All measurement
utilizes analogy. The natural numbers (positive integers) are always the starting point for the model we
apply to our problem. We assign each "person" a number as we note their presence one-by-one . We
"count" by reciting the arithmetic counting model as we focus upon each next person . Having observed
the last person, we note the numeral associated with that last individual and designate the count of
attendees by that numeral . If someone else enters the auditorium, we count one more and use that next
successive numeral to signify the newtotal . Thepersons in the auditorium are the objects manifest in our
experience . The numerals taken from the natural number system are the unit values from themodel we
applied to accomplish the counting .

Counting is so familiar that we take for granted how it is done. Counting objects is so universal
that it is frequently assumed that the "count" is automatically a "measure." This assumption is so
common that it usually goes unquestioned . But counts are not necessarily measures . Measurement
depends upon whether the mathematical model on which it must be based can provide the desired
outcome. We saw that the natural numbers served to count. But are they necessarily measures?

Using the natural numbers in ourexample brings with it the observation that distances between
adjacent natural numbers are taken to be equivalent, and whole, not fractionated . The number "space"
between any two adjacent numbers 2 and 3, 19 and 20 or 164 and 165 is equal in our counting to a same
one more person ."
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When measuring length with a ruler, we also use the equal steps of the real numbers as our
model . But fractional parts are permitted . Any unit or fractional part of a unit along the real number line
is equal in magnitude to any other like unit or fractional part anywhere along the line .

The natural numbers used in counting are logically consistent . But does the application of these
numbers to every experience automatically endow the objects ofthat experience with similar numerical
properties? This question often goes unanswered because it is unrecognized . Since numbers are logi
cally coherent, the objects to which they are applied are often assumed to possess similar logical coher-
ent numerical characteristics . But this association can not be assumed. It must be constructed, demon-
strated andmaintained. Unfortunately, this demonstration is rarely done andobjects are usually naively
assumed to possess the same numerical characteristics as those ofthe number system that is used to count
them.

Sincemeasurement is made by analogy, the model chosen for measurementcannot itself substan-
tiate the numerical qualities assigned to the objects. We have to demonstrate that the relationship of the
objects to the modelis consistent with ouruse andunderstanding of the numerical result and demonstrate
this connection by meansof the analogy.

While counting is the model for measurement it is seldom measurement itself. We begin by
assigning numerals to objects. But we must proceed in a manner which is systematic and reproducible
and which allows us to validate continually the correspondence betweenthe objects addressed and their
counts and betweenthe counts obtained andthe measures they may imply.

The count of attendees can be represented directly on the number line .

The number line gives us amodel whichappears to solve our attendance problem. The model of
the number line (our variable of interest) specifies an equal unit distance between the numerals . The
successive count of persons parallels movement along the line by equal counts . An additional person
adds another equal count to the line . The number line made from our counts is associated with the
"length" registered on a "number of persons" variable .

1 .

	

Successful measurementrequires focus upon an attribute of intent to the exclusion of all other
(often equally interesting, but not at this moment relevant) attributes . We cannot progress
until we have made such a choice . The choice is both intent to attend and also intent to
disregard.

2. Acoherent measurement analog is necessary to accomplish the measurement task . The one
we used in ourexample was the natural number model of arithmetic progression . Applica-
tion of this model to ourproblem gave us auseful answer. We needed an analog to solveour
measurement problem: establishing a one-to-one correspondence between counting indi-
viduals, seated in the auditorium and numerals on a number line . The idea of anumber line
gives us apicture of the variable of intent in awaythat facilitates understanding, application
andinterpretation .

38



3 .

	

Determining the count of people in the auditorium answered our question, "How many are
here?" Was it a measure? Yes, but only when demonstrated by analogy to be associated in a
meaningful way to ournumber line - the variable . Use of the number line as the model leads
this time to using the count to measure the "amount" of persons expressed in a linear form .
Consequently, the variable of attendance can be visualized as a line with our total attendance
indicated by a position or "amount" on the line . Carrying around such "lines" of amount is
quite unnecessary to say nothing of inconvenient . We revert back to counts to express this
length in a more compact form . Butour understanding of the variable form is the line . The
natural number line is the full expression ofthe measure of persons, not the count. We usethe
count as shorthand for the measure.

Our use of the number line and its associated unit characteristics provides, by analogy, a
clear correspondence between the count and measure. This relationship can be seen as :

COUNT

6

5

4

3

2

1 2 3 4 5 6
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Validity of this approach can be demonstrated by replication. The individuals counted can
be seen as alternate equal instances of asingle individual - the experiential unit of interest .
We make our count andmeasureby enumeration. The measurementprocess is unaffected by
wherethe count begins i.e . from the back, front or side of the auditorium . Precision depends
only on accuracy in counting and not on any other aspect of the process. The count and the
resulting measure are unaffected by the other matters of gender, race, height, weight .
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where a straight line at 45 degrees with slope of "one" associates counts to measures. But
even though the observed counts end up as the same as the measures in this example, the
counts are not in themselves measures even in this case . They became so here through their
analogy with thenumber line .



We now proceed to more sophisticated problems, keeping in mind the steps encountered in our
simple example . Although ourexample was simple, the tasks were sophisticated. We count with such
ease and so routinely that we are no longer aware of the steps we take norof the confusion that can result
between determining how to make counts andhow to make measures . The most difficult task to recog-
nize is how to determine measures from counts . This is because counts are what we always begin with
to determine amounts. Counts can be associated with measures only by establishing a useful relation-
ship . We need to generalize this by deliberating upon the measurement process, specifically upon
constructing a variable .

CONSTRUCTING AVARIABLE

A "variable" is a line with direction - an arrow. The direction implies "more" of the variable .
An "amount" is a distance along the line . More is "more" distance along the line . Length is the example
that comes most easily to mind andeye. More inches, feet, yards, is easily visualized as more distance
alongthe ruler being applied to the object . Interpretation of such a variable is straightforward and easily
demonstrated visually. This keeps the process forthright and observable . There is no mystery, no
algebra. Calculations may be complex but the outcome can be seen . The line conceptualizing the
variable makes the measurement task visible.

The "variable" must establish andmaintain a single line of inquiry. That line of inquiry has to be
operationally determined andreproducible at will . To be useful its determination must also be insightful
and rich . Conceptualization as a one unidimensional line is necessary, if our thinking is to progress
usefully. When this is not done, confusion and frustration result . Then there is no simple way to
determine what the variable should be.

Our intent specifies what we will address and not address. Our choice not to address matters is
selective and notunalterable. We can change ourmind . What we cannot do is to pursue two things at
once and remain clear about what we are accomplishing.

A measure of "attendance" need not be ameasure of speaker "attraction ." It may be an interesting
problem to discover whether attendance is ameasure of "agreement" with the speaker. But attendance
itself, does not directly answer that question . We confuse ourselves when we pose unclear questions.
The task is to separate these different issues : attendance, attraction, agreement into clear dimensions
and to do the best we can to measure each of them, not confuse our thinking by allowing simultaneous
consideration of contrasting matters.

UNIID1IVIENSIONALITY

Human behavior is clearly complicated and so might be thought of as multidimensional . But its
scientific investigation andunderstanding cannot begin multidimensionally . The investigation must be
systematically built up in successive stages . Each measurement stage requires that a single unidimen
sional variable be established. When several dimensions have been successfully developed, the study
of their association by statistical analysis such as multiple regression, may bring out relationships.
When unclear, inadequately identified "dimensions" are subjected to statistical analysis before estab-
lishing their measures, however, then interpretation is obscure.



The variable is an idea, an intention, something we want to realize, a construction made from
collecting andselecting observations . While humanexperience is complex, when making measures we
decide to isolate one major ingredient and not to become overwhelmed by the endless and enumerable
possibilities that are impractical to examine simultaneously . Successful measurement, like good sci-
ence, is always practical. The well-defined measures are the useful ones. Indeed, they often become so
useful that their origins are forgotten and, because of their familiar utility, we take them for granted.

If we did not have the natural number model for counting, we could not enumerate and so mea-
sure the audience. We could only get lost in the problem of how to enumerate. A well formulated
variable will demonstrate its utility time andagain and its recurrent utility will be the demonstration of
its validity .

Variables are constructed out of similarities noticed, the "replications" we infer in experience .
Although nothing actually recurs exactly, we take it that a "thing" ofourdefining does reappear again and
again although in different guises . It is our discernment of what to specify and what to ignore that
distinguishes a useful variable from auseless one.

DIALOGUE OFINVENTIONANDDISCOVERY

Variable construction is a dialogue between invention and discovery. We observe out of experi-
ence . We abstract an aspect to capture an essence and invent a dimension for this essence, wording it
carefully to avoid becoming overwhelmed by the multiplicity of the provokingexperience . We construct
this singular idealization knowing that it is only a model representation and not a real thing. Good
variable construction is amix of discerning observation, creative intention andcareful disregard .

The idea of hot/cold is useful in enumerable applications . We measure temperature by analogy
using lengths of liquids in uniform tubes.

We experience wind directly. We make a vane to "experience" wind for us and to show its
direction . We attach cups to rotor arms to capture air, connect the rotating arms to a dial and make, by
analogy, a measure of wind velocity along the arc of the dial .

We can combine temperature andwind speedwith the heat loss of evaporation to produce anew
dimension - windchill . This construction we find is immediately experienced. Low temperature days
without wind are experienced as warmer than windy days recording a higher temperature.

Useful variable definition is clear thinking . But it also requires intuitive leaps. We must go
beyond previous experience to capture the possibility of new experiences of which we have awareness,
but cannot "see" with clarity. Variable definition combines intuition and reason into a constructive
fiction that embodies an essence of experience liberated from the infinite complexity of total experience .

BUILDINGAVARIABLE

Imagine a person and a collection of sticks of varying lengths . Our problem is to measure the
height of the person from the lengths of the sticks . The logical wayto proceed is to stand each stick next
to the person and keep track of which sticks exceed the person's "height" and which do not. We aim to
"capture" the person in the midst of the available sticks . Should no stick exceed the person's height (or
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all exceed his height), we will need more sticks longer (or shorter) and, cannot capture this person
among the available sticks .

When we have sticks above and below the person, we can locate the person between two of the
sticks . When sticks themselves are compared oneto another just as we compared them to the person and
we arrange the sticks in their order of length we can locate the person between a particular pair of
adjacent sticks . One stick ofthe pair is shorter than the person (as are all the successively shorter sticks)
andone stick is taller than the person (as are all the successively taller sticks). We have positioned the
person among the available sticks and ordered the sticks with, in this case, ourperson exceeding four
shorter sticks but exceeded by five longer ones . The length of this person can be abstracted as some-
where between sticks A and B . That is, the "measure" of this person's "height" is defined by these two
sticks .
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We have constructed a variable of sticks by arranging them according to length and then applying
the sticks to the measurement of a person . Given more persons we can compare them to one another or
more easily to each of the sticks and so arrange all the persons among the sticks, above those sticks they
exceed and below those sticks they fail to reach.

To simplify the machinery and keep the arrangement of sticks and persons orderly, we can dis-
pense with actually placing all persons next to all sticks and instead designate each stick by an ordinal
number and locate each person halfway between the numbers of the pair of sticks that bracket that
person .

By keeping a record of the persons who exceed (or fail to exceed) each stick number we can
produce a picture of the relation between persons and sticks . This strategy of "sticks exceeded" is the
basis for our variable "height." Each person "tested" is compared to each stick with atabulation made
for each stick according to the number of persons exceeding it . In this manner we "calibrate" our sticks
and use them to measure persons according to the criteria of which sticks aperson exceeds.

The development of any variable proceeds from the strategy illustrated in this example. No
matter what the intent of our variable, the procedure for calibrating the agents (sticks) andmeasuring the
objects (persons) always begins this way.



SHORTEST

GUTTMAN AND RASCH RESPONSE PATTERNS

The above matrix of 1's and 0's when it contains no 0's in the pattern of 1's nor any 1's in the
pattern of 0's is a "Guttman Scale." Such a pattern is what Guttman called the necessity for a score to
have meaning . The pattern is of perfect order. The difficulty is in constructing real tests such that a
perfect order is achieved . Rather than seeking a perfect "deterministic" pattern in the data and failing to
construct it, Rasch measurement expects an imperfect "stochastic" order and proceeds to evaluate it in
terms of perfectly ordered probabilities . In Rasch's model it is the probabilities that form the perfect
Guttman pattern and not the responses .

Thus when persons n =1, N are ordered by the magnitudes of their measures Bn and items
i = l, L are ordered by the magnitudes of their calibrations D;, the conjoint order of the Rasch probabili-
ties that person Pni will succeed against item i.

forms a perfect Guttman pattern .

P11, exp(Bn - D; )
l+exp(B, n -D;)
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TALLEST
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SCORES ANDMEASURES

Why is it that scores are counts, but not necessarily measures?

When counts are accumulatedthey aremade up of concrete, tangible objects . The objects counted
are interpreted to be exchangeable, as though they were identical for the purpose of counting . But in
their concreteness they are manifestly not identical nor in any exact way exchangeable . Indeed, upon
close examination the objects counted can always be seen to be different, unique .

Counting is a daring fiction. Counting is also a necessary fiction. It is the essential fiction of
"againness," of deciding to pretendwe are encountering a "same thing" again andagain, even though we
know that no two encounters are ever the same. It is the fiction of "recognition," of being able to
interpret a future in terms of past experience . Without the fiction of "againness," "time" is meaningless,
indeed thought is impossible . Since counts build on fiction, the choice and nature of the fiction is a
critical step on the way to the counts becoming useful . The invention and governance of what to count is
the Observation Model.

Once we acknowledge that any concrete objects counted have been fictitious in their counting,
we can see that their actual concrete differences are clumsy andthus think it better to countperfect ideas
rather than imperfect objects, that is to count ideally equal, exchangeable units, since we are making it up
in any case . Counting "exchangeable things" is scoring. Counting "ideal units" is measuring.

DIFFERENCESANDRATIOS

If real counts are on the way to ideal measures, how do we go the rest of the way? For that we
must ask what kind of comparisons we intend to construct and why. The comparisons suited to visual
analysis are distances, differences, linear comparisons. This suggests that any comparison we wish to
visualize for comprehension must be made in terms of differences andnot, for example, ratios . Plots of
ratios confuse our visual ability to analyze distances, and so deny access to those pictures worth a
thousand numbers.

When considering counts, however, we realize that the comparisons whichhave meaning depend
on the size of the counts . When we are concerned with small differences between large counts we
find ourselves interested in balancing their differences . We equate these large counts by small
additions and subtractions to reach equity, to enable fair trade, to do business . Then we are interested
in differences of counts .

But when we encounter large differences between counts, it is not differences which emerge as
the usefully invariant comparisons. Now it is the ratio of the counts that matters. What does it take to
double our yield, triple ourgain? Comparisons of wide ranging counts, like income, are more useful as
ratios than as differences.

Thenext step, then, is to turn ratios of counts into differences of measures . This is where "logs"
andtheir inverse "exponents" enter and why loglog (and semilog) plots became (and still are) important
in the visual analysis of numbers.



Counts are concrete, history. But ouruse of counts is seldom to reconstruct the past . We are most
interested in counts to make inferences about the future . Analysis of data is seldom just for historical
description. It is usually for prediction . To predict we must accept scores as crude indicators of what
might become and so manage them accordingly, in terms of what they probably mean .

The utility of counting brings to our attention the convenienceofequal units. Why not construct
measures of magnitudein equal units? To do so accepts the sampling status ofthe counts and brings us to
the next step of finding an estimate from the sample of what the counts might usefully imply.

Since we are estimating an abstract idea of amagnitude from acount of concrete experiences, we
encounter aneed for aconcomitant second estimate, this time of the expected uncertainty or error of the
estimated magnitude, of the improbability of our inferences . This brings up "standard errors ."

We also must figure out an answer to the question as to whether the collection of experiences or
observations which have been counted on to imply estimates of magnitude and error are in their own
details consistent with the two estimates they have led to? This brings up athird statistic, "fit ."

When we usethe estimates ofmagnitude to go back and predict the counts from whichthey arose,
to calculate what observations would be expected were they entirely caused by the magnitudes we have
estimated, we can discover for each observation how well it fits into the measures for which we intend
to use these data.

The study of "fit", particularly the identification of outstanding misfit, is our chief source of new
information about the world of possible experience, ourchief opportunity for discovery. The observa-
tion model by which we define what to count and the measurement model by which we construct esti
mates of ideal magnitudes from the crude concrete counting are the inventions of measurement. The
misfits that then appear are the discoveries of measuring.

The growth ofscience, indeed of mind, arises out of an evolving dialogue between invention and
discovery - between the reassurance that we know what we are doingbecause our inventions work and
the provocation that we must not know everything about what we are looking for because we are sur
prised by what we find . Constructing variables engenders an interaction of experience and idea, a
dialogue between invention and discovery, that is the life force of science andmind.



TheRasch model specifies the relation that must dominate what happens when aperson takes
an item for the resulting responses to be useful for measurement. Acomplete analysis must include an
evaluation of how well the data fit this essential specification. If aperson answers the hard items on
a test correctly but misses several easy items, we are surprised by the resulting implausible pattern of
incorrect responses. While we could examine individual records item-by-item to determine this kind
of invalidity, in practice we want to put such evaluations on a systematic and manageable basis . We
want to be specific but also objective in our reaction to implausible and hence invalid observations .

Even when a particular application tends to fit the measurement model, we cannot predict in
advance how well new items or old ones will continue to work in every new situation to which they
mightbe applied. We cannot know in advance how all persons will always respond. Therefore, if we
are serious in ourintention to measure, we must examine every application to see how well each new
set ofresponses corresponds to ourmeasurement intentions . We must evaluate notonly the plausibility
of the sample of persons' responses, but also the plausibility of each persons' responses to their set of
items. To do this we must examine the response of each person to each item to determine whether that
response is consistent with the general pattern of responses observed .

We begin fit analysis by examiningthe data resulting from the administration of a testofLitems
to a sample ofN persons producing an N x L matrix of responses with every row consisting of the
responses ofeachperson nto theLitemsandeverycolumn consisting ofthe responses of the Npersons
to each item i. When the responses are dichotomous, the resulting matrix will consist ofcorrect (X,,;=1)

and incorrect (Xni = 0) responses.

7. FITANALYSIS

The construction of useful measures and calibrations does not require that these data be
complete . Theparticular items addressed by each person canvary as long as there is a sufficient network
ofoverlaps to connect the entire matrix . Forsimplicity here, however, we will carry out the explanation
as though data were complete.

From theNxL data matrix of X,,, = 0 or 1 we count the item scores S; andperson scores R� used
to estimate the abilities of persons B,, andthe difficulties of items D; . Procedures for this are explained
in Best Test Design (Wright and Stone, 1979, pp. 28-65) .

This chapter explains the analysis of fit (Wright and Stone, 1979, pp. 66-82 and 165-181) .

RESIDUALFROMEXPECTATION

To evaluate fit we comparethe observed person and item responses X� ; to the expected values
P� ; that are determined forthem by the measurement model. The expected value of the dichotomous
observation X� ; is P,,; =exp(B,, - D;) / [1 +exp(B� -D;)] .



Aconsequence of the Rasch model is that the person right answer count, a total score for an
individual, contains all ofthe information needed to measure that person andthe item right answer count,
atotal score for an item, contains all the information needed to estimate the difficulty of that item . That
is to say, that right answer counts are sufficient statistics for estimating person measures and item
calibrations .

RASCH MODEL EXPECTATIONS

The Rasch model is derivedfrom the requirement that person measures and item calibrations
be separately estimable. This requires that (1) a more able person always have a greater probability
of success on any item than a less able person, and (2) any person always be more likely to do better
on an easier item than on aharder one. Fit analysis evaluates the extent to which particular data serve
this fundamental requirementformeasurement. Fit analysis showsus the extent to which any data can
be used to construct measures . Each data analysis must include an evaluation of how well those
particular data fit the expectations which measurement requires .

When an observed pattern of responses shows significant deviation from measurement
expectations, we can use the particulars of the measurement model together with the person and item
estimates to calculate a statistical index of unexpectedness for any particular response or any subset
ofresponses including all ofthe responses to aparticular item or all ofthe responses madeby aparticular
person.

DETERMINING FIT

The procedure for analysis of fit involves the three steps:

n

1 . Responses

	

2. Model

	

3 . Residuals
i

	

i

	

i

n n Yni = Xni -Pn'

What we observe

	

What we expect

	

The difference
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ESTIMATION

N

Di

Item
Score

Item
Calibration

Person Person
Score Measure

EXPECTATIONS

L
Rn is the sum

	

of the person responsesXni over item i =1, L .

Bn is the person measure estimated from Rn .

N

Si is the sumI of the item responses Xni over persons n =1, N .
n

Di is the item difficulty estimated from Si .

To observe response plausibility, validity or fit we calculate the difference (Bn -D) between
the estimates ofperson ability Bn anditem difficulty Di foreach person n anditem i . When this difference
is positive it means that the item should be easy for the person . The more positive this difference, the
easier the item is expected to be and hence the greater ourexpectation that the person will succeed on
that item and Xni =1 .

When the difference is negative, however, the item should be difficult for the person . The more
negative the difference (Bn - Di ) becomes, the more difficult the item shouldbe forthe person andhence
the greater our expectation that the person will fail on that item and Xni = 0 .



21
PREDICTION

P,u = exp(B� -D;) / [1 +exp(Bn -D;)] and Bn and

D, are the person measure anditem calibration for
person n and item i.

Person
Measure

Chi-square and mean square goodness-of-fit statistics can be constructed from the residual
difference Y,u = X,,; - P,,, betweenthe observed X,,i and its expectation Pni . This residual quantifies the fit
between each person n and each item i.

The model estimates the expected value or probability of dichotomous response X,,, =1 as :

RESIDUALS

Q 1/2

	

[P

Pni exp(B� -D;) / [l +exp(B� -D;)]

where

	

Bn = the estimated ability measure of person n

D; = the estimated difficulty calibration of item i

and

	

Pn; = the probability that Xnr =1 .

The probability Pn ; is an estimate ofthe expected value of instances of the response X,,, = 0, 1 .

The expected binomial variance of these instances of Xnz around Pnr is estimated by Qni = Pni(1- Pn;) .

Theseexpectations Pn ; and variances Qn ; canbe combined to form a standardized residual Znr for each

-P.)lLP(1-p)]=(k -P)l Qev2 .

We estimate this standardized residual Z,,, by subtracting from the observed X,,, its estimated
expected value Pn ; and dividing the difference by its expected standard deviation
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This standardized residual Z, has a logistic distribution with an expected mean of 0 and a
variance of 1 . The reference values of 0 and 1 help us to evaluate the extent to which the standardized
residuals deviate from their model expectations .

Examination of residuals shows us whether we can proceed to use the items to make valid
measures or whether further work on the items are required in order to bring the testing elements into
line with the intended plan . Examination ofperson residuals indicates the extent to whichpersonshave
responded to the test in the expected manner. Since Xnr takes only the two values of "0" and "1", the
twovalues for the standardized residuals can be expressed in terms ofthe estimates Bn andD; andthe
observed response X,,; .

Thus, Z2 = [exp(B,n -D;)] can be used to indicate the unexpectedness of an incorrect response
Xn, 0 to a relatively easy item, while Z,2 = [exp(D; -Bn )] canbe used to indicate the unexpectedness
of a correct response X,,; =1 to a relatively hard item. These two expressions can be combined into
one as Z,2 = exp[(2Xn; -1)(D; -Bn )] .

Thevalues of this ZR canbe ascertained for each Xnr of0or 1 and then accumulated over items
to evaluate the plausibility of any person measure, or over persons to evaluate the plausibility of any
item calibration.

To evaluate any unexpected response X,,; we quantify its unexpectedness from the difference
between the ability measureof that person Bn andthedifficulty calibration for that itemD; . Forexample,
an unexpected incorrect response of Xnr = 0 associated with a person ability B� = -1.2 and an item
difficulty of D; = -3.9 produces a difference (Bn - D;) of [(-1.2)-(-3.9)] = +2.7 and a squared
standard residual of Zn = exp(2.7) =14.9 .

We associate unexpected incorrect answers X,,; = 0 with (Bn - D;) and unexpected correct
answers X,,; =1 with (D; - Bn) because when the response is incorrect, and Xnc = 0, then the index of
unexpectedness is Z'2 = exp(Bn - D), but when the response is correct, Xnt =1, then the index is
Zn =exp(D;-B� ) .

Unexpectedness is always marked by apositive difference, either (Bn - D;) or (D; - Bn ) . The
values for Zn can be looked up in Table 7.1 which gives either values of Zn = exp(B� -Dj ) for
unexpected incorrect answers Xn; = 0 or values of Zn = exp(D; - Bn) for unexpected correct answers

Xni = 1 .
Thus,the entry Cx in Column 1 ofTable7 .1 is either Co = (Bn -D;) when Xnc = 0 andthe response

is incorrect or C = (D; - B,) when X,,, =1 and the response is correct.

Column 3 of Table 7 .1 gives the improbability of the observed response P,,, =1 / (1 + Zn) .
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Table 7.1

Evaluating Unexpectedness

52

1 .
Difference Between
Person Ability and
ItemDifficulty

Cx

2 .
Squared

Standardized
Residual

Z2 =exp CX

3.
Improbability

of the
Response

p=1/(l+Z2)

-0.6,0.4 1 .50
0.5, 0.9 2 .33
1 .0, 1 .2 3 .25
1 .3, 1 .5 4 .20
1 .6, 1 .7 5 .17
1 .8, 1 .8 6 .14
1 .9, 2.0 7 .12

2.1 8 .11
2.2 9 .10
2.3 10 .09
2.4 11 .08
2.5 12 .08
2.6 13 .07
2.7 15 .06
2.8 16 .06
2.9 18 .05
3 .0 20 .05

3 .1 22 .04
3 .2 25 .04
3 .3 27 .04
3 .4 30 .03
3 .5 33 .03
3 .6 37 .03
3 .7 40 .02
3 .8 45 .02
3 .9 49 .02
4.0 55 .02

4.1 60 .02
4.2 67 .02
4.3 74 .01
4.4 81 .01
4.5 90 .01
4.6 99 .01



This improbability Pni provides a significance level for the null hypothesis of fit for any
particularresponse . With ourexample of (Bn - Di ) = 2.7 we have asignificance level of Pni =.06 against
the null hypothesis that the response of the person to this item is consistent with the model.

When the Zn are accumulated over items for a person or over persons for an item, simulations
have shown that the resulting sums can be usefully evaluated by chi-square distributions with L - 1
degrees of freedom for a person and N - 1 degrees of freedom for an item.

These fit statistics are called"outfits" because they areheavily influenced by outlying, off-target,
unexpected responses. Auseful alternative is to weighresiduals by the informationthey contain so that
the fit statistics are information weighted or "infits" andhencefocuson inlying, on-target, unexpected
responses. The calculations for each type of fit statistic are outlined in the summary section .

SUMMARY

The following formulas summarize the calculations for the analysis of dichotomous fit.

Observed Response :

	

Xni = 0, 1

Expected Response :

	

Pni = exp(bn - di) / [l + exp(b,, - di )]

Response Variance :

	

Qni = Pni (1- Pni )

Score Residual :

	

Yni = Xni - Pni

Standardized Residual :

	

Zni = Yni / Qn ;z

Fit Mean Square:

L

Outfit :

	

Un =

	

Zn, / L
i

Infit:

Fit Standard Errors :

Outfit :

N
U=IZ,2,/N

n

L L

vn
-_ Ll i /

	

al
N N

Vi =1Yn, / lQni
n

	

n

SE,, =[Y-(1/Q-4)]uz
/Y,1

53



Infit:

	

SE, = (Y_ Q - 4y_Qz
)vz

/ Y_ Q

Fit Standardization :

	

T =
(Uv3

-1)(3 / SE,,)+ (SE,, / 3)

Logit Bias :

Standard Error:

Mean Score Residual in G:

Infit Noise in G:

Standard Error:

G

whereI means summed over n and i in G.

T= (V1'3-1)(3/SE,,)+(SE,/3)

Fit analysis can also be done for subsets of person-item responses taken from the total matrix of
responses. In this manner we can evaluate the responses of any person or subset of persons to any item
or subset of items or evaluate any item or subset of items by any person or subset of persons:

For the analysis of any subset (G) of the data matrix of Xni use the following formulas:

G G
GYni l~Qni

SEG =( G Qni)-liz -1 / (I Qni

)v2

G G
YG = I Yni / Y, 1

2
VG - I(Yni -YG) /IQni

G

	

G 1/2 G

SEVG =(I Qni -41 Qn)

	

/ Y, Qni

The analysis offit evaluates how well ourdata cooperate with the construction ofmeasurement.
Analysis of fit gives us a tool to monitor the responses of persons anditems . We can evaluate any set
of items or persons to determine wheremisfit occurs . Fit analysis provides the quality control technique
required to supervise and validate test items andperson responses . When fit is within our guidelines,
we have the control required to feel confident about item calibration and person measurement. When
misfit is discovered we canlocate its occasions andbegin further study of the items orpersons involved.
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The analysis of fit is never completed because continued use ofthe instrument requires that we
constantly monitor item and person responses to maintain quality control .



8. IDENTIFYING ITEM BIAS

The past twenty years has witnessed increasing concern about test bias . This has produced a
substantial amount of literature . A few of these articles actually deal with the critical issues in test
bias, but most of what has been published is ill-suited to actual practice .

Psychometricians have tried to deal with the technical issues of test bias from many
perspectives . This chapter looks at item bias from the point of view of Raschmeasurement and shows
how item bias can be detected and dealt with in test practice . The techniques we describe are
straightforward and easy to apply. They work with most measurement applications . Were these
techniques to be routinely used, whatever item bias actually existed would be clearly identified and
could be easily monitored and controlled .

There has been a fundamental error in thinking about bias which has lead to confusion over
what bias is and, hence, howto detect it . This error occurs whenever the detection of any "difference"
at all in test scores is immediately assumed to signify bias . Theerror typically occurs when contrasting
samples are compared and found to be different in their measures . Examples of this confusion are
differences in mean test scores between demographic types like males and females or blacks and
whites . When such a difference is identified, the accusation is made that "bias has been found to
exist."

	

But"differences" of this kind do not signify bias .

The fallacy in such accusations can be illustrated by simple examples which show that
"differences" in measures are not proof of measurement bias . Suppose we weigh two groups :
professional football linemen and professional jockeys . When we compare themean weight of these
two groups a great difference in pounds will be found and indeed is expected . Would we then infer
that this observed difference in weight indicates that the scale used for weighing these equally
professional athletes was biased against jockeys? Similarly, if we compared the height, weight or
general skills of 18 year olds with those of 8year olds,wouldany differences found in favor of 18 year
olds be taken to indicate bias in the measuring instruments? Ifthe averageheight of 8 year olds is less
than that of 18 year olds, is the ruler biased? Of all the numerous practical illustrations of this type
that we could cite, none would cause us to conclude that the observed differences were indicative of
biased measuringtools . Hencewe must realize that differences in measures do notnecessarily signify
bias . We must look further into the question of bias for its necessary indicators .

The phenomena that is actually indicative of bias is significant and persistent interaction
between some but not all persons and some but not all items. When ameasuring process encounters
unexpected differential effects within the replications necessary to estimate ameasure, this unmodeled
interaction is an indication of possible bias . Differential interaction between some items and some
persons produces results which cannot be predicted within the intended frame of reference . Interac-
tion confounds the intended interpretation of test scores . Interaction confuses interpretation because
we can no longer base our measures upon the replications of the variable implied by the measuring
instrument, butmust, instead, take into accountasecond, poorly defined variable whichdifferentially
affects the manifest relations between some persons and some items .



Sometimes these interactions are substantial enough to spoil the resulting test scores and
sometimes they are not. Suppose we give a sixth grade student an easy arithmetic word problem to
read and solve. If he fails to give acorrect answer, is it due to areading problem, or to difficulty with
arithmetic or to both or to something else? To identify an answer as incorrect without reviewing the
probability of it's being incorrect and, when the answer is improbable, diagnosing the reasons for this
unexpected incorrect answer, is incomplete . No count of right or wrong answers can, in itself, yield
information about the reason for an improbable error. An improbable error (or success) implies the
possibility of an interaction between person and item with respect to some secondary variable also
active in the testing situation . When such confusion occurs, how can we detect it? What can we do
about it? Here is how to proceed.

We want to find out if any items in a particular test are biased, say, against girls (or boys) . Here
are the steps to follow :

1 . Examine the items carefully for sex-linked content and then classify them according to
"theory" as a) those expected to favor boys, b) those expected to favor girls and c) those
expected to be neutral . This is an important first step . If we really have no idea what we are
looking for, we will surely have difficulty finding it . Worse, we will be seduced into mistaking
accidental and transient irrelevancies for enduring effects .

2 . A sample of girls and a sample of boys must take the test, if they have not already done so.

3 . A separate calibration of the test in question is done for each sample - one for boys, another
for girls . (Test calibration is explained and demonstrated step-by step in Wright and Stone,
1979, pages 28-62.)

4. The calibrated item difficulties from the separate analysis of each sample (a boy item
calibration and a girl item calibration for each item) are centered and plotted against
each other.

5 . An identity line is drawn through the origin of this plot with slope one.

6. Statistical control lines are constructed around this identity line to guide interpretation andthe
plot is examined to see whether any items fall outside the control lines and hence are
statistically identified as possibly biased . (See Wright and Stone, 1979, pp. 94-95 and Wright
and Masters, 1982, pp . 115-117.)

We will illustrate these steps by examples designed to give the reader visual experience with
the configurations that usually occur.

Figure 8 .1 is a plot of two such item calibrations . The items expected to favor boys are
indicated by triangles . The items expected to favor girls are indicated by circles . In Figure 1, the item
plots center around the identity line . The items expected to be biased are not separated from each
other. All items are within the 95%control lines. There is no indication of item bias in this plot which
brings together the separate item calibrations for boys and girls. We must conclude that these data
provide no reasons to suspect item bias with respect to sex.



Figure 8 .2 is a different plot of item difficulties for boys and girls . In Figure 2 we can see two
distinct item streams . One large item stream containing items favoring boys and also girls runs
slightly above the (dotted) identity line . A second smaller stream of items favoring girls runs well
below the dotted identity line .

To clarify what has occurred we draw a second (solid) identity line (also with slope one)
through the middle of the larger stream of mixed items . Now we add control lines at two standard
errors out around the solid identity line . This helps us to see the statistical separation of the two item
streams . A difference is clearly indicated . There is an interaction between item content and sex which
makes scores on the original mixture of items ambiguous. However, the majority ofitems in the larger
stream might be used to provide unbiased measures on a "new" variable defined now by the particular
items in the larger stream .

In Figure 8.3 we have another situation . Now we have three streams of items . One stream of
items is above the identity line and favors boys as expected, another stream of items is below it and
favors girls also as expected . Finally, a third stream of mixed items follows the identity line . Each
stream of items is clearly distinct from the other. The question before us is : Which item stream defines
the variable that we intend? The answer cannot come from the statistics . We must review the prior
intention which motivated the composition of these items in order to make a sensible decision . We
must decide which of the three streams of items contains the content which best, by our definition,
defines the variable we intend . Once we have made this decision, the other items will become, by our
definition, deviant from the frame of reference of this intention and hence "biased."

Figure 8 .1 demonstrates what we will see when two samples produce no evidence of bias
because all items plot along the expected identity line .

Figure 8 .2 shows a larger stream of items slightly above the original identity line and a smaller
stream of items below it . The simplest conclusion is that the smaller stream of items is biased with
respect to the variable defined by the larger stream of items along the identity line .

In Figure 8 .3, the situation is more complicated . We must decide which two of the three
streams of items are deviant . We must decide which item stream marks out our intended variable .
Does our intended variable remain with the original identity line or does it follow one of the offset
streams of items? The example in Figure 3 causes us to realize that sometimes we will be forced to
go beyond our statistics to outside criteria in order to establish a basis for judgment. Statistical
analysis can show us what we have observed, but we must go beyond the data to make a criterion
decision .

Our next example is from real data . It is a practical situation involving public school
achievement test scores . Figure 8 .4 is aplot ofitem calibrations made from two classrooms. One class
is at Grade 2 and the other class is at Grade 3 . Both classes took the same arithmetic computation test .
The plot of item calibrations for the two samples, Grade 2 vs. Grade 3, shows two items clearly
differing from the overall cluster of items .

For these data we have some important external criteria, namely the content of the items . The
computation skills required for most of these items are addition and subtraction of whole numbers
without regrouping. The two deviant items, however, have common characteristics . They both
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involve subtraction with regrouping . This arithmetic operation marks a difference between the two
grades . Within the frame of reference of whole number addition and subtraction withoutregrouping,
there is an interaction between these two subtraction with regrouping items and grade level which
makes these two items "biased."

These two items are biased against those second graders who have not yet learned how to do
regrouping. Thefew second graders who were successful on these two items are ahead of their peers.
For the others, these two items are almost impossible .

These examples make clear that a practical strategy is required to determine whether and how
"bias" is evident. We have used Raschmeasurement to illustrate how this canbe done. It is especially
important to be clear aboutourintentions prior to analysis in order to use the intended meaning of the
items to help us understand the results of our analysis . Identification of bias is possible only when
procedures like the one described have been applied. External criteria are needed to interpret results.
But the criteria selected must be unequivocal in their application to the problem or they cannot be
useful .



1 . Vertical axis is item difficulty for girls .

Figure 8.1

No evidence ofitem bias.
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2 . Horizontal axis is item difficulty for boys .

3 . Circles = items preclassified "girl favoring."

4. Triangles = items preclassified "boy favoring."

5 . For mathmetical specification of control lines see Wright and Stone, 1979, pp. 94-95 or
Wright and Masters, 1982, pp. 115-117 .



Figure 8.2

Five items biased infavor ofgirls.
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1 . Vertical axis is item difficulty for girls .

2 . Horizontal axis is item difficulty for boys .

3 . Circles = items preclassified "girl favoring."

4 . Triangles = items preclassified "boy favoring."

5 . For mathematical specification of control lines see Wright and Stone, 1979, pp. 94-95;
Wright and Maters, 1982, pp. 115-117 .



Figure 8.3

Must decide which item stream defines the intended variable.
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1 . Vertical axis is item difficulty for girls .

2 . Horizontal axis is item difficulty for boys .

3 . Circles = items preclassified "girl favoring."

4. Triangles = items preclassified "boy favoring."

5 . For mathematical specification of control lines see Wright and Stone, 1979, pp. 94-95;
Wright and Masters, 1982, pp. 115-117 .



Figure 8.4

Item calibratrionsfrom grade 2 and grade 3
on an arithmetic achievement test.
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1 . Vertical axis is item difficulty for Grade 2.
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5 . For mathematical specification of control lines see Wright and Stone, 1979, pp. 94-95;
Wright and Masters, 1982, pp. 115-117 .



When tests intendedto measureon aparticular variable are used with different groups ofpersons
or to measure persons under different conditions, it is necessary to determinethe degree of stability the
tests maintain over these occasions . Thequantitative comparisons sought depend on the tests retaining
the same quantitative definition of the variable throughout the occasions to be compared . In order to
determine this, amethod is requiredto evaluate the invariance ofthecommon test item calibrations from
group to group or time to time.

In order to evaluate the invariance of these calibrations we need to compare item calibrations
to see whetherquantitative comparisons ofthe measures obtained from these occasions are possible .
To do this we need to compare the centered calibrations for the items common to the two occasions.

In this chapter we explain how to make such comparisons (1) by plotting the centered item
calibration estimates from two different occasions againstone another, (2) by analyzing the standard-
ized differences ofthe item calibrations betweenthetwooccasions and (3) by evaluatingthe correlation
between the pairs of estimates over the set of common items.

In order to be explicit, we follow our explanations with an example to help the reader work
through each step in the process . In the previous chapter, Identifying Item Bias, we showed how to
evaluate item bias throughthe useofitem plots. That chapter concentrated on explaining the concepts
involved andusingthe figures to illustrate the concepts . In this chapterwe explain the techniques by
which such plots are constructed and evaluated.

PLANOFACTION

9. CONTROL LINES FOR ITEM PLOTS

1 .

	

Estimate the itemcalibrations for eachofthetwooccasions andidentify the set ofitemscommon
to both occasions . These alternative calibrations may come from two different samples of
persons or from the same sample of persons tested at two different times. Estimate the item
calibrations with their respective estimation standard errors and fit statistics . Thus for each
calibration occasion andforeach item i we calculate the item difficulty estimate d., its standard
error s ., and the fit of the calibrating data to these estimates, vi .

2.

	

Center each set of common item calibrations on the same origin (using perhaps the mean
difficulty ofthecommon items in the most recentormost important test) so thattheir comparison
becomesindependentof anytranslation effects between the centers of the twocalibrated tests.

(Ifthere is atranslation, then that amount wouldhave to be accountedforbefore person measures
from the two occasions could be compared. See Wright and Stone, 1979, pp. 96-98 and 112-
117. The best way to proceed, however, is to carry out a third calibration of all of the data from
both previous calibrations pooled into one combined data matrix . Usually this combined data
matrix, in which every item on either test defines a column of possible responses and every
individual test administration in either sample defines a row, has some empty cells where that
item was not administered to thatperson . The "missing" data is easily managed in acalibration
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program like BIGSTEPS, (Wright, 1996)) .

3 . Plot these paired and centered item calibrations d, ; and d2; against one another for each common
item. Acommon variable is demonstrated when the plotted item points, which should estimate
a single common difficulty foreach item, fit an identity line, e.g . fall within one or two standard
errors of their identity line .

4 .

	

Construct statistical control lines around the identity line by computing standard units of error
along lines which are perpendicular to the identity line and passing throughthe item points . (The
errorcontrol lines can be constructed for one or two error units producing 68% and95% quality
control.)

These control lines can be used to evaluate, at a glance, the overall stability of the item
calibrations shown on the plot . If more item calibrations fall outside the control lines than are
expected by the control choices of 68% or 95%, we are led to doubt the stability of the
calibrations in this study and to investigate the particular items causing the visible lack of
invariance . Even when only a few items fall outside the control lines, we examine the particulars
of these items carefully to determine why thishas occurred and what we might do to control these
particular conditions which threaten the validity of measurements made with these items .

5 . Calculatethe standardized difference between the alternateestimates ofthe single common item
difficulty :

2 2 v2
z12i -: (d,, -d2r) l (sii + s2i )

This statistic has an expectation of zero and a variance of one when item stability holds. The
pattern of these differences can be studied by plotting z,2t against dj =(d,; +d2;) / 2 .

6 .

	

Correlate d, ; with d2; over the i =1, L common items . This correlation r, 2 has a maximum value
governed by the standard errors s, ; and s2r and also the variance of the d.; . This maximum
correlation is :

L

	

L

=1-(SE2 /SD2 ) =1-[(L-1)lL]*[~(s +s2i)/Y (d,;+d2;)2]
r

	

r

when d, . = d2 . =0

L

SE 2 =

	

(s +s2;)2;)14L

L

SD2I (d,; +d2;)2 /4(L-1)



Fisher's log transformation for linearizing correlations can be used to compare the
observed correlation r,2 with the maximum correlation Rn,ax in order to test the
hypothesis of item calibration stability .

This statistic has expectation zero and variance one when item stability holds . It tests
for the overall fit of these L items to the identity line which defines invariance .

ANEXAMPLE

t = - (L - 3)ii2 log[(
+ r,2)(1 - Rmax )

2 (1- r,2)(1 +Raax)

These steps are illustrated in the following tables and figures. There is a first test form of 14
items calibrated on a sample of 34 persons. Then the variable was expanded by the development of
10 additional items making asecond test form of 14 + 10 =24 items which is given to asample of 101
persons. The original 14 items remain common to both forms of the test . We evaluate the stability of
the 14 itemsbetweenthese two test forms to determine whetherthetwoitemcalibrations are statistically
equivalent and so can be combined to define measures on a single common variable .

If this contention is supported by our analysis, then we can compare andpool the measures of
the original 34 persons with the measures of the later 101 persons producing a sample of 135 persons
measured on the same variable .

If, however, this contention is not supported, then we cannot compare or pool the original 34
measures with the subsequent 101 measures because we have foundthem to be measured on different
variables . Then we are forced to review how these items are functioning in order to discover why the
items are not working the way we intended .

1 .

	

Table 9.1 gives the item calibrations for each test form. The oldand newitem namesforForms
1 and 2 are given in Columns 1 and 5 with the old item calibrations forForm l listed in Column
2 andthe new item calibrations forForm 2 listed in Column 6. The new item names for Form
2, given in Column 5, are shownwith their oldForm 1 item names in parentheses. These new
item calibrations for the 14 original items are given again in Column 7.

Observe that the center (mean) ofthe 14 Form 1 old item calibrations is at 0.0 (Column 2) and
the center (mean) ofthe24Form 2newitem calibrations is also at 0.0 (Column 6) . These zeros,
however, are not equivalent, since the old zero defines the center of the old 14 items whilethe
new zero defines the center of the new 24 items. In fact, the center (mean) of the new Form 2
calibrations for the 14 original items is now0.4 on thenew scale ofForm 2 (Column 7) . Because
ofthis difference the calibrations ofthe original 14 items mustbe shifted by 0.4 (Column3) . This
shift puts them on the same scale as the new 24 items andproduces the adjusted values given
in Column 4which are the values that will be used to compareitem stability betweenForms9.1
and 9.2 .

2.

	

Theadjusted Form 1 (Column 4) andForm 2(Column 7) calibrations ofthese 14 items are plotted
in Figure 9.1 . The plot shows that these items fall along the identity line rather well,
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(4) = (2) + (3)

The comparison will be made between (4) and (7) .

** (6) = (7)

Table 9.1

Comparing the Calibrations of 14
Items Common to Two Test Forms

FIRST TEST FORM SECOND TEST FORM

(1) (2) (3) (4)* (5) (6) (7)**

Old Item Old Item Shift Adjusted New Item New Item New
Name Calibration Value Calibration Name Calibration Calibration

(Original 14
Items)

1 -6.0
2 -5.6

1 -4.2 0.4 -3.8 3 (1) -3.8 -3.8
2 -3.6 0.4 -3.2 4 (2) -2.3 -2.3
3 -3.2 0.4 -2.8 5 (3) -2.5 -2.5

6 -4.0
4 -3.6 0.4 -3.2 7 (4) -2.3 -2.3
5 -2.2 0.4 -1 .8 8 (5) -1 .8 -1 .8
6 -3.2 0.4 -2.8 9 (6) -1 .8 -1 .8
7 -1 .5 0.4 -1 .1 10 (7) -0.8 -0.8

11 0.1
12 -0.6
13 -0.3
14 -1 .3
15 -0.5

8 0.8 0.4 1 .2 16 (8) 2.2 2.2
9 2.1 0.4 2.5 17 (9) 1 .6 1 .6
10 1 .9 0.4 2.3 18 (10) 2 .2 2.2
11 3.2 0.4 3.6 19 (11) 3.1 3.1
12 4.6 0.4 5.0 20 (12) 3.6 3.6
13 4.6 0.4 5.0 21 (13) 3.6 3.6
14 4.6 0.4 5.0 22 (14) 4.7 4.7

23 6.5
24 6.0

Column 0.0 0.4 0.0 0.4
Mean

SD
I

3.4
I I

3.4
I I

3.4
I

2.8
I I



but, as yet, we have no way to evaluate howmuch these item plots coulddeviate from the exact
identity line before we would be forced to decide that the differences are too much . To ac-
complish this evaluation, we construct quality control lines. These lines guide our study of
the plot to help us to make useful decisions .

3 .

	

Figure 9.2 lays out a simple wayto construct these control lines . The standard unit of difference
error parallel to either axis for item i is :

z z 1/2S12i = (s1i +'sz)

ThenotesappendingFigure 9 .2 give the details for determining the coordinates (X and Y) for
amachine plot of the control lines. See Table 9 .3 for application to our data. Entering these
values in a plotting program can produce smoothed quality control lines .

Table 9.2 shows howto do a simple hand plot of the control lines. This is used with oursample
data and shown in Figure 9 .3 .

A unit of error equivalent to S12i but perpendicular to the 45 degree identity line is :
1/2

T2i =

	

ii + s2i ) / 2,

	

=S12i /

One of these Terror units perpendicular to the identity line, through the (d1i , d2i) item plot and
extended in each direction from the identity line yields a pair of 68%control lines . Twoofthese
Terror units perpendicular to the identity line yields a pair of 95% control lines.

Table 9.2 gives the standard errors sli and s2i (Columns 6 and 7) for the 14 common items
connecting Forms 1 and 2.

We calculate T12i for each ofthe 14 items and plot these locations in Figure 9.3 at two standard
error units above andbelow the identity line . These points can be connected and smoothed to
provide the quality control lines needed to evaluate the item plots.

4.

	

Figure 9.3 showsthat the plots of the 14 items of Forms 1 and 2 are all well within twostandard
errors of the identity line . It also shows that the hand and constructed methods of drawing in
control lines lead to identical results. We conclude that these 14 items fall along the identity
line, giventheir standard errors . Ourvariable extension is successful according to this sample
data .

5 . We can also evaluate the standardized item calibration differences between the Form 1
and Form 2 item calibration estimates for these 14 items by using:

(Sz +Sz
1/2

Z21i - (d2i -d1i) / 1i

	

2)

These standardized differences are expected to have a mean of zero and a variance of one.
The standardized differences of the 14 items are given in Column 9 of Table 9.2 . Trends can
be evaluated by plotting these Z21i against d. i for each item.

Figure 9 .4 is this plot . We observe that all of the remaining items are well within

	

1.0. All
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Figure 9.1

Plot ofcommon item calibrations: Form 1 versus Form 2.

Form 2

Form 1

Old Form 1 Calibrations (Centered on 0.4 Logits, Table 2, Column 2)



Upper Control Line :
Position A: X=d-KS12 /2=(d,+d2 -KS)l2; Y=d+KS12 /2=(d,+d2 +KS,2)l2

Item Plot :
Position B : X = d, ; Y= d2

Figure 9.2

How to construct control lines.

Identity Line :
Position C : X= (d, +d2 )/2 =d ; Y =(d, +d2)/2 = d

Lower Control Line ;
Position D: X=d+KS12 /2=(d,+d2 +KS12 )/2 ; Y=d-KS12 /2=(d,+d2 -KS12 )/2

S , Z =

	

S; +s22 the standard error of the difference (d, - d2)

S, = the standard error of d,
S 2 = the standard error of d2
d

	

= (di + dZ )l2

See Table 9.3 andFigure 9.3 for an example.

K =

	

number of standard error units chosen to set the confidence level control of the lines ;
e .g ., K = 1 produces 68% confidence and K = 2 produces 95% confidence .



**

	

Column 7 from Table 1

Column 4 from Table 1

Table 9.2 .

Item Calibrations, Standard Errors
and Standardized Differences Z

Items have been centered at the common mean for Form 2 of 0.4 . This separates the analysis of
the calibration differences (d1 , - d21 ) from any overall difference in test form difficulty .

CALIBRATION AVERAGE
d;

DIFFERENCE

(2)* (3)** (4) (5)
Old ftem

d1r d2 ; (dl ; + d2j ) 2 (dj; - d2;)Name

1 -3.8 -3.8 -3.80 0.0
2 -3.2 -2 .3 -2.75 -0.9
3 -2.8 -2.5 -2.65 -0.3
4 -3.2 -2.3 -2.75 -0.9
5 -1 .8 -1 .8 -1 .80 0.0
6 -2.8 -1 .8 -2.30 -1 .0
7 -1 .1 -0.8 -0.95 -0.3
8 1 .2 2.2 1 .70 -1 .0
9 2.5 1 .6 2.05 0.9
10 2.3 2.2 2.25 0.1
11 3.6 3.1 3.35 0.5
12 5.0 3.6 4.30 1 .4
13 5.0 3.6 4.30 1 .4
14 5.0 4.7 4.85 0.3

MEAN`' 0.4
---------------------------------------

0.4

S.D. 3.4 2.8



S12i =(S2Ii

	

2i)+ S2 1/2

Z21f =(d2i -d1!)/S12i

Column (9) = (5)/(8)

Table 9.2 . (Continued) .

The Quick Hand Methodfor Adding Control Lines

To draw 95% control lines by hand use the approximation (Wright and Stone, 1979, p. 95) for an error allowance
perpendicular to the identity line :

2T12 ; =[(S + SZ,)/2]ll2=(SII + S2).

Mark off a piece of graph paper to match the plotting axes and then slide this special ruler along the identity line marking
off the perpendicular distances (SI, + S2) in each direction away from the identity line as each item point (d11 , d2) is
encountered. This is done in Figure 9.3 where the results are marked as small circles .

STANDARD ERROR
STANDARD
ERROR OF
DIFFERENCE

STANDARDIZED
DIFFERENCE

ERROR
UNIT

(6) (7) (8) (9) (10)Old Item
Name S, ; S2 ; S12i Z21i T -- S /NF12i 12i

1 0.8 1 .0 1 .28 0.00 0.91
2 0.7 0.7 0.99 0.91 0.70
3 0.7 0.7 0.99 0.30 0.70
4 0.7 0.7 0.99 0.91 0.70
5 0.5 0.6 0.78 0.00 0.74
6 0.7 0.6 0.92 0.88 0.81
7 0.5 0.6 0.78 0.29 0.74
8 0.4 0.8 0.89 0.92 0.77
9 0.5 0.6 0.78 -0.86 0.74
10 0.5 0.8 0.94 -0.09 0 .81
11 0.7 0.8 1 .06 -0.41 0.86
12 1 .1 1 .0 1 .49 -0.97 1 .03
13 1 .1 1 .0 1 .49 -0.97 1 .03
14 1 .1 1 .2 1 .63 -0.20 1 .05

-----------------------------------------
MEAN +0.02
S.D . 0.71



of the values are within the 68% control lines.

The correlation over i= 1, 14 of the calibrations d, ; and d2 ; can also be determined . A limit for

this coefficient is R,,.. . In ourexample R,.=0.98 andthe correlation for the observed item calibrations

is also 0.98. Since R�~x = 0.98 is the same as r 2 = 0.98, we see that the correspondence between the
item calibration estimates computed from theForm 1 andForm 2 samples is as good ascanbe expected.
This correlation, when evaluated for its statistical deviation from the intended equating of Form 1 and
Form 2usingFisher's logtransformation, produces a T = 0.0 . We retain the hypothesis of no statistical
difference between these 14 pairs of item calibrations andhence ofthe stability oftheseitems and the
variable they define over the two occurrences . As a result we can pool and compare the 34 and 101
person measures .

Ourexample has illustrated the steps for evaluating the stability of item calibrations . In our
examplewe confirmedthe invariance of ouritem calibrations . If confirmation were not achieved, we
couldnotundertakeanyquantitative comparisons ofthe measures fromthetwo occasions and it would
be necessary todeterminewhyparticular itemsfailed to supportourintention to equate Form 1 andForm
2 and to compare the measures they produced . Changes might be made in these items or new items
constructed andthe equating process repeated with anew sample. Even when changes do not appear
necessary it is prudent to monitor item calibration stability continually as new samples occur in order
to verify that conditions have notchanged.

SQ.0



Figure 9.3

Plot of item calibrations: Form 1 versus Form 2 with 95%

control lines using hand method and constructed method of Table 9.3 .

Form 2
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Columns 1 and 2 are from Table 2, Columns 2 and 3.
d, = ( d, .+ d2,)l2 (Table 2, Column 4)

S12i= (S +SZ, )"2 (Table 2, Column 8)

Table 9.3

Example Data for Constructing 95% (K=2) Control Lines

Old Item

Item Plot
Figure 2 (8)

Identity Line
Figure 2 (C)

Standard Error 95% Upper Control Line
Figure 2 (A)

95% Lower Control Line
Figure 2 (D)

Name d, ; d2 ; d; SI21 d-S,2 ; d+S,2; d+S,2; d-S,2;

(X) (Y) (X,Y) (X) (Y) (X) (Y)
(1) (2) (3) (4) (5) (6) (7) (8)

1 -3.8 -3.8 -3.80 1 .28 -5.08 -2.52 -2 .52 -5.08
2 -3.2 -2.3 -2.75 0.99 -3.74 -1 .76 -1 .76 -3.74
3 -2.8 -2.5 -2.65 0.99 -3.64 -1 .66 -1 .66 -3.64
4 -3.2 -2.3 -2.75 0.99 -3.74 -1 .76 -1 .76 -3.74
5 -1 .8 -1 .8 -1 .80 0.78 -2.58 -1 .02 -1 .02 -2.58
6 -2.8 -1 .8 -2.30 0.92 -3.22 -1 .38 -1 .38 -3.22
7 -1 .1 -0.8 -0.95 0.78 -1 .73 -0.17 -0.17 -1 .73
8 1 .2 2.2 1 .70 0 .89 0.81 2.59 2 .59 0.81
9 2.5 1 .6 2.05 0.78 1 .27 2.83 2.83 1 .27
10 2.3 2.2 2 .25 0.94 1 .31 3.19 3.19 1 .31
11 3.6 3.1 3.35 1 .06 2.29 4.41 4.41 2.29
12 5.0 3.6 4.30 1 .49 2.81 5.79 5.79 2.81
13 5 .0 3.6 4.30 1 .49 2.81 5.79 5.79 2.81
14 5 .0 4 .7 4.85 1 .63 3.22 6.48 6.48 3.22



Figure 9.4

Plot of item calibrations vs . standardized difference with 68% and 95% control lines.

Z2 , ; (Table 2, Column 9)

	

Control Line

2

-1

-2
X= Items 2 and 4
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Y= Items 12 and 13
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Old Form 1 Calibrations Centered on 0.4 Logits (Table 2, Column 2)

95%

68%
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10. INFORMATIONFUNCTIONANDMISFIT SENSITIVITY

In this chapter we discuss the "information" of a test and its items. "Information" is directly
related to misfit sensitivity so we discuss both "fit" and "information ."

The way "information" enters into determining the value of an observation is through its bearing
on the precision of measurement. Measurement precision depends on the number of items in the re-
sponse record and on the relevance of each item to the particular person . On-target items make for an
efficient test, off-target items do not.

Since measurement precision depends on thenumber of items in the response record and on the
relevance of each item to the particular person, the evaluation of each item's contribution to knowledge
of the person can be calculated specifically . Information is the inverse square of the standard error of
measurement. The information (I) in a test score or in a measure derived from a score is I = 1/SE 2

which is one over the square of the standard error of that score or measure. The smaller the standard
error, the larger the information (I) . When SEm is in logits, information is in inverse square logits .
Replications enter information through the numerator. Forthe standard error replications enter through
the denominator.

For dichotomies where [p(1 p)] (proportion correct times proportion incorrect) is equal to In-
formation (I), then the square root of 1 over [p(1p)] is the standard error: SE�, =1 111 or = I-112 .

Tests can be compared for their information in order to see which test provides the most infor-
mation . The consequences of lengthening or shortening a test can be anticipated by observing the result-
ant gain or loss of information that accrues.

When item andperson are close to one another, i.e . on target, then the item contributes more to
the measure of the person than when the item and person are far apart. The greater the "distance" (the
difference between the person's ability andthe item's difficulty), the greater thenumber of itemsneeded
to obtain ameasure of comparable precision .

Table 10.1 helps make such determinations . Column 1 is the absolute logit difference IB- DI
between person ability and item difficulty (B-D). Column 2 is the squared standardized residual

z2 = exp(IB - DI) . Exp (B-D) is the unexpectedness of an incorrect response to a relatively easy item
while exp (D-B) is the unexpectedness of a correct response to arelatively hard item. Each z2 marks
the "unexpectedness" of a response .

The values for every instance ofunexpectedness canbe ascertained andaccumulated over items
to evaluate the response pattern plausibility ofany person measure, or summed over persons to evaluate
the sample pattern plausibility of any item calibration. Themark ofunexpectedness is a positive differ
ence from (B-D) or from (D-B) . Corresponding values for z2 can be looked up in Table 10.1, which
gives values of zo = exp (B-D) for unexpected incorrect answers or values of Z,2 = exp(D - B) for
unexpected correct answers .

79



Table 10.1

Information in Terms of Relative Efficiency and Misfit Detection

80

Misfit
Difference Be-

tween
Detection Relative Number of Items

Person Ability
Squared as Efficiency Needed to

and
Standardized Response of the Maintain

Item Difficulty
Residual Improbability Observation Equal Precision

JB-DI
ZZ =exp(IB-DI) p-1/(1+z 2 ) I=400p(1-p) L=1000/I

-0.6,0.3 1 .50 100 10

0.4, 0.8 2 .33 90 11

0.9, 1 .2 3 .25 75 13

1.3, 1 .4 4 .20 65 15

1.5,1 .4 5 .17 55 18

1 .7,1 .8 6 .14 50 20

1 .9, 2.0 7 .12 45 22

2.1 8 .11 40 25

2.2 9 .10 36 28

2.3 10 .09 33 30

2.4 11 .08 31 32

2.5 12 .08 28 36

2.6 14 .07 25 40

2.7 15 .06 23 43

2.8 17 .06 21 48

2.9 18 .05 20 50

3.0 20 .05 18 55

3.1 22 .04 16 61

3.2 25 .04 15 66

3.3 27 .04 14 73

3.4 30 .03 12 83

3.5 33 .03 11 91

3.6 37 .03 10 100

3.7 41 .02 9 106

3.8 45 .02 9 117

3.9 50 .02 8 129

4.0 55 .02 7 142

4.1 60 .02 6 156

4.2 67 .02 6 172

4.3 74 .01 5 189

4.4 81 .01 5 209

4.5 90 .01 4 230

4.6 99 .01 4 254



Note that values of increasing unexpectedness (z2) = exp(IB- DI) correspond to an increasing
difference between person ability and item difficulty.

Column 3 is p =1 / (1 + z'), the improbability of an observed response .

	

This p provides a
significance test for the null hypothesis offit for any particular response.

When accumulated for the kind of data most often encountered, each z2 is distributed approxi-
mately X2 with 1 degree of freedom each. When z2s are accumulated over items for a person or over
persons for an item, the resulting sums are approximately x2 with (L-1) degrees of freedom for a
person responding to L items and (N - 1) degrees of freedom for an item responded to by Npersons.

As p decreases, the difference betweenperson ability anditem difficulty increases. Examples of
misfit analysis are given in Chapter4 of Best Test Design (Wright & Stone, 1979).

Column 4 is an information index I = 400p(1- p) which indicates the relative efficiency which
an observation at any (B- DI provides about that person and item interaction. The index is scaled by

400 to give the amount of information provided by the observation as a percentage of the maximum
information that one observation at IB- DI = 0, i.e ., right on target, would provide. This index can be

used to judge the value of any particular item or items used in measuring aperson .

It requires five 20% items at B -D =2.9 to provide as much information about a person as
would be provided by one 100% item at IB-D = 0 . When IB-DI reaches 3.0 logits, it takes four to
five times as many items to provide as much information as could be hadfrom items that fall IB- DI < 1
region within one logit of the person . As IB- DI > 2.8, the probability of an unexpected response such
asX= 0 when (B-D) > 2.8 or X= 1 when (B-D) < -2.8 drops to P = .05 . This produces the possibility of
a statistically significant "misfit," aprobable invalidity in that response to that item .

The test length necessary to maintain a specified level of measurement precision is inversely
proportional to the relative efficiency of the items used . Column 5 gives thenumber (L) of less efficient
items necessary to match the precision of 10 "right-on-target" items. As items go increasingly "off
target" thenumber of items required to maintain equal precision increases. The increase from on-target
items at a minimal difference between person ability and item difficulty to off-target items at a two logit
difference between person ability and item difficulty is two-fold. Twice the number of items are re-
quired. An increase to a three logit difference requires more than five times the number of on-target
items and an increase to a four logit difference requires more than 14 times the number of on-target
items! Off-target items are extremely inefficient, they require an inordinate number of additional items
to maintain equal precision .

Figure 10.1 summarizes and facilitates the use of the data in Table 10.1 .

The values in Table 10.1 can also be pictured as the logistic curves shown in Figure 10.2 . The
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Figure 10.1
Summary and interpretation ofdata provided in Table 10.1 .

horizontal axis gives IB - DI. The vertical axis gives the values from Table 1 of z2 , L, p, andI. Because
L is scaled to an intercept of +10, the L curve is located slightly to the left of the z2 curve. Both curves
show the same function . The slope, i.e ., loss of information, for IB - DI = 0 to 2 logits is modest. This
slope increases greatly after 2 logits, andeven more so after 3 logits . Theprogressive increase in slope
after IB - DI = 2 logits shows clearly how information changes as a function of IB - DI .

"Information," as a concept and statistic, was formulated by Sir Ronald Fisher, (1921, pp. 316-
317) in conjunction with his formulations ofefficiency and sufficiency.

In the logical situation presented by problems of statistical estimation, I have
shown that amathematical quantity can be identified which measures the quantity
of information provided by the observational data, relevant to the value of any
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Relative (Ability- Item Efficiency and Sensitivity
Location Difficulty) of Misfit Detection
of Item Difference

Right on IB - DI < 1 " Excellent efficiency, 75% or better.
Target No misfit analysis possible.

Close 1 < IB-DI < 2 " Good efficiency, 45% or better.
Enough No misfit analysis possible .

Slightly 2 < JB- D~ < 3 " Poor efficiency, less than 45%.
Off Misfit detectable when unexpected

responses accumulate .

Rather 3 < IB- DI < 4 " Very poor efficiency, less than 18%.
Off " Even single unexpected responses

can signal significant response
irregularity.

Extremely 4 < ~B- DI " Virtually no efficiency, less than 7%.
Off " Unexpected responses always

require diagnosis .



Figure 10.2
Functions ofz2, L, p, and I .
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particular unknown parameter. That it is appropriate to speak of this quantity as
the quantity of information is shown by the three following properties :

(i) The quantity of information in the aggregate of two independent sets of obser-
vations is the sum of the quantities of information in the two sets severally ; each
observation thus adds a certain amount to the total information accumulated .

(ii) When, on increasing our observations, the sampling error of an efficient
estimate tends to normality, the quantity of information is proportional to the
precision constant of the limiting distribution .

(iii) The quantity of information supplied by any statistic or group of statistics
can never exceed the total contained in the original data (Fisher, 1934, p . 6-7) .

Fisher's quest was for the best statistic . He reasoned that such a statistic must be consistent, tend
to estimate its parameter more closely as sample size increases ; efficient, have variance less than any
other statistic estimating the same parameter and sufficient, incorporate all ofthe information available
in the sample regarding its parameter. When a sufficient statistic exists, it can be obtained by the method
of maximum likelihood .

"A statistic which fulfills the criterion of sufficiency will also fulfill the criterion of efficiency"
(Fisher, 1921, p . 317) .

Information is simple in Rasch measurement . It is just a function of the difference between
person ability and item difficulty (B-D) as shown in Table 10.1 .



CONNECTINGTESTS

11 . CONNECTING TESTS

In this chapter we describe the basic strategies for connecting tests intended to measure on the
same variable so that the separate measures each test implies are expressed together on one single
common scale. The process begins by understanding how to link two tests . Next we consider how to
connect several tests and from there we proceed to plans for connecting all possible tests .

The traditional method for connecting two tests is by equating the equal-percentile scores of a
sample of persons who take both tests simultaneously . This process requires a large sample of persons
with scores broadlyenough distributed to assure an adequate representation of each score-to-percentile
connection .

Rasch measurement enables a more economical and better controlled method for connecting
tests andbuilding item banks. Links of 10 to 20 common items are embedded in pairs of tests composed
of otherwise different items . Each test is administered to its own sample of persons. No person need
take more than one test . But all items in all tests can be subsequently connectedthroughthe network of
common item links.

The traditional approach to equating two 60-item tests, say Test A and Test B, is to give both
tests simultaneously to a sample of many, say 1200, persons as in Figure 11 .1 . The large sample is to
assure the detailed representation of score percentiles necessary for successful percentile equating .
Each person takes Test A and Test B, a total of 120 items.

In contrast, the Rasch approach can do the same job with each person taking only one test of 60
items. To accomplish this a third 60-item test, C, is made up of 30 items from each of the original testsA
andB . Then each of these three tests is given to a sample of 400persons as depicted in the lower half of
Figure 11 .1 . Now each person takes only one test, but all 120 items are calibrated together through the
two 30-item links connecting the three tests. The testing burden on each person is one half of that
required by the equal percentile plan. But the equating of the tests is under far better control. In actual
practice, the three samples can also be halved to 200 each without loss of control. This reduces the
amount of data to one fourth of that required for the equal percentile equating .

In Rasch equating, the separate calibrations of each test produce a pair of independent item
difficulties for each linking item . The equating modelasserts that each pair of estimates are statistically
equivalent except for a single constant of translationcommon to all pairs in the link .

If two tests, A and B, are joined by a common link ofK items and each test is given to its own
sample ofN persons, then dA and drB can represent the estimated difficulties of item i in each test with
standard errors of approximately 2.5/N'2 and the single constant necessary to translate all item
difficulties in the calibration of Test B onto the scale of Test A is

x
GAB =

	

(diA - diB) I K
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Figure 11.1

Traditional and Rasch equating designs.
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with standard error of approximately 3.5/(NK)'I logits .

In contrast to traditional equating, in whichno quality control is available, the quality of this
Rasch link can be evaluated by the fit statistic :

K

(d,, - di, - G")2(N/ 12)[K/ (K-1)] - XK
a

which, when the two tests do fit together, will be distributed approximately chi-square with K
degrees of freedom.

In addition, the individual fit of each item link can be evaluated by

(d;A - di, -GAB) 2(N/ 12)[K/ (K-1)] - X

which, when the performance of that item is consistent with the equating, will be approximately
chi-square with one degree of freedom.

These simple fit statistics enable detailed, item by item control and remediation of test
equations.

When using these chi-square statistics to judge link quality we keep in mind how they are
affected by sample size . When N exceeds 500 these chi-squares can detect link flaws too small to
make any noteworthy difference in GAB , too small to matter. (When calibration samples are large,
the root mean square misfit is more useful . This statistic can be used to estimate the logit increase
in calibration error caused by link flaw.)

In deciding how to act on evaluations of link fit, we also keep in mind that random uncer-
tainty in item difficulty of less than .3 logits has no discernible bearing on person measurement
(Wright & Douglas, 1975, 35-39) .

Because of the way sample size enters into the calculation of item difficultly and hence into
the evaluation of link quality, we can deduce from these considerations that samples as small as
200 persons and links of as few as 10 good items will always be more than enough to supervise link
validity at better than .3 logits . In practice we have found that we can construct useful and stable
item banks with sample units as small as 50 persons.

THECOMMON LINK

The basic structure required to calibrate many items onto a single variable is the common
item link in which one set of linking test items is shared by and so connects together two otherwise
different tests. An easy and ahard test can be linked by a common set of intermediate items . These
linking items are the "hard" items in the easy test butthe "easy" items in the hard test (Figure 11 .2) .

With two or more test links we can build a chain of the kind shown in Figure 11 .3 .

The representation in Figure 11 .3 can be conveyed equally well by the simpler scheme
shown in Figure 11 .4 which emphasizes the links and facilitates diagraming more complicated
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Figure 11.2
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linking structures . Each circle indicates a test sufficiently narrow in range of item difficulties to be
manageable by a suitably chosen sample of persons .

Figure 11.4

A chain with two links (simplified) .

Each line connecting a circle represents a link of common items shared by the two tests it
joins . Tests increase in difficulty horizontally along the variable and are comparable in difficulty
vertically.

Links can be constructed to form a loop as shown in Figure 11 .5 .

Figure 11 .5

A loop of three links.



The loop is an important linking structure because it yields an additional verification of link
coherence . If the three links in a loop are consistent, then the sum of their three link translations
should estimate zero .

in which

(GAB +GBC +GCA) - 0

where GAB means the shift from Test A to Test B as we go around the loop so that GCA means the shift
from Test C back to Test A.

Estimating zero statistically means that the sum of these shifts should come to within a few
standard errors of zero . The standard error of the sum (GAB+GBC+GcA ) is :

35(1/NABKAB +1/NBCKBC +1/NCAKCA
)1/2

N = the various calibration sample sizes and

K= the various numbers of items in each link .

With four or more tests we can construct networks of loops . Figure 11 .6 shows ten tests
marking out several levels of difficulty from Tests A through D. This network could connect ten
60-item tests by means of nineteen 10-item links to construct a bank of 600-190=410 commonly
calibrated items . If 100 persons took each test, then 410 items could be evaluated for possible
calibration together from the responses of only 1,000 persons . Even persons at 50 per test would
provide a substantial purchase on the possibilities for building an item bank out of the best of the
410 items .

Figure 11 .6

A network connecting ten tests with nineteen links .
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The building blocks of a test network are the loops of three tests each . When a loop fits the
Rasch model, then its three translations will sum to within a few standard errors of zero . The
success of the network at linking item calibrations can be evaluated from the magnitudes and direc
tions of these loop sums. Shaky regions can be identified and steps taken to avoid or improve them.

The implementation of test networks leads to banks of commonly calibrated items far larger
in number and far more dispersed in difficulty than any single person could ever handle. The
resulting item banks, because of the calibration of their items onto one common variable, provide
the item resources for a prolific family of useful tests, long or short, easy or hard, widely spaced in
item difficulty or narrowly focused, all equated in the measures they imply.

BANKING EXISTING TESTS AND ITEMS

These methods for building item banks can be applied to existing tests and items, if they
have been carefully constructed . Suppose we have two non-overlapping, sequential series of tests
Al, A2, A3, A4 and B1, B2, B3, B4 which we want to equate . All eight tests can be equated by
connecting them with a new series of intermediate tests X, Y and Z made up entirely from items
common to both series as shown in Figure 11 .7 .

Figure 11.7

Connecting two non-overlapping test series by intermediate linking tests .



Were the A and B series of tests in Figure 11 .7 still in the planning stage, they could also be
linked directly by embedding common items in each test according to the pattern shown in Figure
11 .8 .

Figure 11 .8

Connecting two test series by embedding common links.

Networks maximize the number of links among test forms because each form is linked to as
many other forms as possible. To illustrate, take a small banking problem where we use 10 items
per form in a web in which each one of these 10 items also appears in one of 10 other different
forms . The complete set of 10+1=11 forms constitutes a web woven out of 11 x 10/2=55 individual
linking items . Every one of the 11 forms is connected to every otherform . The pattern is pictured
in Figure 11 .9 .

The number entered in each cell is the identification of the item linking the two forms which
define the position of that cell .

In this design, the web is complete because every form is connected to every other form. In
the use of webs to build banks, however, there are three constraints which affect their construction :

1)

	

the total number of items we want to calibrate into the bank,

2)

	

themaximum number of items which we can combine into asingle form and

3)

	

theextent to which the bank we have in mind reaches out in difficulty beyond the
capacity of any one person .



The testing situation and the capacity of the persons taking the test forms limit the number of
items we can put into a single form. Usually, however, we want to calibrate many more items that
we can embed in a complete web like the one illustrated in Figure 11 .9 . There are two possibilities
for including more items.

A

B
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E

F

G

H

J

K

Figure 11.9

A complete web for parallelforms.

A B C D E F G H I J K
2 3 4 5 6 7 8 9 10

1 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40

41 42 43 44 45

46 47 48 49

50 51 52

53 54

5511 Forms
10 Items perform
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The simplest, but not the best, is to design a "nuclear" complete web which uses up some
portion of the items we can include in a single form. Then we fill outthe required form length with
additional "tag" items. These tag items are calibrated into the bank by means of the link items in
their form. Unlike the link items, however, which always appear in two forms, the tag items appear
in only one form and so give no help with linking forms together into one commonly calibrated
blank .

Another possibility, which is better statistically, is to increase the number of forms used
while keeping the items per form fixed at the required limit. This makes the web incomplete but in
a systematic way. The paired data on every item appearing twice can be used to evaluate the
coherence of bank calibrations . Figure 11 .10 shows an "incomplete" web for a 21 form design with
10 items per form, as in Figure 11 .9, but connecting nearly twice as many items.
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An incomplete web for parallel forms.
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Formulation :
N = MLI2

Where:
N= number of items
M = number of forms

i .e ., 2 NIL
L =

	

number of items
(or links) per form
must be even

The incomplete web in Figure 11 .10 is suitable for linking a set of parallel test forms . When
the reach of the bank goes beyond the capacity of any one person, however, neither of the webs in
Figures 11 .9 and 11 .10 will suffice, because we will be unable to combine items from the easy and
hard ends of the bank into the same forms. The triangle of linking items in the upper right corners of
Figures 9 and 10 will not be functional and will have to be deleted . In order to maintain the balance
of linking along the variable we will have to do something at each end of the web to fill out the
easiest and hardest forms so that the extremes are as tightly linked as the center.

Figure 11 .11 shows how this can be done systematically for a set of 21 sequential forms .
We still have 10 items per form, but now only adjacent forms are linked together. There are no
common items connecting the easiest forms directly with the hardest forms . But over the range of
the variable the forms near to one another in difficulty level are woven together with the maximum
number of links .



An incomplete web for sequentialforms.
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N = MU2 + K

Where:
N= number of items

(or links) in the bank
M= number of forms
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(or links) per form
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K= L/4, if U2 is even
K= (L + 2)/4, if U2 is odd
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Each linking item in the webs shown in Figures 11 .8, 11 .9, 11 .10, and 11 .11 could in fact
refer to a cluster of two or more items which appear together in each of the two forms they link .
Sometimes the design or printing format of items forces them into clusters . This happens in reading
comprehension tests where clusters of items are attached to reading passages . It also occurs on
math and information retrieval tests where clusters of items refer to common exhibits . Clustering
increases the item length of each form by a factor equal to the cluster size .

The statistical analysis of a bank-building web is simple if the web is complete as in Figure
11 .9 . The row means of the corresponding matrix of form links are least square estimates of the
form difficulties . We need only be careful about signs . If the web cell entry GJk . estimates the
difference in difficulty (S ; - Sk ) between forms j and k and the form difficulties are centered at zero
so that S. = 0, then

M

= 1:GIk/M = Sj
K
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the row means of the link matrix calibrate the forms onto their common variable . Once form
difficulties are obtained, they need only be added to the item difficulties within forms to bring all
items onto the common variable shared by the forms.

The incomplete webs in Figures 11 .10 and 11 .11 require us to estimate row means from a
matrix with missing data . The skew symmetry of link matrices helps the solution to this problem
which can be done satisfactorily by iteration or regression .

When cells of the link matrix of Gjk , are missing, then initial values for Gj . can be obtained

from Equation [6] by using zero's for the missing G;k . .

The next step is to replace the missing Gjk . with estimates from the corresponding Gj . and

Gk . using G;k = Gj . - Gk . and recalculating Gj. by Equation [6].

Iterations of this process will converge to stable values for the test form difficulties G;. .

An even simpler but less informative solution is to express the data for all forms in one
large matrix in which every item has its own column, every person has their own row and every
intersection, at which a person does not address an item, is recorded as blank. This matrix, with its
missing data, can be analyzed directly in one step with BIGSTEPS (Wright & Linacre, 1996).



THEMEASUREMENTPROBLEM

12. BUILDING SCHOLASTIC VARIABLES

Any professional in a position ofresponsibility in aschool must have away to keep track of what
the school produces in student achievement. The only wayto account for what is produced is to have
a means for measuring scholastic growth in the areas for which the school is responsible such as
arithmetic and reading. We will call these growth areas, variables andspeak of the school's job as the
increase of students' standings on scholastic variables.

Although there is a great deal of information abouthow children are supposed to develop, and
what kinds of stimulation is supposed to encourage them, unless school effects can be made explicitly
quantitative, it is impossible to evaluate school success . A school has to account for its educational
efforts. To do this, the school has to construct scholastic variables on whichthe results ofteaching can
be measured and devise ways to measure these results .

No school can neglect themeasurementproblem. Schools have to deal with it because it is the
only waythey canreport to themselves orto the people to whomthey are responsible the extent to which
they are accomplishing their reason for existing . Schools must be able to measure their students'
achievement.

How canschool variables be defined andmeasured? We are delugedwith tests from competing
publishers who claim that their products relate the scores of increasingly difficult tests and provide
indications of growth in particular areas. We believe that scholastic growth can be manifest by
performance on test items. There seemsno doubt that useful andrelevant information canbe obtained
by giving students carefully selected questions to answer and then observing how they answer them .
Thus we expect to use test performance to infer students' standing on the scholastic variable provoked
by the test questions.

Thetrouble is that test publishers offer contradictory systemsfor quantifying test performance.
The translation from one system to the other is neither definite nor agreed upon. Connecting test
publishers' measures over the years of development is also difficult. Their equating systems are not
convincing. Their reporting units of percentiles and grade equivalents are misleading .

Disagreement among test publishers is not the only problem. Difficulty in equating formsover
the years ofdevelopment is another. Local school dissatisfaction with national testitems is yet another.
The definition of an educational variable provided by a publisher, although marginally acceptable in
NewJersey, may notbe relevant to aschool in Oregon . Butno school dares to go offon its ownwithout
maintaining some connection to other schools. Neither does anyschool want to capitulate to a "national"
standard imposed by some publisher. National tests offer akind of comparability but lack relevance
andflexibility . Local tests offer relevance andflexibility, butlack comparability . What is needed is
ameasurementsystem basedon students' responses to test questions as the essential observation with
tests made up of itemsfocusedon common scholastic variables ofinterest to the school butwith results



that can be compared from school to school . Theingredients of these tests must come from the school
using them as well as from other reputable sources .

This flexibility, however, requires an objective method of constructing scholastic
variables andchecking consistencies that is accessible andworkable for anyschool . We cannot know
ahead of time whether there will be agreement among local definitions of the scholastic variables .
Whether ornotlocal schools are workingwith thesame scholastic variables as state ornational agencies
is something that can only be established empirically. There also has to be aroutineandobjective way
to find out how each test variable is working from moment-to-moment and place-to-place . Since the
only way disagreementsamong differing agencies can be resolved is by an empirical check, the system
ofchecking must be acceptable to all parties, even though they maydisagree on the contentof some items.

The way in which the relevance of items for a test is determined must be equally agreeable to
national and local groups. It must have a methodological basis which transcends arguments about
content. It must result in an objective measure which is immune to political manipulation .

Measurements can only be made through some kind oftest situation. Tests can be valid if they
are properly constructed. To be generally accepted, the test ingredients must represent both local and
national wisdom andintention . The validity of items mustbe verifiable in some way equally satisfactory
to all. Also, any measure, being an estimate rather than the thing itself, must be qualified by astandard
error, the relevant index of its reliability as an agent of measurement.

To accomplish this it is necessary to develop banks of calibrated and validated items . These
banksmustconsist of itemswhich canbe connectedtogetherin such away that anyselection from them
can be used as a reasonable test for the common scholastic variable they, and all of the otheritems in
the bank, define .

ITEMBANKS

This leads us to the conceptof the item bank, with items contributedby local as well as national
sources . National itemswouldbe itemsdevelopedby expert teams. (See Choppin,1968 ; Wright,1977;
Wright and Stone, 1979 and Wright and Bell, 1984 for an introduction to item banking.) Local items
would be those items developedby school systems, by schools andeven by an inspired teacher of the
fourth grade who has insight into the scholastic development of the children in her class.

There must be room for all of these ingredients in the item bank. But having allowed this
flexibility, there must be amethod for checking whethereach item is valid. It must also be possible for
items that are valid to make up a test suitable to the occasion . Such atest must be equatable to anyother
test that mightbe constructed.

When abank is well made and covers a wide range of the variable, then it is possible to have
comparable measures available for individual children with whatever set of items they take andhence
to follow student scholastic development longitudinally from the early grades . This requires an easy
test that a second grader can take and another hard test measuring on the same scholastic variable but
so much further along the variable that the same studentcantake it 10 years later andyet obtain ameasure
on the same scale and hence quantitatively comparable to the earlier measure. Items from these two
tests couldhardly be takenby both second andtwelfth graders. Nevertheless, since we intend to compare
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the measures impliedby each ofthese tests andto be able to say in an objective way how much astudent
has grown on the scholastic variable in those 10 years, we must find a way to connect these items so
widely separated in difficulty to the scale of a single common scholastic variable .

A school system cannot escape the responsibility of measurement. Butmeasurement needs to
have certain characteristics in order to be useful to the school system. An item bank, solves a number
of crucial problems. Thedevelopmental range problemandthe equated forms problem is solved, and
when the bank consists of local as well as national items, the relevance problem is also solved .

ITEM ANALYSIS

Theoccasion on which astudent responds to an item, which we are relying on to show us where
the student stands scholastically, is fraught with avariety ofpotential influences . Butwhen we actually
ask a studentto answer aspecific question, we would like to arrange things so that almost all that occurs
at the moment isjust an expression of that student's particular latent ability on the variable probed by
that item . We are trying to provoke in the student's response aclear instance ofthis latentability by means
of the latent difficulty of the item that has been chosen. How well a student does on items of known
difficulty can then be used to infer the student's measure on the latent variable .

However, when astudentanswers an item, there are the inevitable influences ofmotivation and
distraction, as well as incidental elements in the item itself, which impede and facilitate the student's
ability to solve it . Suppose it is amathematics word problem. If the student is a good reader, it may
be easier to do this item than if the student is apoor reader . It wouldbe unfortunate ifwe failed to learn
about a student's mathematical competence because reading difficulties on math items obscured the
evidence the student would otherwise provide about math competency.

There are also administration and targeting difficulties which affect how students respond to
items : guessing (on items too hard for them), sleeping (onitems too easy for them), fumbling (onhow
the form is to be filled in), plodding (too slowly for the testing time and so notfinishing) andbias (for
and against success), all of which can interfere with measurement.

The system used for measurementmust have awayto protect itself and its users againstbeing
mislead by unexpected disturbances in the observations from which the measure is estimated. The
system must be able to detect spoiledmeasures . Once atest has been administered, we must be able
to detect improbable divergence from expectation, to catch andcorrect for the influences of guessing,
sleeping, fumbling, plodding andbias . Wemust be ableto identify anysecondaryfactors which interfere
with performance on each item .

The measure estimated from ascore on a test is an inexact estimate. We need to know not only
the validity of the item responses on which the measure is based but the reliability, the error, of the
measure.

A measurement project has two parts, item banking and person measuring. What is needed to
manage these twoparts is acommonsystem whichunderlies both ofthem andso connects them together .
Theonly hope we have ofsucceeding with ameasurement project is to deduce amodel for what we want
to happen when aperson encounters an item, amodel formulated in the simplest practical terms, which
also implements the basic requirements of measurement.
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If we do not have a model, we cannot tell how to connect items together in the bank or how to
free individual measurements from the particular itemswhichhappen to be used on a test . If we do not
know what to expect, we have no way to tell whether a response is unexpected . We must be able to
calculate from a model what we expect the answer to be so that we can observe whether a particular
answer is surprising . The detection of irregularities requires a frame of reference by which a surprise
can be defined.

This leads to the realization that, as far as measurement is concerned, it is notonly sufficient but
also necessary to pursue andenforce the fiction that each item can be characterized by adifficulty and
nothing else and each person can be characterized by an ability and nothing else . We know that other
factors always play apart, butwith a simple modelas ourguide, we can always tell whether or notthose
other factors have spoiled the use of our simple model as ameans for calibrating items andmeasuring
persons .

When a simple model is putforward, that is not to say that what it is applied to is thought to be
simple . Rather it is to assert that only throughthe construction ofsuccessful approximations to asimple
modelhave we anychance ofproceeding coherently andofmaking progress in managing ameasurement
project.

It is also not to saythat when a student takes an item nothing is observed but the student's ability
andthe item's difficulty . Instead, it is ourplan to make an effort to arrange andmaintain things so that
when astudent takes an item most ofwhat is observed is the expression of the student's ability against
the difficulty ofthe item so thatthe observedresponse is dominatedby studentability anditem difficulty .
Then, if somethingelse happens, we can usethe frame of reference of oursimple model to identify the
disturbance and to make correction for it .

THEMEASUREMENTMODEL

Thetraditional true score modelspecifies the observed score of aperson taking a test as thesum
of a true score and an error term:

where
x= OBSERVED SCORE
t =TRUESCORE
e =ERROR

Butweknow that rawscores cannot be linearin whatthey represent andthere is no useful theory
forhow big the true score error term should be. What we need, instead, is a different model which not
only specifies that the person has an ability which is expressed in his behavior, butalso that each item
has a particular difficulty which is also expressed in any responses to that item, including the given
response . Finally, we want amodel whichspecifies howmuch deviation from expectation is reasonable
and how much is excessive .

THERASCHMODEL

x=t+e

The Rasch model (Rasch, 1960/1980) is a binomial probability model for a dichotomous
right/wrong response . TheRasch model specifies that the probability of a right answer is defined by
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the difference between person ability anditem difficulty . Then, when the probability of a right answer
is calculated to be near zero, but a right answer is nevertheless observed, that right answer is obviously
surprising. Being able to estimate the probability of aright answer enables us to be precise about the
extent of our surprise .

The discrepancy between observation and expectation can be put into a standard form so that
we can have astandard reference distribution for it . This quantifies the extent of our surprise . We will
be surprised when aperson of low ability achieves something that requires exceptional ability. When
aperson attempts an item many units harderthan he is able andnevertheless gets it right, that right answer
mighthave aprobability of occurring less than five in 100times. In that case, we might take the position
that oursurprise hasbecome too large for comfort. Thus we have a meansfor beingexplicit aboutthe
extent of our surprise and, if we can agree among ourselves as to what level of improbability is
unacceptable, then we have an explicit and public rule which we can apply to validate any observed
response .

This enables us to take an objective stand with respect to what to do about correct answers to
items too many units above a person's ability. Using the natural log odds units (logits) of Rasch
measurement, adifference ofthree logits wouldproduce an improbability of .05 . In particular, wemay
decide to use such improbable answers only for diagnostic purposes and to exclude them from our
measure of the person .

When an unexpected response occurs, we do not ignore it, what we do is to decide what to do
with it . We might decide to use it in the score, or to delete it . We might decide to use it to diagnose
the person orto diagnosethe item . Both canbeuseful . When only oneperson uses oneitem unexpectedly,
that, in itself, will not tell us whether the person or the item produced the unexpected condition. If we
suspect it was the item, we will look at the responses ofother people to see whether that item continues
to behave poorly, e.g . formany boys, orformany fourth grade boys, orforwhatever condition we suspect
might make the item irregular . If, on the other hand, we aremaking an individual study of achild and
are concerned aboutbrain damage, emotional disturbance, afixation, or an inhibition, then we could
become especially interested in the diagnostic potential ofunexpected responses, andmighteven seek
to provoke such responses for diagnostic reasons.

Acareful studyofitems is beneficial to anyschool system. Itcanproduce uniform content-free
public decision rules that can be applied fairly and without prejudice .

LINEARITY

MEASUREMENTCRITERIA

When we think about avariable, we have in mind the straight line so well represented by the
familiar yardstick . One direction of this line represents more of the variable ; the other, less . Person
measures are locations along the interval scale of this line . This simple idea is illustrated in Figure 1 .

That we employ the idea of a straight line when we think about variables like height andweight
is obvious. But the relevance of this idea may notbe as obvious when we speak ofconstructs such as
intelligence or attitude . Nevertheless, we betray ourreliance on this simple anduseful idea whenever
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VARIABLE

we saythat oneperson has amore positive attitude than another, or wheneverwe report an intelligence
score for a child.

Our inevitable reliance upon this simple idea was noted long ago by L. L. Thurstone:

The very idea of measurement implies a linear continuum of some sort such as length,
price, volume, weight, age. When the idea of measurement is applied to scholastic
achievement, for example, it is necessary to force the qualitative variations into a
scholastic linear scale of some kind. We judge in a similar way qualities such as
mechanical skill, the excellence of handwriting, and theamount of aman's education,
as though these traits were strung out along asingle scale, although they are, of course,
in reality scattered in many dimensions . As amatter of fact, we get along quite well with
the conceptof a linear scale in describing traits even so qualitative as education, social
andeconomic status, or beauty . Ascale or linearcontinuum is impliedwhen we say that
aman hasmore education than another, or that awoman is more beautiful than another,
even though, ifpressed, we admitthat the pair involved in each ofthe comparisons have
little in common. It is clear that the linear continuum which is implied in a "more and
less" judgment is conceptual, that it does not necessarily have the physical existence of
a yardstick (Thurstone, 1928a, p. 532) .

INVARIANCEOR OBJECTIVITY

When we measure a variable such as verbal ability, the measures we obtain must not depend
upon the particulars of the items administered . Our ability measures must be freed of the particulars
of the items taken in the same waythat measures of height have ameaningwhichis independent of the
particular yardstick used to obtain them.

Thurstone saw the necessity of this in 1926, and described the following requirements of a
satisfactory measuringmethod:

It should be possible to omit several test questions atdifferent levels ofthe scale without
affecting the individual score. It should not be required to submit every subject to the
wholerangeofthe scale. Thestarting point andthe terminal point, being selected by the
examiner, should notdirectly affect the individual score (Thurstone, 1926, p. 446) .
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Thurstone also pointed out the accompanying necessity of being able to obtain difficulty
estimates for items which are freed from the particulars of the calibrating sample :

One of the first requirements of a solution is that the scale values of the statements of
opinion must be as free as possible, and preferably entirely free, from the actual opinions
of individuals or groups . If the scale value of one of the statements should be affected by
the opinion of any individual person or group, then it would be impossible to compare the
opinion distributions of two groups on the same base (Thurstone, 1928b, p . 416) .

And in the same year:

The scale must transcend the group measured . One crucial experimental test must be
applied to our method of measuring attitudes before it can be accepted as valid.

Ameasuringinstrument must notbe seriously affected in its measuringfunction by the
object ofmeasurement. To the extent that its measuringfunction is so affected, the validity
ofthe instrument is impaired or limited. If a yardstick measured differently because of
the fact that it was a rug, a picture, or apieceof paper that was beingmeasured, then to
that extent thetrustworthiness ofthat yardstick as ameasuring device wouldbe impaired.
Within the rangeofobjects for whichthe measuring instrument is intended, its function
must be independent of the object of measurement (Thurstone, 1928b, p. 547).

Thecriteria for "measurement"are: logical ordering, linear scales, andobjective comparisons.
A model is needed which enables observations to be transformed into measures which meet these
requirements .

In the early 1950's Georg Rasch (1960/1980) undertook to obtain measures of reading ability
which were independent of the difficulty of the test taken:

In a concrete formulation of this problem I imagined - in good statistical tradition - the
possibility that the reading ability of astudent at each stage, and in each of the two above-
mentioneddimensions,couldbe characterized in aquantitative scale, but by apositive real
number defined as regularly as the measurement ofalength (Rasch, 1977, p. 59) .

Raschcoinedthe term "specific objectivity" to describe comparisons amongpersons whichare
independentof the itemparameters,andcomparisons amongitemswhich are independent ofthe person
parameters.

THEITEMBANKINGMODEL

Item bankingcanbe accomplishedwith Rasch's psychometric methods. Hismeasurementmodel
describes the probable outcome of any encounter between aperson and an item as entirely determined
by two parameters - the "ability" of the person, represented by b; and the difficulty of the item,
represented byd. If we use the numeric labels x=1 to represent acorrect answer andx= 0to represent
an incorrect answer, then Rasch's model for the probability of response x is :



P(x =0, l1b,d) = exp[x(b- d)] / [l+exp(b-d)]

or

	

log
Px=1

	

= b - d
Px=o

Rasch specifies that the logodds (logits) that aperson with ability b answers correctly an item
with difficulty d correctly be dominated by the difference (b-d) between person ability b and item
difficulty d. This positions persons by their ability and items by their difficulty on the interval scale
of a single variable which they share. The result is probabilities of potential interactions between
persons and items which are positioned along onecommon line and specifications ofexpectations for
all possible responses .

Because the parameters b and din Rasch's model appear as separate terms in a linear function,
they can be separated in the application of the model. The difficulty calibrations of the items can be
estimated in a way which frees them from the ability distribution of the persons used and the ability
measures of the personscanbe estimated in a way which frees them from thedifficulty distribution of
the items they happen to take . This produces the "sample-free" item calibration and "test-free" person
measurement(Wright, 1968)whichThurstonedemanded.

The sufficient statistics for these results are the test score for each person and the number of
persons who respond correctly to each item, the sample score for each item . Butthese scores are not
yet calibrations or measures because they are nonlinear on the variable they are intended to measure
andalso sample and test dependent. TheRaschmeasurement procedure, however, canusethese familiar
rawscores to construct sample-freeitem calibrations andtest-free person measures on acommon linear
scale.

Each item's raw score is specific to the ability distribution of the sample used on that item, but
the linear Raschitem calibrations are adjusted so that the effects ofthis ability distribution areremoved.
The resulting sample-free item difficulties canbe used to define ageneral variable of meaning which
can reach beyond the particular occasion of calibration.

Each person's raw score is specific to the pattern of item difficulties in the particular test he or
she takes, butthe linear Rasch ability measures are adjusted so that the effects of this item difficulty
distribution are removedand the person's ability is generalized onto the variable defined by thewhole
set of calibrated items.

Whetheranyparticular set ofcalibrations andmeasures are in fact test-free andsample-free can
be verified at each step by simple methods (Wright and Stone, 1979). Verification of fit to the Rasch
measurementmodel provides an explicit quantitative definition of item function validity and person
performance validity and enables continuous quality control over item calibration and person
measurement.

With a workable calibration procedure and a method for the evaluation of fit, it becomes
practical to turn ourattention to a critical examination of the calibrated items to seewhat it is that they
imply about the possibility of a variable of some useful generality . We can find out whether our
calibrated items spread outin away that shows coherent and meaningful direction . We can examine
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the hierarchy of item content and evaluate the extent to which this order indicates a line of increasing
competence ofrecognizable meaning .

DEFININGAVARIABLE

Ourintention now is to show how calibrated items canbe used to define avariable and how to
find outwhether the resulting operational definition ofthe variable makescontentandconstruct sense.
We beginby examiningthe degree to whichthe spread of item difficulties exceeds the standard error
of their estimates, that is, the degree to whichthe data have given adirection to the variable . Consider,
for example, the estimates oftwo item difficulties with their respective standard errors of estimation .
In order for these two items to define a line betweenthem, the difference between their estimates must
be substantially greater thanthe standarderror ofthis difference! Only when thetwoestimates are well
separated by several calibration standard errors can we begin to see a line between the two items
suggesting adirection for the variable defined by their content and order.

If, however, when we comparetwoitem difficulty estimates, each bracketed by astandard error
or two, they overlap substantially, then we cannot assume that the two values differ in difficulty, and
as a result, cannot see a direction for the variable . Instead, the items define apointwithout direction.
If the items do not spread out, then what have we defined? Only a point, perhaps on some variable,
perhaps not. Butthe extent and hence the meaning of the variable is still missing.

Figure 12.2 illustrates this idea . In the first example we have itemsAandB separated from each
other by several standard errors . Even with twoitems we see adirection to the variable as pointed out
by these twoitems. In the second example, however, we find thetwo items so close to each otherthat,
considering their standard errors, they are not separable . We have apoint. But no direction has been
established and so no quantifiable concept of the variable has as yet been implied. Only when items
can be separated along the line representing the variable of interest have we begunto realize aconstruct .

Figure 12.2

Defining a variable .

EXAMPLE 1

EXAMPLE 2

ITEM A

	

ITEM B

ERROR ERROR

ITEMS
A B
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IMPLIED
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In this discussion we have introduced a method by which objective scholastic variables can be
constructed . Developing banks of Rasch calibrated items is the method . Item analysis is the tool by
which these banks are built . The measurement model of George Rasch provides the means by which
we construct these measurements . It provides a workable calibration procedure and a method for the
evaluation offit. Successful itembankconstruction canmeet the criteria that Thurstone stated in defining
the requirements of measurement - valid ability scales which transcend their particular items .

In the accompanying chapters we explore each of the above areas in detail .



13. ITEM BANKING

This chapter discusses the curricular implications ofitem bankingand its usefulness to all who
depend on tests to evaluate educational achievement. We review the psychometric basis ofitem banking
and give equations for building a bank. We conclude by showing how item quality control can be
maintained over abank of items.

THE IDEAOFITEMBANKING

Amere collection of items is notan item bank. An item bank is a set ofcarefully composed and
jointly calibrated items that develop, define andquantify a single common themeandhenceprovidean
operational definition of one variable .

The first step in building an item bank is to develop its specifications . If we are building a
scholastic variable it will be necessary to define the curriculum area andthen to determinewhichitems
explicate it . To do so requires the expertise ofprofessionals familiar with that curriculum area : teachers
and curriculum experts.

We need aplan for the scholastic variable which is sufficiently detailed to specify howthe items
are expected to be ordered by difficulty along one main line of scholastic growth. This is important
because it is in this beginning step that we demonstrateourunderstanding ofthe line of inquiry that is
intended to define the scholastic variable underconstruction . If we discover that we do nothave aclear
enough understanding ofthe items to arrangethemby difficulty order, then we have discovered that we
do notknow enough about what we are trying to do to succeed.

To accomplish item development:

1 .

	

Choose or write an item that you consider clearly on the line of the scholastic
variable to be constructed.

Intended Difficulty: ----1----> Harder

2.

	

Adda second item written to be easier than the first item .

Intended Difficulty : ----2----1----> Harder

3 .

	

Addathird item written to be harder than the first item.

Intended Difficulty: ----2----1----3----> Harder

4.

	

Next, add a fourth item positioned between items one and two and afifth
positioned between items one and three.

Intended Difficulty : ----2----4----1----5----3---> Harder
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5.

	

Continue this stepwise process by positioning successively easier and harder items
which extend the line of existing items and by filling in the spaces between these items
with additional items positioned in difficulty between pairs of existing items.

This process ofconstructing the variable with itemscanbe refinedby re-positioning itemsupon
further consideration andby review by other experts. The final line of items should show an ordering
ofitemspositioned by their intended difficulty from the easiest to the hardest. Successful construction
of such aline of ordered items is an indication that the essence ofthe variable is understood by the item
writers, and that the growth line impliedby the scholastic variable and the items which define it belong
together andlead somewhere. Whenwe are notable successfully to position items alonga line of growth
by their difficulty, that is a sign that we do not understand ouridea of the variable or the items required
to describe it well enough to proceed.

Each item must represent an element in the strand ofthe scholastic variable we are building and
each item must test some knowledge, skill or behavior at a specified position along the increase ofthat
variable . When the items are empirically calibrated, these "conceptual" positions can be verified and
improved. When, finally, the items are well-located along the line of a scholastic variable, then the
scholastic variable has acquired a meaningful and useful operational definition .

Items with low calibration values entail easy tasks that define thelowendofthe variable . Items
with high calibration values entail difficult tasks that define the high endof the variable . Thearrangement
of items by their orderofcalibrations from easy to hard describes the path of learning that most students
follow as they progress alongthe line of the scholastic variable . The empirical item calibrations can
be obtained by applying the Rasch model for what ought to happen when a student attempts an item
(Rasch, 1960/1980; Wright & Stone, 1979). This probability model imposes an orderly response
process on the data . Theprobabilities obtained specify what is expected to occur, with some give and
take, because no student will follow the expected line exactly.

The process of item planning, writing and positioning, along with the confrontations and
revisions provoked by subsequent item calibrations, is an integrated andconstructive dialogue between
the item construction phase ofbank developmentand the item calibration phase - between theory and
practice . This dialogue will progress in successive stages as better and better confirmation of item
positions is achieved and the operational definition of the scholastic variable evolves. Continual
monitoring of the bank building process is both required and beneficial .

When a scholastic variable is well understood, the task of constructing its item bank is
straightforward. But when the variable is newly conceivedor not clearly understood, the interactive
processbetween item positioninganditem calibrationmayrequiremany stagesbefore useful agreement
between intention and realization, between idea and experience is achieved .

It is important to recognize that the agreement to be achieved between theory andpractice is the
method for control over item development quality . Creative item writing is required to capture and
implementthe essence of ascholastic variable . The empirical calibration of these items gives the item
writers feedback on the utility of their creative efforts.

Reviewing the evolving line of items from easy to hard along the intended variable promotes
communication between the specialists ofcurriculum andteaching andthoseoftest construction . The

108



resulting marriage of these two specialty areas can produce valid scholastic variables defined by
operationally efficient items.

THEUSEFULNESS OFITEMBANKS

Awell constructed and organized item bank enables a wide variety of tests . Each test can be
tailored to the objectives of its use andyet be quantitatively connected to thecommon core ofbank items.
Additional items can be addedwhenever their calibrations are found to fit the growing common core
of calibrated items.

A well constructed item bank provides the elements necessary for designing the best possible
test for any assessment purpose. It is not necessary for every student to take the same test in order to
be able to compare results. Students cantake only those items closest to their level of development as
in computer assisted instruction . The number of items, level, range of difficulty and content can be
selected individually from the bank. Each individualized test maintains quantitative comparability
becauseany test formed from calibrated bank items, on whichavalidpattern ofperformance is obtained,
can be automatically equatedthroughthe calibration of the test items to all ofthe items in the bank and
so to all of the measures produced by every other test that has ever been or might sometime be formed
from this bank.

A very wide-range test for general screening canbe formed as well as narrow tests for specific
purposes. Thetwoprocedures of wide-range screening andnarrow-range measuring canbe combined
to implementadaptive testing . Thewide-range test locates the student's general area on the line of the
scholastic variable andthe narrow-range testpinpoints the location for themostefficient measurement
of that student.

TO CONSTRUCTANITEMBANK:

BUILDING ANITEMBANK

1 .

	

Begin with a pool of items dominated in their content by a common curriculum line .
These items are best when constructed and arranged according to a clear
hierarchy of increasing conceptual difficulty .

2.

	

Apportion these items among test forms so that there is a web of common
items which forms a network of connections among all test forms. This web
can reduce the test size of each form to manageable length and yet distribute all
items over the many forms connected by the web of shared items.

The flow chart in Figure 13 .1 outlines the basic steps necessary to build a pool of coordinated
items into a calibrated bank.

DESIGNINGTESTFORMS

Items must be distributed amongtest forms so that there is a web of common item connections
which maximizes the statistical strength of the linking structure, while meeting the practical require-
ments of the test situation (for details see Wright & Stone, 1979, Chapter 5) .
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Figure 13.1

Flowchart for building an item bank.



Design input includes the number ofitems to be calibrated, the number ofitems desired per form,
thenumber of items desired per link, theexpected difficulty of each item and whetherthe pattern ofform
difficulties is to be horizontal or vertical . The design determines the number of links per form, total
number of links and total number of forms necessary for an optimal web.

Thedesign process constructs a file ofitem specifications from which the banking system works .
This list includes item identification number,name, link number, expected difficulty, correctresponses,
andassociated forms so thatitem test form placements can be checked andlisted item-by-form and also
form-by-item in their within-form position in order to facilitate the verification of content coherence
andform assembly .

CALIBRATINGTESTFORMS

When forms are designed, assembled and administered, student responses are collected,
recorded and filed in an individual record for each student that includes student identification, form
taken, andthe student's item response string . This student file is the form calibration input. The item
file prepared during form design andthe student file obtained from testing, are used to calibrate items
within each form in order to analyze within-form item andstudent fit andthen to calibrate all itemsand
measure all students simultaneously on one common linear variable . (A useful computer programfor
this is BIGSTEPS, Wright & Linacre, 1997.)

The form equating, accomplished by the single simultaneous analysis of all forms, can be
evaluated in detail by explicitly linking the separate analyses of each form in which item difficulties
are still relative to the local origin defined by each form . Connections amongforms canbe made explicit
by a link analysis of the connections of all forms to the single common scale.

Analysis offit evaluates the degree ofconsistency betweenobservationandexpectation andthe
extent to which anysubdivisions of observed data (bygroup, grade level, sex, etc.) produce statistically
equivalent item andform calibrations . There is a hierarchy of fit statistics available to implement fit
analysis .

ITEMWITHIN-FORMFIT

A routine checkon whetheritem difficulties are sample-free is done during form calibration.
If item estimates are invariant with respect to student abilities, student sample subdivisions will give
statistically equivalent item difficulties . Onewayto evaluate sample-freeness is to divide the sample
into raw score subgroups and then to compare the observed successes on each item i in each raw score
subgroup gwith thenumber ofsuccesses predicted forthat subgroup . Ifthe generalparameterestimates
are adequate for describing score group g, then the observed number correct in group g will be near
the estimated model expectation

with model variance

ANALYSISOFFIT

Rg; =1: Nrpri
reg
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CALCULATINGTESTFORMLINKS

Ssi
=IN,

Pri [1- Pri ]
rEg
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exp(b, -d)
Pn l+exp(b,-di)'

N, is the number of students with raw score r and
pri

is the estimated probability of success
for a student with score r on item i, given the general ability and difficulty estimates b, for score r
and d; for test item i .

If observed and expected numbers correct are statistically equivalent, given the model variance
of the observed, then there is no evidence against the conclusion that the subgroup concurs on the
estimated difficulty of item i . The statistical precision (reliability) of this estimate can be specified
with its modeled standard error . Similar analyses can be done for student subgroups defined in other
ways.

Another way to check within-form item fit is to evaluate the agreement between the variable
manifested by item i and the variable defined by the other items . A useful statistic for this is an "infit"
mean square in which the standard squared residual of observation x from its expectation p,

z2 . = (xni - Pni)2 / [pni

	

for each student n's response to item i, is weighted by the information in
the observation, q,,i = pni (1- p.), and summed over theN students .

N
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13.3

jgni

This "infit" statistic is useful because it is robust with respect to idiosyncratic outliers . The alternative
"outfit" statistic that detects outliers is the unweighted mean square,

N
Ui =~z2 /(N-1) .

	

13.4
n

When data fit the model, these statistics estimate one with variance of order [2 / (N-1)] .

For more exact estimates of these variances see Rasch,1980, pp. 193-194 orWright& Masters,
1982, p. 100 .

When the items in each form have been calibrated separately within each form, there are as many
difficulty estimates for each item as there are forms in which it appears . The items that appear in more



than one formprovide the linking data. The differences observed between within-form item calibrations
and the model requirement that each item be characterized by a single difficulty, regardless of form or
sample, estimate the relative difficulty of each form . This form difficulty is then added to the within-
form item calibrations to place every administration of every item onto one common bank scale .

CALIBRATINGFORMS ONTHEBANK

To estimate the shift in difficulty between two forms, k and j, a weighted average of difficulty
differences is calculated for the items linking them

n
J, [di; -dik IWikj

where dik and d ij

	

are the estimated difficulties of linking item i in forms k and j, n is the number

of items in this link, and w ikj =1 / (sek + sej) is an information weight based on the item calibration

standard errors, se ik , and se ii . The standard error of the difficulty shift tkl is

n v2
se, =1 /

	

wikJ
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The shift tk.I estimates the difference in origins of forms kand j . A shift is calculated for every
pair of forms linked by common items . When every possible pair offorms is linked, then the difficulty
Tk of form k is the average shift for form k over all forms.

whereMis the number of forms and tkk = 0 . The standard error of form difficulty Tk is

M lit

sek = (Y sekj 2
i

tkg = tjk = 0

/M

13.5

13.7

13.8

Equations 13.5 through 13.8 assume every form is linked to every other form. When links are
missing between some forms, as is usually the case, an iterative procedure can be used to bridge the
empty cells . Empty cells can be started at

13.9

and the form calibrations Tk improved step-by-step by calculating temporary form difficulties with
Equation 13.7, adjusting empty cells to



and then reapplying Equation 13.7 iteratively until the successive values of T stabilize . This process
works as long as every form can be reached from every other form by some chain of links.

This procedure sets the bank origin at the center of all forms so that form difficulty Tk is the
difference between the center of form k and the center of the bank .

ITEM WITHIN-LINKFITANALYSIS

To verify the extent to which the linking items perform adequately within their forms combine
the item-within-form fit statistics of Equation 13.3 into a within-form fit statistic for the link .

forms .

ITEM BETWEEN-LINK FITANALYSIS

tk; =T -T and tjk =T -Tk
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Within form link fit =
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where Vk is the fit of item i in form k

V, is the fit of item i in formj, and

n is the number of items in the link .

This statistic estimates one with variance of order [ 1 /n (N -1 )] when the link items fit within

To check the extent to which link items agree on the relative difficulties of their two forms,
calculate the ratio of observed to model variance .

n
i(d;k - dr1

r
)2

Between form link fit =

	

n
Y,wtlg
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where now w;4 = [sek + se;, ] and the within form item difficulties, d;k have been translated to their
bank values d;k by

d;' = drk + Tk

	

13.13

Values substantially greater than one, given expected variance [2 / (n - 1)] , signify that some
items operate differently in the two forms . A plot of d;k versus d;ij over i facilitates the evaluation
of link status and the identification of aberrant items (see Wright& Stone, 1979, pp . 92-95 ; Wright &
Masters, 1982, pp. 114-117) .



LINKWITHIN-BANKFITANALYSIS

To check the extent of agreementamonglinks with respect to formdifficulties review the extent
to which each entry in the matrix of observed shifts between forms is close to the difference in bank
difficulties of the forms . To evaluate whether a link fits the bank, calculate the link residual

where tv is the observed shift between forms k and j, and Tk and T are their bank difficulties .

These link residuals canbe standardized to mean zero and variance oneby dividing them by the
standard errors, se,, of their t,9 of Equation 13.5 and multiplying by [M / (M- 2)]11z whereM is the
number of forms in the linking network.

FORMWITHIN-BANKFITANALYSIS

To check the fit of each form to the bank as a whole calculate

where L is the number of tkl observed for form k.

REVIEWINGTHERESULTINGBANK

yv = t4 -IT -Ti ]
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The criterion value of Vk is also one, this time with variance of order [2 / ( L - 1 )] .

Thefit of a link or a form into the bank is related to how well linking items fit within theirown
forms . When the number of students taking a form is large, the item fit statistic variances canbecome
unrealistically small andmust be taken with agrain of salt. Careful investigation of doubtful items is
always instructive and invariably leads to insight into the nature of the variable . The misfit of links
within the bank is usually associated with particularforms . This canoccurwhen aform is inadvertently
administered to asample of students forwhom it is inappropriate. Thebest items for estimating form
difficulties are those that satisfy the various fit analyses.

Atthis point an ITEM LIST (Figure 13.1) whichgives each item in thebankby sequence number,
legitimate alternatives, correct responses, item name, bank difficulty, between difficulty root mean
square, and within form fit mean square is useful .

Bank difficulty is the averageof the item's difficulties in the forms in which it was calibrated,
adjusted for these forms' local difficulties . Abetween difficulty root mean square, the square root of
the average squared difference between an item's bank equated difficulties in each form andits bank
difficulty is useful to tag potentially errant items. Itemsshowing between difficulty root mean squares
greater than 0 .51ogits are frequently found to have been miskeyed or misprinted in one of the forms in
which they appear .



The within-form item fit mean square of Equation 13.3 can be standardized to mean zero and
variance one so that the average square of these standardized within-form fits can summarize item
performances within forms. Its sign is takenfromthe sign ofthe standardized fit with the largest absolute
value to distinguish between misfit caused by unexpected disorder, indicated by large positive
standardized fits, and misfit caused by unexpected within-form inter-item dependence, indicated by
large negative standardized fits . It is useful to tag items producing values greater than 2 or less than
-2 for further examination.

An ITEM MAP (Figure 13 .1) which displays the variable graphically by plotting the items
according to theirbank difficulties alongthe line ofthe variable whichthey define, will enable teachers
to examine the relationshipbetweenthe content ofthe items andtheir bank difficulties in order to review
the extent to whichthe empirical item order defines acurriculum strandthat agrees with their curriculum
expectations and so has construct validity for them. The item map provides aframework for writing
new items to fill gaps that appear in the definition of the curriculum strand andfor choosing items for
new tests .

AFORMLIST (Figure 13 .1) whichgives each form by form number, name,number ofitemsand
bank difficulty is useful . Each item is listed by form position, item name, key, within form difficulty
and standard error, total within form standardized fit, andbank difficulty . This facilitates the review
of each form as a whole and the identification of form specific anomalies .

AKID LIST (Figure 13.1) which gives each student by identification, ability measure, error
and fit statistic indicates whichstudentsmisfit by displaying theirresponse string and its residuals from
expectation, so that teacher and student see the specific item sources of misfit .

AKID MAP (Figure 13.1) produces a graphical representation of each individual student's
performance. The map for each student showswherethat student andthe items they took stand on the
curriculum strand, which items were answered correctly, the probability of each response, and the
student's percent mastery at each item. This provides teacher, student andparent with apictureofthe
student's performancewhichcombines in oneeasy to readpicture specification ofcriteria mastery with
the identification ofunexpected strengths andweaknesses .

ITEMQUALITYCONTROL

Once items have been banked, the identification and study of misfitting items follows. The
irregularities most often identified are mechanical and clerical such as miskeying, misprinting,
misscoring, more than oneright answer and no right answer. Sometimes, however, item misfit brings
out anomalies in student performance which leads to new andunexpected understanding of how the
subject matter contained in the item is learned and used .

The item infit and outfit mean square fit statistics ofEquations 13.3 and13.4 indicate the degree
to which an item functions as intended. Mean square statistics greaterthan 1 .4 imply noise in item use,
outbreaks of guessing orcarelessness, or the presence of secondary variables correlated negatively with
the intended variable . Mean square statistics less than 0.6 implyinter-item dependencies or the presence
of secondary variables correlated positively with the intended variable .



MISFITPATTERNS

Miskeying and scanner errors usually cause an item to appear more difficult than anticipated,
making item fit too large.

Misfit caused by student behavior, such as guessing and carelessness, is notdiagnosedwell by
item fit statistics because item statistics lump together students behaving differently . Disturbances that
are the consequences of individual student behavior are best detected andbest dealt with through the
fit analysis of individual students (Wright & Stone, 1979, Chapters 4& 7) . Butitem statistics can call
attention to items that tend to provoke irregular behavior in many students .

Guessing is aproblemonly when students inclined to guess are also provoked to guesson items
that are too difficult for them and then only when those particular students happen to guess correctly .
This is more probable for low ability students butmay occurforothers dependingupon the valuegiven
to an outcome or success on the test andthe time allowed. Problems of guessing are best addressedby
targeting test administration so that it does not provoke guessing by allowing enough test time so that
students are not rushedandby reviewing each student's response pattern for the presence of improbable
right answers which might have been achieved by lucky guessing .

Carelessness occurs when ahigh ability student fails an easy item . Thepattern in item statistics
is low difficulty and high fit. This, too, is most usefully andaccurately detectedthroughtheidentification
of improbable wrong answers in individualized person fit analyses .

OTHERSOURCES

When the disturbance in a misfitting item is not mechanical or clerical, the cause is usually
special knowledge. Interactions with curriculum specifics affect the shape of the response curve.
Dependence on askill that only high-ability students are taught canmake an item unfairly easierforthese
high ability students . This will cause the item to have a fit statistic that is improbably low and an
unusually high point biserial . On the other hand, dependence on a skill that is negatively related to
instruction, so that low-ability students possess more of it, can make an item unfairly easier for low-
ability students and, hence, give it a fit statistic that is improbably high . Either way, the interaction
disqualifies the item forusewith students who are unequal in their exposure to the special skill . When
fit is toohigh, the item is unfair to more able students . When fit is too low, the item is unfairto less able
students .

One-step implementation of an item bank canbe done usingacomputer programlike BIGSTEPS
(Wright & Linacre, 1997). Butthe data layout must be organized so that the separate forms flow into
one standard frame of reference . An integrated item banking system like SAMS (Wright, Linacre &
Schultz, 1991) can be used for general school applications .



14. VARIABLE MAPPING

This primer shows how variable mapping is fundamental to measurement. Mapping is where
test development begins (as an idea) and mapping represents its realization (through empirical valida-
tion) and its actionable interpretation .

The map of the variable begins as the blueprint for the design of a test . When the map is well
conceived, its test design implementation will be a straightforward representation in ordered items.
Later, as the mapis empirically verified by candidates' responses, it results in the successful implemen-
tation andrealization of an idea . The map of the variable pictures the idea and its realization.

Alfred Binet is better known for the American versions of his tests than for his ideas on test
construction andmeasurement. ButBinet's work in test development represents an excellent exampleof
what is implied in mapping. The first (1905) edition of his test consisted of thirty items arranged in
difficulty order. This item arrangement enabled measuring ability by locating a child "along" the or-
dered item scale.

Gould (1981) faults Binet for a "hodgepodge of diverse activities" in item selection . But,
however diverse, Binet's items were not haphazard .

First of all, it will be noticed that our tests are well arranged in a real order ofincreas-
ing difficulty. It is as the result ofmany trials, that we have established this order; we
have by no means imagined that which we present. If we had left the field clear to our
conjectures, we should certainly not have admitted that it required the space of time
comprised between four and seven years, for a child to learn to repeat 5 figures in place
of 3. Likewise we should neverhave believed that it is only at ten years that the majority
of children are able to repeat the names of the months in correct order without forgetting
any ; or that it is only at ten years that a child recognized all the pieces of our money
(Binet, 1905, p. 185) .

Binet relied upon "numerous" replications of his ordered items to give him the measurement
accuracy he desired.

"One might almost say, "It matters very little what the tests [items] are, so long as they
are numerous"' (1911, p. 329) .

Furthermore, Binet writes that his scale:

"properly speaking, does not permit the measure of intelligence, because intellectual
qualities are not superposable, and therefore cannot be measured as linear surfaces are
measured" (1905, p . 40).

In recognizing this deficiency in his test, Binet shows that he knew that linearity was necessary
for measurement.



Binet's essential ingredients for the construction of measurement were:

1 . Item arrangementby difficulty order
2. Numerous items to insure precision
3. Need for, but recognized difficulty in producing, linear measures .

How else could one build a test? There is no other way except to begin as Binet did: with an
idea for a variable illustrated by items arranged by intended difficulty, andmeasures of persons accord-
ing to their locations among the items along the variable . Every attempt at test construction is made
along such lines whether successful or not.

The hallmark of Binet's efforts is his attempt to benchmark items and persons. The idea of a
benchmarked line of increasing amounts is fundamental in constructing a variable, andthemap of inten-
tions is the blueprint for item selection and/or item construction . Its realization gives us a picture of the
variable and a means for seeing the locations of items and persons along the variable .

A contemporary example is WRAT3 (Wilkinson, 1993). This test implements the achievement
measures: (1) word naming, (2) arithmetic computation and (3) spelling from dictation . The item ar-
rangement is developmental andindicates the sequence of instruction and learning . The items for each
scale proceed from items at the most elementary levels to thoseof increasing difficulty at higher levels .

Arrangement of items in difficulty order is exactly what we want in any measuring tool . The
locations of items along the variable are determined by teacher judgment, curriculum, and learning
experts. Validation is rendered by subjecting the initial item arrangement to empirical testing. When the
arrangement of items is sensible it will be supported by data gathered from students' response to these
items.

The arrangement of items should also correspond to the arrangement of persons. Less able
persons should be locatedbelow more able persons. Ahierarchical correspondence between items and
persons will show easy items in company with less able persons, more difficult items associated with
more able persons.

Determining the calibrations of items and the measures for persons will either substantiate the
original item placement or suggest revisions. This leads to a continuous dialogue between the idea for
the variable and its data . A good initial plan generally results in fewer cycles between idea and data
before an acceptable definition of the intended variable is achieved.

Successful item calibration andperson measurement leads to a map of the variable . The result-
ingmap is no less a "ruler" than one constructed for measuring length . It canbe applied in a similar way
to produce measures as useful as those of anyyardstick .

Figure 14.1 is a map of the WRAT3 variables for word reading, arithmetic computation and
spelling from dictation. It proceeds from left to right in a progressive order of difficulty for items and
ability for persons.

The map of each variable gives sample items showing their progressive difficulty. Below the
items is an absolute equal interval scale providing measures. The location of average grade and age are
also given.
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Figure 14.1

Variable map.
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The map has immediateappeal and application . Like the marks of increasing height of a child on
the doorjamb, themap can show student progress on these three scales . Especially helpful is the overall
view that the map provides, giving a sense of order and coverage to the entire variable of interest . The
map shows the order implied in the variable and it can be used to show the location and subsequent
progress of pupils along the ruler. The absolute scale gives values useful in data analysis . The grade
and age norms show the progress we expect to see at increasing grade and age levels . The wider
spacing observed on the left of the ruler compared to the right indicates the accelerated growth occur-
ring among younger children .

Gathering data on all three scales across persons allows comparisons to be made between
scales . We notice that successfully reading the word "residence" corresponds in general to spelling the
word "kitchen" from dictation and computing the problem "6-2= ." These comparisons enable further
diagnosis andmake the map a useful diagnostic tool .

Although each ruler appears orderly, that order is in need of continual reappraisal and revalida-
tion . Variable definitions are never finished. While there is consistency and order to the WRAT3
scales, a fact demonstrated by five successive editions, it remainsnecessary to monitorcontinuously the
variable in order to keep the map coherent andup-to-date.

Continuous monitoring is required for any variable . Concerns for reliability and validity do not
rest in historical coefficients, but in continuing successful demonstrations that can be referenced by test
consumers in order to determine the extent to which the test is relevant to their intended application.
Such indications of applicability must be continuously provided in order to maintain the variable map
and assure its relevancy.



15. ESTIMATING ITEM CALIBRATIONSAND PERSON MEASURES

INTRODUCTION

In this chapterwe will work through amathematical approach to the estimation ofRaschmodel
item and person parameters (Rasch, 1960). This approach is especially suited to computer implem-
entation and most ofthe computer programs in useemploy versions of the algorithms to be described .
The procedure is called UCON, for unconditional maximum likelihood estimation (MLE) (Wright &
Panchapakasan, 1969; Wright & Douglas, 1977a; Wright & Stone, 1979 ; Wright, 1980) . The term
"unconditional" is used because there is another fully conditional maximum likelihood estimation
(FCON) which uses conditional probabilities to estimate item difficulties directly without involving
anysimultaneous estimation ofperson abilities (Wright, 1968,1980; Wright&Douglas, 1977b). FCON
hasdesirable theoretical properties, but it is difficultto implementwhen there aremore than afew items .
UCON, on the otherhand, approximates the results of FCON closely-and UCON seldom has any
trouble giving useful results.

Although calibration ofitem difficulties is the first stage in the implementation ofthe model, and,
in principle, precedes the measurement of persons, it is convenient to estimate item difficulties and
person abilities simultaneously. The analysis of fit is expedited by the computation of expected
responses of persons to items so that these expected responses can be compared with the observed
responses . These expected responses can be determined most easily when we have simultaneous
estimates of item difficulties and person abilities .

The estimation of statistical model parameters is the fundamental step of applied statistics .
When we view calibration as a problem in statistical estimation, the question arises as to which
estimation procedure to use. There are many estimation procedures: least squares, mean value,
minimumchi-square, maximumlikelihood. The last procedure, MLE, developed by Ronald Fisher in
the 1920's, has a number of useful properties. The Rasch model lends itself to MLE and the useful
properties of MLE translate into substantive fundamentals ofmeasurement.

RASCHMLEPROCEDURES

Once a statistical model is specified, an equation for the probability of occurrence of any
observationfollows. From this equation, thejoint probability of any data setmay also be specified and
thisequation used to answer the question: What is the probability that this particular setofdata occurred
when this set of items was given to this group of persons? This joint probability is known as the
likelihood of the data . It is a function of the observed data and also of the initially unknownbut soon
to be estimated parameters ofthemodel (the item difficulties andperson abilities) . TheMLEprinciple
is to select for the estimates of the parameters that particular set of values whichmakes the likelihood
of the data in hand as large as possible - a maximum.

The likelihood ofthe data is viewed as afunction ofknown data andunknown parameters . The
parameters become the variables . Calculus is employed to find the particular values of theseunknown
parameters that make the likelihood ofthese data a maximum. This is done by taking the derivative of
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the likelihood with respect to each unknown variable and setting this derivative equal to zero. This
produces equations which may be solved for the unknown values, which, when obtained, make the
likelihood of these data as large as it can get.

To review, we:

1) derive an expression for the likelihood of the data,

2) differentiate this expression with respect to each of the unknown parameters,

3)

	

set each result equal to zero and

4) solve the resulting set of equations for the ML item difficulty and person ability
estimates .

When theRasch model is applied to test data there are alargenumber ofunknown parameters
to be estimated, many more than the one or two involved in the usual maximization problem.
Nevertheless, the principles are the same and when the procedure is applied step-by-step to one item
and then one person at a time no complications arise .

Usually when we solve equations for an unknown value in algebra, arithmetic operations like
addition anddivision are sufficient to obtain an explicit solution. Theequation 5X+6=20, for example,
requires one subtraction and one division to reach the exact solution of X = 2.8 . Since this kind of
equation can be solved by afinite number of simple arithmetical steps, it is called explicit .

In contrast, an equation like X + 2 * sin X =.73 does notlend itselfto simple arithmetic . To solve
this "implicit" equation we must resort to anothermethod. A good way to solve this kind of implicit
equation was invented by Isaac Newton in the 1680's .

Newton's method:

1) areasonable guess is provided for the unknown value of X,

2) the "closeness" of this guess to the best solution is determined by noting how much

	

re-
mains when this value forX is substituted in the equation,

3) the difference between the initial value forXandthe remainder is then used to determine a
next "better" value for X,

4) this process for improving the estimate ofXcontinues until the remaindergets small. How
small is left to the discretion of the person solving the equation .

Each step in this process is called an iteration. The iterative process will converge to a solution
for a largeclass of implicit equations, amongwhichareequations incorporatingthe exponentialfunction
exp(X) . All that are needed to implement Newton's method are the derivatives of the equations to be
solved andgood initial guesses. Forthe Raschmodelequations, there are very sensible initial guesses
for the unknown item difficulties and person abilities.
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If we let f(x) = 0 be the equation to be solved for theunknownX, and, if f'(X) is its derivative
with respect to X and, if Xo is the initial guess for the value ofX, then Newton's method specifies the
next better value forX as

MAXIMUMLIKELIHOOD ESTIMATION

Xi
=X - AXO)

f'(XO )
where f(x,) and f'(x,,) are values ofthese functions when we substitute the initial value x� forXand
xt is the new, improved value for X at the end of the first iteration.

We can write a general expression for this relation which shows the value of xt at the end of t
iterations in terms of what it was on the previous iteration :

X = X_ - AX1-1)
t

	

t 1

	

f'(Xt-,

Sincewemaycontinue iterating until ourresult is as accurate as we wish, when should we stop
when estimating parameters for aRasch model? Experience has shown that when reporting values for
item difficulties and person abilities we neverneed accuracy greater than twodecimal places . Enough
accuracy is obtained when we settle for an x t whichmakesthe absolute difference between that x t and
its previous value xt_, in the vicinity of 0.005, that is, "correct" to the second decimal place.

The Rasch probability of any observation x�; for person n on item i is

P(Xn;B., D;)=P�, =[exp Xn,(Bn - D;)]/fl+exp(Bn -D;)

	

15.3

where xn; is the observed data, and may be either 0 or 1,

Bn is the unknown person ability measure and

D; is the unknown item difficulty calibration.

For a test ofL items given to N persons for whom it is reasonable to think of the persons and
items as functioning independently i .e . as specified by Equation 15.3, the joint probability (the
likelihood) of all the datais foundby multiplying together allN byL probabilities ofthe type inEquation
15.3 .

The expression (A * *m) * (A * *n) * (A * *q) may be written with the single base A and an
exponent which is the sum of the three exponents, A * *(m +n + q) . When this notation is applied to
theN x L exponents of the likelihood function, we have

15.1
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L N

where

	

is the likelihood ofthe data, HR is the continued product over n and i of allN*Lprobabilities
i n

L N

Pni and EE is the continued sum over n and i of all N * L exponents (XniBn - XniDi ) .
i n

The double summation in the numeratorcan be distributed over the two terms with the result

exp[Xni (Bn -Di )]
i=1 n=1

	

1+ exp(B. - Di

expCi Bn I]Xni - EDi YXni
n i

	

i n

rl j l[l + exp(B, - DJ]

expl IBn Rn - IDiSi
_ n

	

i

fl ri[1 + eXp(Bn - Di )]
i n

L N

= rl j Pni
i n

L

where IXni = Rn is the right answer count or the raw test score for person n,
i

N

and y- Xni = Si is the right answer count or raw sample score for item i.
n
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15.5

With the likelihood in this form we see that the statistics required are notthe separate person-
to-item responses butonly their accumulations into the person scores Rn andthe item scores Si . Further,
the Rn 's and Si 's are separated from each other. Each set multiplies its ownparameters Bn 's and Di 's
in turn . This separation is the defining characteristic of a Fisher "sufficient" statistic (Fisher, 1958)
and also the algebraic requirement for Rasch objectivity .

Although Rn and Si are sufficient to estimate Bn and Di these scores themselves are not
satisfactory as measures . Person score is notfree from the particular item difficulties encountered in
the test . Nor is item score Si free from the ability distribution of the persons whohappen to be taking
the item. Independence from these local factors requires adjusting the observed Rn and Si for the item



difficulty and person ability distributions they depend on . This adjustment is necessary to produce the
test-free person measures and sample-free item calibrations we desire .

In order to obtain the maximum ofthis likelihood with respect to possible values of the unknown
parameters, the likelihood needs to be differentiated with respect to the B's and D's in turn . This task
is easier when we take the logarithm ofthe likelihood . We can do that because the values which make
the logarithm of a function a maximum also make that function a maximum.

Since log(exp X) = X, the numerator of the log likelihood becomes simple. The denominator

turns into a subtraction and the double product becomes a double sum of log 11 + exp(B. - Di )] .

N

	

L

	

L N

Thus K= log n =

	

BnRn -

	

DiS, -

	

I log[l + exp(Bn - DJ] is the log-likelihood . 15.6
n

Since the derivative of the exponential function, exp X, reproduces itself and the derivative of
the logarithmic function, log Y, is 1/Y, the differentials required to produce solutions for aK / aB and
aK / aD are

a log[l + exp(Bn - Di ) ] -

	

exp(Bn - Di)

a (D i S i ) / aD i = S

a(B t R n ) / aB n = R,i

dB,,

	

1 + exp(B n - Di )

a

	

_ _log1l +exp(Bn - Di )] -	exp(Bn - Di )

	

_
aDi	1 + exp(Bn - Di)

By differentiating the log likelihood Kwith respectto each Di and then, separately, with respect
to each Bn and equating each of these derivatives to zero to locate maxima, we obtain the two sets of
equations .

N

	

exp(Bn - Di)-S i + 7
n

	

1 + exp (B n -

	

D i
N

_ -Si +

	

Pni = 0 for each i = 1, L
n

aK = + R - L

	

exp(Bn - Di)
aBn

	

n

	

i 1 + exp(Bn - Di)
L

_ +Rn -

	

Pni = 0

	

for each n = 1, N
i

Pni

15.8



Each ofthe firstLequations containsNunknown Bn 's andone unknown Di . Each ofthe second

Nequations contains L unknown Di 's and one unknown Bn .

Newton's method uses the derivative of the equation to be solved, therefore we need to take the
derivatives of the above implicit equations with respect to Di and Bn once again in order to solve them
by Newton's method. These derivatives are the second derivatives of the likelihood .

Since P . =

	

exp(Bn
- Di)

	

-

	

1

	

15.9n' l+exp(B.-Di ) l+exp(D,-Bn )

the differentials needed to find the second derivatives of K with respect to Bn and D, are

dK N

- - Si + Y, Pni
n

a2K __

	

_
aDi2

	

-1 Pni(1

	

Pni ) _ -I Qni for i=1,Ln

	

n

2K_ - 1 Pni (1

	

Pni) - - I Q niUBn

for n =1, N

	

where Qni = Pni (1- Pni )

	

15.10

These second derivatives are the product of Pni and its complement (1-Pni ) combined in

Qni = Pni (1- Pni ) where Pni is the probability that person n gets item i correct.

Since Qni >_ 0, these second derivatives are always negative . This tells us that the solutions to
Equation 15.8 must be maxima.

Before we apply Newton's method to solve these equations, three uncertainties need to be
resolved .

1 .

	

What shall we use for initial values of the estimates? Although Newton's method is usually
robust with respect to the choice of an initial estimate (meaning we will get to the same final
estimate no matter where we start), we will get convergence most rapidly if we use initial
estimates which are not far from the final estimates .

We can do this for items, by approximating the abilities of all persons at zero .
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Then the MLE's of Equation 15.8 have the explicit solution :

so

and

N

	

"

	

exp(-Di )

	

_

	

Nexp(-Di )
Pn`

_

	

n

	

1 +exp(-D.)

	

1 +exp(-Di)

"

	

Nexp(-Di ) -
-S; + y Pni = -Si +

	

- 0
1 +exp(-Di )

exp(-Di ) = Si / (N - Si )

and

	

Di = -log[
N

Si
Si

	

=+log N
S.

Si

	

for i = 1, L

	

15.11
i

This initial estimate is a simple logarithmic transformation (the logit) of the item scores .

By approximating the difficulties of all items at zero in the equations for the B's in Equation
15.8, we find a similar explicit solution for Bn as a simple logarithmic transformation of the
raw scores for person n

Bn =1ogl

	

Rn

	

I for n = l, N
L-R,,

2. Although it may appear that the equations in 15 .8 have N unknowns B1 , B2 , . . ., BN only the
statistics R1 , R2 , . . ., RL_1 are available to estimate them. When data is complete the values of
Bn which can be estimated from a test ofL items may therefore be indexed by R rather than by
n . Indexing persons by their raw scores highlights the fact that a raw score for a person is the
sufficient statistic for estimating that person's ability .

In general, there will be more than one person with a given raw score . Since as far as ability
estimation is concerned, we areunable to distinguish among persons who took the same items and earned
the same raw score . We may group persons who took the same items according to their raw score .
If we let N, be the number of persons who scored R on the test, we may rewrite Equations 15.8 and
15.10 as

15.12

-Si + Y, NR PRi = 0

	

15.13
R=1

_a _ax

	

L-1

=-j NRPRi(1-PRi)aDi aDi

	

R
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and Equation 15.12 as

and

BR _ log[
L
R
R

	

15.14
- ]

where

	

PRi = exp(BR - D;) / [l + exp(BR -D;)]

QRi = PRi ( 1 - PRi )

3 . Were we to apply Newton's method to these equations as they stand, we would find that the
iteration process would not converge . This is because our set ofequations contains one too many
unknowns to be uniquely estimated.

The Rasch model specifies the probability of a response by a person to an item as a function
of the difference between their locations on a variable .

The probability that a person with ability B� gets an item with difficulty D; correct, is exactly

the same as the probability for a person with ability (B� + 3), say, responding to an item with difficulty

(D; + 3), because (B,, + 3) - (Di + 3) = B,, - D; . Since our choice of 3 was arbitrary, we see that an
infinite set ofB's andD's will satisfy our equations providing only that they maintain their differences

(B� - Dj) .

This problem of too many unknowns can be overcome by placing one restriction on the set of
B,,'s and D;'s . The particulars of this restriction are not important algebraically . We could set any

person, say B,, equal to a constant or any item, say D3 , equal to some other constant . Any constant will
do . We have found itconvenient forcalibration to use the restriction that the sum ofour set ofestimated

L

item difficulties

	

Di - 0 be zero . This centering on the test has the effect ofreducing our unknowns
i

from (L-1)+L=2L-1 to (L-1)+(L-1)=2L-2 .

In order to maintain the possibility of convergence, we must implement this restriction
each time we derive an improved set of (D;) values . Centering is accomplished by finding the mean

ofthe current estimates ofthe Di 's and subtracting this mean from each D; . This is done ateach iteration .

Thus the initial centered set of Di 's are

Di = log I N-S; -~ to N-Si lL
g S; 15.16



SOLVINGTHEMAXIMUMLIKELIHOOD EQUATIONS

Here is asystematic procedure for solving these equations andhenceobtaining estimates ofitem
difficulty andperson ability (Once all perfect andzero scores have been removedfrom the data matrix) .

1 . Determine the initial item estimates from Equation 15.16. Items are centered .

2. Determinethe initial person estimates fromEquation 15.15 . Persons do notneed to be centered .
In fact, they must notbe.

3. Using all person estimates and the current estimate for each item i, apply Newton's method to

Equation 15.13 until differencesbetween successive estimates ofeach Di that is, (Di' - Dj are
less than, say, .005 logits . The process is,

L-1

Si -INRPRi

D,=Di- L-,R

	

15.17
NR QRi

R

in which Di is the current estimate and Di is the next improved estimate . The

successive differences are (Di - Dj .

4. Repeat step 3 for all items, i =1, L. When we have finished, we have a new and better set
of Di estimates.

5. Center these new D estimates.

D,'= Di - D.

	

15.18

6.

	

Using these new centered Di estimates and the person estimate for a score of r= 1
(that is, B, ), apply Newton's method to Equation 15.10 expressed in terms of r instead
of n.

until differences between successive estimates of Br that is (B; - Br ) are less than,
say, .0051ogits .

The process is,

Br = Br -f'

15.19
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in which B, is the currentestimate and B, is the improved estimate . Thesuccessive differences

are (BT - B, ) .

7. Repeat step 6 for the second, then third, etc., raw score. When we have reached r = L - 1
we have a new and better set of B, estimates. Do not center these B, .

8 .

	

Atthis stage we have reached the endof the first major "loop" . This loop comprised L minor
loops on the items and L-1 minor loops on the person scores .

At the end of each major loop we determine whether the likelihood has been sufficiently
maximized by reviewing our convergence criterion for all 2L-1 estimates . Since it is unlikely that
satisfactory convergence will have been achieved in one major loop, we proceed to additional major
loops.

9.

	

Usingthe latest person estimates andthe currentvalue for D,, apply Newton's method as in Step
3 until convergence. Repeat for all items.

10 . Center the latest set of D;'s .

11 . Usingthese latestcentered D; andthe current valuefor B,, applyNewton's method, Step 6, until
convergence . Repeat for all raw scores from 2 to L-1 .

12 . Determinewhether asatisfactory overall convergence hasbeen obtained at the endof this second
major loop and so on.

This estimation procedure usually converges to a criterion of .0051ogits in 5 or 6 major loops.
There are rare circumstances in which an MLEcannot be obtained . When there are one or two items
or persons separatedfrom the nucleus ofthe databy many logits, thenround-offproblems canoccurwith
the procedureoutlined above . When this procedure fails it is almost always due to inaccurate editing
of the original data or to failure to center items each time a new set of estimates is produced .

Because of the way estimates are calculated in UCON there is a slight bias . This bias can be
corrected by shrinking all values of B and D by the factor (L- 1)/L (Wright, 1988) .

STANDARDERRORS OFESTIMATES

A keybenefit of agood estimation procedure is the simultaneous estimation of standard errors
for its estimates . These standard errors specify themodeleddegree ofprecision (reliability) with which
the estimates can be obtained.

Afamiliar example ofthis is estimating amean from arandom sample of N observations . The
sample mean is, in many ways, a"best" estimate ofthe locationparameterofthe distribution from which

therandom sample wasdrawn. The standard error ofamean is givenby S / N v2, whereSis an estimate
ofthe dispersion of the distribution calculated from the standard deviation oftheN observations . Notice
that this standard error, or precision ofestimation, is dominatedby the size of the sampleN; the larger
the sample size, the smaller the standard error and so the greater the precision .
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With respect to the MLE procedurejust described for the Rasch model, Ronald Fisher proved
that as long as sample size is reasonably large, the standard error of a ML estimate is well estimated
by the inverse negative square root of the second derivative of the likelihood function .

Fisher also proved that replicates of a MLE will, with sufficiently large sample size, have a
normal distribution with expected value equal to the parameter itselfandwith astandard deviation equal
to this standard error. We will use this result to set confidence limits on our MLE's.

The second derivative of the likelihood, which served as ascaling factor for Newton's method,
now plays an important statistical role . It gives us the standard errors for our estimates.

Thus from Equations 15.10 and 15.14

L-I -v2

`

	

~Y,
NQ

	

2.5 / N112
aDi aDi

	

r r ri

[ -a ( aK

	

L

	

-1/2

SE(Br ) =

	

aBr

	

aBr

	

Qri

	

.`. 2.5 / L__

	

_

	

l2
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15.22

These standard errors are determined by substituting into Pi = exp(Br -Di ) / [l + exp(Br -DJ]

the converged values of the Br and Di estimates and finding Qri = Pri (1- Pri ) .

Item calibration andperson measurement is now complete . Here is a summary of the results of
this MLE.

A set ofL itemsestimates Di is obtained whose sumhasbeen set to zero so that the measuring
system under construction hasbeen centered on the calibrations of these test items. Some values will
be negative, indicating relatively easy itemsand some will be positive, indicating relatively hard items.

Associated with each of the Di estimates is its estimated standard error . We will see that Di 's
with values far from the sample ofpersonshave relatively large standard errors and that standarderrors
get smaller (and henceitems more precisely estimated) as we get closer to items with Di values near
the Br values ofthe majority ofthe persons. This is aconsequenceofthe formula for the standard error

in Equation 15.21 . When Di is equal to Br , thevalueof Pri is 0 .5 andso Qr; is0.25, its maximumpossible

value . This is where the standard error is nearest to its theoretical minimum of 2 / N'/z .

Equation 15.22 shows thewaythe standard error of Br is a function ofthenumber of itemsnear
thatBr. The standard errors ofthe person abilities depend on how many ofthe item difficulties are near
the location ofthat person . Themore items nearthe person, the smaller the standard error ofthe measure.
In a test which is well centered on its target groupwe wouldexpect the standard errors ofperson abilities
to be symmetric around acentralBnear zero, corresponding to about half the items correct, andthat these
standard errors would be large at both ends of our variable line and get smaller towards the center .



Since MLE produces values for all scores r, for r= 1 to r=L- 1, we will have ability estimates
and standard errors for all possible scores, even when, in the calibrating sample, there were no persons
who actually obtained a particular score .



16. PARAMETER ESTIMATION

Parameter estimation for Rasch measurement is usually done by a computer program like
BICAL (Wright & Mead, 1976), BIGSCALE (Wright, Linacre & Schulz, 1990) or BIGSTEPS
(Wright & Linacre, 1997).

ThePROX procedure, however, is amethod of estimation so easy to apply that it is completely
manageable by hand . The simplicity of PROX is useful because it details exactly how the Rasch
model works in practice . PROX accomplishes the primary aims of Rasch item analysis :

1)

	

linearization of item raw scores (P-values) onto an interval scale with relevant errors
of calibrations and

2)

	

adjustment for the sampling effects of person ability.

In so doing, PROX almost always approximates the results obtained by more elaborate
procedures extremely well.

The simplification which enables PROX is to approximate the effects on item calibration of
sample ability with a sample mean and standard deviation and the effects on person measurement of
test item difficulty with a test mean and standard deviation. This simplification makes PROX easy
to apply by hand. Nothing more than the observed distributions of item and persons scores, a hand
calculator and pencil and paper are needed.

PROX is as applicable to large assessment problems like national item banking as it is to
evaluating a small classroom of examinees . The PROX algorithm is the working basis of most
successful computer assisted testing (CAT) programs .

In this chapter we

1)

	

outline the PROX equations, and

2)

	

explain how these equations implement Rasch measurement.

Thechapter canbe used to guidethe user in calibrating items andmeasuringpersonsfrom their
own data . An example worked out in numerical detail canbe found in the second chapter ofBest Test
Design (Wright & Stone, 1979, pp. 28-45) .

THEPROX ESTIMATION EQUATIONS

PROX simplifies the representation ofperson abilities b,, to anormal distribution with sample
mean ability Mand sample ability standard deviation 6 andthe representation of item difficulties d;
to a normal distribution with test item mean difficulty H and test item difficulty standard deviation
w.

135



When that is done, then the measure b n for person n with person score r� on a test ofL items
becomes

where

H = mean difficulty of the L items taken,
X = the scaling necessary to adjust for the
difficulty standard deviation w of these L
items, r = the raw test score of person n ,

and the calibration d; for item i with item score s, from a sample of N persons is

where

	

d; = M+ Y log[(N - s,) / s ; ]
M= mean ability of the N persons taking the test,
Y = the scaling necessary to adjust for the ability
standard deviation 6 of these N persons,
s ; = the raw sample score of item i .

and

	

X = [l + (w2
/ 2.89)]"' = [1 + (w2 / 5.8)]

	

16.3

APPLYING THE PROX ESTIMATION EQUATIONS

b,, = H+Xlog[r� / (L - r,,)]

	

16.1

d; =M+Ylog[(N-s;)/ s;]

	

16.2

Y= [l + (62
/ 2.89]"2 - [1 + (6 2 / 5.8)] .

	

16.4

The divisor 2.89 =1.72 comes from the scaling factor 1 .7 which, because the logistic ogive for
values of 1 .7z, is never more than one percent different from the normal ogive for values of z, brings
the cumulative logistic distribution into approximate coincidence with the cumulative normal
distribution . PROX uses this coincidence to obtain its simplification .

The estimates b� and d; have standard errors

SE(bn)=X[L/ r�(L-r� )] 112 -2.5/L'12	16 .5

SE(d;) = Y[N/ s; (N - s;)] 112 - 2.5 / N'/2 .

	

16.6

This estimation method can be applied to observed item scores s ; by calculating the
sample score logit of item i as

x ; =log[(N-s;)/ s,]

	

16.7
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and to the observed person scores rn by calculating the test score logit of person n as

The scaling coefficients X and Y can be estimated from

for the person logit scaling coefficient and

for the item logit scaling coefficient.

is the item logit variance,

logit mean.

yn = log[rn /(L - r,,)]

	

16.8

X =1 [1 + (U / 2.89)] / [l - (UV / 8.35)])

	

16.9

Y =1 [1 + (V / 2 .89)] / [1- (UV / 8.35)11

	

16.10

Where

	

and 8.35 = 2.89 2 =1.7 4 ,
L

U= ~x2-Lx.2 /(L-1)

	

16.11
a

NV=(IY2 - Ny2 16.12

L

	

N

is the person logit variance, x, _

	

x; / L is the item logit mean, and y, _

	

yn / N is the person

To complete the estimation, we anchor the scale "zero" at the center of the test by defining
H - 0 so that

d; = NJ + Yx; = Y(x ; - x,) because M = -Yx, 16.13

for each item difficulty and
bn = H + Xyn = Xyn because H - 0 16.14

for each person ability .

STANDARD ERRORS

The standard errors of these person and item estimates are

SE(bn ) = X[L / rn(L - rn
)]'l2

- 2.5 / L'12 16.15

and

SE(d) = Y[N / s; (N - s;)]112 - 2.5 / N'/2 . 1616



SAMPLE STATISTICS

The estimates of the person sample mean Mand standard deviation 6 are

M = -Yx,

	

16.17

ANALYSIS OF RESIDUALS

6 = 1.7(Y2 - 1)112

Zni - (Zni -
11,j

/ [l ini (1-
Hj]1/2 .

16.18

When we have estimated bn and w we can use them to obtain the difference between the
model'sprediction andthe data observed . Residuals fromthemodel are calculated by estimating from

bn and d; the model expectation at each response Xni and the subtracting this expectation from the

Xni = 0 or 1 which was actually observed .

The model expectation for Xni is yin, where the Rasch model for ijni is

l yni = exp(Bn - D) / [1 +exp(B, - D,)] and Bn and Di are the parameters which bn and di estimate .

The standardized residual from expectation is

16.19

When the data fit the model this standardized residual is distributed with mean zero and
variance one. Although the expected sampling distribution of Di is not normal, we have found that
values below -2 and above +2 are useful as indicators of noteworthy misfit .

PERSON FIT

We estimate +ini from

Pni =exp(bn-di)/[1+exp(bn-di)] 16.20

where bn and dr. are the estimates of Bn and Dt., and then use the sampling distributions for

Zni = (/L ni - Pni ) / [Pni ,,,(I- Pni)]'i2 of zni - N(0,1) and zn X; as guidelines for evaluating the extent to
which any particular set of data is sufficiently coherent to construct useful measurement.

To measure the validity of aperson's performance, calculate the sum of squared residuals zni
for that person . When the person's behavior is useful for measurement because their response pattern
fits the measurementmodel, then theirsumof square standard residuals will approximate achi-square
statistic



with degrees of freedom

and a mean square statistic

with degrees of freedom fn
and . .

ITEM FIT

fn =(L-1)(N-1)/N

vn = Cn l J n
~. Ffn,

16.21

16.22

16.23

To measure the validity of an item's usage calculate the sum of squared residuals Zn for that
item . When the item is useful for measurement because the pattern of its responses fits the
measurementmodel, then its sum of squared standard residuals will approximate a chi-square statistic

N

Zni
2 2 2_
- Ci

~.
Xf

n

16.24

with degrees of freedom

fi =(N-1)(L-1)I L 16.25

and a mean square statistic

Ui = C,? l J
-

f Ff 16.26i, -

with degrees of freedom f,. and . .



THERESPONSE MATRIX

UNDERSTANDING HOWTHERASCHMODELWORKS

Nowwe will reexamine the details of PROX to discover what is accomplished in its
application . The PROX formula enables a simple and intuitive approach to understanding how
Rasch item calibration and person measurement work.

Consider the response matrix :

Persons

Item
Scores

Items

n

i becomes P = Si / N, the proportion of correct responses to item i.
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As measures, however, raw counts have two serious drawbacks.

Person
Scores

x�i = rn

When there is no missing data* so that this response matrix is complete, then every row total
gives a person score for the same set of items and every column total gives an item score for the same
set of persons. These item scores are reported as "P-values" in traditional item analysis . "P-values"

are calculated by dividing the item score s i by the number of personsN so that the P-value for item

If the person raw scores r� and item P-values P = Si / N were linear objective quantifiers of
person ability and item difficulty,ourwork would seem done at this point. Indeed, person raw scores
and item P-values are as far as traditional person measurement and item analysis go . As a
consequence, most ofthe research results in educationalmeasurementhave been limited to what little
can be done when raw counts of right answers are mistaken for measures.

" In the application of PROX (or any other Rasch model procedure), the data need not be complete . Missing
data can be accommodated without trouble . This happens because the measurement structure specified
by the model needs only enough data to identify a finite estimate for each person and each item . As a result
none of the estimation procedures need complete data to obtain good estimates .

1 n L

N

Response
L

n /Lni=1 for correct
i

Xni=O for incorrect

N



RAW SCORES ARENON-LINEAR

Raw counts are bounded in range between none rightand all right. Because of this they cannot
represent abilities or difficulties on a linear (interval) scale. But, ifthey are not linear, then the results
of the arithmetic used in statistical analysis become misleading . In order to enable the substantial
benefits of statistical analysis, we must transform the non-linear scores into linear measures .

RAW SCORES ARETEST AND SAMPLE DEPENDENT

Each observed response is the result of a person of some ability attempting an item of some
difficulty . Because of this, the magnitudes of item scores s ; andP-values P,, which are summed over
persons, depend on the particular abilities of this particular sample of persons and so are sample
dependent.

The magnitudes of person scores rn , which are summed over items, depend, in turn, on the
particular difficulties of this particular set of items and so are test dependent.

In order to make general use of the information about person measures and item difficulties
which is contained in the test item response data, we must liberate the numerical representations of
person measures and item difficulties from the local effects they have on one another. We must
construct objective person measures which are test-free and objective item calibrations which are
sample-free .

CONVERTING NON-LINEAR, LOCALLYDEPENDENT ITEM ANDPERSON SCORES TO
LINEAR, INDEPENDENT ITEM CALIBRATIONS AND PERSON MEASURES

The way the Rasch model linearizes raw scores and frees them of sample and test depen-
dency can be seen in the following two PROX formulae :

For Items:

_

	

P

	

2

	

I i2

to g

	

(1
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1 +

	

+ M =>

	

d

For Persons :

1 o g

	

rn

	

1 +

	

w
2

	

+

	

H

	

=>

	

b n
( 1

	

-

	

r n )

	

2 . 7
[log odds

	

[scales out

	

[adjusts out

	

[Test-freed
linearize person

	

the test item

	

the test item ==>

	

person
raw scores]

	

variance wz ]

	

mean H]

	

measurement]

For more detail see the example of PROX item calibration and person measure in Chapter
2 of Best Test Design (Wright & Stone, 1979, pp. 28-45) .

P ; 2 .7
[log odds [scales out [adjusts out [Test-freed
linearize item the sample the sample => item
P-values] variance 62 ] mean H} calibration]



THESTANDARDERROR OF AMEASURE

IATIONAND MISFIT ANALYSIS

The most immediate and also most convenient quantification of the precision of an empirical
measure is the standard error (SE) of the measure's estimate . The magnitude of the SE is either
determined from the factual structure ofthe measuring instrument (as in "to the nearest sixteenth of an
inch"on aruler) or calculated fromthemeasurementmodelused to calibrate the instrument . It is usually
estimated from the same data used to estimate the measure. This SE estimates the standard deviation
of innumerable independent replications of the data collecting process, when the only disturbances
imagined are those anticipated by the measurementmodel .

The convenience ofthe SE quantification ofprecision is that it is in the units ofthemeasureand
so can be used directly to specify :

1) an "identification of misfit", as in outside

	

three standard errors (SE) ;

2) a "region of confidence", as in within

	

twostandard errors (SE) ;

3) an "allowance for error", as in

	

one standard error (SE) .

The inconvenience of the SE is that when several samples of independent data bearing on a
common quantity to be estimated are combined to form a"better" estimate or when it is useful to keep
track of the sequential improvement of "precision" during a stepwise process of data collecting, the
corresponding SE's are not additive .

INFORMATION

Ronald Fisher devisedacure for this inconvenience in the 1920's (e.g . 1935,p. 182 ff.) . While
the SE's of a series of independently obtained, but commonly bearing, commensurable measures are
not additive, their inverse squares are. When applied to Raschmeasurement "Fisher information" can
be defined as

I=C/SEZ

where C= aconstant chosen to specify convenient "information" units.

For dichotomous data, as in test item responses scored 0 or 1, the inverse square of each
measure's SE is proportional to a count of how many "standard" items inform that measure.

In particular, when C --_ 4, then
1=4/SE2

becomes the minimumnumber ofperfectly targeted (i.e . maximallyinformative) items it wouldtake to
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produce this SE . I is the "information" in the estimate . We will call the units of I = 4 / SE2 "EQUITS," for
EQUivalent on-target ITemS.

The additivity of I = 4 / SE2 can be seen in the algebraic definition of SE for Rasch modeled
dichotomous data.

Then

where

L

is the probability of a right answer given person measure B and item difficulty D; , and

	

signifiesa
summation over the L items taken . Thus

is an expression which adds [P(1- P,)] over items .

When every item is perfectly targeted, then

P=1/2,

and so

COMPARINGINFORMATION

L

SE2=1/
[
Y,P(1-P)

P = exp(B - Dt) / [l + exp(B - D;)]

L

I=(4/SE2)=4*L.[P(1-P)1i

P(1-P,.)=1/4

L

I=4* YP,i (1-P) =L

the number of responses to perfectly targeted items necessary in order to obtain this
particular

L

	

1/2

SE= 1/ ylpi(1-P)

When we wish to compare the information value of a pair of measures, we can use their
corresponding SE's and this definition of information, I = (4 / SE2 ), to find out which measure contains
more information and by how many "equivalent on-target items" or "equits" .



Thus for measures B, and B2 we have

for which the advantage in equits of measure B2 over measure B, is

Comparison ofthe information values ofa pair of measures can also be calculated from theratio
of their error variances,

This ratio, RE2,, gives the "information" provided by the second measure B2 in units of the
"information" provided by the first B,, i .e ., it is the "Relative Efficiency" of the second measure with
respect to the first .

MISFIT ANALYSIS

Maximum information is obtained whenP = .5 so thatP (1- P) = .25 . While this would appear
ideal, there is a catch . Fit analysis requires the possibility of improbable, and hence unexpected
responses - responses for which

Then, when the highly probable response is notobserved, misfit and hence invalidity is implied .
Were all items targeted successfully near P = .5, this kind of fit analysis for verification of response
validity would not be possible . Since X= 0 or 1 would be equally likely, no improbable condition with
which to detect misfit could be observed.

THE EFFICIENCY - FITPARADOX

I, = 4 / SE, equits

12 = 4 /SE2 equits

I2 -I, =4(1/SE2-1/SE,2 )

= 4(SE,2 - SE2) / SE,2 *SEZ

RE2, = 12 / I, =SE,, ISE2

P-~ 1 butX=0 or P-~ 0 but X=1.

1 . Responses to items which provide maximum information because P ---) .5 allow
minimummisfitdetection .

2 .

	

Responses to items which allow maximum misfit detection because P --4 0 or 1
provide minimum information .

Best test design requires a compromise between these extremes . The simultaneous avoidance
ofboth extremes benefits greatly from prior knowledge concerning the relative locations of items and
persons.



BESTTESTDESIGN

We want the items to elicit maximum information from the person . But we must balance the
amount of information (reliability, precision) gained against the concomitant loss of opportunity to
detect misfit and, hence, to verify validity . Where we have no knowledge of a person's ability, then
itemsmust be ofadifficulty range sufficiently wide to coverthe reasonable possibilities. This means
that while some items will identify the location of the person between items passed and items failed,
other items will inevitably turn out to be too far fromthe person's discovered ability to contribute much
information aboutthat ability. Theoff-target items, however, will be useful for identifying misfit and
thus verifying validity .

When we have auseful expectation aboutwhere aperson is on the variable to be measured, then
item selection canbe accomplished with maximumutility andefficiency by focusing most of the items
on the interval in whichwe expect the person to be located, butincluding some additional intentionally
off-target items to verify the validity of this location .

We useenough targeted items to "fix" the person's location with sufficientprecision (SEZ = 4/ L),
where this Lis thenumber of on-target items) for ourtesting purpose. Then we add enough additional
off-target items (2 logits aboveandbelowwherewe expect the personto be located) to verify the validity
of our measure.

Theefficiency of this design depends on the extent of ourknowledge of the person prior to the
test . Withoutsome prior focusing knowledge, we must use awide rangeofitems. This will guarantee
enough off-target items to validate the measure, butwill cost more items than anarrow on-target test
to reach equivalent precision.

Targeting an educational test to a particular student requires both the art of knowingthe student
andthe science ofmeasurement. Teaching intuition canguide expectations in the absenceofquantitative
knowledge. When previous measurements are also available, they too can be utilized .

INFORMATION, EFFICIENCYANDPRECISION

Theway informationandefficiency enter intojudgingthe value of an observation is through their
bearing on the precision of measurement. Measurement precision depends on the number of items in

the performance and on the difference in logits JB- DI between each item difficulty andthe person's

ability. We can simplify the evaluation of each item's contribution to our knowledgeofthe person by
calculating what percent of a best possible item the item in question contributes. Theseare the values
of INF entered in Column 2 of Table 17.1 .

We call this information index INF= 400[P(1- P)]

the "relative efficiency" of the observation.

The relative efficiency (INF) is the I defined in Equation 17.8 but scaled by the factor 100 so



Table 17.1

Information and Misfit Statistics

1
LOGIT DISTANCE
BETWEEN PERSON

2

	

3

	

4
% EFFICIENCY OF AN

	

NUMBER OF ITEMS L

	

IMPROBABILITY OF AN
OBSERVATIONAT

	

NEEDED TO MAINTAIN UNEXPECTED ANSWER

Wright & Stone, 1979. Best Test Design. Chicago : MESA Press . Pages 73 and 216 .

AND ITEM

(B-Dj

IB-DI

INF = 400P(1- P)

EQUAL PRECISION

E L =1000 / INF

AT IB-Dj

P =1 / [l + exp( IB - Dj)]

0.0, 0.3 100 10 .50
0.4, 0.8 90 11 .33
0.9, 1 .2 75 13 .25
1 .3, 1 .4 65 15 .20
1 .4, 1 .5 55 18 .17
1 .7, 1 .8 50 20 .14
1 .9, 2.0 45 22 .12

2.1 40 25 .11
2.2 36 28 .10
2.3 33 30 .09
2.4 31 32 .08
2.5 28 36 .08
2.6 25 40 .07
2.7 23 43 .06
2.8 21 48 .06
2.9 20 50 .05
3.0 18 55 .05

3.1 16 61 .04
3.2 15 66 .04
3.3 14 73 .04
3.4 12 83 .03
3.5 11 91 .03
3.6 10 100 .03
3.7 9 106 .02
3.8 9 117 .02
3.9 8 129 .02
4.0 7 142 .02

4.1 6 156 .02
4.2 6 172 .02
4.3 5 189 .01
4.4 5 209 .01
4.5 4 230 .01
4.6 4 254 .01



that it will give the amount of information provided by the observation at IB - DI as a percentage of the

maximum information that one observation "exactly on target" at IB- DI = 0 would provide .

The relative efficiency (INF) ofan observation can be used to estimate the potential value of any
particular item for measuring aparticular person . This can be done by considering how much information
would be lost by removing that item from the test . Thus, INF = 23 % for IB - DI = 2.7 indicates how
much of a perfectly targeted item we gain by including that item in the measurement of the person and
conversely how much we lose by omitting that item . The "how much" is 23% of the most we could get
from one item exactly on target at IB- DI = 0.

When an item and person are close to one another

	

IB

	

DI

	

0 ; i.e., on target, then the item
contributes more to the measure ofthe person than when the item andperson are far apart JB

	

DI
The greater the difference between item and person, the greater the number of items needed to obtain
a measure of comparable precision and as a result, the less efficient each item .

Once we have estimates of person ability B to combine with our knowledge of item difficulty
D, wecan determine the relative efficiency ofany item . Column 2 ofTable 17.1 gives thepercent relative
efficiency (INF) by which any observation at the absolute difference JB - D1 given in Column 1, provides
information about that person-item interaction .

It requires five INF = 20% items at IB - DI -> 2.9 to provide as much information about a person
as could be provided by one INF = 100% item at JB- DI ---> 0 .

When IB - D) is three, it takes four times as many items to equal the information to be had from
items in the IB- DI < 1 region, within one logit of the person .

The test length necessary to maintain a specific level of measurement precision is inversely
proportional to the relative efficiency ofthe items used . The number Lof less efficient items necessary
to match the precision of 10 exactly-on-target, IB-4 = 0, items is given in Column 3 of Table 17 .1 .

Column 3 shows L=1000 / INF the number of items needed to maintain equal precision over
the range of possible values of IB - DI .

There is also, however, the verification or validation oftest performance validity to keep in mind.
When we are off-target because IB-DI > 2 or 3, then we can use the possibility of unexpected
(improbable) responses to evaluate response validity . Column 4 in Table 17 .2 gives the probability
of an unexpected response (i .e . the improbability of the observed response) for each value of IB- DI .

Note that as IB-P > 2.8, the probability of an unexpected response such as

X = 0 when (B - D) > 2.8 or X =1 when (B - D) < -2.8



drops to P = .05 . This produces the possibility of a statistically significant "misfit" and hence of a
probable invalidity in that response to that item .

Detailed examples of misfit analysis are given in Chapter 4 of Best Test Design (Wright and
Stone, 1979) .

To standardize our use of Table 17 .1, we use this guide :

------------------------------------
Slightly Off

	

2 < IB-DI < 3

	

- poor efficiency, less than 45%
- misfit detectable when unexpected

responses accumulate
------------------------------------
Rather Off

	

3 < IB- DI < 4

	

- very poor efficiency, less than 18%
- even single unexpected responses

indicate irregularity

Extremely Off

	

4 < IB- DI

	

- virtually no efficiency, less than 7%
unexpected responses always
require diagnosis

Location of Item (Ability-Difficulty)
Difference

Item Efficiency
and Misfit Detection

Right on Target IB- DI < 1 - excellent efficiency, 75% or better
- no misfit analysis possible

Close Enough 1 < IB- DI < 2 - good efficiency, 45% or better
- no misfit analysis possible



18. SEPARATION STATISTICS

Theperson and item separation statistics used in Rasch measurement are still unfamiliar to some
practitioners (Wright, Mead andBell, 1979; Wright andStone, 1979; andWrightandMasters,1982) . This
primer describes the separation statistics and illustrates some of the key concepts and procedures of
separation by workingthrough an example.

Avariable can be thought of as a straight line . To measure successfully we must be able to locate
both items andpersons along this line . Itemsare located by thenumber of persons getting a specific item
correct. Persons are locatedby how many items they were able to answer correctly. Items to the left on
the line are easier than those to the right while persons to the left have less ability than others to the right.

It is necessary to locatepersonsanditems along the variable line with sufficient precision to "see"
betweenthem. Itemsandpersons mustbe separated along this linefor usefulmeasurement to be possible .
But, separation that is too wide usually signifies gaps amongitem difficulties andperson abilities. This
leads to imprecise measurement. Separation that is toonarrow, however, signifies redundancy for testitems
andnotenough differentiation among person abilities to distinguish betweenthem.

Itemsmust be sufficiently well separated in difficulty to identify the direction andmeaning ofthe
variable . To be useful, a selection of items, atest, must separate relevant persons by their performance.
Theitem locations are the operational definition ofthe variable of interest while the person locations are
the application of the variable to measurement.

Theitemandperson separationstatistics in Raschmeasurementprovide an analytical toolby which
to evaluate the successful development ofavariable andwith whichto monitor its continuing utility . Person
separation indicates how efficiently a set of items is able to separate those persons measured . Item
separation indicates howwell asample of people is able to separate those items used in the test . Where
these statistics are expressed as reliabilities, they range from 0.0 to 1 .0 . The higher the value the better
the separation that exists andthe more precise the measurement.

PERSONSEPARATION RELIABILITY

Thedata in Table 18 .1 are fromthe calibration outputoftheBICALprogramdevelopedby Wright
andMead in 1976 . This example is based upon the calibration of 14 Knox Cube tapping items takenby
a sample of 34 persons . These data are also discussed in Wright, Mead and Bell, 1976 and Wright and
Stone, 1979 . At the bottom of the table the Person Separation Reliability (PSR) is given as 0.68. This
indicates that the 14 items used in this version of the Knox Cube Test were able to separate the 34 people
tested to a moderate degree .

The PSR reported by most Raschcomputer programs is calculated by subtracting the ratio of the
sample mean square person measure error (MSEp) to the sample person measure variance (SDn2) from one.
The formula (Wright and Masters, 1982, p.106) is :



Figure 18.1

Original responses of 35 persons to 18 items on the Knox Cube Test.

Wright & Stone, Best Test Design (Chicago: MESA Press, 1979), p.31.

Item Name

PERSON PERSON
NAME 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SCORE

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 7
2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10
3 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 10
4 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 6
5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10
6 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10
7 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 14
8 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10
9 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10

10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 11
11 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 8
12 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 8
13 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 10
14 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 11
15 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 13
16 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 10
17 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 9
18 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 11
19 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 9
20 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 11
21 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 12
22 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 12
23 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 12
24 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 14
25 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 5
26 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10
27 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 7
28 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 10
29 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 10
30 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 9
31 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10
32 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 11
33 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 6
34 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 12
35 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

ITEM
SCORE 35 35 35 32 31 30 31 27 30 24 , 12 6 7 3 1 1 1 0



PSR = 1 _ I MSEp
SDp 2

Table 18.1 showsthe data necessary to calculate the PSRfor this example. Usingthese data the
equation becomes:

32.99PSR=1-
104.93

=0.68

	

18.2

This Person Separation Reliability is comparable to the KR20 measure of internal consistency .
The PSRcanbe corrected for degrees offreedom[L/(L-1)] andyield a result which is very similar to that
of the KR20. With this correction the PSR becomes:

PSR=
C
1_ 32.99 ] x

104.93

PSR = 0.74

This "corrected" Person Separation Reliability is close in both formulation andvalue to theKR20
reliability coefficient. In order to compare the PSR to the KR20, we need to return to the original item-
by-score matrix analyzed by theRaschcomputerprogram, BICAL. This matrix is given in Figure 18.1 and
comesfromWright andStone, 1979,p.31 . Calculation oftheKR20 on this 14 x34 matrix produces aKR20
of0.72. Thedifferencebetween this KR20 of0.72 andthe "corrected"PSRof0.74 is due to the curvilinear
relation between the nonlinear raw scores on which the KR20 is based andthe linear logit measures on
which the PSR is based.

These calculations of the PSR of Rasch psychometrics and the KR20 on the same data matrix
illustrate their equivalence and elucidate the calculation of person separation reliability .

The similarity of these results canbe seen in the similarity of the formulae :

KR20=[ L
]X[I_Y_pq]

	

18.4
L-1 aY2

and

12
13~

Rasch PSR = [ L ]X[,_,
L-1 SDp2

18.1

18.3

18.5

In these formulaepq is the error variance ofthe response score ofa"person" forwhom the sample
item p-values apply, while MSEp is the sample average measure error variance in logits and 6Y2 is the

sample variance ofthenonlinearrawscores, whileSDP2 is the sample variance ofthe linear logitmeasures .



Table 18.1

Knox Cube Test Output from Bical

Person Separation Reliability = 0 .68 (without D. F . Correction)

(Best Test Design, Page 57, Table 3.4.2)

Raw Score Count Logit Ability Standard Error

11 2 3.31 0.92

10 1 2.53 0.93

9 4 1 .71 0.96

8 5 0.81 1 .03

7 12 -0.22 1 .07

6 3 -1 .19 0.97

5 2 -1 .96 0.86

4 2 -2.61 0.81

3 2 -3.21 0.81

2 1 -3.86 0.88



ITEMSEPARATION RELIABILITY

KR20 is commonly calculatedfor items, but almostnever forpersons. WhenHoyt (1941) published
his paperon test reliability by ANOVA, herecognized both approaches saying "extended examination of
the `among' items variance would make it possible to decide on the heterogeneity of the respective
difficulties ofthe items whileamore extended examination ofthe `among students' variance wouldmake
itpossible to answer certainpertinent questions regarding the individual differences amongstudents" (page
156) . This good advice, however has never been followed in practice .

In Rasch measurement, however, the Item Separation Reliability (ISR) is routine (Wright and
Masters, 1982, p.92) . This ISR gives the test user an indication of how well items are separated by the
persons taking the test . The formulafor this index is :

ISR=1-C
MSE,

~SD21

This is calculated in a fashion similar to the Person Separation Reliability. The higher the ISR,
the better those particular items are separated by the persons taking the test .

Itis notthe algebraic and statistical similarity oftheKR20 andRaschPSR,however, thatis ofmajor
importance nowthatithasbeen demonstrated . Instead, it is the decomposition ofthese singleindices into
their constituent parts that leads to amore detailed andmore useful management of the test characteristic
traditionally referred to as "reliability ."

With Rasch calibration we are able to obtain the standard error of calibration for each individual
item as well as the standard error of measurement for each person ability . With traditional methods, a
standard error of measurement is provided only for measures at the group mean ofperson ability .

Thestandarderror specific to each item (orperson) statistic isfar moreuseful than anysingle sample
(ortest) "average" . Thelocation of each item andperson on a line representing the variable together with
their standard errors shows us the definition and utility of the variable . The definition ofthe variable is
specified by the location of the items. The utility of the variable for measuring persons is quantified by
the standard error which accompanies each person measure.

18.6



19. RELIABILITYAND SEPARATION

Validity and reliabilityhave been key concepts in measurement for eighty years. These two topics
command Chapters 1 and 2 of the Standards for Educational and Psychological Testing (1985) . The
Standards define reliability as "the degree to which test scores are free from errors," (1985, p.19) . The
"errors" referred to are measurement errors . The magnitude ofthese errors and the specification oftheir
source are necessary in orderto determine the efficacyofa measuring instrument . The reliability coefficient
is the traditional statistic intended to quantify reliability . Coefficients are commonly reported for test-
retest, multiple form and split-halfreplications . The purpose ofthis primer is to discuss how these topics
are dealt with in Rasch measurement and how this improves and, hence, supersedes traditional methods .

TRADITIONAL RELIABILITY

The KR20 for dichotomous responses (orits generalization, coefficient alpha)are estimates based
upon a single administration ofa test assumed tohave homogeneous items . Thesecoefficients areintended
to be an estimate ofthe test's reliability with respect to a single attribute postulated to underlie all the test
items . However, what any particular reliability actually refers to can only be whatever attribute the test
items actually define. Sufficienttime to answerthe items is assumed (timedtestsproduce spuriously high
coefficients) . The KR20 and its variants (coefficient alpha and KR21) are calculated by comparing a
numeratorbased on sampled itemp-values with a denominatorbased on the sampled persons' raw scores,
computed from the same response matrix ofpersons and items .

The statistics outlined in Figure 19.1 bring together the two contrasting elements which make up
the KR20. One element summarizes the test items in terms ofpq in whichp comes from the sampled item
p-values (where p = proportion correct) and q = I -p. Each item pq is the variance of a response to that
item for a "person" for whomthatp-value is theirprobability ofsucceeding on thatitem. Since thep-value
for an item is the sample mean ofthe dichotomous person responses to that item, thisp-value is what we
expect of an "average person" from that sample on that item.

Thep-value for an item describes a"sample average person's" probability ofsuccess on that item
and can be used to estimate an "average" sample response variance for that item . When these variances
are summed overthe items theyyield a score variance for a "person" whohas exactly thosep-values . This
"average" test score variance is the numerator in KR20.

TheKR20denominatoris the observed sample variance ofperson scores . Thus the KR20 combines
a "test" characteristic for a "typical" person sampled, based on item p-values, with a "sample"
characteristic from the observed sample variance of person raw scores .

CHARACTERISTICSOFTHE KR20 STATISTIC

1 .

	

Theitem response variance used is that ofan "average"person sampled . This is not the same
as an average of the persons' test score error variances . Ifthe sample score distribution is not
symmetric, then the error variance ofan "average" person must be different from the average
of individual persons' error variances .
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Figure 19.1

Traditional analysis ofa response matrix.

Persons n

Items :

	

P-value of item is

n

Right answer count (raw score) of item i

N = number of persons in sample

pi=Si/N qi=(1 -pi)

variance for item is pigi = [Si / N] [(N- S) / N]

Person raw score variance for a "person" for whom the sample item p-values
are their probabilities of success:

L

VR=Ipigi

N

Persons:

	

Sample raw score mean: R=IRn /N
n

N

Sample raw score variance : VS

	

N)- RZ
n

KR20 reliability : KR20 = [L / (L -1)] [1- (VR / VS)]

Rn

Right answer count
(raw score) of person

n
L = number of
items in test



2.

	

While

	

Pq provides a test score error variance for an "average" person, we know that the
sampled people vary, i.e ., the variance of their raw scores is greater than zero . Persons with
high or low scores have less score error variance than those with scores near fifty percent
correct where the score error variance is maximum. Since the "average" personvariance used
in the KR20 formula is always larger than the lower score error variance of persons with
extreme scores, it must always overestimate their score error variances .

3 .

	

If we want to anticipate reliability for a proposed application, a previously reported KR20
cannot be used as is, unless we know that the proposed sample will have the same score
distribution as the sample used for the reported KR20. This is quite unlikely .

4.

	

Theuse ofrawscores as the datafor calculating the sample variance is misleading to the extent
that raw scores are not linear representations of the variable they are intended to indicate .
Proof that raw scores cannot be linear representations canbe seen by plotting theraw scores
from ahard test against the raw scores from an easy test measuring the same attribute.

Figure 19.2 shows that the relationship between this pair of raw scores must be curvilinear. As
a result, neither set of raw scores can be linear indicators of what they purport to represent. But the
calculation ofmeansandvariances necessary toestimate reliabilities assumes linearityinthe numbers used .
Therefore, the calculation ofthese statistics from rawscores is always incorrect to some unknowndegree .

Ifweexpressed person measures in alinear, ratherthan curvilinear, form, then the samplevariance
estimates wouldbe improved .

Ifperson errorvariances were averaged instead ofusing the error variance ofan "average" person,
the information about sample test error conveyed by the reliability coefficient would also be improved .

RASCHRELIABILITY

These shortcomings in KR20, or any other reliability coefficients based on raw scores, are
remedied when a Rasch measurement analysis is made of the same data and reliability calculated from
Rasch results. Raschmeasurementproduces ameasure ofeachperson's ability on a linearscale calculated
from a logistic transformation oftheir raw score. Theresult is a linear comparison ofthe Hard andEasy
tests as shownin Figure 19.3 . These linear ability measures are numerically suitableforcalculating sample
variances.

We also have, for each person measured, an accompanying standard error ofmeasurement. These
individual errors canbe squared and summed to produce acorrect average error variance for the sample.
When these results are substituted for those in the traditional KR20 formula, the result is anew formula
which, while equivalentin interpretation, gives abetter estimateofreliability than KR20, coefficient alpha,
or any other reliability based on nonlinear raw scores .

Whenterms arereplaced inthis way, abetter reliability coefficient results because(1) thenumerical
arguments are now linear rather than curvilinear, and (2) the actual average error variance of the sample
is used instead of the error variance of an "average" person (see Figure 19.5).



Figure 19.2

Comparing scores from easy and hard tests.

HARD
TEST

T

Legend :

Explanation :

Implication :

Pt . A

	

= less than 50% on Hard Test .

Line BC = presumed linear relation between Easy and Hard test scores .

Arc BC = actual non-linear relation between Easy and Hard test scores .

Pt . D

	

= more than 50% on Easy Test .

0% on the Easy Test implies 0% on the Hard Test (Pt . B) .

100% on the Hard Test implies 100% on the Easy Test (Pt . C) .

But 50% on the Easy Test implies less than 50% on the Hard Test (Pt . A)

and 50% on the Hard Test implies more than 50% on the Easy Test (Pt . D) .

The score relationship between any pair of tests which differ in
difficulty cannot be linear.



Figure 19.3

Comparing measures from easy and hard tests using logit measures.

Implication:

DIFFERENCEIN TEST
DIFFICULTIES

HARD TEST

- . .
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EASY TEST

When Easy Test scores and Hard Test scores are transformed
into linear measures, then a linear relation becomes possible .

PREDICTING RELIABILITY

In the application ofatest, it is the characteristics of thenewsample to which we intend to apply
the test, ratherthan adescription ofsome previous sample, that is our real concern. We want to know how
the test will work with thenewpeople whoare about to take it . We want arelevant reliability coefficient
which applies to the people we intend to test, rather than an obsolete one describing people who were
previously tested . Butfewpractitioners know howto usean oldKR20 to estimate anew KR20 for anew
sample.

In fact, it is easy to predict the reliability for a forthcoming sample, if we are willing to postulate
an expected mean and variance for this sample. Fromthese statistics andthe Rasch targeting formula we
can calculate the reliability of the test for the new application without reference to anyprevious sample
(Wright and Stone, 1979, 129-140) .

ADVANTAGES OFASEPARATION INDEX

Correlation-based reliability coefficients, however, are also nonlinear in implication. For
example, improvement of KR20 from .6 to .7 is nottwice the improvement from .9 to .95. Although the
difference in amount of reliability between .9 and .95 is half as much as the difference between .6 and .7 .
This half-as-much signifies twice the improvement in measurement precision. We can escape this



shortcoming of KR20 by replacing the traditional reliability coefficient with a Separation Index (G) (See
Figure 19.5) .

The Separation Index (G) is the ratio of the unbiased estimate of the sample standard deviation to
the rootmean square measurement error of the sample . It is on a ratio scale in the metric of the root mean
square measurement error of the test for the sample postulated . It quantifies "reliability" in a simple and
direct way and has aclear interpretation . Thisexpedites comprehension ofwhatchanges in reliability mean
in terms of measurement precision .

The estimation of separations for new samples is easy . No reference to any previous samples is
required . We need only estimate theexpected standard deviation ofour new target sample and then divide
this estimate by the average standard error of the intended test for such a sample . As in :

Separation :

	

G= SDT/SET
SDT.-	theexpected SD of the target sample
SET:

	

the test standard error of measurement for
such a sample, a value which is almost always
well approximated by SET = 2.5 / f-L-

SET can be estimated more precisely as SET =

	

C-IL where L is the number of items in the test
and C is a targeting coefficient (explained in Wright and Stone, 1979, pages 135-136 and tabled for most
test and target relationships on pages 214-215) . C varies between 4 and 9 depending on the range of item
difficulties in the intended test and the target sample's expected average percent correct on that test .

Here are somevalues of Cfortypical item difficultyranges andtypical targetsamplemean percents
correct:

E

0
UOiiOU
c
UiN

UNaXw

Values of the Targeting Coefficient C

Test ItemDifficulty Range in Logits

(See Wright and Stone, 1979, p . 214)

SET = C-IL

L = Number of
Items in Test

1 2 3 4 5 6

50 4 .0 4 .4 4.8 5.3 5.8 6.8

60 4 .4 4 .4 4.8 5 .3 6 .2 6.8

70 4.8 5 .3 5.3 5 .8 6.8 7.3

80 6.2 6.8 6 .8 7.3 7.8 8 .4



Thus, SET is easy to approximate well enough for the calculation of an expected target
sample. Separation G: G = SDT/SET.

If an expected reliability is also desired, it can be obtained from : R = G2 / (1 +G2).

We usetheRaschModelin our example. But this Separation Index is applicable to any latent trait
model. With it, one canpredict the reliability of a test with any sample to be used in astudy, if one can
specify an expected samplemean andvariance. No information aboutanyprevious samples is necessary .

The Standards (1985, page 22) recommend that, "Standard errors ofmeasurementbe reported at
critical score levels ." Rasch measurementanalysis routinely provides standard errors for every possible
test measure along the variable as shown in Figure 19.4 . Thus, the Rasch approach meets this
recommendation completely . Ifreliability, as definedby the Standards, is the degree to which test scores
are free from errors ofmeasurement, then it follows that every ability measureshould be accompanied by
a standard error as an index of the degree to which this criterion is met for that measure.

TheRaschmeasurementerrors satisfy this goal by providing individual errors ofmeasurement for
every observable measure. If acollective index of reliability is desired, the Rasch Separation Index is
more useful in basis and numerical form than the traditional indices of reliability .

Figure 19.5 summarizes the calculation of the Separation Index.

Rasch Separation Indexes

G= [R/(1-R)]

Corresponding
Reliability Coefficients

R=G2 /(1+ G2 )

1 0.50
2 0.80
3 0.90
4 0.94
5 0.96



Figure 19.5

Rasch person separation index.

G = STB / RMSEB where

STB2 = SDBZ -MSEB
N

	

N 2
SDBZ =

	

Bn lN-

	

Bn lN
n

	

(n
N

RMSEB2 = MSEB = Y, SEBn / N
n

Bn = logit measure of person n
SEBn = standard error of Bn

so G2 =R/(1-R) andR=G2 /(1+G2 )

and R =1- (MSEB / SDBZ ) is

=1- (VR / VS) = [(L -1) / L]KR20

with VR and VS as defined in Figure 19.1

(see Wright and Masters, 1982, Figure 1, pp . 105-106)

note : MSEB = C l L

	

in which 4 < C < 9
and C= 5 or 6 is typical .

(See Wright and Stone, 1979, pp . 134-136)



,. ,IDITY

According to the Standards for Educational and Psychological Testing (1985), validity is "the
most important consideration in test evaluation" (p . 9) . Validity deals with the meaning of inferences
drawn from test scores . The Standards emphasize that it is the inferences that are validated and not the
test . The idea is that no test is valid or invalid in itself. Only its use in some application merits a
designation of validity .

This primer discusses how validity is addressed in Rasch measurement . We explain how the
types of validity discussed in the Standards are handled in a Rasch analysis of item response data .

TRADITIONALVALIDITY

The three types ofvalidity discussed in the Standards are (1) content related, (2) criterion related
and (3) construct related. Validity itself, however, is held to be unitary . The Standards advance these
types as related facets of a single problem . The types must be combined to validate the information
obtained from the application of a test .

It is easy tobecome confused as to what is meant by validity because the three types are different
in meaning and method . While the virtue of a single term "validity" is agreed upon by everyone, how
to connect thatterm to the analysis ofdatais not. There are substantial and puzzling questions as to what
is referred to, how it can be implemented in practice and what the results of implementation mean.

Since it is not clear what additional data are required to determine validity, that is what criteria
are relevant, it is easy to become confused about what should be done. There is no unique or objective
way to determine what the right criterion would be . There are always many possibilities . How do we
establish which criteria are necessary, which are optional, which are decisive, which are only advisory?
When criteria differ, how do we decide which one to use . Attempts to base validity on external criteria
have raised more problems than they have solved . Many articles lament this dilemma (Bechtoldt,1959 ;
Beck, 1950 ; Campbell & Fiske, 1959 ; Cronbach & Meehl, 1955) .

REAPPRAISINGVALIDITY

The only way to escape this fruitless muddle is to focus on the data that are available, namely
the actual responses ofindividuals to items and then to ask : What is there in these datathat could answer
validity questions?

What can we get from analyzing the data we have that could tell us about validity? When we
look at responses to test items, two, and only two, types of data relevant to validity emerge . The first
type concerns the ordering and spacing of items and persons which are produced by the analysis of item
responses . The actualization of this kind of validity depends on prior knowledge of item content and
person characteristics and, most of all, on clear intentions concerning what variable is to be defined
and measured .



ORDERVALIDITY

Therelation between item content andthe empirical difficulty orderofthe items produced
by the way persons respond to them either verifies, improves on or contradicts the intended
definition andhence meaningfulness of the variable which the items are intended to implement. We
expect onedigit integer addition to be easier (have less difficulty) than division involvingdecimals
and both to be easier than any problem involving a quadratic equation. It is almost impossible to
write mathematics items without knowing in advance their intended and expected difficulty
ordering .

For a spelling variable, we anticipate sequences of increasing difficulty like "cat",
"wagon", "friendship", "meretricious" as defining a spelling variable that could be extended by
adding easier and harder words as well as enriched by adding words at intermediate levels of
difficulty between these four .

The way to begin this kind of thinking out of a variable is to write or select an initial item
and then to write or find another item which we expect, according to our theory, to be easier or
harder - continuing in this way, item after item, extending andfilling in, step-by-step, until a detailed
definition of the intended variable is laid out.

This simple beginning can lay out an orderly and meaningful item definition of an entire
variable . We need only to apply atheory ofwhat we aretrying to do andto know ourmeasurement
intentions in order to thinkoutan expected difficulty orderfor the items we plan to use. Then, when
we use our items with persons, we can compare this intended and expected conceptual order with
the empirical order actually provided by the data to seehow well our expectations are confirmed.
Item ordervalidity operationalizes two of the Standard's three types of validity : content validity
and construct validity .

Should we discover, however, that we are unable to imagine any canonical order for our
items, then we are forced to admit that we do not understand the variable we are trying to define
or how our items are supposed to implement its definition . We are forced to realize that we still
have more work to do on ourvariable, by thinking it through more carefully before ourpurpose will
become clear enough to us for useful action . Even in the earliest stages of variable construction
we must have some idea ofhow to writeitems in an orderly fashion or else ourmeasurementproject
cannot thrive . We must know ahead of time the difference between an easy and a hard item . We
must know our purpose .

The difficulty order of items defines the variable's meaning and hence its content and
construct validity . The ability order of persons that is produced by their performance on a test
specifies the consequences of measuring on the variable and so determines the variable's utility.
Relevant concomitant person orders such as those produced by age, school grade, civil service
rating, or any other characteristics which ought to correlate with our intended measure, can help
us to learn about its utility and so mightbe referred to as background criteria for ourvariable . But
the variety of possibilities guarantees that no single criterion can be decisive . Nevertheless, to
the extent that there is apart to be played by "criterion validity" in the evaluation of the utility of
our variable, it is to be found in person order validity - the way persons are ordered by their measures.

168



CRITERIONVALIDITY INVARIABLEMAPS

The criterion validity of the Standards presupposes the existence of an external criterion
sufficiently well established to serve as the base againstwhichthe test canbe compared. Thecorrelation
coefficient is usuallyused as the indexby whichthis comparison is evaluated . Twostrategies are usually
employed .

1 . A test is designed to predict some already known criterion and the correlation with this
criterion is taken to indicate the degree of criterion validity .

2 . One test form is correlated with another test form to indicate their degree of consistency
with one another.

The apparent simplicity of these approaches is flawed by the problem of the criterion. Is the
criterion valid? Can it serve as a stable base? Does the correlation between two test forms address
any substantive question about validity?

Criterion validity is better addressed by building an item mapofthe variable andthen augmenting
this map with the values of whateverconcomitant criteria canbe gathered along with the test data . All
criteria can be located on this variable map together with the item calibrations and person measures .

When collecting test data we canrecord the associatedperson information ofgender, age, school
andscholastic level. Thelevels ofthese criteria canbe plottedalongwith item calibrations andperson
measures on the variable map to show how these criteria relate to persons measures and also to item
content.

We canformulate hypotheses about any criteria that we imagine mightbe relevant to these item
calibrations andperson measures anddetermine from the relative locations of these criteria on the map
exactly how they are, or are not, related to the item calibrations and person measures .

The variable map is the best way to assemble and picture relevant criteria together with item
calibrations and person measures . The map gives us a definitive and detailed picture whereas
correlations only indicate the presence of some general relationships .

FTTVALIDITY

The second type of validity hasto do with response pattern consistency for items and also for
persons. This kind of validity comes from the fit of the observed person-item responses to a useful
definition ofmeasurementandhence to the estimated values of itemcalibrations andperson measures .
Although the necessity ofthis kind ofresponse performance validity for persons anditemswasexplained
and satisfied by L. L. Thurstone in the 1920's (i.e ., Thurstone & Chave, 1929), it is notmentioned in
the Standards .

Item and person fit statistics are always necessary. The absence of fit statistics implies the
absence of a model for what we expect - a lack of awareness of what we are trying to do . If we do not
know what to expect, we cannot hope to explain what happened or know how to use the results.
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Point-biserial coefficients (conventional item discrimination) have been used as item fit
statistics for decades, though few practitioners have much idea as to what the statistical model for
point biserials might be or what that signifies for the interpretation of their data. No one knows
what size coefficients to seek or to act on .

When we take as the working requirement, however, that item responses shall be summa-
rizedby right answer counts i .e . raw scores, then we can deduce from that ubiquitous practice the
necessary and sufficient measuring model. That necessary model is the Rasch model in which
person raw scores or percent corrects can be used as the sufficient statistics for estimating person
abilities and item p-values can be used as the sufficient statistics for estimating item difficulties
(Andersen, 1977) .

The mathematical form of the measurementmodel is deducedfrom the canonical require-
ments for measurement (Wright & Stone, Deducing the Measurement Model, Chapter 4) . The
measurementmodel specifies howto applythesemeasurementrequirements to the data . It specifies
what kind of relationship must be approximated between the observed data and the estimated
measures in order for valid calibrations and measures to result .

ITEM FIT

When a Rasch analysis is made of item response data, it follows naturally to analyze the
extent to which each person's response to each item fits theRasch model expectation. An item fit
statistic is calculated for each item. This summarizes the extent to which the sample's pattern of
response to that item is consistent with the waythesepeople have responded to the otheritems. This
gives us "consistency" fit statistics for each item and for each person and also for any subsets of
items and persons which might interest us (see Identifying Item Bias, Chapter 8).

The conventional approach to item fit has been the point-biserial correlation coefficient.
Item misfit is thought to be indicated by a low point-biserial . It is equally true, however, that a
high point-biserial coefficient can also indicate item misfit . This dilemma was identified by
Loevinger (1947) as the attenuation paradox (Tucker, 1953 ; Andrich, 1982) .

PERSONFIT

Although hardly anyone computes a person point biserial, the motivation to do so is even
greater than the motivation to compute item point biserials. Of course, the attenuation paradox
applies to person, as well as, item data. In a Rasch analysis a person fit statistic is calculated for
each person . This fit statistic summarizes the extent to whichthat person's pattern ofperformance
on the test is consistent (or inconsistent) with the way these test items are usually used by people
responding to them.

When aperson does some lucky guessing andso manifests some unexpected right answers
on items that ought to be too hard for that person, we may doubtthe validity of their performance
and hence question the meaning of their score and measure. How much of the score tells us what
they know and how much tells us that they are lucky guessers? When we examine the particular
items on which they have failed, we may conclude that their score contains some lucky guesses and
is thus misleading andhence somewhat invalid. At this point, however, our attempts to measure these
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"lucky guessers" need notcease. Ourmeasurementmodel enables us to know what we are doing. We
canuse its fit statistics to identify thelucky guesses and its item-free estimationprocedure to re-measure
the "lucky guessers" on the basis oftheir answers to the itemson whichtheir right answerswerenotlucky
guesses.

SUMMARY

Rasch measurement helps us to see that there are two, and only two, types of validity that can
be evaluated from item response data : (1) the ordering of items andpersons and (2) the fit of items and
persons .

Order Validity

1 .1

	

"Meaning" validity from the calibration order of items. This implements the
content and construct validities of the Standards .

1 .2

	

"Utility" validity from the measurement order of person characteristics . This
implements the criterion validity of the Standards.

Fit Validity

2.1

	

"Response" validity determined from the discrepancy between aparticular re-
sponse and its expectation. This identifies individual observations the values of
which contradict their use in the estimation of useful measures or calibrations .

2.2

	

"Item Function" validity determined by an analysis of the validities of the sample of
responses to that item, i.e . item fit. This identifies for review and revision items
which may not be working the way we intend them to .

2.3

	

"Person Performance" validity determined by an analysis of the validities of the
responses of that person, i.e ., person fit . This identifies for review and diagnosis
person's who maynothave taken this test in the way we expected them to .



1 . Dichotomous responses such as

and its variants .

2. Polytomous responses such as

and its variants .

21 . SCORING MODELS

Social science data collection uses questionnaires composed of items constructed to elicit infor-
mative responses . The most common format asks respondents to select from among a set of alternative
categories . The construction of useful alternative categories is essential to the success of the items.
Once categories have been analyzed in order of increasing "strength" ofresponse, a scoring model must
be used to bring responses into a measurementconstruction process. The analysis of alternative scoring
models is the focus of this primer.

Item formats for such instruments are oftwo general types:

Agree Disagree
1

	

0

These choices begin as discrete categories at a nominal level of measurement. Dichotomous
choice of categories such as agree/disagree requires that such alternatives be mutually exclusive with no
possibility that selecting one category overlap with another category.

The categories, when polytomous, usually have an intended order that ascends or descends
across the alternatives . The Liken scale (Liken, 1932) is the most familiar form of instrument design .

Although polytomous responses begin as categories, they are usually intended as "ordinal" by
the direction implied in the labeling of the alternatives .

The most informative ordering of categories, however, is not always as originally intended .
Sometimesthere is ambiguity about the order andposition of the categories . Sometimes the categories
are carelessly worded or implausible. This produces an experienced order which is different from what
was intended . Consider this arrangement taken from U.S . News &World Report dated November 7,
1994:
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Strongly Somewhat Somewhat Strongly
Agree Agree Disagree Disagree
4 3 2 1



There is no single, obvious order to this sequence of seven categories . From "neutral", the
sequence moves downwards to "enthusiastic" and finally to "angry" or upwards to "disgusted", "disap-
pointed" and then "hopeful"! If this is the sequence that occurred in the respondents' questionnaire, it is
quite possible that some respondents became confused . If they did not look carefully at all categories,
they might not consider all the alternatives available .

Codes A and B suggest two possible "scorings" for these categories . The use of either of them
could give a sequential order better than the arrangement presented .

It is always necessary to determine the extent to which the categories were used by respondents
in the way they were intended . Respondents often interpret questions and categories differently from the
way in which they are intended . Confusion can also result from ambiguous directions .

Preliminary analysis must compare the intended order of alternatives and respondent behavior.
The data cannot be accurately interpreted until a useful scoring model has been determined. This is the
reason pilot studies are recommended. The best pilot study investigates the category ordering in the
scale before it is used to gather the main data . In any case, a scoring model must be found before the
main analysis can be undertaken . Some researchers immediately proceed to code the categories and
analyze the responses before ascertaining the most useful scoring model . This leads to misinterpretation
of data .

A full scale analysis consists of examining every reasonable scoring model to determine which
one produces the most useful results .

Consider the Fear Survey Schedule (FSS) by Wolpe & Lang (1969) . The FSS has 108 items .
Each item is to be answered on a five-point scale :

Not A A Much Very
At Little Fair

	

Much
All

	

Amount

How do you feel about Bill Clinton?

Code A Code B
Hopeful 30% 5 2
Disappointed 19% 2 0
Disgusted 16% 1 0
Uncertain 14% 3 1
Neutral 9% 4 1
Enthusiastic 7% 6 2
Angry 5% 0 0



There are fourteen additional scoringmodels to be considered .

With 15 different scoring models, the question is, "Which one works best?"

We must study how the people used these categories . This canbe done by examining the results
for each of the alternative scoring models . Statistics from Rasch analysis provide explicit information
about which scoring model is most useful with these data.

The Rasch statistics for the analysis of scoring models are:

1 . The item andperson separation statistics which are ratio scale equivalents to person and test
reliability .

2. The item and person unbiased or "adjusted for error" standard deviations .

3. The fit statistics computed for item, person, andscoring category.

4. Finally, ifwe have supplemental information, we cango beyond the data andevaluate which
scoring model best separates known groups of persons.

We evaluate the differences according to their standard errors and determine whether these
differences are significant. But we need to use the model standard error as modified by misfit to
accomplish this task .

When a scoring model shows considerable person misfit, this must be taken into account so as to
produceameasureerror that is increased by the amount of misfit . Any scoring model that increases the
person separation statistic or the adjusted standard deviation is more efficient . Increase in either of
these statistics gives us an index by which to judge the efficacy of scoring alternatives .
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FSS CATEGORIES

Ori inal 0 1 2 3 4
Alternative 1 0 0 0 0 1
Alternative 2 0 0 0 1 1
Alternative 3 0 0 0 1 2
Alternative 4 0 0 1 1 1
Alternative s 0 0 1 1 2
Alternative 6 0 0 1 2 2
Alternative ? 0 0 1 2 3
Alternative 8 0 1 1 1 1
Alternative 9 0 1 1 1 2
Alternative 10 0 1 1 2 2
Alternative 11 0 1 1 2 3
Alternative 12 0 1 2 2 2
Alternative 13 0 1 2 2 3
Alternative 14 0 1 2 3 3



These statistical tools provide explicit ways to evaluate which of the alternate scoring models is
most useful .

Category reduction, from more numerous categories to less, frequently provides a more efficient
scoring model . Many researchers plan more categories than are used by respondents or useful to define
the variable . Too many options are the result of idealized expectations rather than real experience .
Fewer categories are often more efficient . Multiple categories are often "nonexistent" and can be
modeled more effectively by dichotomous scoring .

We analyze all 15 scoring models of the FSS, using output from BIGSTEPS (Wright & Linacre,
1992) to determine which model is most useful .

Table 21 .1 gives the data for the 15 scoring models . Column 1 gives the model code. Column 2
indicates the steps in the model . The alternative models are arranged by step . Column 3 gives the
number of iterations (UCON) to a converged solution . Columns 4 and 5 give the standard errors for
items and persons . Columns 6 and 7 give the person and items infit statistics . Column 8 shows the
number of items identified beyond a standardized misfit statistic of 2.0 . Columns 9 and 10 give the
person and item separation statistics . Columns 11 and 12 give the item and person quotients resulting
from the ratios of item and person errors to their standard deviations (Column 4/Column 6 and Column
5/Column 7).

Scoring Model #8 has been highlighted to identify it as the most efficient one. Columns 11 and
12 show this model to have produced the highest values for the adjusted ratio previously described . The
person and item reliabilities for this model are 0.97 and 0.98 which are as good as for any other model.
The number ofmisfitting items, while not the lowest, is less than for 11 of the other models.

This model contains only one step, thus indicating that the FSS can be scored efficiently as
dichotomous . The more detailed ratings supplied by the authors do not correspond with how the respon-
dents view the scale . Simple identification of fear is sufficient and attempts to discriminate further are
unproductive . The FSS functions efficiently in this mode and provides a model that is consistent with the
data .

Our example illustrates the need to investigate the possible scoring models in any scale before
analyzing the data further. Failure to take into account the influence of scoring model choice confuses
subsequent data analysis .



Table 21 .1

Wolpe Fear Scale

Scoring Models Analysis

By Mark Stone

1
SCORING
MODEL

2
STEPS IN
MODEL

3
UCON

#ITERATIONS

[T.0.21

4
ISEP

[T.3 .1]

5
PSEP

[T.3.1]

6
IINSD

[1.3.11

7
PINSD

(T.3.11

8
# Items
Out

[T.3 .11

9
ISEPR

[T.3.11

10
PSEPR

[T.3.11

11
ISEP/
IINSD
[C4/C6]

12
PSEP/
PINSD
[C5/C7]

1 SM 00001 1 4 1 .9 1 .6 0.13 0.07 4 0.78 0.71 14.62 22.86

2 SM 00011 1 4 3.3 2 .6 0.12 0.12 8 0.92 0.87 27.50 21 .67

4 SM 00111 1 3 5.4 4 .0 0.11 0.16 11 0.97 0.94 49.09 25.00

8 SM 01111 1 4 7.4 5 .3 0.09 0 .17 9 0.98 0.97 82.22 31 .18

3 SM 00012 2 8 3 .2 2 .3 0.17 0.27 8 0.91 0.84 18.82 8.52

5 SM 00112 2 3 5.2 3 .8 0.16 0.30 11 0.96 0.94 32.50 12.67

6 SM 00122 2 8 5.2 3 .8 0.13 0.25 10 0.96 0.93 40.00 15.20

9 SM 01112 2 20 7.4 5 .5 0.18 0.40 15 0.98 0.97 41 .11 13.75

10 SM 01122 2 9 7.5 5 .8 0.18 0.35 20 0.98 0.97 41 .67 16.57

12 SM 01222 2 7 7.9 6 .0 0.14 0.30 21 0.98 0.97 56.43 20.00

7 SM 00123 3 14 5 .0 3 .6 0.19 0.36 14 0.96 0.93 26.32 10.00

11 SM 01123 3 10 7.2 5 .4 0.25 0.51 26 0.98 0.97 28.80 10.59

13 SM 01223 3 4 7.7 5 .7 0.19 0.44 21 0.98 0.97 40.53 12.95

14 SM 01233 3 10 7 .6 5 .7 0.19 0.40 22 0.98 0.97 40.00 14.25

15 SM 01234 4 15 7 .4 5 .5 0.25 0.51 22 0.98 0.97 29.60 10.78



22. DIMENSIONALITY

Developing measures from constructs is difficult because the properties of what we propose to
measure are complex and interrelated. But these difficulties must be faced. How to proceed?

The first task is to consider how to deal with behavior . While we acknowledge that behavior is
complex, we also recognize that we cannot advance the process of measurement by simultaneous atten-
tion to all aspects of complex behavior. There is no useful way to make measures of more than one
variable at a time.

We have to isolate a single variable (dimension) and then develop it to the best level possible .
When ourthinking is muddledby considering two or more aspects of avariable simultaneously, then we
only become confused .

We may recognize the multidimensionality ofexperience, but this multidimensionality cannot be
addressed as a whole. For knowledge to develop, complex behavior has to be decomposed into single
dimensions.

We begin by specifying a dimension as a variable . A variable is a single, unidimensional
concept abstracted from the complexity of human behavior. Its successful abstraction results from a
dialogue conducted between the abstract idea isolated andformed into a single concept and the wealth
of sensory experiences that constitute the "real world." The former is conceptual and consists of the
abstract idea we have gleaned from our experiences. The latter are elements of experience that have
substance andconstitute reality. Theneed for dialogue is to make our abstractions relate meaningfully to
the real world. Our variable cannot be so abstract that it is devoid of reality. Nor can we clutter our
thinking by such a bombardmentof experiences that we cannot abstract a singular essence that stands out
and separates the variable from all other experience .

This dialogue is not something which is done once and for all . The process continues indefi-
nitely, inspiring aprogression of further refinements.

As we satisfy the need for a single concept, it is necessary to recognize that the variable is
posited as the unifying element between idea and experience . The variable is the focal point between
experience takenfrom the real world andthe abstraction of an idea. The idea of a variable embodies the
projection of a line or arrow indicating the direction of "more" along the variable. The variable, i.e .
line, is the representation ofthe experience abstracted and conceptualized as on a line . The experiences
themselves are illustrations or examples taken selectively to arrange in a systematic fashion. The order
in which they are arranged on the variable is the correspondence between our idea and our experience.

Figure 22.1

The variable .



Figure 22.1 shows the idea of the variable as an arrow. What we locate along the variable are
illustrations from experience that embody the unidimensional concept we have in mind.

Consider simple experiences from life like length and weight. A variable of length can be
"seen" by using what we now know as a ruler. It begins with an implied zero at one end, the numerals
along the ruler (variable) signifying equal units marked out as we proceed to the right. If we consider
weight, then the units signify whatever units we select, say pounds . Each unit indicates an increase of
one pound as we move across the variable .

The ruling idea of the variable needs to be fully impressed upon our mind even though the
examples may seem trivial. When we proceed to construct more sophisticated variables, especially
those that we do not fully understand, it is important to have our methodology clearly understood so that
we will notbecome confused by experience or overwhelmedby complexity.

The idea of a variable is always an abstraction, a simplification of what we experience as
reality. If we could think about all of reality at once, there would be no need to abstract . But when we
want to determine its essence, then it is important to decide exactly what we want to "see" in the
experience, what is useful for us to think about. It is also important to note that we must disregard all
other aspects in the pursuit of this goal . We do not disregard these other considerations because they are
notimportant, but because they are divisive to the task at hand .

Suppose, in going through the checkout line of a large supermarket, we place groceries on the
checkout conveyor. The people in front of us are also checking out, andat the front of the line a man is
paying for his purchases . If the customer or clerk departs from the process of checking, receiving and
giving change, the entire operation comes to a standstill . Suppose in giving change, aclerk notices a rare
two-dollar bill . "Do you have more of these?" she asks . The process of checkout breaks down as the
process of "collecting rare two-dollar bills" takes precedence . How will you feel during this time
while the "collectors" engage in their discussion? What will the manager do?

Suppose the clerk is more interested in checking all the cash and silver for rare currency and
coins for his collection than in making change andrendering service. Does this mean that coin collecting
is wrong or not useful . Of course not, but in a busy supermarket you cannot mix the two processes
without bringing the system to a standstill . Likewise with measurement. Ifyou cannot identify a variable
and focus upon it, then it will be impossible to achieve success because you will become distracted by
all of the additional aspects that are possible to study.

When we identify one aspect for study, it is not because we believe that the other aspects are
unimportant, it is because we cannot focus upon one aspect unless we treat the others "as if' they were
not relevant . We know that they have impact, but we cannot consider their input relevant at this time.
When we try to make measures by addressing all matters at once, it becomesimpossible to sort out what
is occurring.

It is important to distinguish between the procedures for developing measures andthat of study-
ing the relationship between measures . Theformer is a task of measurement, i .e . of building avariable .
The latter is a task of statistical analysis, i .e . determining the relationship between variables . The
statistical process can overwhelmthemeasurement process, if we do not pay attention to what problem
we are addressing and inadvertently get the cart before the horse.
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MULTIDIMENSIONALITY

The way to proceed in understanding multidimensionality is first to construct unidimen-
sional variables upon which to make measures and then to evaluate the relationships among the
measures generated from these singular variables .

It is often said, in explicating the idea of "multidimensionality," that the variables must
embody all of the behavior that can be expected to be observed in the experience. This is not the
way to proceed. The problem is not to see how complex we can make the experience, but instead,
how simply we can abstract from an experience an essence of what we want to make observations
on and measure. What is a single dimension that we want to construct as a variable that will allow
us to focus successfully on that one aspect of experience? When we realize that there are other
aspects left over from building a variable, then the next task is to get started on a new adventure -
building another variable . The process goes on and on.

It is not the goal of measurement to be multidimensional . Measurement can only address one
aspect of experience at a time. If we do the job of building a variable well and can quantify it
usefully, then we can proceed to do it again and again with the construction of additional variables .

In social science, the word "multidimensionality" usually implies that there are multiple
dimensions, i .e . separate dimensions . But consider volume. We have three applications of the
same dimension, notthree "different" dimensions . Length, width, and height, measured in the same
units for utility, give us the three "applications" of a single dimension needed to compute volume.

THEORGANIZINGPRINCIPLES OF VARIABLE CONSTRUCTION

Variables are constructed out of experience . From experience, initially encountered, we
notice similarities and differences. The first step is to be able to segregate from the experience
some single aspect that can be found in each instance of observation, some element that can be
abstracted from each instance . This abstraction is the unifying idea from the experience. It is the
first step in the construction of a variable . The unifying element is this single idea. The variable
signifies focus upon a single aspect of experience, an experience elements of which are useful to
focus upon and so become the basis for a variable .

The next step is to illustrate this aspect of experience by ascheme of graduated experiences.
That is, have we found a variable that can be abstracted usefully from the experience?

We observe a large pack of horses . Observation suggests a way to group them. They can be
arranged by height . Markings may also allow us to re-group them according to whatever character-
istics are suggested. It can be by their behavior in running or according to some other skill . The
same pack of horses can produce many variables to use in describing animals. And each abstrac-
tion of this complex experience is itself a simple and single representation of an idea that may be
useful to subgroup the experience .

It frequently follows that the invention of a good variable eventually becomes useful to
everyone . This is the hallmark of a good variable . Having become an extraction of experience, the
newly constructed variable is recognized as so self-evident that everyone begins to use it . Some



may even remark, "Why didn't I see that." The analogy is like an optical illusion, when the alterna-
tives are pointed out, they can usually be seen, but before that we tend not to observe the alterna-
tives . A good variable operates in a similar way. The variables, so identified, become recognized
and useful . This is the history of good variable construction .

Application of the Rasch model and associated fit statistics can be used to identify items that
define a single dimension . Scale development proceeds by successive variable definition . Items that fit
contribute to a single, interval, sample-free scale. Locations of items, persons, and related attributes
produce a definitive mapping of the variable . See Variable Mapping, Chapter 14, page 119 .



23. QUALITY CONTROL PLOTSFOR EVALUATING CO-RELATIONS

This chapter describes asimple graphical method for studying the relationships between pairs of
person measures, pairs of item calibrations or any other pairs ofvalues intended to display a co-relation .
This method replaces the elusive numerals of correlation andregression coefficient(s) with easy to see
pictures for describing relationships between pairs of values .

PROBLEMS WITHCORRELATIONANDREGRESSION COEFFICIENTS

Thetraditional approach to investigate arelationship betweenpairs ofvalues has been to calculate
a correlation coefficientand stop there. The single number which results is used to describe the relation
betweenthepaired values . Buthowcananysinglenumber dojusticeto apotentially complex relationship
so completely andso fully that no further information is of interest?

Thecorrelation coefficient attempts to summarize in onenumber all the information contained in
allpairs ofvalues underconsideration. Thesingle resultingnumberis only occasionallyevaluated in terms
ofits standard error andeven less often dis-attenuated forthe measurement error inevitably contained in
the estimation of the pairs of values compared .

Dis-attenuationformeasurementerror should always be done foreverycoefficientusedto quantify
arelation betweenpairs ofvalues . Dis-attenuation for measurementerroris called for in everyregression
analysis . Andthere are further problems to consider. Theusual regression analysis assumesthere is no
errorin the independentvariable(s) and thaterrorinthedependentvariable awayfrom the modeled relation
is entirely random and the only error expected . But usually the independent variables themselves are
estimates containing their own error of estimation .

Relationship analysis needs to identify, separate and separately consider:

(1)

	

modeled error, the explicit stochastic part of the relational theory implemented by
the regression analysis,

(2)

	

measurement error, an unavoidable part of all values in the analysis which depend
on a prior estimation procedure, and

model misfit error, the discrepancybetween the general theory modeled and the
particular data which is beingexamined forthe extentto which itconstrains or contradicts
the theory modeled.

These misunderstandings occur whenever simple correlation or regression coefficients are
accepted as sufficient summaries of relationships . These single values give only the barest and most
incomplete description ofthe situation . They arebasedon thepresumption thatnothingis happeningin the
data except asimple linear relationship between two exactly known variables which can be captured by
onecoefficientas asingle value. To presumethis condition is to specify in advance that all people or items
whosepairs ofvalues areusedto computethecorrelation arenothingmore than randomexamples of asingle,
simple linear relationship .
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To say this again: When we rely upon a correlation coefficient to convey all that is operating in
the relationship betweenaset of datapoints, we are reducing all the people oritemsexamined to the status
ofequivalentexamples ofwhateverthe single, simple linear relationship is determined to be . Every person

' or item is reduced to being exchangeable in demonstrating the one relationship presumed in the data.

This conceptual reduction is notonly never true but also neveruseful . Reducing anyrelationship
to asingle number denies andconceals all ofthe interesting individual behavioroccurring in the data. The
reduction prevents any realization of the diagnostic capacity of the data . To routinely discard this rich
potential is not good science.

INVESTIGATINGCO-RELATIONSHIPS USINGPLOTS

We give each pair of values its ownidentity when we plot their location . Instead of reducing the
data to a single correlation coefficient, the paired instances ofthetwo variables are plotted againsteach
other so thatevery data point represents a relation between the paired values - a relation thatinvites further
investigation before summarizing.

Everyplotted point should be clearly labeled so that unusual points canbe examinedto determine
their specificity. When apointrepresents twomeasures on twovariables for aparticularperson,that point
is specific to that person . Ifthe person is better in spelling than in arithmetic, their data point is uniquely
informative about thataspect ofthat person . This isquitebeyond andfar more interesting than anygeneral
correlation which may be observed between spelling and arithmetic .

The first stepin addressing the problemofco-relation is overlooked when the plot ofpaired values
is not drawn, notlabeled and not carefully studied for the particular identities of unusual points .

Some people find it difficult to examine aplot by inspection . They do not derive benefit from a
simple examination because the plot is not set up in awaythat tells them astory aboutwhat mightbe seen
in their data .

LABELSFORPLOTTEDPOINTS

In order to interpret plots we need to enable the plotted points to bring out the purpose of the plot
andto make the story contained in the points immediately visual . Careful attention to labeling enables us
to make visible the idiosyncratic and diagnostic possibilities in the data.

It is essential to label each point with a label that identifies in each plot what each point stands for
i .e . male (M)orfemale (F), black (B) or white (W), married(m) or not (n). We can't investigate whether
points are as expected or discover a pattern, if we cannot see what the points stand for. If we discover
clusters of points we need to see on the graph what characteristics the clustered points share and do not
share. This means we will replot the same points but with differing label sets to bring outthe dominant
patterns .

We need ways to label points so that anyorganization they manifest will be immediately apparent,
so that we cansee what the points indicate. Thelabeling ofpoints mustbe as comprehensiveandas versatile
as possible . When labeling clutters up the plot or becomes tooextreme to show on the plot itself, then a
codenumber canbegiven each pointandan accompanying legend (located nextto oron the plot) constructed
so that the points can be quickly identified andtheir pattern understood.
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Themore comprehensivethe legend, the more assistance it will provide in investigating the nature
of the plotted points . Graphical notations printed in position on the plot, however, communicate more
quickly than text in a legend. Thus it is useful to develop versatility in successively altering point
identification andreplotting the same data so asto bring out the main patterns contained in thedataby making
them visible on the graph itself.

IDENTITY LINES

Labeling data points andproviding alegendare notenough. We must go further anddraw into the
plot a line (or curve) that represents the main question to be investigated by these data - the main question
which the plot is intended to answer. This "identity (of the question asked) line" should be a smooth,
preferably (with datatransformed so that it becomes) straight line drawnso that it marksthehypothesized
path of thepresumed relationship betweenthe two variables.

To expedite the visual interpretation ofany plot, it is important to adjustthe scales ofthe horizontal
and vertical axes so that the resulting"space" revealed is square. When this adjustment achieves acomplete
equation, the simplest version of this identity line goes through the origin with aslope of one, proceeding
at a45 degree angle across the plot from lower left to upper right and indicating apositive relationship
between two variables on the same scale.

0

0

Theexpected
relation

45%

This simplest identity line specifies that the twosets ofvalues are intended to measurethe "same"
thing from the same origin on the same scale: inches-to-inches, pounds-to-pounds or the logits-to-logits
ofcommonly calibrated items.

If, in a study of item bias, we co-calibrate items to a common scale, we can plot pairs of item
calibrations andusethe identity line to model"nobias"betweenthe twocalibrations . The line showswhich
itempoints do notfit the "nobias" hypothesis representedbytheidentity line andhencewhichitemsrequire
further investigation .

Usually the two values plotted originate on somewhat different scales . For pairs of measures,
origins and scales are usually expected to be different. Then, auseful representation of the hypothesized
relationship maybe adifferent kind of identity linethat passes through themeansofthetwosets ofvalues
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with aslope equal to the ratio oftheir standard deviations . Againthe best choice ofhorizontal and vertical
scales is one that makes the resulting plot fill out a square .

An appealing andseeminglyequivalent approach is to standardize the values of each variable by
subtracting a meanMfrom each value Xand dividing the difference by a standard deviation S:

z=
X-M
S

When these standardized zvalues are plotted, the hypothesis bearing identity line once again goes
through the origin with a slope of one.

Theshortcoming ofthis standardization is that it draws ourattention away fromthe metric(s) ofthe
original variables . It is seldom useful to forgetwhatthe original metrics stand for. That metric information
canbe a key to understanding the data plot .

Thus it is usually more informative to retain the original metrics of the variables and not to
standardize. Thatplaces thehypothesis bearing identitylinethrough the intersection ofthemeanswithslope
determined by the ratio of the standard deviations .

THEHYPOTHESIS REPRESENTEDBYTHEIDENTITYLINE

Theidentity line represents thehypothesis of aperfect relationship . The utility ofthe identity line
is that it guides the eye in examiningthe data points with respect to the hypothesis . We canseewhichdata
points are close to the identity line and which points are far from it and thence indicative of a particular
and identifiable digression from the perfect relation hypothesized.

Thedeviations are the exceptions, the unexpected digressions from the perfect idea indicated by
the identity line . Theidentity line also guides the eye to locations where no data points exist. The data
points whichfollow theidentity line confirmour expectations . Thedatapoints that deviate contradict our
expectations . The data points that are missing show us where we are uninformed .

Thestatistical model used with most correlations is a null hypothesis of zero correlation between
thetwovariables. Butwhen wemodela relationship, the relevantnull hypothesis is seldomzero butrather
a perfectrelation as close tooneas measurementerror allows . This more useful "null hypothesis" ofperfect
relation is the one relevant to measurement analysis .

CONSTRUCTING QUALITYCONTROLLINES

How can we show the extent of expected error in a plot? How can we make allowance for
measurementerror visible in the plot? Howcanwe visualize error dis-attenuation? Theanswer is to draw
in quality control lines to guideinspection of the data plot and to provide guidelines for seeing how close,
statistically speaking, our estimated points are to the identity line, given their errors ofmeasurement.

These error guidelines are constructed in the same wayas the statistics used in industrial quality
control. We draw two boundary lines, one above, onebelow the identity line, to guide inspection of data
points . These lines make the statistical boundaries of our hypothesis visible.



We usually construct this pair of boundaries so that they enclose 95% of the data points which
measurement error around a perfect relation would produce . These boundary lines enclose a region
containing two standard errors of measurement around the identity line in each direction :

MEANSANDSTANDARDDEVIATIONS
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The Hypothesized
Relation

Quality control lines enable visual evaluation of the datapoints . They show us the identity "line"
andthe identity "region" ; the area aroundthe identity line in which it isreasonable for datapoints to occur,
given the measurement error .

Data points which fall within the control lines can be accepted as statistically equivalent to the
identity line and hence to the hypothesized relation . These data points do not contradict the hypothesis
represented by the identity line .

Datapointswhich lie outside the control lines are, however, instances whichcontradictthe identity
line i .e . the hypothesis. Each outlying point is a visible contradiction to the hypothesis and consequently
each outlying pointneeds to be identified and investigated in orderto understand andexplain whathasbeen
observed, in order to discover the meaning of the contradiction .

If, when studying a sample ofpeople who have been measured on two variables, we findthat their
paired measures follow an identity line, then the paired measures are clearly on a single variable and the
two initial variables are empirically co-dimensional, at least for these people .

Even when two variables are both conceptually and empirically co-dimensional, there will still
be some individuals for whomtherelationship doesnothold, some exceptions . Inclusion of these deviant
values in calculatingmeans and standard deviations for these data, however, disturbs these two commonly
used reference statistics .

We want to determine the extent to which the data follow the line which asserts and/or supports
ourintendedhypothesis. Tomake this determination we begin by evaluating all ofthe datapoints in terms
of our theory .



Without any theory to guide our observations we are only fishing for something we cannot yet
describe . This is not research but blind groping. While there may be times when we find ourselves
perplexed by ameasurementproblem, that confusion is neither optimal nor scientific .

Outliers are contradictory data points . They become unusual in the light of our expectations and

so in need of investigation. To include outlying values together with those data points that confirm the
hypothesis in computingmeansandstandarddeviations is to remain confused by ourowndata. Meansand
standard deviations are vulnerable to extreme values . Outliers distort the conclusions we come to .
We want robust statistics that are not unduly influenced incentral location anddispersion by idiosyncratic,
extreme values .

Statistics like the median andinterquartile range are sometimes advocated as useful becausethese
statistics are less influenced by extreme values . Their disadvantage is that they lack precision andpower.
What we want is notthemean andstandard deviation of all values, exceptions included, but themean and
standard deviation of just those values which follow the identity line and hence do not contradict the
hypothesis of ashared dimensionality .

As we survey a plot we need aconvenientandconsistent wayto exclude the outliers . When deviant
data points are identified we want to recomputemeans and standard deviations without including these
deviant points and then to re-draw the identity and control lines so that they represent only the points of
the subsampleofpeople whoconfirm the hypothesis of ageneral relationship andnotthose of the people
who contradict it.

This does notmean that we throw the other dataaway. On the contrary, itis importantto investigate
all the data, andmost especially the deviant data points . But, it is necessary to determine what criteria is
to be used in making the decision concerning deviance . If our hypothesis is depicted by an identity line,
then statistically significant deviations are those data points beyond the quality control boundary lines .
These values, then, becausethey are different, do not belong when calculating thesummary statistics used
to locate the identity and control lines .

Usually when data plots are examined it is easy to see whether the points are following a line .
Sometimes we see two groups of points that follow two lines:

or
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No statistic can determine which of thetwolines we should use as ourexpectation, ourintended
hypothesis,andwhich to consider asdeviant, however. We must identify the datapoints involvedandthen
engage in the hard work ofthinking clearly aboutour intentions andhowthey emerge inthe data plot . That
is the only way to determine what reasonable hypothesis they support.



An average, even when successively adjusted for deviations is, nevertheless, only an estimate of
central location . No automatic strategy canprovide the detectivework andspeculative inspiration needed
forcreative analysis . No automatic technique can substitute forpatientinvestigation, visual inspection and
careful thought. No automatic process canexamine the data points in such away as to replace intelligent
review . Theevaluation ofunexpected data points requires the combined efforts of data analyst andcontent
specialist so thateach canencouragethe other to investigate all possible hunches concerning the patterns
manifested in the plot.

Twootherchaptersprovide examples of this : Chapter 8 (p.57), Identifying ItemBias andChapter
9 (p.65), Control Lines for Item Plots.



24. GUESSING

What to do about guessing on multiple-choice (MCQ)test items has been ahotproblem for 70
years . For some psychometricians the introduction of an extra item parameterfor guessing is the way
to settle the matter . We review their approach andshow howguessing canbe better dealt with - detected,
diagnosedandmanaged - by themethods of Raschmeasurement.

Webster says "to guess" isto form an opinion from little orno evidence . That suggests that when
people guesson anMCQ test item, they decide on the basis of little or no ability how to answer. When
they are lucky, they guess correctly. It follows that to countlucky guesses as manifestations ofability
produces confusion, especially when these counts are combined with correct answers which are the
outcomeof applied ability. Haphazardcombinations ofaccidental andinformative outcomes arebound
to be misleading . Webster's also says that "to guess" can mean to arrive at a correct solution by
conjecture or intuition. Synonyms for "to guess" include; "to suppose," "to hypothesize." Another
alternative definition, "stochastic" from the Greek stokastikos, suggests knowledge arrived at in a
probabilistic manner.

Guessing is not done by items, but by persons . When aperson, with no knowledgeof the correct
answer, guesses at random on a multiple-choice question with five alternatives, the probability of
successmightbe as low as P= .2 . If, however, ability enables the person to eliminate three alternatives
as incorrect andhence to reduce the guess to one oftwo choices, then the probability of success might
increase to P = .5 .

These considerations leave some psychometricians content to deal with guessing as an item
parameter. For us, however, the same considerations make clear the ultimate futility of attempting a
psychometric solution based on test item characteristics . There are too many personal causes and
consequences in guessing for any item guessing parameters to manage.

Guessing can only be addressed and managed by allowing for all of the factors, external and
internal, whichprovokeaperson to guess. Themost important external factor is the intended useof test
results . Internal factors include test administration directions, test format andtime allowed. When a
passing score allows one to acquire alicense to practice aremunerative profession, but a failing score
prevents this, a person's approach to a test is different than when the outcome offers no immediate
advantage. The uses of test results influence examinee behavior . To expect apsychometric model to
resolve these personal influences on the test item or person parameter level is unreasonable .

EXTERNALFACTORS

Guessing provokedby external factors canonly be managedby addressing these factors in their
own terms :

1 . Reduce the use ofmultiple-choice items . Although this item format enables simplified
answer sheet scanning, writers ofmultiple-choice itemsseldom overcome the excessive
restriction this approach puts upon item construction . Multiple-choice items invite
some persons to guess.



2. Inventbetter methods ofquestioning whicheliminate guessing as an active possibility. The
use of open-ended questions is one alternative . Providing long, rather than short, lists of
possible answers discourages guessing . The versatility and capacity of modern scanners
andcomputers can handle response patterns far more complex than the familiar simple
rows of five choices .

3 . Qualify the use of test results so that they do not force examinees to corrupt their test
behavior in order to survive .

4. Do not administer items that are so hard that they provoke guessing as the only resort .

5 . Do not make speed a factor in testing .

MISTAKINGGUESSING AS ANITEMPARAMETER

Psychometricians whodeal with guessing as an item parameterargue that better measures result,
but is this true? We know that the factors whichinfluence test behavior produce responses to items that
consist of idiosyncratic mixtures of ability andguessing . But, ifthey arecombined in some responses
butnot in others,howcanwe untangle these components to determine whichitemshave been answered
by guessing, and by how much guessing andwhichhave not?

An item guessing parameter assumes that it is the itemthat causes the guessing andthat the effect
is the same forevery test-taker . Even though some itemsmaysometimesseem to provokemore guessing
than others, it is the person, not the item, who initiates guessing, whosemomentary state ofknowledge
andurgency governsthe possibility of alucky guess . Even ifsome guessing couldbe handledby an item
parameter, aperson parameter for guessing behaviorwould also be needed. Weknow that some persons
guessmore than others, afew often, most rarely ornever. We also knowthat no oneguesses all ofthe time .

Theitem parameterapproach to guessing raises the lowerendof the item characteristics curve
no matter who takes the item.

The asymptotic solution in Figure 24.1 forces aguessing penalty on everyperson whochooses
not to guess . It does this (shaded area in Figure 24.1) by misestimating the item to be easier for non-
guessers than it actually is .

Themeasurementpenalty for notguessing is the distance between b, and bn on the measuring
variable b in Figure 24.1
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Figure 24.1
Guessing as a lower asymptote.
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An alternative is to use the lower boundary in Figure 24.2 . In this approach there is still a
penalty for not guessing, but itis only exactedfrom non-guessers with performance probabilities below
the guessing level C .

ESTIMATION PROBLEMS

If the idea of a guessing item parameter were useful, its application would lead to successful
practice . But even the most devoted advocates of a guessing item parameter lament its application .

Attempts to estimate item guessing parameters are uniformly unsuccessful, "the likelihood
function (ofthemodel with aguessing parameter) maypossess several maxima"and its value at infinite
ability "may be larger than the maximum value found" when ability is finite (Swaminathan, in
Hambleton, 1983, p. 30) and "attempts to estimate the guessing parameter . . . are not usually
successful" (Hulin, Drasgow & Parsons, 1983, p. 63). "40% of the guessing parameterestimates did
notconverge even with asample size of 1593" (Ironson, in Hambleton, 1983,p. 160) . "If a test is easy
for the group (from which guessing parameters are estimated) and then administered to a less able
group, the guessing parameters (from the more able group) may not be appropriate" (Wingersky, in
Hambleton, 1983, p. 48) . "When dealing with three parameter logistic ICCs, a nonzero guessing
parameterprecludes aconvenient transformation to linearity" (Hulin, Drasgow & Parsons, 1983, p .
173) .

Stocking (1989, p. 41) reports in an extensive study "to explore and understand some
apparently anomalous results in various LOGIST-based (a programestimating guessing parameters)
applications of IRT that have been obtained from time to time over the past several years" that these
same "anomalous results were obtained in simulation studies, such as this one, where data are
generated to fit the 3PL (guessing parameter) model" (1989, p. 41) . Thus attempts to resolve the
guessing problem through estimating a guessing item parameter, even when data have been created
tofit that condition, have not been successful . Successful practice is the confirmation of theory . The
ubiquitous inability to achieve apractical implementation of aguessing item parameterdiscredits the
theories upon which it is based.

THE RASCH MEASUREMENT APPROACH TO GUESSING

To begin with, the external factors that might provoke guessing such as poor test format,
abbreviated timing and threatening purpose must be managed so as to encourage examinees to make
their responses as uncontaminated as possible by misleading guesses. Maintaining good test
management requires constant attention . Failure to reduce the external provocations to guess is
sloppy . Theproblemneeds to be addressed by good test design andcareful test administration . What
must not be done is to default to a naive presumption that the problem of guessing can be "washed
away" by a slick assumption that an item guessing parameter will do the trick.

Guessing is not avoided in Rasch measurement. Guessing is addresseddirectly by instituting
quality control over all response patterns . Consider a score of five on a 10-item test with items
positioned in order ofincreasing difficulty . Both theprobabilistic nature ofthe model andoureveryday



Figure 24.2
Guessing as a lower boundary.
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experience with typical response patterns lead us to expect patterns like

1111100000=5

1111010000=5
and, even

1110101000=5

Themore improbable the pattern, however, the more questionable it becomes.

Consider the pattern

or, worse,

Oursurprise and our objection to the last twopatterns are much greater than for the first three.
We mightspeculate that the irregularities in the last twopatterns are the result oflucky guessing on the
hardest items . After five consecutive wrong answers, it become unbelievable that the five hardest items
couldbe answered correctly on the basis of knowledge. Wemay not know exactly whythis occurred .
Butwe have identified a pattern that is clearly questionable in termsof what we couldreasonably expect .

RESPONSEPATTERNANALYSIS

1100000111=5

0000011111=5.

TheRasch model specifies the probability Pni of dochotomousresponse xni by person n to item
i to be :

Pni = exp[x,,i (bn -di ) / [1 + exp(bn - di )]

where

	

bn = the ability measure of person n

d; = the difficulty calibration of item i

xni = 0 for an incorrect answer

xni = 1 for a correct answer.

Estimates of Pni can be used as expected values for x,,i . The expected variance of x,,i can be

estimated by [Pni (1- Pni )] . To estimate a standard residual zni , we subtract from the observed x,u its

expected value Pni and divide by [Pni (1- Pn; )]'1z its binomial standard deviation to get

Zni - (xni - Pni) / [Pni (1 - Pni )]'/2
.

When the data approximate themeasurementmodel we expect this estimated residual Zni to be
distributed symmetrically with a mean of 0 , and a variance of 1 .
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As a rough, but useful, criterion for data fit, we examine the extent to which the distributions of
these standard residuals approach

When a particular squared residual

z11; - N(0,1) normal

Zni xi chi-square .

	

24.3

The reference value 0 for the mean and 1 forthe standarddeviation and the reference distributions

of N(0,1) and X; help us to decide whether observed standard residuals deviate unreasonably from
model expectations . This examination of residuals helps us to decide whether we can proceed to use
these items to make measures and also whetherparticular persons have failed, at leastin part, to respond
to the test in a use
ful manner .

z
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24.4

becomes large, we suspect that something unexpected happened when that person n took that item i .
A single unexpected response, however, is less indicative oftroublethan apattern ofunexpectedly large

Zn . The accumulated impact of a pattern of large zn values for a person [or an item] arouses concern
for the utility of that person's measure [or that item's calibration] .

Consider the responses patterns in Table 24. l .

The circles in Table 24.1 mark unexpected responses . To evaluate the improbability ofthese
responses we replace each instance of an unexpected response by the difference between the ability
measure forthat person and the difficulty calibration forthatitem . For Person 1 on Item 4 the unexpected
incorrect response associated with person ability b = -1 .2 and item difficulty d = -3.9 produces a
difference (b - d) = (-1.2) - (-3.9) = +2.7 .

This difference 2.7 for Person 1 on Item 4 is placed at the location of that unexpected response
in Table 24.2 where we have computed the differences for each instance of an unexpected response
circled in Table 24.1 .

Unexpected incorrect answers have been recorded as (b - d), but unexpected correct answers
have been recorded as (d - b) . We do this because, when the response is incorrect, and X = 0 , then
the index ofunexpectedness is [exp(b - d)], but, when the response is correct, and X=1, then the index
becomes [exp(d - b)] .

We record unexpectedness in Table 24.2 as a positive difference, whether from (b - d) or (d - b) .

The corresponding values for
z2 =P/(1-P)=exp(b-d) when X=0

and Z Z = (I - P) / P = exp(d - b) when X =1



Table 24.1

Some Unexpected Person-to-Item Responses (x)

can then be evaluated for the improbability of the response . These Z2 values, which are taken from
Column 2 of Table 24.4 (Best Test Design, Wright & Stone, 1979, p . 73) have been entered in Table
24.3 .

Table 24.4 gives values of Z2 = exp(b -d) for unexpected incorrect answers x = 0 or values

of Z2 = exp(b - d) for unexpected correct answers x = 1 .

The entry Cx in Column 1 of Table 24.4 is Co = (b - d) when the response is incorrect and
x = 0 and C = (d -b) when the response is correct and x = 1 .

We locate the difference +2 .7 for the lb - dl of Person 11 on Item 4 in Column 1 of Table 24.4
and readthe corresponding ZZ in Column 2 as 15 . This value and all of the other values forthe differences
in Table 24 .2 have been recorded in Table 24.3 which now contains the ZZ for each instance of
unexpectedness that we have observed for the six persons and seven items . The margins of Table 24.3
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ITEM NUMBER OF
PERSON UNEXPECTED PERSON

4 5 6 7 8 12 14 RESPONSES ABILITY

1 G) 1 1 1 1 0 0 1 -1 .2

2 1 1 1 O O 0 0 2 -1 .2

3 1 O 1 1 1 0 0 1 -0.6

4 1 1 1 1 1 O 0 1 0.0

5 1 1 O O 1 O 0 3 0.0

6 1 1 O 1 O 0 G) 3 0.0

NUMBER OF
UNEXPECTED 1 1 2 2 2 2 1 11
RESPONSES

ITEM
DIFFICULTY -3.9 -3.3 -3.3 -2.9 -2.0 1 .7 2.8

"1"= EXPECTED "0" =EXPECTED
"0" =UNEXPECTED "1"= UNEXPECTED

SINCE THESE PERSONS SINCE THESE
ARE ABOVE-2.0 IN ABILITY PERSONS

ARE BELOW+1 .7
IN ABILITY



Table 24.2

Differences (b-d) Between Person Ability and

Item Difficulty forUnexpected Responses

give the sums of these Z2 for each person and each item . These sums indicate how unexpected the
patterns of person or item responses are .

Column 3 of Table 24.4 shows p = I/ (1+Z2), the model improbability of each observed
response . This value provides a significance level for the null hypothesis of acceptable fit for any
particular response . With our example of (b - d) = 2.7 we find a significance level of .06 in the table,
against the null hypothesis that the response of Person 1 to Item 4 is according to the model .

QUALITYCONTROL

The evaluation of response patterns is a quality control procedure . In Rasch measurement,
quality control over response patterns is implemented by determining the fit of response patterns to
modeled expectations . Fit, or response plausibility, is determined from the difference between the
estimates of person ability b and item difficulty d for each person/item contact. When this difference
is positive, the item should be easy for the person . The more positive the difference, the easier the item
and hence the greater our expectation that the person will succeed . Similarly, asthe difference between
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ITEM
PERSONPERSON

4 5 6 7 8 12 14 ABILITY

1 2.7 -1 .2

2 1 .7 0.8 -1 .2

3 2.7 -0.6

4 1 .7 0.0

5 3.3 2.9 1 .7 0.0

6 3.3 2.0 2 .8 0.0

ITEM
DIFFICULTY -3.9 -3.3 -3.3 -2.9 -2.0 1 .7 2.8

"1"= EXPECTED "0"= EXPECTED
V= UNEXPECTED "1"=UNEXPECTED

SINCE THESE PERSONS SINCE THESE
ARE ABOVE-2.0 IN ABILITY PERSONS

ARE BELOW+1 .7
IN ABILITY



Table 24.3

Fit Mean Squares (z2) for Unexpected Responses

person ability and item difficulty becomes more negative, the item should be more difficult for the
person, and our expectation of failure increases .

The response pattern produced by each person is evaluated for theamount of misfit occurring .
Thediagnosis ofpatterns is expedited by plotting to show each pattern's shapeandby summarizing the
misfit in that particular pattern. A summary fit statistic is computed for each person and each item.

Figure 24.3 shows aresponse pattern that suggests guessing with an initial ability measure of
b = 3 .2 . Four easy items were answered correctly followed by five items of increasing difficulty
answered incorrectly followed finally by two quite difficult items answered correctly . Our attention
is attracted to these last two most difficult items with correct responses following five easier items
answered incorrectly. These last two correct responses are implausible.

Table 24.5 showsthe residual analysis of the original pattern of responses andof the corrected
pattern. We cancomputetwo ability estimates for this person . One, at b = 3 .2, is basedupon the original
full pattern. Theother, much lower, at b' =1 .7, is basedon deleting the last twoimplausible items. We
question whether the original ability estimate b = 3 .2 is agood indicator of this person's position on
the variable because the response pattern misfit is t= 5.3 . The corrected pattern fit of t' = -1 .2 is more
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ITEM PERSON
PERSON MISFIT

4 5 6 7 8 12 14 TOTAL

1 15 15

2 6 2 8

3 15 15

4 6 6

5 27 18 6 51

6 27 7 17 51

ITEM MISFIT
TOTAL 15 15 54 24 9 12 17 146

"1" = EXPECTED "0" =EXPECTED
V= UNEXPECTED "1"=UNEXPECTED

SINCE THESE PERSONS SINCE THESE
ARE ABOVE-2.0 IN ABILITY PERSONS

ARE BELOW+1 .7
IN ABILITY



Table 24.4

Some Misfit Statistics

For incorrect responses when x= 0 then C,,=(b-d) .

For correct responses when x = 1 then C,=(d-b) .

1 .
DIFFERENCE
BETWEEN

PERSON ABILITY
AND ITEM
DIFFICULTY

CX*

2.
SQUARED

STANDARDIZED
RESIDUAL

z2=expC

3 .
IMPROBABILITY

OF THE
RESPONSE

P=1/(/+.l)

-0.6,0.4 1 .50
0.5, 0.9 2 .33
1 .0, 1 .2 3 .25
1 .3, 1 .5 4 .20
1 .6, 1 .7 5 .17
1 .8, 1 .8 6 .14
1 .9, 2.0 7 .12

2.1 8 .11
2.2 9 .10
2.3 10 .09
2.4 11 .08
2.5 12 .08
2.6 13 .07
2.7 15 .06
2.8 16 .06
2.9 18 .05
3.0 20 .05

3.1 22 .04
3.2 25 .04
3.3 27 .04
3.4 30 .03
3.5 33 .03
3.6 37 .03
3.7 40 .02
3.8 45 .02
3.9 49 .02
4.0 55 .02

4.1 60 .02
4.2 67 .02
4.3 74 .01
4.4 81 .01
4.5 90 .01
4.6 99 .01



Figure 24.3

Correcting a guessing pattern.
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acceptable . Which estimate we decide is more useful dependsupon what we think aboutthe responses
of the person to these twoitems . If we think that these responses are implausible, that it is unlikely that
this person would get these last twoitems correct after five failures, then we might take the corrected
b'= 1.7 as the more useful estimate of this person's measure.

Statistical analysis alone cannot tell whichestimate is more useful, but it can detect andarrange
the available information into aconcise and objective summary to use as part of our evaluation of the
person . Personswhoguesson multiple choice itemsmay succeedon difficult items more often than their
abilities predict. This couldmake them appear more able, especially if many items are too difficult for
them . This is because their frequency of success would not decrease as item difficulty increased. A
similar but opposite effect occurs when able persons become careless with easy items, making these
persons appear less able .

Item responses affected by guessing express the simultaneous influence of more than one
variable . There is the ability to be measured and, in addition, there is the tendency to guess. The
"guessingness" of the item may or may not be a simple function of its difficulty on the main variable,
or, if amultiple choice item, of its distractors. Forthe person beingmeasured, at least, twoquitedifferent
variables are involved . One is ability, the other is inclination to guess. The accurate measurementof
either variable is threatened by the active presence of the other. In our empirical experience, when
guessing does occur, it is dominatedby the specific individualswhodo the guessing andnotby particular
items, unless the items are poorly constructed.

When we detect a significant misfit in a response record, diagnose the response pattern and
identify possible reasons for its occurrence, it is finally necessary to decide whether an improved
measure can or should be determined. Whether a statistically "corrected" measure is "fair" for the
person or "proper" for the testing authority cannot be settled by statistics . Nevertheless, knowing how
a measure can be corrected objectively gives us abetter understanding of the possible meaning in a
person's performance.

Forotherexamples ofmisfit patterns see Chapter 17 (p.143), Information andMisfit Analysis
and Best Test Design (Wright & Stone, 1979, pages 165-190) .

TAILOREDMEASURING

In situations wherewe think that guessing maybe influenced by testformat as, forexample, when
we think aperson may guess at random over m multiple-choice alternatives, we can usethe guessing
probability of 1/m as a threshold below which we suppose guessing might occur, as in Figure 24.2 .
To guardourmeasures against this kind ofguessing wecandelete all itemsfrom apersonresponse record
which have difficulty greater than b + log (m - 1) where b is the person's initial estimated ability .
After these deletions we reestimate the person's ability from the remaining items attempted . When we
do this,we are taking the position that when items are so difficult that aperson cando better by random
guessing than by actually trying, then, whatever the person's responses may be, such items should not
be used to estimate the person's ability.

The procedure is :

1) When several unexpected responses are "correct" beyond some set fit statistic, say t > 3,
suggesting the possibility of lucky guessing on the part of this particular person, delete all
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Table 24.5

Correcting a Guessing Pattern

ITEM NAME AND DIFFICULTY (IN DIFFICULTY ORDER)

#20 #21 #22 #23

2 .9 3 .3 3 .3 4.5 5 .8'

NSE PATTERN

Correction in measure: 1 .7 - 3 .2 =1 .5 .

v=Yz 2 /(L-1)

0
-1 .2
0 .3
-0 .5

t=[1n(v)+(v-1)][(L-1)18]"

b = 3.'2

	

DELETE

-1 .6
0 .2
-0.4

'

	

"Guessing" correction rule: for m-choice items deleded > [b + In (m -1)].
i .e ., if m = 5, and b = 3 .2, then delete any items with d> 3.2 In (4) = 3.2 + 1 .4 = 4.6, i .e ., items#25 and #24 .

0
-1 .3
0.3
-0 .5

0
-2 .8
0 .1
-0.2

MEASUREMENT RESIDUAL ANALYSIS

Score Relative Relative Error Ability Error Sum of Mean Fit
r Score Ability Coefficient b s Squares Square Statistic

f= rlL X , Cfwui Z2 v t

"Guessing"
Pattern 6 .55 0.4 2.9 3.2 0.9 43 .0 4.3 5.3
(b = 3.2) misfit

Corrected
Pattern 4 .44 -0.4 2.4 1 .7 0.8 3.7 0.5 -1 .2
(b' = 1 .7)

ITEM NAME : #14 #12 418 `#17 #19

ITEM DIFFICULTY: -0 .5 -0 .1 1 .4 1 .9 2,0

CASE RESPONSE
DESCRIPTION STATISTIC RESP

"Guessing" x 1 1 i
Pattern (2x-1)(d-b) -3 .7 -3 .3 -1 .8 1 .3 1 .2
(b = 3.2) z2 0.0 0 .0 0 .2 0 .3 3 .3

z 0 .2 0 .2 0 .4 0 .5 -1 .8'
CORRECTION

FOR GUESSING

b' = 1.7

Corrected x I I i 1 0
Pattern (2x-1)(d-bj -2 .2 -1 .8 -0 .3 -0 .2 -0.3
(b' =1.7) z2 0 .1 0 .2 0 .7 1 .2 0 .7

z 0 .3 0 .4 0 .9' I,I -0 .9



"too hard" items from this particular response pattern, that is, all items with d > [b + log
(m - 1)] where m is the number of alternatives .

2) Compute a new ability estimate after the deletion of the too hard items and make another
analysis of fit .

Steps 1 and 2 can be reiterated until successive values of b become stable and fit becomes
acceptable . When this procedure is applied to response patterns generated entirely by guessing, the
illegitimate responses are peeled away one at a time until the entire pattern is gone.

The use of a quality control process through misfit analysis of response patterns is the Rasch
measurement way of dealing with guessing . In Rasch measurement we do not accept guessing as
something to be tolerated when it can be avoided by external means, nor do we leave guessing to faulty
estimation procedures producedby unworkable models . Instead, we arrange the testing experience so
thatguessing is least likely to occur and then use the quality control procedure offit analysis to monitor
all response patterns for any manifestations of whatever lucky guessing may occur.



"Validity" and "reliability" are ubiquitous terms in social science measurement. They are promi-
nent in the APA "Standards" (1985) and earn chapters in test theory texts. Yet they remain ambiguous
and confusing in both theory and practice .

QUALITATIVEANDQUANTITATIVE ASPECTS OFVALIDITY

Validity has both qualitative and quantitative aspects. The qualitative aspects are conceptual .
The quantitative aspects are numerical .

Fundamental to validity is the concept of a variable . A variable is intended to be aundimensional
manifestation of oneclear idea. It is the embodiment of an intention that is defined by the items written
to implement the idea . Successful realization of a variable results from its concrete representation in
items. This representation is then used to collect data from which the coherence and utility of the idea
and its items is determined.

QUALITATIVEVALIDITY

25. EXPLAINING VALIDITYAND RELIABILITY

The conceptual plan of a variable is its qualitative validity. Qualitative validity refers to the
abstract idea of a variable and its content and illustrations that transform the abstraction from an idea to
manifestation by items.

The qualitative aspects of avariable are its "content" and "construct" validity. These two forms
ofvalidity express the meaning ofthe variable . They explain the organization andconstruction of items
and their use in eliciting manifestations of the variable . The items carry the intent of the variable and
bring to concrete realization the abstract intention.

Content validity is demonstrated by items plannedand written to bring the variable to life . But
successful item writing must follow a plan. The plan requires thinking of the variable as a line with
direction (an arrow) and arranging items according to their difficulty along this line . Such a plan
follows a single dimension . The plan requires empirical confirmation . A dialogue results between the
tasks of writing items according to the plan and gathering empirical evidence . Variable development
requires this dialogue first to construct a useful variable and then successively to substantiate it . A
variable by definition is undimensional . Its items operationally define the variable. This activity
addresses the "content" validity question .

When such a plan and its resultant items are a useful representation of a variable, the items
operationally define the variable and the variable is manifest by responses to the items. If the structure
of the variable is supported by the item calibrations and if the characteristics of persons can be substan-
tiated by their placement on the variable, we have construct validity.



QUANTITATIVE VALIDITY

The quantitative aspects of validity are numerical and statistical . They are content-free and

devoid oftext . They apply to any variable whatever its intention. They have no meaning by themselves,
but are useful tools for crafting a variable and defining its numerical properties .

THEDIALECTICBETWEENQUALITATIVEANDQUANTITATIVE

The qualitative and quantitative interact in a dialogue between the idea of a variable and its
quantitative manifestation . The idea provokes aplan andthe writing of items. The calibration of items
andmeasurement of persons provides the empirical realization. Theprocess involves successive cycles
modifying the plan of the variable and the items until perturbations between the two reduce to a point
wherefurther refinement is either unnecessary or not possible .

We might wish this dialectic to reach perfect agreement. But should we ever reach that level, the
problem would become trivial or disappear altogether. Indeed, we do not expect these two aspects to
fully reconcile. That would be the death of discovery . It would mark the end of improvement to the
variable .

Instead, the result of this interaction produces something more than is possible by considering
only the plan or only the results. Actually, we know there will andmust always be asense in which these
two aspects of validity are never broughttogether. They can neverachieve aperfect union, because it is
precisely their interaction that engenders our motivation to press on.

INTEGRITYANDUTILITYVALIDITY

The two "validities," qualitative and quantitative, are often applied to test practice to determine
concomitant and predictive utility. The Standards call these "criterion" and "predictive" validity.

Their designations as validity, however, are not apt because they do not bear on the integrity of
the test . They only bear on the test's utility . It is useful to differentiate between integrity and utility .

By integritywe mean the sine quanon ofthe variable, the demonstration throughconstruction of
the variable intended, illustrated by items (qualitative validity) andsupported by calculations (quantita-
tive validity) .

By utility we mean the application of the variable to whatever circumstances appear useful for
investigating relationships between this variable and others .

Discussions about utility arise from applications of the variable to any number of circumstances .
There is no limit to the number of questions andanswers that might be aroused by applying the variable
to different settings . There is no end to the investigation ofutility, although not all situations merit equal
attention .
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Every conceivable application gives an answer to utility. Unless one application becomes and
remains the main consideration, there is no way that utility can be interpreted as an essence of validity.
Consequently, utility is not inherent to the integrity of the variable .

In some applications, the variable may have only one use. In such anarrowly defined circum-
stance, we might consider utility as relevant to the validity of the variable . The difficulty with this
approach, however, is that inevitably the criterion changes.

THE STANDARDERROR

The main consideration facing us in anymeasurement application is to determine what standard
error must be achieved in a designated application. The question becomes one of measurement preci-
sion, a question about reliability . We want to know how many items we need in a given region of the
variable to obtain measurement precise enough to meet acurrent need .

THERELIABILITYCOEFFICIENT

The reliability coefficient is commonly used to indicate how well the variable correlates with
itself over independent applications as it were . The traditional reliability coefficient, however, is a
confusing mixture of qualitative validity and measurement precision. It remains confusing until it is
decomposed into its constituent elements .

The traditional reliability coefficient is a mixture of item fit and prediction because it is com-
posedof point-biserial correlations between the item responses and total score. Unfortunately, it mixes
these two issues in such a way that one cannot explicate the component parts. Furthermore, the two
issues are quite different from one another.

Precision ofmeasurementdepends on nothing more than thenumber of items administered, the
extent to which the items are on target andthe degree to which the respondent uses the items coherently.
It is a straightforward calculation that canbe done for any example.

BEST TEST DESIGN

Best test design depends on relating the characteristics of test design T (H, W, L - height, width
and length) to the characteristics of the target G (M, S, D - location, dispersion and distribution) so that
the SEM is minimized in the region of the variable where the measurements are expected to take place.

Atest design canbe defined completely by three test characteristics ; height, width and length :

H = the height of the test on the variable, the average difficulty of its selected items,
W= the width ofthe test in item difficulties, the range of its item difficulties, and
L = the length of the test in number ofitems.

A target specification states where on the variable we suppose the target to be:

M= ourbest determination as to target location,
S = our best determination as to target dispersion, and
D= ourbest determination as to target distribution .
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A best test is one whichmeasures best in the region wheremeasurements are expected to occur.
Measuringbest means measuring most precisely . Abest test design T (H,W, L) is one with the smallest
error of measurement SEM over the target G (M, S, D) for agiven test length .

If we know what precision in measures we want and have enough items near wherewe thinkour
targets will be found then the standard error of measurement in logits is almost always well approxi-
mated by 2.5 over the square root of the number of items administered . (For further details see Wright
and Stone, 1979, pp. 129-140.)

There is nothing more to investigateand nothing else to compute. It is a straightforward calcula-
tion of measurement precision for the proposed test andapplication.

THE TEST PLAN

Qualitative considerations need to precede the collection of data because they direct the con-
struction and development of items from the plan for the collection of data.

In item writing we can specify preliminary anchor item values determined by ourtheory underly-
ing their construction . Then we canplot the resulting empirical values against the intention of the items
to evaluate whether resulting values relate to the previous specification according to theory. This
approach connects intention andrealization.

Realization is never exact. But it can meet the guidelines and be supported by the collected
values showing how on target the numerical values of the items are relative to the intended plan. We
expect the plan to be substantiated to some degree, we also expect further refinement.

MISFIT ANALYSIS

When our intentions are supported by data we get construct encouragement. If there are some
discrepancies they teach us something about the relationship . If there are misfits of certain items, these
teach us something about what it is that we are working towards.

The item fit statistics are most important . But, unfortunately, they are overwhelmed by the reli-
ability coefficient in the traditional approach .

In Rasch measurement, we isolate the misfit statistic so that we can see which items demonstrate
quantitative validity and also where they appear in the hierarchy of qualitative validity. Fit statistics are
diagnostic of validity. They guide the measurement process by detecting lack offit and too goodfit .
Theformer identifies discrepancies between our intention and the results. The latter identifies circum-
stances too good to be true and hence, suspicious. Both need further investigation. (See Chapter 17
(p.143), Information and Misfit Analysis .)

The confrontation of qualitativeand quantitative validity provides opportunities in data analysis
as we learn more about our data and as we resolve the discrepancies appearing in the fit analysis . Then
we take steps to see whether we can make them more in agreement.



CONCOMITANT AND PREDICTIVE VALIDITY

A second kind of validity, concomitant and predictive, is how the task arranges the people .

The motivation now is to measure differences between people . We began by addressing the
items, butthe ultimate purpose is measuring the people . Now ourconcern is how the people are spread
out along the variable .

This is the relationship between the standard error of the test and the standard deviation of the
people we are measuring. This can never be addressed in general . It depends upon what problem is
posed, whether our attention is over a wide or narrow range of persons, over all people, or only 4 year
old children .

The answer depends upon the application of the characteristics of the test . Whether the test is
good enough for the circumstances. In general, we need enough precision for each level ofgrowth that is
being studied.

A good measurement strategy is to first use a pilot location test, followed by a specific test to
target the discovered location with greater precision than can be achieved solely by the pilot test. The
pilot test determines the general location on the variable and the second test more precisely targets that
location . The combination of pilot and target tests is less wasteful of time, achieves the desired mea-
surement precision, and generally uses fewer items.

	

.

However, what we are addressing now is the test's utility, not its validity. Questions about how
people are spread out over the variable are secondary to questions about the integrity of the instrument,
the idea of the variability and its development.



26. THE STEPS TO MEASUREMENT

Everyone who studies measurement encounters Stevens's levels (Stevens, 1957) . A few au-
thors critique his point ofview, but most accept his propositions without deliberation . An enumeration,
with some examples, suffices .

Stevens worked in the psychophysics of Weber and Fechner. But current authors on measure-
ment see little connection between psychophysics and modern measurement practice . This primer
shows a connection between psychophysics, Stevens's levels and Rasch measurement .

THE FUNDAMENTAL STEPS TO MEASUREMENT

When Stevens specifies four levels, he is identifying not four kinds ofmeasurement but the four
fundamental steps which lead to measurement . These steps are necessary to make measures . Each step
must be satisfied to reach generalizable findings . The steps are : categorizing, ordering, constructing a
unit, and setting an origin . The correspondence between the fundamental measurement steps to Stevens's
levels is shown in Figure 26.1 .

Figure 26.1

The steps ofmeasurement.

FUNDAMENTAL STEPS STEVENS' LEVELS

STEP AND FEATURE LEVELS REACHED

1 . Categorizing 1 . Nominal
- deciding what to collect

2. Ordering 2. Ordinal
- defining what to count

3. Constructing an Abstract Unit 3. Interval
- establishing a real number line

4. Setting an Origin 4. Ratio
- incorporating the logarithmic/
exponential connection between
addition and multiplication



On the left of Figure 26.1 are the steps to measurement: categorizing, ordering, constructing a
unit, and setting an origin . These steps correspond to Stevens's nominal, ordinal, interval, and ratio
levels on the right of Figure 26.1 .

CATEGORIZING

Categorizing is the first step to measuring. We begin by determining what is to be noticed and
collected, and also what is to be disregarded. In order to focus, we fix on single aspects isolated from
the infinite variety ofobservations we mightmake. Until we can identify and maintain a single focus in
our observations, i.e. categorize, we remain overwhelmed by the volume ofpossibilities that we perceive .

ORDERING

The second measurement step is to identify and isolate a useful line of inquiry along which
elements can be ordered and comparisons made. This becomes the potential "variable," that guides us
in collecting relevant observations which are relatively uncontaminated by irrelevant complications. It
is not that complications cannot be informative, it is only that complications must become irrelevant in
order to focusupon the one variable ofinterest . Sole focus evokes the clear determinations not possible
when we admit a clutter of complications . Multivariate analysis is useful only after each variable has,
itself, been realized as a single workable measure.

Stevens' nominal level concerns what is accomplished by categorizing .

CONSTRUCTING AUNIT: ADDITION

Constructing an abstract unit is the third step . We need to determine "how much," along the
abstract variable, is indicated by observations of concrete counts .

Determining "how much" models the units as additive and hence linear. This results from item
calibrations which define distances between observations categorized, ordered and counted.

SETTING AN ORIGIN: MULTIPLICATION

Fechner's postulation of a logarithmic relationship between stimuli and sensation enabled him
to restate Weber's lawto show that sensations are proportional to the logarithms oftheir exciting stimuli.

The third and fourth steps to measurement - units and origins are shown to merge by the loga-
rithmic/exponential relationship between additive and multiplicative functions .

The logarithmic function (and its inverse, the exponential function) connect addition and mul-
tiplication. This connection is the tool we need to make measures .

Stevens calls the additive function "interval" measurement and the multiplicative function "ra-
tio" measurement. However, the difference is merely the two sides of one characteristic, numerosity.
The additive andmultiplicative functions are dualities that bring out the joint necessity of determining
a unit of measurement and setting an origin .
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MAKING MEASURES

Raw counts of observations represent the additive function in its primitive concrete form. But
counts are not measures . Measures are constructed from counts by transforming counts of con-
crete observations into abstract measurement. It is this transformation which constructs measures .
How is this transformation made? What are the steps?

Georg Rasch addresses this in his Probabilistic Modelsfor Some Intelligence and Attainment
Tests (1960, 1993).

[Rasch] makes use of none of the classical psychometrics, but rather applies algebra
anew to a probabilistic model. The probability that a person will answer an item cor-
rectly is assumed to be the product ofan ability parameter pertaining only to the person
and a difficulty parameter pertaining only to the item . Beyond specifying one person as
the standard ofability or one item as the standard ofdifficulty, the ability assigned to an
individual is independent of that of other members of the group and of the particular
items with which he is tested ; similarly for the item difficulty. . . Indeed, these two prop-
erties were once suggested as criteria for absolute scaling (Loevinger, 1947); at that
time proposed schemes for absolute scaling had not been shown to satisfy the criteria,
nor does Guttman scaling do so . Thus Rasch must be credited with an outstanding
contribution to one ofthe two central psychometric problems, the achievement ofnon-
arbitrary measures (Loevinger, 1965, p. 151) .

RASCH'S METHOD OF PARAMETER ESTIMATION

In Probabilistic Models, Rasch groups persons by their scores and takes the log ratio of suc-
cesses to failures for each score group. He then fits these log odds to a two-way linear model to derive
item-by-score group logits .

The log odds (logit) transformations of the original success-failure counts (when there are no
interactions) produce parallel straight lines when item-by-score group logits are plotted against their
averages over items or score groups . The logit transformation connects the two-factor multiplicative
function to a one-dimensional additive function .

In Figure 26.2 we see how counts of success/failure on the ordinate can be transformed into
measures on the abscissa by the logistic function . The bounded values of counts are transformed into
unbounded measures. Given score groups large enough to give every item some successes and some
failures, this logit transformation enables estimation of the simple linear structure that Rasch called
objective measurement. Methods of parameterestimation are described in Wright & Douglas (1975),
Choppin (1978), and Wright & Stone (1979) .



Figure 26.2

Relating counts to measures .

Position on the Variable

Ordinate : counts expressed as 0 _< proportion < 1 (bounded).
Abscissa : Differences expressed as logits -oo < (B- D) < +oo (unbounded) .



FE'REVCES

American Psychological Association (1985) . Standardsfor Educational andPsychological Testing.
Washington, DC: Author.

Andersen, E. B . (1977). Sufficient statistics and latent trait models . Psychometrika, 42, 69-81 .

Andrich, D. (1982). An index ofperson separation in latent trait theory, the traditional KR20 index and
the Guttman scale response pattern . Education Research andPerspectives, 9(1), 95-104 .

Bechtoldt, H. (1959) . Construct validity : A critique . American Psychologist, 14, 619-629.

Beck, L. (1950) . Construction and inferred entities . In H. Feigl and M. Brodbeck (Eds .) Readings in
the Philosophy ofScience, (1953), 262-287. New York : Appleton-Century-Crofts .

Binet, A. & Simon, T. (1911). A Method ofMeasuring the Development ofthe Intelligence of Young
Children. Lincoln, IL: Courier.

Binet, A. & Simon, T. (1916). The development of intelligence in children . (Translations ofarticles in
L'Annee Psychologique, 1905, 1908, and 1911 .) Vineland, NJ: Vineland Training School .

Boring, E. G. (1950) . A history ofexperimental psychology. New York : Appleton-Century-Crofts .

Bradley, R. A. & Terry, M. E. (1952) . Rank analysis of incomplete block designs I : The method of
paired comparisons . Biometrika, 39, 324-345 .

Brogden, H. E . (1977) .

	

The Rasch model, the law of comparative judgment and additive conjoint
measurement . Psychometrika, 42, 631-634 .

Campbell, D. & Fiske, D. (1959) . Convergent and discriminant validation by the multitrait-multimethod
matrix. Psychological Bulletin, 56, 81-105 .

Campbell, N. R. (1920). Physics: The Elements. London: Cambridge University Press .

Choppin, B. (1968). An item bank using sample-free calibration . Nature, 42, 631-634.

Choppin B. (1976). Recent developments in item banking . Advances in Psychological and Educa-
tional Measurement. New York: Wiley.

Choppin, B. (1978) . Item banking and the monitoring of achievement. (Research in progress Series
No. 1) Slough, England : National Foundation for Educational Research.

Choppin, B. (1981). Educational measurement and the item bank model . In C. Lacey & D. Lawton
(Eds.), Issues in evaluation andaccountability. London .

Cronbach, L. & Meehl, P. (1955) . Construct validity in psychological tests . Psychological Bulletin,
52, 281-302 .

217



Fischer, G. (1968) . Psychologische Test Theorie. Bern : Huber.

Fisher, R. A. (1921) . On the mathematical foundations of theoretical statistics . Philosophical Trans-
actions oftheRoyal Society ofLondon, A., ccxxii, 309-368 .

Fisher, R. A. (1925) . Statistical MethodsforResearch Workers. Edinburgh : Oliver & Boyd.

Fisher, R. A. (1934) . Theory of statistical estimation . Proceedings of the Cambridge Philosophical
Society, xxii, 700-725 .

Fisher, R. A. (1935) . The Design ofExperiments. New York: Hafner.

Fisher, R. (1958). Statistical Methods for Research Workers, 13th Edition. New York : Hafner (First
published in 1925) .

Gould, J . G. (1981) . The Mismeasure ofMan. New York : Norton .

Guilford, J . P. (1954) . Psychometric Methods. New York : McGraw-Hill .

Guttman, L. L. (1944) . A basis for scoring qualitative data . American Sociological Review, 9, 139-
144 .

Guttman, L. L. (1950) . The basis for scalogram analysis . In Stouffer et al . (Eds.), Measurement and
Prediction . New York: Wiley.

Hambleton, R. K. (1983). Applications ofItem Response Theory. Vancouver, BC: Educational Re-
search Institute ofBritish Columbia.

Hoyt, C. (1941). Test reliability by analysis of variance . Psychometrica, 6(3), 153-160 .

Hulin, C. L., Drasgow, F. & Parsons, C. K. (1983). Item Response Theory. Homewood, IL: Dow
Jones-Irvin .

Keats,'J . A. (1967) . Test theory. Annual Review ofPsychology, 18, 217-238 .

Keats, J . A. (1971) . An Introduction to Quantitative Psychology. Sydney: John Wiley.

Kruskal, J . B . (1964) . Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypoth-
esis . Psychometrica, 29, 1-27 .

Kruskal, J . B . (1965) . Analysis of factorial experiments by estimating monotone transformations ofthe
data . Journal ofthe Royal Statistical Society (Series B), 27, 251-263 .

Likert, R. (1932). A technique for the measurement ofattitudes . Archives ofPsychology, 22, No. 140 .

Loevinger, J . (1947) . A systematic approach to the construction and evaluation of tests of ability.

218



Psychological Monographs, 61.

Loevinger, J . (1965). Person and population as psychometric concepts . Psychological Review, 72,
143-155 .

Luce, R. D. & Tukey, J . W. (1964) . Simultaneous conjoint measurement : A new type of fundamental
measurement . Journal ofMathematical Psychology, 1, 1-27 .

Perline, R., Wright, B . D. & Wainer, H. (1979) . The Rasch model as additive conjoint measurement.
Applied Psychological Measurement, 3,327-256 .

Rasch, G. (1958). On Applying a General Measuring Theory of Bridge Building Between Similar
Psychological Tests. Copenhagen: Danmarks Paedogogiske Institute .

Rasch, G. (1960/1980) . Probabilistic Modelsfor Some Intelligence and Attainment Tests. Chicago :
University ofChicago Press . (Original work published 1960.)

Rasch, G. (1961). On general laws and the meaning ofmeasurement in psychology. Proceedingsofthe
Fourth Berkeley Symposium on Mathematical Statistics andProbability, 321-333.

Rasch, G. (1966a) . An individualistic approach to item analysis . In P. F. Lazarsfeld & N. W. Henry
(Eds.), Readings in Mathematical Social Science. Chicago : Science Research Associates .

Rasch, G. (1966b) . An item analysis which takes individual differences into account. British Journal
ofMathematical and Statistical Psychology, 19, 49-57 .

Rasch, G. (1967). An informal report on the present state of a theory of objectivity in comparisons . In
L. J . van der Kamp & C. A. J . Vieck (Eds.), Proceedings oftheNUFFIC International Summer
Session in Science at "Het Oude Hof. " Leiden .

Rasch, G. (1968). A mathematical theory ofobjectivity and its consequencesfor model construction.
In Report from European Meeting on Statistics, Econometrics and Management Sciences :
Amsterdam .

Rasch, G. (1977) . On specific objectivity : An attempt at formalizing the request for generality and
validity of scientific statements . Danish Yearbook ofPhilosophy, 14, 58-94.

Rasch, G. (1993). Probabilistic modelsforsome intelligence and attainment tests. Chicago: MESA
Press . (Original work published in 1960.)

Smith, R. M. (1982). Detecting measurement disturbance with the Rasch model. Unpublished doc-
toral dissertation, University of Chicago .

Stevens, S. S . (1957) . On the psychophysical law. Psychological Review, 64(3), May.

Stocking, M. L. (1989) . Empirical estimation errors in item response theory as a function of test
properties . Research Report. Princeton, NJ: Educational Testing Service .

219



Thomdike, E. L . et al . (1926). The Measurement ofIntelligence. New York: Teachers College Press.

Thurstone, L. L . (1926) . The scoring of individual performance . Journal ofEducational Psychology,
17, 445-457.

Thurstone, L. L . (1927) . A law of comparative judgment . Psychological Review, 34, 273-286 .

Thurstone, L. L . (1927) . A mental unit of measurement . Psychological Review, 34, 415-423 .

Thurstone, L. L. (1928a) . Attitudes can be measured . American Journal ofSociology, 33, 529-554 .

Thurstone, L. L . (1928b). The measurement of opinion . Journal ofAbnormal and Social Psychology,
22, 415-430 .

Thurstone, L. L . (1928c) . Theory of aptitude measurement. Psychological Review, 22, 415-430 .

Thurstone, L. L. (1929). Theory ofattitude measurement. Psychological Review, 36, 222-241 .

Thurstone, L. L. (1931). Measurement of social attitudes . Journal ofAbnormal and Social Psychol-
ogy, 26, 249-269 .

Thurstone, L. L . & Chave, E. J . (1929) . The measurement ofattitude. Chicago : University of Chicago
Press .

Thurstone, L. M. (1926) . The scoring ofindividual performance. Journal ofEducational Psychology,
17, 446-457 .

Thurstone, L. M. (1928). Theory of aptitude measurement. Psychological Review, 22, 415-430 .

Tucker, L. (1953). Scales minimizing the importance ofreference groups . In Proceedings ofthe 1952
Invitational Conference on Testing Problems. Princeton, NJ: Educational Testing Service .

Wilkinson, G. S. (1993) . WRAT3 Administration Manual . Wilmington, DE: Wide Range, Inc .

Wolpe, J . & Lange, P. (1969). Fear Survey Schedule. San Diego, CA: Educational and Industrial
Testing Service .

Wright, B . D . (1968) . Sample-free test calibration and person measurement . In Proceedings ofthe
1967 Invitational Conference ofTesting Problems. Princeton, NJ : Educational Testing Service .

Wright, B . D. (1977) . Solving measurement problems with the Rasch model. Journal ofEducational
Measurement, 14(2), 97-116 .

Wright, B. D. (1984). Despair and hope for educational measurement . Contemporary Education Re-
view, 3, 281-288 .



Wright, B . D. (1988). The efficacy of unconditional maximum likelihood bias correction. Applied
Psychological Measurement, 12, 314-318.

Wright, B. D. & Bell, S . R. (1984) . Item banks: What, why, how. Journal ofEducational Measure-
ment, 21(4), 331-345 .

Wright, B. D. & Douglas, G. A. (1975) . Best Test Design and Self-Tailored Testing. Research Memo-
randum No. 19 . Statistical Laboratory, Department of Education : University of Chicago .

Wright, B. D. & Douglas, G. (1977a) . Best procedures for sample-free item analysis . Applied Psycho-
logical Measurement, 1, 281-294 .

Wright, B. D. & Douglas, G. (1977b) . Conditional versus unconditional procedures for sample free
analysis . Educational and Psychological Measurement, 37,573-586 .

Wright, B. D. & Linacre, J . M. (1991) . BIGSTEPS. Chicago : MESA Press .

Wright, B. D. & Linacre, J . M. (1991) . SAMS. Chicago: MESA Press .

Wright, B. D. & Linacre, J. M. (1992) . A User's Guide to BIGSTEPS. Chicago : MESA Press .

Wright, B. D. & Masters, J. (1982) . Rating Scale Analysis. Chicago : MESA Press .

Wright, B. D. & Mead, R. J . (1976). BICAL. Chicago : MESA Press.

Wright, B. D., Mead, R., & Bell, S. (1976) . BICAL: Calibrating items with the Rasch model. Memo-
randum No. 23 . Statistical Laboratory, Department ofEducation : University of Chicago .

Wright, B . D. & Panchapakesan, N. A. (1969) . A procedure for sample-free item analysis . Educa-
tional andPsychological Measurement, 29, 23-48 .

Wright, B. D. & Stone, M. H. (1979) . Best Test Design . Chicago : Mesa Press .


