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Shows how the Rasch model and a few natural decisions
about the nature of tests and their targets leads to simple
practical procedures for best test design and self-tailored
testing .

	

The error minimization necessary for best test
design is developed and applied . Tables for converting
scores observed on self-chosen segments of uniform tests
into test-free measures and their standard errors are pro-
vided .

	

Robustness with respect to design
errors in target location and item calibration is evaluated .
and a convenient unit of measurement for psychological and
educational variables suggested .

TmTRnmTrTTnm

When an examiner wishes to measure a person he must
obtain an appropriate measuring instrument . He may do this
by selecting from available standard forms or he may draw
upon a pool of calibrated items and compose a test tailored
to the requirements of his measurement target . He may be a
psychometrician constructing an integrated series of standard
forms from a national pool of well-calibrated items or a
teacher making a test for a pupil from items in his files .
In each case the examiner requires a clear way of thinking
about tests and targets which allows him to deduce from the



nature of the target he wishes to measure the characteristics
of the best possible test for the job . We will develop and
explain such a way of thinking and derive its practical con-
sequences for how to design, construct and administer best
tests .

A simple practical procedure is especially urgent if
the examiner wishes to bring test and target into the best
possible relationship during the process of testing . Tailored
testing (Lord, 1971) tries to do this by various stepwise
procedures .

	

Unfortunately most schemes are either expensive,
requiring computer assistance, or complicated, placing heavy
demands on test-taking ingenuity .

The .procedure we will develop lends itself to a simple,
practical and inexpensive scheme for self-tailored testing .
It makes it possible to present a target person with a stan
dard booklet of items sequenced in increasing difficulty and
to invite him to choose any starting point in the booklet
which suits him . Having chosen, he can work up into harder
items until he reaches items so difficult he no longer feels
he can do his best and/or down into easier items until he
reaches items so easy they no longer challenge him .

If the booklet is properly constructed, the examiner
can use the target person's performance on such a variable
segment of self-chosen items to estimate his ability . If the
items in the booklet are more or less equally spaced on a log-
odds scale and have been constructed to more or less . fit the
Rasch model, then three easy statistics : the sequence number
of the easiest item reached, the sequence number of the hardest
item reached and (through a simple self-scoring sheet) the
number of intervening items succeeded on, are sufficient for
reading the target person's estimated measure and its standard
error directly from a small family of easy-to-use tables . No
need for computer assistance, nor machine scoring, nor lengthy
calculations .

	

No need for pretests to identify the right
individualized test .

	

The process is self-tailoring .

	

As the
target person takes the test he finds for himself the items
in the test booklet of difficulty best for him .

RASTC. CONCFPTS nF TFsT nPRTCN

In order develop such a convenient system of measure-
ment, we must decide what it is reasonable to imagine happens
when a person to be tested responds to an item used to make
measurements . What could a response we might observe tell us
about a person we might wish to measure? What part does the item



play?

	

[low do item and person interact to show us some-
thing about the person's position on an interesting but
difficult to observe variable? How shall we think about
this "latent" variable along which item and person
supposedly interact?

	

The basic concepts we need to
establish and clarify are :

	

latent variable, response
model, measurement target and test design .

The T.3t2nt Va_r ; nj2 e

A fundamental problem in the systematic development
of our knowledge about the world is how to weave a useful
connection between experience and idea . Careful observa
tions are the core of our experience .

	

Our motive for
bothering to make careful observations is our idea about
how we suppose things to be . We know our specific obser-
vations to be limited and incomplete yet we try to see in
them indications of general ideas which we plan to use
comprehensively at other places and times not yet experienced .
The concept of a "latent variable" is intended to keep this
difference between passing experience and persisting idea
clearly before us and so to help us weave a useful connec-
tion between them .

The distinction between a latent or underlying
variable and a manifest or observable one is analogous
to the distinction between the parameter of a model and
a statistic intended to estimate it .

	

The parameter
represents an idealized conception of all that we wish
to know . The statistic represents a particular realiza-
tion of what little we can observe . Our interest is
focused on the latent variable and, whilst it can only
be known through its observable manifestations, it is
the latent variable which is the motive and meaning of
our observations .

In mental measurement the "intelligence," "ability"
or "achievement" variables along which both items and
persons are supposed to be positioned are latent vari
ables .

	

It is through the calibration of items along
these latent variables that we transform a person's
observable responses into his "unobservable" measure-
ments .

	

Our interest in his actual responses is transient .
Once we have used our knowledge of item calibration to
extract from his item responses an optimal indication of
his measure we have no further interest in the responses
themselves and turn instead to our motive for observing
these responses in the first place, namely our wish to
measure the person on the fundamental but latent variable .
In this discussion we will use the term ,"ability" to



refer to person measure and speak of persons as "dumb"
and "smart" and of items as "hard" and "easy ." But
the latent variable could as well be "achievement" or
"intelligence" or some "attitude" or "inclination" or
any other attribute for which we constructed relevant
observations .

But if a variable is latent and we cannot observe
it directly, how can we know what it is? How can we
arrive at its operational definition? The answer lies
in the items we use to make measurements . To be useful
these items must be calibrated along the latent variable .
Each item must have its own location, the position at
which its difficulty matches the ability of a person for
whom that item is just right . 1 When the pool of items
from which we select the elements for a best possible
test has been calibrated on a latent variable, then
these items and their locations on the latent variable
provide its operational definition . A measurement of
a person on the variable will place him among items
with difficulties near his estimated ability . The
meaning of his position on the variable will be defined
by these nearby items .

nri rri n
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In general the origin and scale of a latent vari-
able are arbitrary . We must make some specific choice
in order to proceed with measurement . If we ask, "What
is the distance to New York?", we find that a useful
answer depends on settling two prior questions : "From
where?" and "In what units?" These are requests for an
origin and scale . Thus even for the familiar variable
"distance" an origin and scale must be defined before
we can make useful measurements .

The origin is the place from which distance

We are not ready to derive more exactly what "just right"
might mean . For that we need to specify a model for what
happens when a person responds to an item . But we can an-
ticipate our final definition : "just right" will mean
that the probability of a correct response is exactly
one-half, that is "even odds for a correct response," or
"a log odds difference between person ability and item
difficulty of zero ."



along the latent variable will be "measured ." In general
there is no unique zero place . We have to decide upon a
choice convenient and useful for the measurements we want
to make .

	

The same is true for scale . We may be motivated
to make a choice of origin which frees us from fiddling
with negative numbers . We may be motivated to choose a
scale which frees us from decimals or uses the decimal
point in an informative way . When no more useful choice
is in sight we may even nominate a sample of person measure-
ments or item calibrations as our standard and take their
mean value as our origin and their standard deviation
as our scale . But whatever our pleasure we will be forced
to make some choice . In the discussion that follows we
will use either the center of our target or the center
of our test as our origin and the log odds for a correct
response as our scale . At the end we will recommend a
transformation of origin and scale with pleasing pro-
perties .

The concept of a latent variable is indispensible
for acquiring a grasp of what testing is all about and
essential for guiding our attempts to measure . A latent
variable is operationally defined by the pool of cali-
brated items which provides the elements for measuring
it . How to identify, select and calibrate items along
a latent variable is described in Rasch (1960), Wright
and Panchapakesan (1969), Andersen (1972a, 1972b, 1973)
and Wright and Douglas (1975) .

TbP RPSnnnsP MndPI

What do we observe when a person of unknown ability
tries a calibrated item of some estimated difficulty?
Usually just the binary response "right" or "wrong ."
In order to use this binary observation as a basis for
estimating a person's ability and hence for measuring
him we must formulate a plausible relationship between
his unknown position, or "ability," on the latent vari-
able, the calibrated "difficulty" of the item and the
observable "response ." We will call this relationship

More complex observations have been proposed and
modelled (Andersen, 1972a, Samejima, 1968 and Bock,
1972) but so far they have found few uses . Since our
aim is to formulate and develop procedures consistent
with common practice, we will not adventure into the
possibilities of more complex observations in this
article .



the "response model ." By what criteria shall we formu-
late it?

The response must be reasonable . The way persons
and items enter into it must be consistent with what we
already know .

	

We also want the simplest model which
will do the job . Beyond reasonableness and simplicity
we want the measurements resulting from the model to be
free from irrelevant influences such as how the items
happen to have been calibrated and on whom (Rasch, 1960) .

In particular we want to be able to adjust our inter-
pretation of the implications of each observed response
for the difficulty of the item prov6king it so that we
can reach an "item-free" estimate of the person's ability
IWright, 1967) .

	

Finally since making measurements will
amount to using a collection of well-designed observa-
tions to estimate a person's ability we want our response
model to have parameters which can be estimated satis-
factorily .

What kind of relationship can we expect between
the unobservable characteristics of person and item and
the observable response their interaction is supposed to
produce?

	

No matter how smart a person may be we cannot
be sure he will succeed on a particular item . No matter
how dumb, we cannot be sure he will fail . Therefore
our only reasonable course is to formulate a probabilistic
relationship between person ability, item difficulty and
the response they are supposed to influence .

How shall ability and difficulty combine to deter-
mine this probability for a successful response? We
expect a person's chances for success to increase with
his ability but to decrease with item difficulty . Either
the difference or the ratio of these two parameters will
express these expectations . Since differences are simpler
to work with, we will use them .

It only remains to formulate these differences in
such a way that,no matter what their values, they will define
a probability between zero and one . The simplest realiza
tion of these reasonable requirements is the response
model for binary observations proposed by Georg Rasch
11960) . s

3 For further comments on this kind of model see Birnbaum,
1968, 431-34 and 445-46 .



This particular response model meets all our
requirements .

	

Not only is the relationship between
person, item and the probability of a correct response
reasonable and simple, but, as the work of Rasch and
many others has so amply shown, the calibration of
items can be person-free and the measurement of persons
can be item-free .

What about the estimation of these person and
item parameters? It has always been popular to take
the number of right answers on a test as an indication
of the-ability of a person . That popular practice is
just what the Rasch model calls for . In fact, if we
take the widespread belief in the fundamental meaning-
fulness of an unweighted test score as our point of
departure and ask what response model this belief
implies, then we can deduce that the Rasch model is
the one and only reasonable model consistent with that
belief and its practice .

	

The very same statistic which,
according to the Rasch model, leads to an unbiased,
consistent and sufficient estimator of person ability
is that same unweighted test score which nearly everyone
already uses to make their measurements .

The Rasch model for what happens when person v
responds to item i with binary response Xvi=1 (for a

correct response) and X =0 (otherwise)vias :

where

P {xvi I Sv 1 d i ) =

8 v = the ability of person v, and

xvi (a v -d i.)e

the difficulty of item i

can be expressed

In order to emphasize that item difficulty in this
model is a persisting property of the item and not of the
person, we point out the difference between the colloquial
use of "difficulty" as in the complaint "That item is easy
for you but hard for me .", and the technical use in which
the item has its own fixed difficulty and the complaint
becomes "You are smart but I am dumb ." one value of the
response model is that it formulates the relationship
between these two kinds of difficulty explicitly . Collo-



quial difficulty is person-bound . It is the probability
of a person with a particular ability succeeding on the
item .

	

But technical difficulty is person-free . It is
the fixed item parameter which joins with person ability
in the response model to produce the probability of a
correct response .

Practical discussions of how to estimate the para-
meters of this model are given in Rasch (1960), Wright
and Panchapakesan (1969), Wright and Douglas (1975) and
Wright and Mead (1975) .

ThA Tnrgpt

When an examiner plans a measurement there must be
a target person or group of persons about whom he wants
to know more than he already knows . If he cares about
the quality of his proposed measurements then he will
want to choose or construct his measuring instrument
with the specifics of his target in mind .

	

In order to
do this systematically he must begin by setting out as
clearly as he can what he expects of his target . Where
does he suppose it is located on the latent variable?
How uncertain is he of that approximate location? What
is the lowest ability he imagines the target could have?
What is the highest? How are other possible values dis-
tributed in between?

Sometimes an examiner has explicit prior knowledge
about his target . He or someone else has measured it
before and so he can suggest its probable location and
dispersion directly in terms of these prior measures on
the latent variable and their standard errors . Sometimes
an examiner has sample items calibrated along the latent
variable, some of which he or his client believe are
probably just right for the target, some of which are
nearly too hard and some of which are nearly too easy .
Then he can take from the difficulties of these sample
items rough indications of the probable center and
boundaries of his target .

One way or another the examiner must assemble
and clarify his suppositions about his target as well
as he can so that he can derive from them the test design
which has the best chance of most increasing his knowl-
edge .

	

If he knew enough about his target, he would not
measure it .

	

But no matter how little he knows, he always
has some idea of where his target is . Being as clear as
possible about that prior knowledge is essential for the
design of the best possible test .



A target specification is a statement about where
on the latent variable we suppose the target to be . We
express our best guess by specifying the target's supposed
center, its supposed dispersion and its supposed shape
or distribution .

	

If we let

M = our best guess as to target location,
S = our best guess as to target dispersion,
D = our best guess as to target distribution,

then we can describe a target

	

G by the expression
G(M,S,D) and we can summarize our prior knowledge and
hence our measurement requirements for any target we
wish to measure by guessing as well as we can values
for the three target parameters, M, S, and D .

A picture of a target is given in the upper half
of Figure 1 .

	

Guessing the supposed location M of a
target seems straightforward .

	

But guessing the dis
persion S

	

and the distribution D

	

forces us to think
through the difference between a target wh ; nh-i s a single
person and one which is a group . For the single person,
S can describe the extent of our uncertainty about where
that person is located . The larger our uncertainty, the
larger S .

If we can specify boundaries within which we feel
fairly sure the person will be found we can set

	

S

	

so
that

	

M ± kS

	

defines these boundaries (where

	

K=2 or 3) .
Then even if we have no clear idea at all about the dis-
tribution D of our uncertainty we can nevertheless
expect (thanks to Tchebycheff's inequality) that at least
~1-1/k 2 ) of the possible measures will fall within M + kS .

If we go further and expect that the measures we
think possible for the person will pile up near

	

M then
we may even be willing to take a normal distribution as
a useful way to describe the shape of our uncertainty .
In that case we can expect ,95 of the possible measures
to fall with M +- 2S and virtually all of them to fall
within M + 3S .

We will refer to these two target distributions
as the Tchebycheff interval and the normal,

	

We might
consider other target distributions .

	

But these two
cover an examiner's state of mind with respect to the
shape of his target rather well . If he feels unhappy
about thinking of his target as approximately normal
then it is unlikely that he will have any definite
alternative clearly in mind . Thus the most likely
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FIG . 1

The Distribution of a Target and the Operation of a Test



alternative to a normal target is one of unknown distri-
bution, captured by a Tchebycheff interval . It is this
simplification of possible target shapes to just two
reasonable alternativeswhich makes a unique solution to
the problem of best test design possible and practical .

If the target is a group rather than an individual
then we may take S

	

and D to be our best guess as to
the standard deviation and distribution of that group .
If we think the group has a more or less normal distribu-
tion then we will take that as our best guess for D .
Otherwise we can fall back on the Tchebycheff interval .

Finally the examiner must be explicit about how
precise he wants his measurement to be . This is his
motive for measuring . It is just because his present
knowledge is too approximate to suit him that he wants
to know more precisely where his target is and, if it is
a group rather than an individual, more precisely about
its dispersion .

	

But whether the target is an individual
or a group our decision about the standard error of
measurement SEM will be made in terms of individuals,
for that is what we measure .

In the case of a one person target we want SEM to
be enough smaller than

	

S

	

to reward our measurement
efforts with a useful increase in the precision of our
knowledge about where the target person is located . In
the case of a group target we want to achieve an improved
estimate not only of M, the center of the group, but
also of S, its dispersion . The observable variance of
measures over the group estimates not only the underlying
variance in ability S2 but also the measurement error
variance SEM2 .

	

Our ability to see the dispersion of
our target against the background error of measurement
depends on our ability to distinguish between these two
components of variance . Since they enter into the observ-
able variance of estimated measures equally, the smaller
SEM is with respect to S, the more clearly can we
identify and estimate S 2 , the component due to target
dispersion .

	

Thus for all targets we seek

	

SEM «S .

ThP Test

A test is a set of suitable items chosen to go to-
gether to form a measuring instrument . The complete
specification of a test is the set of all parameters which
characterize these items . But when we examine a picture
of how a test works to transform observed scores into
estimated measures, we see that the operating curve is
rather simple and lends itself to specification through



just a few test parameters . If we use the simplicity
and clarity of the Rasch model as our guide, we can de-
duce that the only parameters which influence the opera-
ting characteristics of a test are the difficulties of
its items .

	

When we impose a reasonable fixed distribu-
tion on these difficulties, then no matter how many items
we use, we can reduce the number of statistics sufficient to
characterize the test to three .

In the lower half of Figure 1 we can see from the
shape of the test operating curve that its outstanding
features are its position along the latent variable,
which we will call test heigt, and the range of abilities
over which the test can measure more or less accurately,
characteristic caused primarily by the dispersion of

the item difficulties which we will call test width,

But height and width do not complete the characteriz-
ation of a test . When we look more closely to see how
precisely the test can measure on the latent variable we
discover a discontinuity in what we can observe and hence
measure . Both its least observable difference LOD and
its least believable difference

	

SEM are strongly related
to the number of items in the test, that is its 1anath,
From this we s-ee that any test design can be defined more
or less completely just by specifying those three charac-
teristics ; height, width and length . If we let

H

W

L

the height of the test on the latent
variable (i .e ., the average difficulty of
its designed items),

the width of the test in item difficulties
li .e ., the range of its designed item
difficulties), and

the length of the test in number of items,

then we can describe a test design

	

T by the convenient
expression

	

T (H,W, L) .

In the practical application of best test design we
will have to approximate our best design T

	

for a target
G from a finite pool of existing items .

	

In order to dis
criminate in our thinking between the test design T(F1,W,L)
and its approximate realization in practice, we will
describe an actual test as t(h,w,L), where

h = the average difficulty of its actual items, and

w = an estimate of their difficulty range .



PRINCIPLES OF REST TEST DESIGN

What is a best test ? 4

	

One which measures best
in the region within which measurements are expected
to occur .

	

Measuring best means most precisely . So
a best test design T(H,W,L) is one with the smallest
error of measurement SEM over the target G(M,S,D)
for given length L(or, what is equivalent, with small-
est L given SEM) . But "over the target" implies the
minimization of a distribution of possible SEM's .
Thus a position with respect to the most likely target
distribution must be taken before the minimization of
SEM can proceed .

We have brought the profusion of possible
target shapes under control by focusing our practice
on their two extremes, interval and normal . How shall
minimization be specified in each case? For a normal
target it seems reasonable to maximize average preci-
sion, that is to minimize average SEM, over the whole
target .

	

To decide what to do for an interval target
we need to know how the SEM varies over possible
test scores .

	

When we derive an exact form for the
precision of measurement, we

	

see that for ordinary
tests with less than three log odds units between
adjacent items, precision is a maximum for measurements
made at the center of the test and decreases as test
and target are increasingly off-center witn respect to
one another .

	

For tests centered on their targets this
means that, maximizing precision at the boundaries of an
interval target is the only way to maximize precision
over the target interval . So for interval targets we
will maximize precision at the target boundaries .

When we derive the SEM from our response model
we will discover that it is an inverse function of the
information about ability supplied by each item response
averaged over the test . Since the most informative
items are those nearest the ability being measured and
the least informative those farthest away, the precision
over the target will depend not only on the distribution

4 Attempts to answer this question have been made by
Birnbaum (1968, p . 465-71) and although many of our ideas
are consistent with his efforts we believe that we have
taken their implications to a logical and practical con-
clusion .



of the target but also on the shape of the test . Thus
the question of what is a best test also depends on
our taking a position with respect to the best distri-
bution of test item difficulties .

What are the reasonable possibilities? If we
want to measure a normal target,then a test made up
of normally distributed item difficulties might pro
duce the best maximization of precision over the
target .

	

This is the conclusion implied in Birnbaum's
analysis of information maximization (Birnbaum, 1968,
p . 467) .

However, normal tests are clumsy to compose .
Normal order statistics can be used to define a unique
set of item difficulties but this is tedious . More
problematic is the odd conception of measuring implied
by an instrument composed of normally distributed
measuring elements .

	

A normal test would be like a
yardstick with rulings bunched in the middle and spread
at the ends . Measuring lengths with such an irregularly
ruled yardstick would be awkward . In the long run, even
for normal targets, our interest becomes spread out
evenly over all the lengths which might be measured .
Equally spaced rulings are the test shape which serves
that interest best . That is the way we construct yard-
sticks .

	

The test design corresponding to an evenly
ruled yardstick is the uniform test in which items are
evenly spaced from easiest to hardest (Birnbaum, 1968,
p . 466) .

Two target distributions, normal and interval,
and two test shapes, normal and uniform, produce four
possible combinations of target and test . We
investigatedall four .

Now we must turn to our response model and derive
from it the formulation of SEM so that we can become
explicit about which designs maximize precision by mini
mizing SEM .

	

We want to know what aspects of test design
T(H,W,L) and test shape influence

	

SEM and how we can
vary these characteristics in response to a target
specification G(M,S,D)

	

in order to minimize

	

SEM over
that target .



The response model specifies

Pfi

where

	

Pfi = the probability of a correct response at
f and i,

bf = the ability estimates at relative score
f = r/L,

d . = the calibrated difficulty of item i
i

According to maximum likelihood estimation (Birnbaum,
1968, p . 455-69 ; Wright and Panchapakesan, 1969, p . 41-
44) bf is estimated from a test of length L and items

{d i }, i=1,L through the equations

f = E P fi /L

	

for f = 1/L, (L-1)/L

	

(3)
i =1

with asymptotic variance

S 2bf

L

b d .e f - i.

	

(2)

L

	

1

	

= SEMf ,

	

(4)

E

	

P i (1-P fi )
i=1

f

which is the square of the standard error of measurement
at relative score f .

In (3) we see that SEM depends on the sum of
Pfi (1-P fi ) over i . This expression is a function of b f
and all the di . However fluctuations in P(1-P) are

rather mild for P between .2 and .8 . To expedite in-
sight into the make-up of SEM, we will reformulate it
so that the average value of Pfi (1-P fi ) over i is one

component and test length is the other :



SEM f

	

= \I	L
E

	

Pfi (1-P fi )
i=1

L

Thus we factor length out of SEM in order to find a
length-free error coefficient .

Resuming our study of the operating curve of a
test in Figure 1 we see that the formulation for the
least observable difference in ability LOD is db=abAf .

Since the least observable increment in relative score
®f is l/L, all we need to complete the formulation of
LOD is the derivative of b with respect to f, which
from (2) and (3) above is

_ab
8f L

E

	

Pfi(1-Pfi)i=1

But this is the inverse of the average value of
P fi (1-P fi ) over i which we isolated in (5) . We will
identify this as the error coefficient C f and note

that it is not only a function of f but also of the
distribution of item difficulties .

Then

	

LODE = Cf/L

and

	

SEMf = ~C_f/L

With SEM in this form we note that as far as test shape
is concerned it is Cf which requires minimization . This

will be true whether we use C .

	

to minimize SEM given
min

L or to minimize L given SEM .

The Error Coefficient

What is the nature of this error coefficient C f ?

The expression P fi (1-P fi ) is the information on b f
contained in a response to item i (Birnbaum, 1968,
p . 460-6£3) . So its average over i is the average infor-



mation on bf per item in the test . Thus C f is the
inverse of this average test information . The greater
the information obtained the smaller C f and hence the
smaller SEMf and so the greater the precision .

this question in two ways : in terms of the influence of
reasonable values of (b f-d i ) on Pfi or, if we are
willing to focus attention on uniform tests, in terms of
test width

	

W

	

and the boundary

	

P's,

	

Pfl

	

for

	

i=1,
the easiest item, and P fL for i=L, the hardest item .

see that when b f=d i and their difference is zero then
P fi = 1/2 and P fi (1=P fi ) = 1/4, but when bf-d i=-2

then P fi = 1/8 and P fi (1-P fi ) = 1/9 . Since an average
value can never be greater than the maximum nor less than
the minimum value, we can use these figures as bounds
for

	

Cf .

and

	

4

	

<

	

Cf

	

<

	

9

	

(9)

Turning to the bounds we can derive for C f from
test width W and the boundary probabilities P fl and

P fL of a uniform test, we can use an expression
(Birnbaum, 1968, p . 466)

where W

What values can we expect of Cf? We can approach

Beginning with reasonable values of (b f-d i), we

When

	

-2 < b f - d i < 2,

P fl

P fL

1/8 < P fi < 7/8

C fW

	

W/ (Pfl-PfL)

	

(10)

the item difficulty width of a uniform test,
the probability of a correct response by
b f on the easiest item on the test, and

the probability of a correct response by
bf on the hardest item on the test .

When b f is contained within the difficulty boundaries of



the test, that is d l < b f < dL and W>4 then

1/2 < Pfl-PfL < 1 and C fW must fall between W and

2W, that is

It follows from considerations (9) and (11) that
SEM = C/L is bounded by 2/~T < SEM < 3/FL for any
test when -2 < (b f-d i ) < 2, and by W/L . < SEM < 2W/_E

for uniform tests when

	

W>4

	

and

	

dl	< bf	< dL .

Rlmn]Pot R17~PS

W < CfW < 2W

	

for W>4 , d l <b f <d L	(11)

Best test design depends on relating the charac-
teristics of test design T(H,W,L) to the characteristics
of target G(M,S,D) so that the SEM is minimized in
the region of the latent variable where the measurements
are expected to take place . The relationship between
test and target visible in Figure 1 makes the general
principles of best test design obvious . To match test
to target we aim the height of the test at the center of
the target, spread the width of the test to cover the
dispersion of the target and lengthen the test until it
provides the precision we require .

In simplest terms the rules for best test design
can be specified as :

where C is the error coefficient with values between
4 and 2W, producing a test for which the operating
characteristics will be

a least observable difference

	

LOD< 2W/L and

a standard error of measurement

	

SEM< 2W/L .

(i) Center T on G by H = M

(ii) Spread T over G by W = 4S

(iii) Lengthen T to reach SEM by L = C/SEM2



MATHEMATICS FOR ERROR MINIMIZATION

Even though we have been explicit about the nature
of the target G and the test design T, the direct
minimization of

	

C is impeded because it is an implicit
function of its unknowns . We can see this by deriving
the asymptotic variance of the ability estimates and hence
the C coefficients .

When the item parameters are considered known, the
likelihood to be maximized for the estimation of ability
parameter sv is the product over items of subject v's
probabilities of success on each item :

L

	

L
L

	

x(Sv -d i~

	

e
iElxvi(Rv-sl)

	

e

rs v iE lxvi 6 1e

	

vi
n

	

s

	

a

	

-_

	

L

	

s

	

_a

1

	

-_

	

L

	

6v- ai-1

	

l+e v- 1

	

II[1+e v

	

]

	

II[1+e

	

1J

i=1

	

i=1

The expression on the right demonstrates that the test score
r is sufficient for estimating the parameter S

	

since the
likelihood may be factored into two components, v only one

rs v
of which',

	

e

	

is dependent on $v, and thisch, L
II [l+e v

1J
i=1

component depends on the observations only through r
(Birnbaum, 1968, p . 425-29) . Taking logarithms we have :

L

	

L

	

S -d ,
Lv	=

	

Logs- v

	

=

	

rsv

	

-

	

E

	

xvi6i

	

-

	

E

	

tog

	

[1+e

	

v

	

1 )

	

(13)
i=1 i=1

Differentiating this log likelihood with respect to sv gives

L

	

S v-a i

	

L
r - E

	

e

	

= r - E P vi

	

(14)
i=1

	

Sv-6i )

	

i=1
l+e

with second derivative

(12)



a2Lv

	

L

	

a _a
E

	

1~
- -

	

< 0
DRv i=1 S 2

	

(15)
(1+e v -aa .

V

Since r, or f= r/L, is sufficient for estimating s v we
may re-write 114) and (15) in terms of the L-1

	

estimates
b f

aL f

	

L

	

eb f -6 i

	

L
Lf - E

	

= Lf -

	

E P fi

	

16)
ab f

	

=

	

i=1

	

b f - 6

	

i=1
1+e

a 2 L~

ab 2f

where

	

b f -d i
P

	

e
fi

	

b and

L

	

b f - a i

	

L

E

	

a

	

E Pfl (1-Pfi

	

117)
i=1

	

b -8i 2

	

i=1

f i

f

When we set (16) equal to zero we obtain an implicit
solution for b f ;

L
f = E P

	

L

	

118)
i=1

In maximum likelihood estimation the negative inverse of the
second derivative is the asymptotic error variance of the

f
E P f~ ( 1 - P f~

i=1

estimate :

SEMI = L C f/L (19)
E P f~ ( 1 - P f~ I

i=1

Hence

C L ( SEMf (20)



Iterative techniques (such as Newton-Raphson) may be
employed to obtain solutions for b f and C f (Birnbaum,

1968, p .455-59) . However, if we are willing to specify
the distribution of {S i } and to approximate the discrete

set of S . with a continuum, we can derive explicit solu-
1

tions for both b f and C f which are excellent and useful

approximations to the maximum likelihood estimates .

Uniform Items

A continuous uniform density function for S with
mean S . and range W is given by

1/W

	

S .-W/2 < S < S .+W/2

g(S) =

	

(21)

0 otherwise

our response model, written as a function of the
variable S, is

By equating the relative score f with its expected value
P f (S) we obtain

(S .+W/2

J
(h' (x) /h (x) ]

	

dx

with solution

f = ( W ) kog

P f (S)g(S)dd =

which is of the standard form

b f -S .+W/2
l+e

b f -S . -W/2
l+e

S .+W/2

b S W
S .-W/2 l+e f-

d6 (23)

(24)



Solving for e fW leads to

from which, taking logarithms, an explicit approximation
for b f results :

bf = 6 .+W(f-1/2) + tog

where

	

bf = 6 . + tog

	

1ff

	

when W = 0

and

	

b oy = 6 .

	

when f = .5

Turning to a similar approximation for the error
coefficient Cf we approximate the average over L discrete

d i by the integral over g(6) to arrive at

(6 .+W/2

P f (6)[1-P f (6)]g(6)d6

	

(27)
L

eW(f
-1/2) [1-e -fW ]

1

	

iE1

	

P fi(1 -Pfi)

[1_e-(1-f)W)

6 . -W/2

(25)

(26)

This integral can be evaluated by noting that Pf(6)(1-Pf(6)]

is the logistic density function, ~(6), whose integral is the
logistic cumulative function T(6) . Whence

C =

	

W

	

(28)
fW

	

{`Y (b f -6 .+W/2)

	

-

	

Y' (bf-6 .-W/2)}

which is approximately the ratio of test width W to the
difference between the probabilities of success on the
easiest item at 6 1 and hardest item at 6 L e

C fW =

	

P

	

W P

	

(29)
fl fL



This error coefficient may be expressed in terms of bf as

CfW =

where Cf,O

C
W b [C bW ]

W[l+e
bf-S .+W/2

][l+e
bf-d .-W/2

]
b d .+W/2 b d .-W/2

[e f-

	

- e f-

	

J

and by replacing b f by f and W as given by (26) as

W

	

(1-e -W j
[1-e-fW][1_e-(1-f)W]

Our final approximation for uniform items is for the
average value of CbW over the latent variable when the
target distribution of b is normal :

D (b)

	

'-

	

N [M,S 2 ] .

We proceed by taking the expected value of CbW over the
range of the normal distribution in the metric of b .

00

CbW dD (b)

when W = 0

when W = 0, f = .5 .

W

	

[1+eb -d .+W/2] [1+eb- S .-W/2 ] e -[b-M] 2/2S 2
db (32)

v~'2-7TS

	

-00

	

[e b-d .+W/2

	

- eb-$
.-W/2J

Although the algebra is tedious there is no obstruction to
evaluating this integral :

(30)

(31)



we set

Our approximation for a test with normally distributed
items is based on the similarity in shape of the normal and
logistic distributions . If a scaling factor of 1 .7 is used
for the logistic, the difference between their cdf's is

I(D(x)-Y'(1 .7x)l < O1 for all x .

	

(34)

In terms of the corresponding pdf's, we obtain by differen-
tiation,

I~(x/1 .7)/1 .7-f(x)I < .015 for all x(5) .

	

(35)

Our procedures for obtaining the approximations for
normal items are identical to those for uniform items except
that the above inequalities connecting the normal and logistic
distributions are required to solve the integrals .

For our first approximation, with

f =

	

1
V-2-Tr z

	

j

g(d) --, N[6 .,z2]

00

Y[b-8] g(S) dS

-00

(36)

5 Results (34) and (35) were verified numerically by compar-
ing the respective functions for values of x ranging from
-4 .5 to 4 .5 . In the case of (34) the difference at x = 0
is zero and the maximum difference of .O1 occurs at _+2 .0 .
In the case of (35) the difference at x = 0 is .015, the
maximum, whereas the minimum difference of .003 occurs at
+3 .5 .

CW W /2+6 .

(eW/2_e_W/2)
(eW/2+e-W/2]+eM+S2/2-d .+e-M+S2 (33)

Where C O = 4 when W = 0, M = d . and S = 0 .

Normal Items



and after replacing the cdf of the logistic by its normal
approximation we find that

_

	

4, [ b - d .

	

)

	

(37)
v/2 ~9 + Z2

We use inequality (34) again to obtain

bf	=

	

d .

	

+

	

~1

	

+

	

( 1Z7 ) 2

	

tog

	

( 1f
f)

	

(38)

The expression under the radical acts to expand the initial

estimates (log [ 1 f f 1) . The larger Z, the greater this
expansion . Setting Z = 0 and then f = .5 produce

= S . + tog and

	

b.5 = 6 . as in (25) .

Similarly for CfZ, inequality (34) produces :

~-

	

[tog( f )]2/5 .8
C fZ = ~

	

2~ 9+Z 2 e

	

1-f

	

(39)

or, in the metric of bf ,

Cb Z = vl-2~ 2

	

e

	

(40)
f

where Cb,O = 1 .7 V2_~ = 4 .26 34 4, when b = d . and Z = 0 .

The bias in this approximation is a result of the applica-
tion of the inequalities (34) and (35) . In terms of standard
errors of measurement, SEM = /C/L, it is extremely small,



since 4 .26 = 2 .06 ti 2 .0 6)

Finally for an avera"ge CbZ over a normal target
we find

[M-d .) 2

CZ
)

	

e=

	

"2n

	

(2 .9+Z 2

	

2[2,9+Z 2 -S

	

]

2 .9 + Z2 - S2

subject to the restriction that 2 " 9 + Z 2 - S 2 > 0 .
Setting M = 8 ., S = 0 and Z = 0 shows the same bias
in

	

CZ	as- (39) .

we have investigated the accuracy of each of these six
approximations (26, 30, 33, 38, 40, 41) for a wide variety
of test designs . The uniform approximations are exceptionally
accurate, resting as they do on the replacements of a dis-
crete uniform by a continuous uniform distribution . The nor-
mal approximations are less accurate but produce ability
estimates which are within .1 log odds units of the maximum
likelihood estimates for a range of cases wider than those
likely to be encountered in practice (Douglas, 1975)

MINIMIZATION OF C f AND C FOR NORMAL AND UNIFORM ITEMS

We will deal with normal items first because those
approximations for C add C lend themselves to differen-
tiation and thus enable us to minimize Z algebraically .
To minimize CfZ at the interval target boundary of M+2S
we place

(b-b .) 2 = 4S 2	in

	

(40)

	

and

2

	

2
CZ	=

	

2tr

	

2 .9+Z2

	

e2S

	

x(2 .9+Z

	

)

	

(42)

6 The reason that the approximation for b f in the special
case is exact and the approximation for C fZ is biased is
because only the first inequality (34) is employed in obtain-
ing b f whereas both are required for C fZ . The difference
in (34) at Y=0 is zero but the difference in (35) at zero
is the maximum .015 .

(41)



By setting the first derivative of CZ with respect to Z
equal to zero, and noting that the second derivative is
negative when 45 2 - 2 .9 < 0 we see that Z = 0

gives C

	

= J27 (1 .7) e2S2/2 .9 = 4 .26 e 2S2/2 .9
Z,min

when _ .85 and

	

Z = 45 2 - 2 .9

gives C

	

= 2 J27t e1/2 .S = 8 .275 when S > 17 = .85 .Z, min

	

2

For the average CZ we find by a similar process that

Z = 0 gives C

	

1.7 J2ir

	

4 .26

	

1 .7=

	

=

	

when S <

	

= 1.2Z min
. J'1-(1 5 7)

2

	

J'1-(1 5 7)
2

	

J2

and Z=/2S 2 -2 .9 gives C

	

= 2J27t S=5S

	

when S > 1 .7 = 1 .2 .Z,min
Ja

These explicit minima allow for easy evaluation of C and
C over various values of target standard deviation S .
(Douglas, 1975) .

In the case of uniform items we were forced to deter-
mine the values of W which minimize C fW and CW numeri-
cally because we could not solve expressions (30) and (33)
after differentiation . Therefore we computed CfW and CW
for a wide variety of combinations of f and W and obtained
the minimizing

	

W's

	

and their related

	

Cmin

	

and

	

Cmin

	

by
inspection . (Douglas, 1975) .

Table 1 lists the values of the minimum error coefficients
Cmin

	

and

	

Cmin

	

for both uniform and normal items and the cor-
responding W in the case of uniform items . The uniform
approximation is exact for all practical purposes . But the
normal approximation contains a bias due to the interchange of
logistic and normal pdf's during the development of the
approximation .

	

As

	

a result

	

the

	

C

	

,min

	

and

	

Cmin

	

values

	

for
the normal approximation are too large above the dotted lines
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MPASTTRFMFNC PRorrnTTR12S

When we compare the normal and uniform tests on
interval targets there is no doubt that the uniform test
is more precise . This is especially true when S exceeds 1 .

When we compare the normal and uniform tests on normal
targets they differ so little as to seem equivalent in their
measuring precision . Since uniform tests are better for
interval targets and equally good for normal targets there
is no motivation for considering normal tests any further .
Therefore we will focus the rest of our best test design
strategy on uniform tests . Table 2 gives optimal uniform
test widths for a variety of normal and interval targets .

For best test design on either interval or normal
targets we select a set of equivalent items (where W = 0) or
a set of uniform items with W

	

as indicated by Table 2 .
For example, if the target is thought to be approximately
normal with presumed .standard deviation S = 1 .5, the optimum
test width W is 4 . Note that for any value of

	

S a smaller
W

	

is indicated when a normal target shape is expected .

Table 2 also shows the efficiency of a simple rule for
relating test width W to target dispersion S . The rule
W = 4S comes close to the optimal W for narrow interval
targets and for wide normal targets .

	

When we are vague about
where our target is we are also vague about its boundaries .
That is just the situation where we would be willing to use
a normal distribution as the shape of our target uncertainty .
When our target is narrow however, that is the time when we
are rather sure of our target boundaries but, perhaps, not so
willing to specify our expectations as to its precise distri-
bution within these narrow boundaries .

	

To the extent that
interval shapes are natural for narrow targets while normal
shapes are inevitable for wide targets,

	

W = 4S

	

is a useful
simple rule .

The efficiency of this simple rule for normal and
interval targets is given in the final columns of Table 2 .
There we see that it is hardly ever less than 90 per cent
efficient ; if we cross over from an interval target to a
normal target as our expected target dispersions exceeds
1 .4, then the efficiency is never less than 95 per cent .
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our investigations have shown that
given a target M, S and D there exists an optimal test
design H and W from which may be generated a unique set
of L uniformly distributed item parameters {S i } . However,

this design is an idealization and cannot be perfected in
practice . Real item pools are finite and each item diffi-
culty is only an estimate of its corresponding parameter and
hence inevitably subject to calibration error . No examiner
will ever be able to select the exact items stipulated by
his best test design

	

{S i} .

	

Instead he must attempt to se-

lect from among the items he has available, a real set of
{di } which come as close as possible to his ideal design

Thus parallel to the design specification T(H,W,L) we
must write the test description t(h,w,L) characterizing
the actual test {d .} which can be constructed in practice .1
This raises the problem of estimating h and w from the
set of items difficulties {d .} . We will take their observed1
mean d . as h . AS for their width, W, we investigated a

number of alternatives : the range w = V12S . of a uniform
s

	

d
distribution in which Sa was the variance of d ., the
observed "first" range w 1 = (d L-d1 )( L1 ) and the observed

"second"

	

range

	

w2	=

	

((dL +

	

dL-1

	

-

	

d2	-

	

d1)/2)(LL2) .

	

There
were few differences among the results we obtained from these
alternatives for w . our preference for w2 is based on the
observation that it is a slightly more stable estimate of W
than w1 and even ws for short tests .

The approximations

	

derived in order to
minimize C may

	

be used to set up two tables which allow
an examiner to read off the ability estimate and its standard
error for any relative score f which is observed on any test
of width w and length L .



Table 3 gives us the position of the estimated measure
bf , relative to test height h, for any observed relative
score f on a test of width w . Since this test t(h,w,L)
will not in general be centered at zero, we must then add
the test height h estimated by d . to the tabled values
in order to arrive at the

	

final estimated measure

	

b f .

	

if
we identify the entries in Table 3 as x fw then the final
ability estimate b f is :

error of measurement,

b f = d . + xfw

	

when f > .5

b f	d . - x (1-f)w

	

when f. <

	

.5 .

For example, if the test characteristics are t(1,5,30) then.
a person who obtains a score of 12,or 40 per cent of the items
correct,would have an ability estimate of

Table 4 gives us the square root of the error coefficient,

Cfw in preparation for obtaining an estimate of the standard

We are now in a position to give explicit, objective and
systematic rules for the design and use of a best possible test .

COMPLETE RULES FOR BEST TEST DESIGN
AND MEASUREMENT

For design T(H,W,L) on target G(M,S,D)

1 . From our hypothesis about M we derive H
2 .' From our hypothesis about S we derive an

optimum W either by consulting Table 2,
or by using the simple rule W = 4S .

3 . From our requirements for measurement precision,
namely the value of SEM we seek, we derive
L = C/SEM2 where C either comes from the

b .4 = 1 .0 - x ,6 .5

= 1 .0 - 0 .6

= 0 .4 .
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4 . From these H, W and L we generate the design
set

	

{S i }

	

according to the

	

formula :

value minimized by W given in Table 4,
or is approximated by the simple rule C = sS .

_W
2L (L-21 + 11

	

1 = 1,L
1.

For test t(h,w,L) from design T(}i,W,L)

5 .

	

'Commencing with

	

-6 i

	

we

	

select items

	

d i,

	

from
the item pool such that they best approximate
the set {S .}, i .e ., by minimizing the dis-
crepancy ei = di

L
6 . We calculate h = d . = E di/L and

i=1

and

	

w

	

=

	

((dL

	

+

	

dL-1

	

-

	

d2	-

	

d1) /2) ( LL 2 ) -

7 . We administer the set of {d i } as the test

t(h,w,L), obtain

	

bf for f and w as given

in Table 3 and SEM = ~ / ~ with C fw for

f and w as given in Table 4 .

BEST TEST PERFORMANCE

Confidence in the use of these techniques depends on
a knowledge of their functioning over a variety of typical
testing situations .

	

We investigated their performance with
a simulation study designed to check on two major threats
to the successful functioning of this testing strategy .

By simulating a person at a fixed point on the
target (say -0) and subjecting him to a series
of tests with centers increasingly removed from
his ability level we evaluated the effectiveness
of this technique as tests are increasingly "off-
center" with respect to their targets .

(ii)

	

By introducing increasing magnitudes of random
disturbance into the designed item calibrations
{d ;} we simulated and then evaluated the practica :
situation where the actual test realized t(h,w,L)
departs increasingly from its generating design
T(H,W,L) .



steps :
The simulation was set up according to the following

1 . Set person ability at S = 0 .

2 . Consider values of test height H = 0,1,2, test
width W = 2,5,8 and test length L = 10,30,50 .

3 . Determine the item spacing parameter V = W/L
and set the disturbance standard deviation at
Q = V/2, 2V so that the magnitude of discrepancy
is keyed to multiples of the spacing parameter .

4 . Generate {d .} from H, W, and L and {d, = 6,+e,}
from

	

ei 'v N[O,Q2 ] .
5 . Calculate h and w from {d,} .1
6 . Use a random number generator and the response model

with

	

= 0 and

	

{d,} to obtain a raw score r fori
each simulated person .

7 . Obtain values of b f and SEM from Tables 3 and 4 .

8 . Repeat steps (6) and (7) 100 times to simulate 100
independent replications of the application of this
test to this person .

3 . Summarize these 100 replications in terms of :
Mean ability estimate or bias, since B=0 : BIAS
Standard deviation of ability estimates :

	

SA
Standard error of bias :

	

SE=SA/10
Significance of the bias :

	

BIAS/SE
Mean standard error of measurement :

	

ME
Accuracy of SEM as an estimator of SA :

	

SA/ME

From the results of this simulation study we have-derived
a set of general rules regarding the degree to which an examiner
may depart in practice from a uniform spacing of item difficulties
before these measurement procedures produce unacceptably dis-
turbed ability estimates . These rules outline the area of
possible test designs (combinations of H, W, and L) within which
the bias in measurement is limited to less than .1 log odds
ability units . They allow the test designer to incur item dis-
crepancies ei = di - d i , that is item calibration errors, as

large as 1 .0 . This may appear to be unnecessarily generous,
since it permits use of an item difficulty of 2 .0, say, when
the design calls for 1 .0, but it is offered as an upper
limit because we found a large area of the test design domain
to be exceptionally robust with respect to independent item
discrepancies .



ROBUST REGION OF TEST DESIGN DOMAIN

When no item deviates more than 1 log odds unit
from its designed value

and

or

When no item deviates more than 0 .5 log odds unit
from its designed value

and (Iii-~'<2,W<8,L>30) then BIAS < .1, BIAS/SEM < .2

or

	

(1H-aI<l,W<8,L>10) then BIAS < .1, BIAS/SEM < .2

As test length increases above 30 items, virtually
no reasonable testing situation risks a measurement bias
large enough to notice . Tests in the neighborhood of 30 items
or more, of almost any reasonable width (W < 8) and which
come within 1 log odds unit of their targets

	

(IH-Sj<1)

	

are
for all practical purposes free from bias caused by random
deviations in actual item calibrations of magnitude less than
1 log odds unit . Only when tests are as short as 10 items,
wider than 2 log odds units and more than 2 log odds units
off-target does the measurement bias caused by item calibra-
tion error exceed .2 .

Table 5 lists summary statistics for some tests with
L = 10 .

In Table 5 we see that on the short, narrow test,
2 log odds units above its target, test bias is .25 units
with BIAS/SE = 4 .2, indicating that abilities are over-
estimated .

	

With only 10 items and a person with

	

13 = 0,
2 log odds units below test height H = 2, the expected raw
score is less than 2 items .

	

In order to obtain finite ability
estimates we are forced to discard zero raw scores thus
truncating our distribution of estimates . Hence our simula-
tions in this instance produce estimates which are too high
and standard errors which are too small leading to an SA/ME
ratio well below the expected value of

	

1 .0 .

On the short, wide, off-target test the bias of - .29
log odds units is due to the large discrepancy (maximum .8)
between design and test .

	

This discrepancy also threatens
the short, wide test even when it is on-target . There the

O H-~1<2,W<8,L>10) then BIAS < .2, BIAS/SEM < .4

(IH-~I<1,W<8,L>30) then BIAS < .1, BIAS/SEM < .3



TABLE 5

The Bias in a Short Ten Item
Test Caused by Design Discrepancies

Note :

	

Max.Discrepancy e=d-6 is the largest discrepancy between
the designed item difficulty 6 and the realized item dif-
ficulty d .
BIAS = mean of 100 ability estimates .
SA

	

= standard deviation of 100 ability estimates .
SE

	

= SA/10 standard error of BIAS .
ME

	

= mean SEM of 100 ability estimates .

Caused by severe truncation of ability estimate distribution due to
many zero scores .

Narrow Test
w = 2

Max . Discrepancy
e = .2

Wide Test
w = 8

Max . Discrepancy
e = .8

BIAS . - .03 BIAS .18
SA . .77 SA . 1 .09

On SE .08 SE .11Target
H = B BIAS/SE : -0 .38 BIAS/SE : 1 .64

ME . .70 ME .- .95
SA/ME . 1 .09 SA/ME 1 .15

BIAS . .25 BIAS - .29
SA .58* SA .91

Off SE . .06 SE .09Target
H=B+2 BIAS/SE : 4 .16 BIAS/SE : -3 .22

ME .90 ME 1 .01
SA/ME .64 SA/ME .90



bias is .18 log odds units . But BIAS/SE = 1 .6 only and
,18 is less than .19 = .18/ .95 sEM units, so this short,
wide test may function well enough when it is more or less
on target, since its maximum bias is lost in its

	

sEM.

The short, narrow, on-target test serves as a compari-
son for the above . Here the bias of - .03 is small, the
ratio of ability estimate standard deviation SA to the
average standard error of those estimates ME is

	

1 .08,
virtually one and so the measurement technique is working
well .

FX'qmp] PT

This client has very little knowledge about his target
population other than the fact that the persons are, in his
best guess, more or less centered on the item pool . Thus
his target center is at M = 0 and and we need to come to
his aid in selecting his target boundaries . From the appro-
priate pool of items we select a small number of items whose
difficulties range in value from about 2 .0 to 4 .0 . We
then ask the client to select that item (or items) which he
believes will be too difficult for all but 5 or 10 per cent
of his target . Then the calibrated difficulty of that item
on the latent variable gives us an approximate upper bound
for his target . The lower bound can be obtained by symmetry
or by repeating the same steps with easy items .

Let us assume that the suggested upper bound is 4 .0
and that the client would like his

	

sEM to be less than 0 .5
log odds units . The following sequence of steps would be
carried out .

2 .

3 .

4 .

FXAMP7 FC

M = 0 implies H = 0 .
Since the upper bound
W from Table 2 is 11,
minimization of
the interval
minimization of
target) .

is 2S = 4, the recommended
if the criterion is the

standard errors at the boundary of
target (or 8, if the criterion is the

sEM over a normally distributed

Using either Table 4 or the simple rule C = 8S
provides an upper bound for C of 16 . This
implies for an sEM = 0 .5 that L<C/sEM I <16/ .25<64, or
a length of about 60 items .
These 60 items are selected from the pool such that
they best approximate a uniform distribution with its
center at 0 .0 and a range of 11 . Let us assume
that the three easiest items available are -4 .0, -4 .2



and -4 .2

	

and that the three most difficult
are 4 .5, 4 .3 and 4 .2 . These six values imply
an actual test width of w = 8 .4 .

	

Finally, let
us assume that the actual mean of the 60 item
difficulties is d . = 0 .4 =h .

	

Thus, while our
design was T(0,11,60), our best available test
turned out to be t(o .4,8 .4,60) .

5 .

	

This test is administered and we obtain the set
of raw scores r . These are converted to relative
scores

	

f.

	

If we approximate

	

w = 8 .4 by w = 8
we may use that column of Table 3 and h = 0 .4

	

to
estimate ability for any f. A person with 42
items correct has f = .7 . The corresponding entry
in column w = 8

	

of Table 3 is

	

1 .7

	

and his
corresponding ability estimate is
b .7 = 0 .4 + 1 .7 = 2 .1 .

6 .

	

In order to determine the

	

SEM

	

associated with this
ability estimate of

	

2 .1 we go to column w = 8 of
Table 4 and°find that

VC - = 3 .0

	

and so SEM = / e- / Yt = 3/ 60 = 0 .4 .

F ..xam= 1 P 2
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We have talked about single targets, whether they
represent an individual or a group, in order to come to grips
with the conceptual and practical problem of the best test
design .

	

In practice, however, we may be confronted with
several targets spaced out on the latent variable along which
we are measuring . Sometimes we want to design a single test
which is best for such a series of targets . In that case, the
solution is straightforward and simple .

	

Then we have to assume
that the series of targets are in fact one large target and
from the combined features of this series extract the specifi-
cations of that single compound target .

	

The best test design
then is the one which minimizes precision or test length for
that single compound target .

However, when two or more targets are far enough apart
on the latent variable, we will discover that the precision of
measurement accessible through a single test designed for all
targets combined is unsatisfactory . This will motivate us to
see what we can do to increase precision .

	

The only course of
action which can accomplish this is to design several tests
tailored more exactly to the individual components in the com-
pound target, that is, to design a best test for each of
several sub-targets .

	

Of course, this can lead to subtests with
no items in common . It might seem that this would place us in
a situation where we could no longer compare the results of one



subtest on one sub-target with those from another . But if
we remember that our items are calibrated on a common latent
variable and that the measures we extract from our various
tests will also be on this latent variable, then we see that
we can compare the positions of different sub-targets by
estimating their location and dispersion on the common variable
from measurements made from the individualized tests tailored
to each of those targets .

If it should become important to estimate how well
persons in one target might have done on a test suitable
for another target had they also taken that other test, we
can utilize the ability estimates of that target and the
difficulties of the items on the other test which they have
not taken to estimate the proportion of those untaken items
which they would have probably gotten correct had they taken
them .

Consider the typical research in which investigators
have studied the differences between a control group A and an
experimental group B after the latter has received an experi
mental treatment .

	

Let us assume that there is evidence to
suggest that the treatment has a dramatic effect with the
consequence that, group B is expected to' end up 3 .5 units
above group A . To be specific we will allocate the following
working specifications for the two targets :

GA (-1 .5, 1 .5, D) and GB (2, 1, D) .

Not only is GA expected to be at a different location on
the latent variable but its dispersion is expected to be
greater .

Ideally we should construct two separate tests for
these two distinct targets . That this would be the preferable
strategy will be demonstrated by considering what happens
when we compare a compound target strategy with a multiple
target strategy .

	

When the two targets are compounded we
arrive at GAS

	

~ -.25,

	

2 .125, D) by calculating the lower

boundary

	

-1 .5 - 2(1 .5) = -4 .5 for G A , the upper boundary
2

	

+

	

2(1)

	

=

	

4

	

for

	

GB ,

	

using their mean

	

-.25

	

as

	

MAB

	

and

one-fourth their difference

	

8 .5/4 = 2 .125

	

as SAB . An S

of about 2 implies optimum W of 11 for minimization of SEM
at the boundaries . To avoid unnecessary complications in this
example we will assume that the optimum test is always avail-
able (i .e ., that W = w and H = h) and that L = 40 . Under
the multiple target strategy the two optimum tests would then
be

	

TA

	

( -1 . 5 .

	

8,

	

40)

	

and TB	( 2,

	

5,

	

40)

	

while the one com-

pound test would be T ..

	

( -.25,

	

11, 40) .



In Table 6 we have listed the expected results for
ten persons ranging in ability from -4 .5

	

to 4.0 .

	

The
first five may be considered to belong to

	

GA and the
second five to G For every one of these 10 persons, the
SEM under a multiple strategy is smaller than under the
compound strategy .

	

We can convert these differences into
the number of items which could be saved by using the
multiple strategy .

	

The middle section of Table 5 shows that
if we used only 30 items for TA and 25 items for T R we
would obtain approximately the same SEM's as achieved on
the 40 items compound test .

	

The right section of Table 5
shows the raw scores and

	

SEM's

	

which we would predict if
the

	

GA persons had taken the

	

TB	testand vice versa .

If we were interested in knowing the difference
between the two groups in terms of the proportion of items
from the pool which each group had correct, then the right
section of Table 6 shows that if persons at the center of
Gs

	

(e .g ., person number #8) had taken T A

	

their expected
score would have been

	

r = 35

	

whereas those in

	

GA	at its
center earned score r = 20 . Thus we can estimate an expected
15 item advantage in score for persons at the center of
group e when compared with persons at ,the center of group A.

97T.7-TATIDRRn TRSTTNG 9

When an examiner wishes to measure a person efficiently
and objectively he needs not only insight into how the
variable in which he is interested is manifested in responses
to test items but also an unambiguous and practical statistical
technique for identifying which items are qualified to serve
as a basis for measurement and for calibrating these qualified
items on the variable so that responses to them can be used to
estimate measurements .

	

The plausible and statistically
sound Rasch response model for selecting and calibrating use-
ful test items and subsequently for measuring persons leads
not only to an operational definition of the variable but also
to a coherent and practical system for optimal measurement and
hence best test design . Within such a system self-tailored
testing becomes an easily available by-product .

The person to be measured can be handed a booklet of
test items more or less equally spaced in increasing diffi-
culty from easiest to hardest and invited to choose any
starting place in the booklet with which he feels comfortable .
From that self-chosen starting point the examinee can work
at his own will and speed in either direction, forward into
harder items or backward into easier ones, until he reaches
his own performance limits or runs out of time . Whatever the
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level and length of this self-chosen seqment, all that are
needed to obtain an objective, item-free person measure
and its standard error are the serial numbers of the easiest
and hardest items tried and the number of successes in
between .

These three observations are sufficient to look up in
a simple series of tables the person's estimated measure
and the standard error of that estimate . That each examinee
may work a different segment of items and so perform on his
own uniquely self-tailored test, does not interferein any
way with the objective comparison of examinees . All measures
based on responses to calibrated items are on the single
common scale defined by that calibration . Comparisons be-
tween persons are made on this common scale and are quite
independent of which items were used to make the measurement
or why . Of course, the suitability of test items for this
kind of use must be planned for in their writiAl- .

	

and care-
fully developed in their editing . The items must be examined
statistically and their qualifications as instruments of measure
ment demonstrated .

	

But the ubiquitous use of unweighted test
scores as sensible and useful measures depends, at bottom, on
satisfying just these conditions . If items do not qualify for
the self-tailored testing described, then they do not qualify
for inclusion in any unweighted test score .
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APPENDIX A

RRYTFS

A CONVFNTFNT MFTRTC' FOR MFARTTRFMFNT

The units of measurement we have been using so far
flow directly from the simple logistic response model .
Since the estimated probability of a correct response is

bf

	

-

	

di__ e
Pfi

	

bf d i
1 + e

the odds for a correct response are

Pfi

	

/

	

(1

	

..

	

Pfi b

	

_

	

ebf

	

di

and the natural log odds for a correct response are

C)ri ai n

Thus we have been working in differences between person
abilities and item difficulties expressed in natural log
odds units .

	

But our origin and scale are quite arbitrary .
We may consider whether there is a translation and scaling
of these units which would make our measurement metric
especially convenient .

The units must be centered somewhere . Initially we
center them locally either on our tests or targets . But in
the development of a substantial pool

	

of-items marking an
important latent variable we would want to establish a standard
reference point with some useful meaning in the sphere of
measurements .

	

We might pick the easiest possible item (or the
least conceivable ability)

	

as the origin and calibrate all



harder items (and greater difficulties) with respect to
that zero point . Or we might pick a standard group of
items (or persons) and use their center as the origin .
If we do not like negative numbers we can shift our whole
scale upward so that all calibrations and measurements which
can occur fall above zero .

Unless we can relate our measurements to some units
with meaning outside the statistical characteristics of our
measurement system, we may as well use the least observable
difference in ability, LOD,and/or the least believable
difference, SEM, as our smallest unit . Our aim would be to
construct our scale so that it conveys increments in SEM
and LOD clearly and conveniently . To do this we might
try to arrange things so that the minimum SEM we expect
to encounter is about 1 or a bit larger while the correspond-
ing minimum LOD is a .bit less than 1 but larger than .1 .
If we did this, we could round our work to the nearest tenth
and use the decimal point to remind us of the difference
between LOD and SEM .

The derivation from our response model of LOD and SEM
gives us, in natural log odds units,

LOD = C/L, where 4 <C < 9

	

when -2 <(a-d) <2

and

	

SEM = Y"L-OD > LOD, as long as L > C .

In addition, we will often want to compare two, more
or less, independent measurements with one another to see if
they are significantly different . For that it will be useful
to define a least significant difference, LSD, as two standard
errors of the difference between similarly precise but inde-
pendent measures,

LSD = 2 V'2_ SEM .

In order to discover a scaling factor which will separate
SEM from LOD at the decimal point we will consider two
boundary situations .

	

First, we seldom measure with tests
shorter than 20 items . If we consider the worst precision of
such a "short" test, which is at its edge, say 2 log odds units
off-center, then we will have a maximum error coefficient C
of about 9 and a maximum LOD = 9/20 = .45 . Second, we can
seldom afford to administer more than 100 items and even at
the center of such a "long" test the error coefficient C can-
not be less than 4 . This produces a minimum LOD = 4/100 = .04 .



We have combined these boundary values in the top
half of Table lA and calculated from them the related
boundary values of SEM and LSD .

	

We can see that if we
want to use the .decimal point to mark the difference between
LOD's < 1 and SEM's > 1 then the scaling factor we need is
in the neighborhood of 5 .

We are working with relationships between log odds
and probabilities of a correct response . It might be conve-
nient to have equal increments in log odds attached to
easily remembered probabilities . Even odds imply P = .5 .
Three to one implies P = .75 . Nine to one implies P = .90 .
We see that the exponents of 3 form a nice system . .

	

The pro
bability of a correct response moves from

	

,10 to

	

.25 t o
,50 to .75 to .90

	

in equal increments of tog 3 . Since
the scale of tog 3 in log odds units is 1/tog 3 = .91, we
can obtain a scaling factor near 5 by multiplying .91 by 5
to produce the factor 4 .55 . This scaling factor sets the
standard increments at five units each as Table 2A shows .

Our notation for ability measures in natural log odds
units has been b . Now we will use B = 4 .55b

	

as our
notation for our scaled ability measures .

	

Instead of refer
ring to these two metrics as large and small "b" we will call
them "log odds units" and "brytes ."

The boundary values of LOD, SEM and LSD in brytes are
given in the bottom of Table 1A . There we can see that we
would not expect an

	

LOD below

	

,2

	

brytes so that one decimal
place in our calibrations and measurements will be quite
accurate enough .

	

We also see that SEM ranges between 1 and
3 brytes, so that our least believable differences will run
just greater than one bryte .

	

Thus the decimal point, in the
bryte scale, nicely separates SEM from LOD .

	

Finally, we
see that differences between independent measures must get up
to around 4 or 5 brytes before we can begin to take them
seriously .

The essential best test design tables for best test
design and use in brytes are given in Tables 3A through 5A .
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where P

Relation Between Relative
Brytes and the Probability of Success

Person Ability
Relative to

Item Difficulty

TABLE 2A

e (B-D) /4 .55

BD

	

1 + e (B-D) /4 .55

one Bryte =

	

4 .55 Log Odds

4 .55 =

	

5/tog 3 .

Probability
of a Correct Response

B - D PBD

-20 .01
-15 .04
-10 .10
- 5 .25

0 .50
5 .75

10 .90
15 .96
20 .99



Values of W for Best Uniform Tests
With Normal and Interval Targets in Brytes

TABLE 3A

Target Std . Dev .

S

Normal Target
W over N(M,S2 )

Interval~Target

W at (M+2S)

Simple Rule
W=4S

2 .0 0 0 8

2 .5 0 0 10

3 .0 0 5 12

3 .5 0 10 14

4 .0 0 15 16

4 .5 0 20 18

5 .0 0 25 20

5 .5 5 30 22

6 .0 10 30 24

6 .5 15 35 26

7 .0 20 40 28

8 .0 25 45 32

9 .0 35 50 36
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