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An Individualistic Approach to Item Analysis 

Georg Rasch University of Copenhagen 

1. Introduction 

Traditionally the properties of a psychological test are defined in terms of 
variations within some specified population. In practice such populations 
may be selected in various reasonable ways, and accordingly the properties 
referred to—for example, the reliability coefficient —are not specific to the 
test itself but may vary according to how the population is defined. Similarly, 
the evaluation of a subject is usually linked up with a population by a stald-
ardization of some kind and is therefore not specific to the subject per se. 
Our .Aim is to develop probabilistic models in the application of which the 
population can be ignored. It was a discovery of some mathematical sig-
nificance that such models could be constructed, and it seemed remarkable 
that data collected in routine psychological testing could be fairly well 
represented by such models. 

in a previous study (2) an attempt was made to build up a general frame-
work within which the models:of an ca..lier study ;3) ap - ear to be special 
cases, and some properties of this general fr%rnework were recognized. Bat 
only recently it become quite clear that this model is in fact the complete 

answer to the requirement that stateincat.% -thout the parameters and ade-
quacv of a discrete probabilistic model be ohjecti"e in a seise to he fully 

specified. 
At present, at least, the theory leading to this result is rather invOlved, 

and it is not going to be a main topic fcir this parer. However, it is intended 
that the following discussion on one of the models in the earlier study (3), 
the model for item analysis in case of only two possible answers, should 
demonstrate the nature of the type of objectivity we are aiming at, thus 
pointing to the more general problem to be treated elsewhere. 

2. Data 

The kind of situation to be considered is the following; in which a fairly 
large number of subjects were given an intelligence test. two subtests, 
N (completing, numerical sequences) and F (analyzing geometric figures), 
are of particular interest. The time allowed for N was chosen so that very 
few of the subjects could be expected to achieve an appreciably larger num- 
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ber of correct answers even with unlimited time. (This fact was ascertained 
by independent experimental evidence.) Therefore items that were not 
answered were counted as incorrect, and one of the two responses, correct 
(+) or incorrect (—), was recorded for each item. Test F was scored in a 
similar way. 

3. Model 

The model to be suggested is based on three assumptions: 

1. To each situation of a subject (v) having to solve a test item (1), there 
corresponds a probability of a correct answer which we will write in the 
form 

(3.1) 	f+1v, 	= 	 o. 1+ Api  

2. The situational parameter A,,, is the product pf two factors, 

(32) 	= evei. 

pertaining to the subject, e i  to the item. 
3. All answers, given the parameters, are stochastically independent. 

Each of these assumptions calls for some comments. 
I. For description of observations two apparently antagonistic types of 

models are available, deterministic models (such as the law of gravitation) 
and stochastic models (such as Nlendel's laws of heredity). However, the 
choice of one type or the other does not imply that the phenomena ob-
served were causally determined or that they did occur by chance. 

Even if it were believed that certain phenomena could be "explained 
causally" (whatever such a phrase may mean), a stochastic model may be 
preferable (as in thermodynamics). 

Although adopting a probabilistic model for describing responses to an 
intelligence test, we have taken no sides in a possible argument about 
responses being ultimately explainable in causal tterms. 

2. In many psychophysical threshold experiments a subject is exposed to 
the same stimulus a large number of times. Assuming that the repetitions do 
not affect the judgments of the subject, this procedure gives the opportunity 
of estimating each A.,, 1  separately and hence of studying directly how the 
situational parameter varies with subject and with strength of stimulus. In 
such a situation we may or may not observe the multiplicative rule laid 
down in 3.2. 

For the inteiligence tests we shall deal with, experience has shown that 

on one repetition the results are usually somewhat improved. A large num-
ber of repetitions have not been tried, mainly because the questions are 
such that it seems almost certain that several of them will easily be recog-
nized after a few repetitions. Therefore the possibility of a direct approach 
to the estimation of response probabilities seems remote. 

To compensate, we have recourse to an assumption that may seem 
rather bold, possibly even artificia namely that AN can be factored into a 
subject parameter and an item parameter. This, combined with the two 
other assumptions, produces a model that turns out to have rather remark-
able properties, some of which even lead to the possibility of examining 
how well the model represents the data (see Section 6). 

Provided the two kinds of parameters can be operationally defined, they 
also have a clear meaning, as seen by inserting 3.2 into 3.1: 

(3.3) 	 P I+ v' = + epet .  

Thus, if the same person is given items with Ei approaching 0, then his 
probability of giving a correct answer approaches 0 while his probability - 
of giving an incorrect answer tends toward unity. And that is true for every 
person, provided the model holds. Similarly, when ei  gets large, the proba-
bility of + tends toward 1 and the probability of — toward 0. Since with 
increasing Ei the items become easier, we may call Ei the degree of easiness 
of item i. 

On the other hand, giving the same item to persons with approaching 0, 
we get probabilities of correct answers tending toward 0, while if 6, increases 
indefinitely the probability tends toward 1. This holds for every item. 
Thus we may colloquially call fp the ability of subject v with respect to the 
kind of items in question. 

In the definition of and e i  there is an inherent indeterminacy. In fact, if 
„v = 1, . N and Ei, 	 . k is a set of solutions to the equations 

(3.4) 
	

epei = A.4 

then, if G, e: is another set of solutions, the relation 

(3.5) 	 eLE; 

must hold for any combination of v and i. Thus - 

(3.6) 
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must be a constant, say, and accordingly the general solution is 

3.7) 	 x, = 	€ =-
1

e„ a > 0 arbitrary. 
a 

(3.11) 	 {p{W, (i.)} = p{(+)}p{(i+)} 

pf(t), (4) 1= p{(0}p{(0) etc. 

If in the first of these equations we divide by p{ (4,)} and in the second by 
p{ (?)), we get 

(3.12) 	 p{(0}—
pf(0, (')} = p{(..),

=
p{(')} = p{(..),( i)}  

P{M} 

The ratio (3.12) of the two probabilities is the conditional probability of 
a + answer to i, given a + answer to j. The notation is 

P{ ;  '+) (+)} 	Pf() 	(4.)}  
P{( i+)} 

(3.13) 

Thus the relations (3.12) can be written 

	

(3.14) 	 p{(01 (?;,)}=p{(.1) I (L)}  =p{(4.)}, 

that is, the probability of a plus answer to i is independent of whether the 
answer to j is + or —; it is just the probability of a plus answer to i. 

And of course the same holds for a minus answer to i. This is a specifica-
tion of the statement that the answers to i and jare stochastically independent. 

Assumption 3 also requires that for each subject the answers to all 

questions be stochastically independent. Technically this is expressed in 
the equation 

	

(3.15) 	p{(1),(+), 	(!0} =P{(+)} P{M} 

and all its analogues. The content of this statement is that the probability of 
a certain answer to an item or of a combination of answers to a set of items 
is unaffected by the answers given to the other items. 

The indeterminacy can be removed by the choice of one of the items, say 
i = 0, as the standard item having "a unit of easiness," in multiples of which 
the degrees of easinesses of the other items are expressed. 

By this choice, or an equivalent one, the whole set of et's and et's is 
fixed. In particular 

(3.8) 

that is, the parameter of a subject is a very simple function of his probability 
of giving a correct answer to the standard item, 

(3.9) 
	

Apo= 
pf+lv,01  

1 — pf-F- I p,01 

being the "betting odds" on a correct answer. Now we may be able to find 
a person who has in fact his e =1. We may refer to him as a standard subject 
(v = 0). And then the item parameter 

(3.10) 	 Et = kGi 

•‘ 
is the same simple function of the probability that the standard person gives 
a correct answer to this item. 

3. To some psychologists the assumption of stochastic independence at 
first sight appears to be rather startling, since it is well known that usually 

quite high correlation coefficients between responses to different items 
are found. 

Correlated items are, however, a consequehce of the assumption. With 
moderate variation of e, say from 0.1 to 10, we will obtain quite high cor-

relation coefficients. But, of course, if e is the same, or nearly the same, for 
all individuals, the correlations become zero. or nearly zero. Under this 
model the interitem correlations do not represent intrinsic properties of the 

items, but are mainly determined by the variations in the person parameters. 

Let p { ( 0} and j){ (! ) stand. for a person's probabilities of a positive 
and negative response. respectively, to item i. Considering next his possible 
respOnses to two items, i and j, they can also be allotted probabilities: 

p{ ), )), and so on. Now our third assumption states, among other 
things, that his responses to. i and j should be "stochastically independent." 
Technically this is expressed in the following relations: 

4. Comparison of two items 

As an introduction to the more general treatment of the model in Section 5 

we will consider how two items can he compared. 

According to 3.11 and 3.3, the probability of correct answers to both 
item i and item j is 



(4.1) 
(4.10) 

p{(1),(4) 161= ,P{G) I C}P{(4) le} 
e2E, Ej  

(1 + ee,) (1 + fej ) 

Ei 	C 

Ei+ Ej = n 

p{ ( 1),(.i4 1e} = (1 + e€,) (1 + fei) • (4.4) 
1 
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Accordingl:', by the relation 

for a subject with the parameter e. Similarly, 

e  (4.2) 	 P{(+),(') lel— 	
ei 

(1 	 6€.0' 

(4.3) 	 pf(!),(+) 	= 

With the notations 

f a,  = 1 in case of answer + to item i 
0 in case of answer — to item i 

a. = ai ai, 

the probabilities of a.= 0 and 2 are given by 4.1 and 4.4, while the proba-
bility of a. = 1 is the sum of 4.2 and 4.3: 

(4.7) 	 pia.= 11 el = 	(€,
+ Ej) ( + e€,)(l + 

Now the conditional probability of ai = I provided a.= 1 is—analogous to 
3.13—obtained by dividing 4.7 into 4.2. However, by that operation the 
common denominator and e in the numerators cancel and we are left with 

(4.8) 	 p{a, = 1 I a.= 1,e} 1"-- 	ei  

irrespective of the subject parameter e. 
Considering, then, a number, n, of subjects, all of whom happened to have 

a= 1, the probability that c of them have a i  = 1 (and thus cif  = 0) is given 
by the binomial law: 

	) c 	 — c 
(4.9) 	 Pic I n} = E, 	E; 	Ei 	Ej  

the ratio (OE) is estimated independently of the subject parameters, the 
distribution of which is therefore irrelevant in this connection. / 

Furthermore, we may get a check on the model by first stratifying the 
subjects according to any principle—educational level or socioeconomic 
status or even , -andomly —and then applying 4.10 to each of the groups. For 
the model to hold, the ratio Ede.;  should be the same in all of the groups and 
the variation of the estimates obtained should therefore concur with the 
binomial distributions 4.9. 

The appropriate test for this constancy has a remarkable property. 
Denote the within-group c's and /1'S by cil , n9 , with g =1, . . h, and their 
totals by c. and it.. Since the groups could be collected into one group of 
size n. to which 4.9 applies, we have 

(4.11) 	P{c. I n.} = 	• 	)c. 

	

Ei 	Ej 	Ei 	Ej 

On the other hand, the joint probability of the numbers 	c,,, due to 
their stochastic independence, is 

(4.12) P 	• • ., Ch In" ..., 14} 	n ( ,; .g) 	E:  	 ( 	 )n„ —c, 

9=1 	Ei 7r Ej 	ei 

In consequence the conditional probability of c,, 	ch  given the total c., 
obtained by dividing 4.11 into 4.12, becomes independent of E i  and ej : 

ft 
(4.13) 	 ch I c.,n,, 	nn} = 	

= 1 
 

It follows that as far as the items i and j are concerned, the testing of the 
model can be carried out in a way that is independent of all of the parameters. 

In the formal derivation of the fundamental relation 4.8, subjects and 
items can of course be interchanged. Thus the comparison of two subjects 

and v by ,:leans of a single item with parameter E leads to the conditional 
probability 

(4.14) 	 p „= 1 	= 	— 	 
G+ Sv 

(1 +e€,)(1 +fei)' 

(4.5) 

and 

(4.6) 

(C :) 



We can obtain r = 1 in k different ways— 

al = 1, a2  = . = ak= 0, 

a1 = 0, a2 = 1, a3 =...=ak=0 
(5.6) 

a, = a, =- . . . = 	0, ak----  1 

—with the probabilities 

(5.7) eE1 	E2 	fek  

Y(e) Y(e) 	• 	7(f)' 

(5.8) 	 Pia.= I 	
“Ei 	. . . 

61 = 	
Y(f) 

We can obtain r= 2 in (!i) different ways, namely by taking any two of the 
ai's to be 1, the rest of them being 0. The probabilities of these combinations 
are 

(5.9) 
2 E1€2 

 5
2E1E3  f2E2E3 	

f2Ek-lEk 

Y(f ) ' Y(6) ' y(f) ' 	•' y(f) ' 

and the sum of them is 

C2 (f i eo + 	+ek-Jek)  (5.10) 	P{a. -= 2 f} — 	
Y(f) 	• 

In general a. = r can be obtained in CO different ways, by taking any r out. 
of the k a i 's to be I, the rest of them being 0. The probabilities of these 
combinations being 

the probability of a. = r becomes 

pla.= r I 0 = 
y(f) 

(5.12) 

er  Et • • • Er  fr Ei • • •  Er- 	+1 	e r  Ek-r-• 1 • • • Ek 

Y(f) 	y(e) 
	

7(e) 
(5.11) 
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where a,,, ar , and a. have a meaning similar to 4.5 and 4.6. Probability 4.14 
is independent of which item was used. 

In principle, therefore, it should be possible to estimate the ratio in-
dependently of the item parameters. In practice, however, this method 
does not work, because the number of items—in contrast to the number of 
subjects—usually is small. 

5. Generalization to k items 

In generalizing the results of the preceding section we will first consider the 
responses of an individual with parameter to k items. With the notation 
4.5 and the adaptation 

(5.1) 	 a.= a l  + . . . + ak 	 the sum of which is the probability 

of 4.5, we may condense 3.3 to 

(5.2) (f€,)ai  
P{a, I 	— 1 + eei 

and the generalization of 4.1 through 4,4 to 

Pia., • • aki el = Pia' I fl • • • Pfakl el 

Ca. 	E ;:k 
k fi  (1 +fei ) 

i=i 

recalling that a, is either zero or one. From this result we derive the proba-
bility that a, takes on a specified value r. If r = 0, every ai  = 0, and thus 

(5.4) 	 P{a.= Ole} = 1 y(e) , 

where for short we write 

(5.5) 	 U (i+cc)=Y(e) • 

(5.3) 



ance with the distribution 5.3, which depends on e. Also a random variable 
it a,, the distribution of which 5.12 depends on and therefore it can be 
used for the estimation. Rut what 5.17 tells is that the constellation of O's 

nttcC 1's prOducing a., which also varies at random, has a distribution that 

does not depend On From the fundamental principle it then follows that 
once a, has been recorded, any extra information about which of the items 

were answered correctly is, according to our model, useless-as a source of 

inference about 6 (but not for other purposes, as will presently be seen). 
The capital discovery that such situations exist was made by R. A. 

Fisher in 1922, and following his terminology we shall call a. a sufficient -

statistic — or estanator— for the parameter in question. 
In the present situation, however, tie sufficiency of a. needs a qualifica-

tion as being relative, since it rests upon tne condition that the c i's are known. 
As long as such knowledge is not available, the sufficiency as such is not 
very helpful, but the important point of 5.17 then is that it depends solely 
upon the E'S, not on e. 

From 5.17 we can therefore proceed, as we did from 4.8. to consider a 
collection of subjects that all happen to have a. = r. Specifying by n„;  the 
m of subject v and denoting by (n o); given v, the set of responses a -- co • • •, a rk, 
that is, 

(5.18) 
	

(auj = (aV1 • • • 9 aVk ) 9 

we can rewrite 5.17 in the form 

"ri 	Er.oz 
(5.19) 	pf(a„,)jap• =1.1 = 	  v= I, 	n. 

'Yr 

The responses of the n persons being independent, their joint probability 
is obtai ,ed by multiplying the n probabilities of 5.19. Denoting for short the 
whale set of n x k responses by ( (a,1 )) — the double parentheses indicating 
variation over both 7,  and i— we get 

Pi( (ari) ) I (a,,.= r)} _ el" 	Elf.k 

'Y'rt 	' 

E ape. 

(5.20) 

where 

(5.21) 

Statement 5.20 i.nplies that, as a consequence of the model, we have to deal 
with the total number of correct answers to each item or the n persons 
in question.. 
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where, for short, 

(5.13) 	'Yr = (El • • • Er) + • • • + (Ek - r + I • • • c 

In particular for r= k, 5.13 contains only one term, 

(5.14) 	 yk = E,E2 • • • E. 

If in 5.12 we let r pass through the values 0,1, ..., k, all possibilities have 
been exhausted and therefore the probabilities must add up to unity: 

(5.15) 

Hence 
(5.16) 

± pia.= r 161 = I. 

y(e) = E 'Yr 
r 

that is, yr are the coefficients in the expansion of the product 5.5 in powers 
of 6.* If the E ' S were known, the yr 's could be'computed and it would be 
possible from an observed a to estimate e and td indicate the precision of 
the estimate —for example, in terms of confidence intervals. Thus a. is what 
is called an estimator for How to compute an estimate from the estimator 
is not our concern at present, but as an estimator a. has an important 
property. 

On dividing 5.12 into 5.3 we obtain the conditional probability of the 
m's, given that their sum is r. Through this operation both the common 
denominator and the common power of cancel and we get 

(5.17) 
	

P{ai, 	ak I a.= r,e} = 
€ 71 	ek'k 

Yr 

which is independent of 6, the parameter to beestimated. 

In order to realize the significance of this result we can turn to an obvious 
but fundamental principle of science, namely, that if we want to know some-
thing about a quantity—for example, a parameter of a model—then we have 
to observe something that depends on that quantity, something that changes 
if the quantity varies materially. For the purpose of estimating the parameter 

of a person, the observations al; 	ak are available. On repetition of the 
experiment they would, according to our theory. vary at random in concord- 

*In algebra they are known as elementary symmetric functions of 



(6.4) 	pi( (api)) I (f.),(€i)} — 	 

ti • II €4'  
=1 	i =1 

(e, ),(Ei)) 	• 

(6:8) 	P{((avi)) I (a,.= 	,(a.i = si)} 

[ (r) (.s.:) 1 
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6. Separation of parameters 

Let us finally consider the responses of n individuals with the parameters 
6„ to k items with the parameters El, ek . With the notation a„i 
introduced in the last section, the model 5.2 now takes the form 

(6.1) 	 P{avile v,€,} = (evel)avi  I + ei ' 

and on the assumption of stochastic independence of all of the responses 
avi, v= 1, . . . n, i= I, . k, the joint probability of the whole set ((a vi)) 
of them becomes 

n 	k 

P{((avi)) I (p) ,(€,)} = 	I l  Pfarii eviei 
y=i 

n 	k 

fl (f,,E.)".4 
I ,  = 1 1=1 

n k H 	+ evo 
.=, ,=, 

In the numerator we notice that the parameter e„ occurs in k places, each 
time raised to a power ao , which all together makes C„1,•, and that the 
parameter Ei occurs in n places, each time raised to a power do , adding up 
to a total power of a.i . If furthermore the denominator is denoted by 

n k 

(6.3) 	 (ev) , (c) = 1-1 fl ( I + evEi), 

we can simplify 6.2 to 

sidered. However, this procedure is greatly simplified by the fact that all the 
proaabilities to be added are equal, namely—according to 6.4— 

(6.5) 

n  
p=. 
y (e.),(E,) ) 

Thus we have only to count the number of different ways in which it is 
algebraically possible to build up a zero/one matrix with the row totals of 

and the column totals of 	i= 1, . . k. 
Determining this number is a combinatorial problem that appears to be 

rather difficult, but at present we -teed nothing more that a notation. For 
this number we write 

(6.6) [r,, 	r,
[ ..., ski 	l(si)J 1  

and then we have 

Ft  CI,' 	EP TT 
(6.7) /Ma,. = 	si) I (ep),(Ei)} = Pcs,r: )) ] 	( cv) : ( El m 

This joint probability distribution of the row totals a„. and the column 
totals a. ;  contains just as many parameters observables, and the latter 
would therefore seem suitable for estimation purposes. How true this is 
becomes clear when we divide 6.7 into 6.4—or 6.5—to obtain the proba-
bility of the whole set of observations, on the condition that the totals of 
rows and columns are given. In fact, all parametric terms cancel, and we are 
left with a conditional probability 

(6.2) 

This formula is the generalization of 5.3 ton persons, but in consequence 
of 6.4 we now have to derive the probability that 	. 	and (I A , . • a.k 

take on two specified sets of values: r,, 	.,r„ and s 1 , .. 
In analogy to Section 5— in particular the logical chain of 5.11 through 

5.13—we should find all possible ways of building up zero/one matrices 
((ard) that have the same row totals = r„, v = 1, . and column totals 

i =1, . . k, state the probability of each realization, and add up all 
such probabilities to a total joint probability of the two sets of totals con- 

that is independent of all of the parameters. 
Therefore, once the totals have been recorded, any further statement as 

regards which of the items were, answered correctly by which persons is, 
according to our model, tHeless as a source of information about the 
parameters. (Another use that can be made of the a„ i 's will emerge at a 
later stage of our discussion.) Thus the row totals and the column totals are 
not only suitable for zstimating the parameters; they imply every possible 
statement about the parameters that can be made on the basis of the ob- 



Y.0 -0((Ei)) • 11 cv „=, 
y( ( e.) ,(0 ) 

k 

Ytxd( (ev)) fl
=- 
 efi 

i=ii 
v((ep ) ,(f , )) 
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serrations. ((a0 )). Accordingly we will, in continuation of the terminology 
introduced in Section 5, characterize the row totals ay. , v = 1, . . n and 
the column totals a. , i = 1, . . k as a set of sufficient estimators for the 
parameters f,, . . and e,, . Ek. 

As 6.7 contains both sets of parameters, a direct utilization of this 
formula would apparently lead to a simultaneous estimation of both sets. 
However, in view of previous results (see the comments following 5.17) it 
would seem appropriate to ask whether it is possible—also in this general 
case—to estimate the item parameters independently of the person param-
eters and, if so, vice versa as well. 

In order to approach this problem we will first derive the distribution of 
the row totals, appearing as exponents of the irrespective of the values 
of the column totals, by summing 6.7 over all possible combinations of 
s,, . . sk . During this summation the denominator y((p), (e 1)) remains 
constant, as do the terms e;v, v = 1, ... n in the numerator. Thus, on 
introducing the notation 

(6.9) 	 y.(rv)((€,)) = E [ ((si fl €. 
i

i
) 

we obtain 

(6.10) 	pf(a,, = r„) I (ev) ,( )1 — 

from which it is seen that the e,.'s might be estimated from the row totals 
if the Ei'S —and therefore also the polynomials 6.9—were known. 

Similarly, we can sum 6.7 over all possible combinations of r„ . . r„, 

keeping s 1, sk  fixed. Substituting, in 6.9, el, 6„ for E„ ek  and in 
consequence interchanging the r's and the s's, we get 

y(R,>((ep)) = E Nrs 
(r,, 

r(sr,i'd --- {((srvi ))]. 

With this-  notation the surnr,ation yields on analogy to 6.10: 

(6.13) 	pf(a.,= s,) I (ep) ,(Ei)1 = 

and accordingly the e i 's might be estimated from the column totals provided 
e,'s were known. 

Thus we might estimate the e's if the c's were known, and the E'S if the 
were known! And both e:.timations would even be relatively sufficient. 

In fact, on dividing 6.10 into 6.7 to obtain the conditional probability of a.;  
for given au., we get 

(6.14) 	."{ (a i= si) I (ay. = rv) ,(e,) ,(€i)1 =[((s?) ] 
II €7.1 

 y,r,,)((€,)) 

which is independent of- the parameters 	to be estimated. Similarly, the 
division of 6.13 into 6.10 gives 

(6.15) 	pl(a„.=- ri,) I (a 	,(e,) ,(ci)1 =[(r'; )) ] 	y( Psi) 1(  

which is independent of the e's. But, of course, as long as neither set of 
parameters is known, these possihildies are of no avail. 

It is one of the characteristic features of the model under consideration 
that this vicious circle can be broken. the instrument being a reinterpretation 
of the formulas 6.14 and 6.15. In fact, as 6.14 depends on the E'S but not on 
the i's, this formula gives the opportunity of estimating the E'S without 
dealing with the 6's. Thus the objections to both 6.7 and 6.13 have been 
eliminated. The unknown C's in these expressions have been replaced with 
observable quantities: the individual totals Similarly, in 6.15 the E'S of 
f..7 and 6.10 have been replaced with the item totals a in consequence of 
which we can estimate the „;'s without knowing or simultaneously estimating 
the E . S. Thus the estimation of the two sets of parameters can be separated 
from each other. 

!n this connection we can return to 6.8, noting that this formula is a 
consequence of the model structure-3.3 and he stochastic independence—
irrespective of the values of the parameters of which the right-hand term is 
independent. Therefore. if from a given matrix ((ti,, i )) we construct a quantity 
that would be useful for disclosing a particular type of departure from the 
model, then its sampling distribution as conditioned by the marg,inalsa„, and 

ekik 

(6.11) 

where, by the way, 

(6.12) . 
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a.;  will be independent of all of the parameters. Thus the testing of the model 
can be separated from dealing with the parameters. 

We will not consider here the question of how to perform such testing in 
practice and also that of turning the observed row and column totals into 
adequate estimates of the 's and the e's. 

In Chapter 6 of the earlier study (3) these questions were dealt with by 
simple methods which were taken to be acceptable approximations. In the 
case of subtest N the observations passed the test for the model satis-
factorily, but the model failed completely in the case of subtest F (geometrical 
shapes). In the latter subtest the time allowance, for some technical reasons. 
had been cut below the optimal limit, but a reanalysis of the data (not 
reported here) has shown that when allowance is made for the 'working 
speed of each subject, the data fit the model just as well as for the numerical 
sequences. 
. However, from a theoretical point of view the method used to test the 
model was unsatisfactory (see Rasch [3], Chapter 10, in particular pp. 
181— 182). By now we are in the process of working out better methods, and 
therefore for the time being we shall leave the dbcumentation of the applica-
bility of the model with simply a reference to the earlier work. 

7. Specific objectivity 

As regards the basic formulas 6.14 and 6.15, we have already noted that 
when they are applied to the total set of data they enable us to separate the 
estimation of one set of parameters from that of the other. However, formula 
6.15 can also he applied to any subgroup of the total collection of subjects 
having been exposed to the k stimuli. Thus the parameters of the subjects in 
the subgroup can be evaluated without regard to the parameters of the other 
subjects. 

In particular, the parameters of any two subjects can be compared on 
their own virtues alone, quite irrespective of the group or population to 
which for some reason they may be referred. Thus, as indicated in Section 1, 
the new approach, when applicable, does rule out populations from the 
comparison of individuals. 

Similarly, formula 6.14 can be applied to any subset of the k stimuli, and 
accordingly their parameters can be evaluated without regard to the param-
eters of the other stimuli. In particular, the parameters of any two stimuli 
can be compared separately. 

With these additional consequences, the principle of separability leads to 
a singular objectivity in statements about both parameters and model 
structure. In fact, the comparison of any two subjects can be carried out in 
such a way that no other parameters are involved than those of the two 

subjects—neither the parameter of any other subject nor any of the stimulus  

parameters. Similarly, any two stimuli can be compared independently of 
all other parameters than those of the two stimuli, the parameters of all 
other stimuli as well as the parameters of the subjects having been replaced 
with observable numbers. 

It is suggested that comparisons carried out under such circumstances be 
designated as "specifically objective." The same term would seem appropri-
ate for statements about the model structure that arc independent of all the 
parameters specified by the model, their unknown values being, in fact, 
irrelevant for the structure of the model. 

Of course. specific objectivity is no guarantee against the "subjectivity" 
of the statistician when he chooses his fiducial limits or when he judges 
which kind of deviations from the model he will look for. Neither does it 
save him from the risk of being offered data marred by the subjective attitude 
of the psychologist during his observations. Altogether, when introducing 
the concept of specific objectivity, I am not entering upon a general philo-
sophical debate on the meaning and the use of objectivity at large. At 
present the term is strictiy limited to observational situations that can be 
covered by the stimulus-subject-response scheme, to be described in terms 
of a parametric model that specifies parameters for stimuli and for subjects. 

What has been demogstrated in detail in the case of two response cate-
gories is thct the specified objectivity in all three directions can be attained 
insofar as the type of model defined herein holds. Recently it has. been 
shown that except for unimportant mathematical restrictions, the inverse 
statement is also true: if only two responses are available, the obserVations 
mus, conform to the simpl:: model 3.3 if it is to be possible to maintain 
specific objectivity in statements about subjects, stimuli, and model. 

8. Fields of application 

The problems we have been dealing with in the present paper were formu-
lated within a narrow field, psychological test theory. However, with the 
discovery of specific objectivity we have arrived at concepts of suci -i gen-
erality that the original limitation is no longer justified. Extensions into 
other fields of psychology, such as psychophysical threshold experinwrits 
and experiments on perception of values, offer themselves, but the stimulus-
subjectresponse framework is by no means limited to psychology. Thus in 
a recent publication (1) .a Poisson model was employed in an investigation -
of infant mortality in Denmark in the period 1931-60. In each year the 
number of infant deans (of all causes or of a particular cause) out of the 
number of boys and of girls, born in or out of wedlock, was recorded. In 
this case the years served as subjects, the combination of iex and legitimacy 
of the (..hildren as the stimulus, and the number of infant deaths out of the 
number of children born as the respOnses. 
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From economics we can take household budgets as an example. The 
families serve as subjects, income and expenditures—classified into a few 
types—as stimuli, and the amount earned and the amount spent as the 
responses. 

These examples may indicate that the framework covers a rather large 
field within the social sciences. Delineating the area in which the models 
described here apply is a huge problem, the inquiry into which has barely 
started. 

But already the two intelligence tests mentioned in Section 2 and dis-
cussed at the end of Section 6 are instructive as regards the sort of diffi-
culties we should be prepared to meet. For one of them. the numerical 
sequences, the earlier analysis (3, Chapter 6) showed a perfectly satisfactory 
fit of the observations to the model —that is, in this case specific objectivity 
can be obtained on the basis of the response pattern for each subject. For 
the other test, the geometrical shapes, the analysis most unambiguously 
showed that the separability did not hold. 

Neither did it hold for a different intelligence test, which was of the omni-
bus type, containing items that presumably called upon very different 
intelligence functions. In this case, therefore, the data could not be expected 
to allow for a description comprising only one parameter for each subject. 
The items in the numerical sequences were quite uniform in that they re-
quired the testee to recognize a logical structure in a sequence of numbers. 
According to the analysis. the items were sufficiently uniform—although of 
very different levels of difficulty —to allow for a description of the data by 
one parameter for each subject as well as for each item. The items of the 
geometric figure test were constructed just as uniformly as the numerical 
sequences, and therefore it was somewhat of a surprise that the results 
turned out quite adversely. 

To this material I could add observations on two other tests, constructed 
with equal care. One was a translation of the idea of Raven's matrix test 
into letter combinations, at the same time substituting the multiple choice 
by a construction, on the part of the testee, of the answer. For this test the 
results were just as good as for the numerical sequences. The other test 
consisted of a set of verbal analogies where the number of answers offered 
was practically infinite, with the effect that the multiple choice was in fact 
eliminated. Here the results of the testing were just as disappointing as for 
the figure test. 

This contrast, however, led to the solution of the mystei -y. The difference 
between the two pairs of tests was due not to construction principles but to 
the administration of the tests. For all fou: tests the adequate time allowance 
was determined by means of special experiments. On applying them to 
random samples of 200 subjects, it turned out that the number of correct 
answers formed a convenient distribution for the letter matrix test and for 
the numerical sequences, but verbal analogies and the figure test were too 
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easy at-1(7 the distributions showed an undesirable accumulation of many 
corect answers. 

This happened in 1953, when only the barest scraps of the theory had 
been developed, and yielding to considerable time pressure the test con-
structor, consulting me on the statistical part of tie problem, severely cut 
down the time allowances so as to move the distributions to the middle of 
the range: While succeeding in that, we spoiled the test, turning it into a 
mixture of a test for ability and a test for speed. 

More recently, however, I have had the opportunity to reanalyze both 
sets of data, grouping the subjects primarily according to their working 
speed, as given by the number of items done, and applying to each group the 
technique of Chapter 6 of the earlier report (2). The result was startling: 
Within each speed group I found confirmation of the theory, and the relative 
difficulties of the items were independent of the working speed. Altogether, 
with speed as ancillary information, specific objectivity can be attained in 
regard to the properties which the tests really aimed at measuring. 

Inverting the final statement, we get the moral of this story: Observations 
may easily be made in such a way that specific objectivity, otherwise 
available, gets lost. For instance, this can easily happen when qualitative 
observations with, say, five categories of responses for convenience are 
condensed into three categories. If the basic model holds for the five cate-
gories, it is mathematically almost impossible for the three-category model 
also to hold. Thus the grouping, tempting as it may be, will usually tend to 
slur the specific objectivity. 

In concluding, therefore, I must point out that the problem of the relation 
of data to models is not only one of trying to fit data to an adequately chosen 
model from our inventory to see whetncr it works; it is also holt ,  to make 
observations in such a way that specific objectivity obtains. 
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