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1: Basic formula for the,simple dichotomic model. 

One of the situations to be considered in the present paper 
is the following. 

A number of elements, called "objects", characterized by 
positive scalar parameters, C1,•••,Cn  , are exposed to a set of 

other elements, called "agents", also characterized by positive 

scalar parameters, c i ,... l ck  . The "contact" between an object, 
no.. v , and an agent, no. i , produces with a certain probabili-

ty, depending upon C v  and e i  , one out of two possible responses, 

called 1 and 0 

Denoting the response by avi  we then have 

avi  = 1 or 0 for v=1,...,n, i=1,...,k 

For the set of nk responses we assume stochastic independence: 

n k 
(1,2) 	101((avi ))1(C v ),(Ei)/ = vill inl Pfavi l& v ,c i / 

and for each pair (v,i) the probability is specified as 

a 
( v E i ) vi  

(1.3) 	pfa 	v'e.1 = 	 •1 

This modal_ was presented in [2] and has been dealt with 

elsewhere, but for easy reference we shall reproduce the basic 
steps in the algebraic theory of this "simple dichotomic model".- 

According to (1.3) the probability (1.2) of any zero-one 

matrix ((avi )) is 

( 1 .4) 

r 	s. 

	

1-/ 	ne l 

Pl((aviNg 	
1v

),( 6 .)} = (v) 	(i)  
 Y(( v ),(E i )) 

where T v  and s i  denote the marginal sums 

E a . = r 	E a . = s. (i)  vi 	v , 
(v) 	

1 ( 1 .5 ) 



and where for short 

(1,6) II 	II (1+v
1 

E.) = Y(( v ),(cd. )) • 
(v) (i) 

The further algebra may be simplified by using vector-matrix 
notations like 

(1,7) 

a** .((a. v)) l 

= l'""n) ' E * = (El"'" Ek )  

r* = (r 1"'"rn)23* = (sl'"" sk )  

  

together with the following definition 

a 	alk (1.8) 	x * = x1 	...x 

of a real vector 

x*  = (x l ,...,xk ) 

raised to a power that is an enumerating vector 

a 	(a 1 , ..., 

	 each ai  being an integer = 0 , 

and similarly for x**  and a**  being matrices. The convenience 

of (1.8) lies partly in the condensation of the formulae and 

partly in the obvious rule 

x a,• x 

The formula (1.4) takes on the form 

r„ 
E 

(1 .1 0) Pf a** * 7 * 

 

 

a*+13 
(1.9) 

I (C*,E*) 



P I T** y e* / 

y(c* Ir* ) = 	
r 7  

(S ) 	ES;  

pfs *  

S * 
)1 ( 	IS ) 6*  

6 1 	- * 	i(c/6*) 

Y( IS * ) = 	* 1 F  (r ) [ 

With the symbol 

(1.n ) 
S

* 

for the number of zero-one matrices with the marginal vectors 
r and s it follows from (1.10) that 

s* 

 (1.12) 
	

plr* ,s* I * ,e * 1 = 
	r* 	E* 

-*' * 

Summing over all vectors s that are compatible with a given 

vector r * the marginal distribution 

obtains, and on dividing that into (1.12) we get the conditional 

distribution 

(1.15) pfs * Ir*7 E* / = s* Y(E*Ir*) 

 

Analogously 



and 

(1.18) pfr * Is** 

r* 

[rs 	 *i y( 	Is) 

Finally we divide (1.12) into (1.10) to obtain 

( 1 .19) it I s 	= ** *  



Comments upon appraisal of the 
parameters. - Specific objectivity. 

2. The parameters 'C11 .„,Cn  signify manifestations of a certain 

property of a set of "objects" which are investigated by means 

of a set of "agents" characterized by the parameters e il ...,Ek 
 Thus in principle the C's stand for properties of the objects 

per se, irrespective of which E i t S might be used for locating 

them. Therefore they really ought to be appraised without any 

reference to the E
i
's actually employed for this purpose - just 

like reading a. temperature of an object should give essentially 

the same result whichever adequate thermometer were used. 

Now the joint distribution (1.12) of r *  and s*  depends on 

both sets of parameters. Therefore an evaluation of E„ 1 ,..., 11 

 based upon this probabilistic statement would in principle be 

contaminated by the e i 's 	But the conditional distribution 

(1.18) of r for given s is independent of e ; therefore an 

evaluation of C based upon that statement will be unaffected 

by which values the elements of E *  may have. Of course, it 

depends on s , the distribution of which,(1.16),in turn depends 

on 	(and 	) , but this is a different matter: s is a known 

vector *  is not and, in principle, never will become known. 

The same argument of course applies to the e i 's , which by 

means of (1.15) can be evaluated uninfluenced by the Vs 

The separation of the parameters achieved by the formulae 

(1.18) and (1,15) is closely related to the most fundamental 

requirement in Natural Sciences, in particular in Physics, 

namely that scientific statements should be objective
*) 

 

During centuries philosophers have disagreed about which 

concept should be attached to the term objectivity, and on this 

occasion I am not entering upon a discussion of that matter, I 

only wish to point out that the above mentioned separation 

exemplifies a type of objectivity which I qualify by the 

predicate "specific".  By which I mean that the statement in 
question - in the present case one about, say, the a-parameters 

- is not affected by the free variation of contingent factors 

within the specified frame of reference
* 

 ' 
) 
, The frame of reference 

cf. Hermann Weyl, Philosophy of Mathematics and Natural 
Science, Princeton University 1947, p. 71. 



hero being the interaction of objects and agents, the agent 

parameters are those which are contingent or incidental in state-

ments about the object parameters. 

Now a statistician may ask: What is the price of this 
precious objectivity? DonTt we loose some valuable information 

by insisting upon it? 

In the present case the answer is: Not As a matter of fact, 

the two conditional distributions (1.15) and (1.18) are equival-

ent with the joint distribution (1.12). 

From the elementary formula 

(2,1) 
	

plr* ,s* IC * 	= Pfr Is 	1P{s 	ems } 

= T.) { ,s I r*lEJ-Pt r I F.,,E * 1  

follows that 

P{r IS 2* 	P{r fe  
(2.2) 	 = E 

	

(r u ) p{s ir 	(r* ) 13{s 	* } 	pls 

which together with pfr.ls * , * 1 produces plr* ,s * I * , 6* / . That 
the expression thus obtained coincides with (1,12) is easily 

verified, 

To this may be added that when also (1.19) is taken into 

account, the model itself, as expressed in (1.10), is com-

pletely recovered. 



3, On the specificit-  of a model control. 

The formula (1.19) tells that the probability of the matrix 

a 	conditional upon the marginal vectors r and s,, i2 in- ** 
dependent of all of the parameters, thus being a consequence 

of the structure of the model,irrespective of the values of the 

parameters, Therefore it would seem a. suitable basis for-a 

specifically objective model control, i.e. for testing the 

validity of the model in a way that is unaffected by the values 

of the parameters Which as regards the structure of the model, 

are the "contingent factors" within the given framework. 

It should be noticed, however, that the derivation of (1.19) 

only shows that if the model holds then this formula applies : 

 i.e. that (1.19) is a nescessar' condition for the model to • 

hold. True enough, according to the preceding section we may, 

taking (1.2) for granted, work back to (1,3), but only if (1.15) 

and (1.18) are also taken into account. 

The following statement concerns what can be concluded from 

(1.19) without support from (1.15) and (1.18). 

Theorem I. If the elements of a stochastic zero-one matrix  

(3. 1) a 
** 

= ((a V1  .)) 	v=1 ,oasey 	9 i=1 , , ,., k yo,s, 

are independent: 

(3.2) 	pla*,1 	
(
n
) ( 

n 
)
pla,.1 , 

vi 

and if the distribution of the matrix, conditional upon the  

marfnal vectors r x  and s 	defined by (1.5) and (1.7) is 

P. iven by (1.19) for a  particular 'pair (r - s ) containing no  
uninformative elements - i,e, each r y  / 0 and k , each s i  / 0 

and n - than  two real, positive vectors 

( 3 . 3 ) 

exist such that (1,3) holds for each air 



vi 
vi Pf av ivi 1  = ----- • X > 0 vi 14Avi 

a 

(3.4) 

Since all of the avi's  are either 0 or 1 their probabilities 

may be represented by 

Due to the stochastic independence (3.2) the probability of 

the matrix a becomes ** 

(3.5) p{ a ** 

a** 
**  	 

* 1  = n 	n(1+x .y 	x** = 
(v) (i) 	vi 

Summing over a**  such that the marginal vectors are kept fixed 

we get 

(3.6) 
p(x ** Ir * ,s* ) 

p{,,,,s* Ix**} = 
(v) (i) 

and in consequence 

(3 .7) 

whore 

(3.8 ) 

p{a Ir I s ,X 1= ** * * **  

a ** 
** 

Y(X ir ,s ) ** * * 

a 
Y(N. 	IT ,s 	= 	

x  ** 
** * * 

with the same summation over a ** as above. 

Now identification of (3.7) with (1.19) puts such restric-

tions on the X .'s that vi 

a** 	p(X ir s ) 
(3.9) 

** */ * 
** 

must hold for all a es with the marginal vectors r and s 
** 



Let 

a** ..
-((a

v .)) and a'**  = ((alvi  )) 

be any two such matrices, then we must have 

a 	at 
(3.10) 

 = *k ** 

or, taking logarithms, 

(3.11) 	E 	E a.34, 	= 	E 	E 	at 	. 
( v ) ( i) VI VI ( v) 

(i) 
 VI VI 

where 

(3.12). va. = log Xvi • 

According to assumption no r y  determines all of the elements 

8.1)11 ....,avk ,neitherdoesanys.determine all of the elements 

a1 i'"'' ani Therefore, marking any two object numbers, 

p and v , and any two agent numbers, i and j 	it is possible • 

to find two admissible matrices that are identical, except 

where the rows no. p and v intersect the columns no. i and j , 

In those places we may have the elements 

ma** 	in a' ** 

i 	j 	 i 	j 

(3.13) 	1.t 	1 	0 	p 	0 	1 

v 	0 	1 	v 	1 	0 . 

Thus (3.11) requires that 

(3.1 4 ) . = 	. 	. 
111 	vj 	PJ 

for any two pairs (p., v) and (i 1 j), even for p=v and for i=j 

since (3.14) then is trivial. 
Averaging now over p and j while v and i are kept fixed 

we get 
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(3.14) 114. 	= 
V1 	v . 	. 	• • 

whichmeansthatX.factorizes into 

(3. 1 5) 
	

xi = vsi , 	v = 
	V. 	

Si = e 

On inserting this into (3.4) we get (1.3), which completes the 

proof of the theorem ) . 

With theorem I it becomes clear that, given the independence 

(3.2), the relation (1.19) is a condition for the validity of 

the model (1.3) which is both nescessary and sufficient. There-

fore I shall characterize (1.19) as El specific basis for testing 

the structure -  (1,3) of the model. 

At the beginning of this section it was pointed out that 

(1.19) is a specifically objective basis for the same testing. 

These two concepts are fundamentally different. 

From (1.19) some more special statements might be derived -

e.g. the conditional mean value of the product of all elements 

of the matrix a** as a. function of r and s* • That would still 

be objective since it is, of course, algebraically independent 

of the parameters, but being 0 except for all r y  = k (and all 

s = n), the model cannot be deduced from this value alone. 

And therefore it is not specific. 

On the other hand, one might formulate a statement that is 

specific, but involves all of the parameters - if nothing else, 

then the relation (1.4) - and therefore not being objective. 

In_ passing it may be noted that for the extension of (1.3) to 

to independent binomial distributions 

a . 

.m 	,E. va. 	v

1 = ( m . vi E.) 
Pfa 

va. 

a 	 vi vi  

which may sometimes be useful, both the basic algebra of sect.1 

and the inversion theorem I generalize readily. 



A probali,stic statement that combines the two properties, 

specificity and specific objectivity, as we have it in (1.19), 

would seem a most desirable point of departure for entering 
upon the testing of a hypothesis. 



(4.1b) 

then 

(4.2) m 1 pf al  a21 m 1  ,m2,  1  , C 2 1 = 

Pla2 1 m221 = ( 
:2) 	c2 

Mn  2 ( i+co ) 

a 2 

- 12 - 

4. On com arir two binotial distributions. 
Let a1  and a2  be stochastically independent and 

(4-
.1a) 

a.. 

m1 \ Cl 
PI al 	 = 1x1 1 ' 

For the sum 

(4.3) 
	

= a1 	a2 

the distribution is 

Yo (C1'':2 1m1i m 2 )  plcim m r Cl= 2''1' 2 	 2 m 	m 
(1+C1 ) ) 1 

with 

(4.5) 	Yc (C1 C2 I ml ,m2 )  = 	E ( m2 ) C1al C2a2  al+are  al 	a2   

( 

and furthermore 

(4.6) Pl a1 a2 I c / m1 ' 111 2' Cl ' C2 

11 

 )

cal ca2 
a2  1 2 

	

lc ( C1 C2 11:1 1 	) 

When 

(4.7) 
	

= c2= 
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- a hypothesis to be tested - this reduces to 

(4.8) 

and 

(4.9) 

Y e (C ,Clin 1 , m2 ) = 

pfa 1 ,a2 1c,C l m 1  

/ m 1 +m2 \ rc 

( 

al ) a2 ) 

M 4-M2) ( l c   

which forms the basis for R, A. Fisher's "exact test" for 

comparing two relative frequencies [1] 

Clearly (4,9) is independent of the parameter C , which 

according to the hypothesis is common to the two distributions 

(4.1a) and (4.1b); thus it is specifically objective statement, 

But furthermore it is specific for the hypothesis in 

question: 
Theorem IIa, If the inde endent variables '1  and a2  follow  

the binomial distributions ( 
	

) and if the conditional 

distribution (4.6) is given by 	right hand term of (4.9), 

then the  two pframeters C i  and 	must coincide. 
Theorem In. For  the coincidence of C i  and 	in (4,2) it 

suffices that the distribution (4.6) is_21aLL21 .911v indepen-

dent of the ratio L;1L2_. 
To begin with the latter: As (4.5) is homogeneous in C i  and 

2 the right hand term of (4.6) depends only on their ratio. 
And if it is independent of that it must equal its value for 

Ci  = C, which according to (4.8) reduces to the right hand 
term of (4.9). 

Identifying next the right hand terms of (4,6) and (4.9) we 

find that 

m l +m2 	̀"11 c2'2 
Yc 	C2 1111 1 ' 111 2 )  = 	 - 1 	2 

2 asholdingforallaand a. with the sum c . (4.7) follows ' 
from the identity for a 1 =c , a2.0 and a1.01a2=c 



- 14 - 

Low and again the adequacy of a test based solely upon (4,9) 

has been questioned. Realizing, that this condition is both 

necessary and sufficient for the hypothesis (4.7), provided 

that we are at all dealing with independent binomially 

distributed variables, I feel fully satisfied about the 

adequacy of the basis for Fisher's test. 



- 15 - 

5. Generalizations. 
The results of the preceding section are readily generalized 

to comparisons of several binomial distributions, of several 

multinomial distributions, in fact to several "enumerative 
distributions", i.e. those of the form 

as xa. 
, 

(5.1a) 	pla IX 1 = * 	a(X) 

where a and X may be vectors: 

(5.1b) 	pla 	a k 	X 1 = 1"'" 	'1"" ,  k 

a 	ak a  a1 	
1 • • • "k 

 

a(X1'"" 

I may just indicate the steps in comparing two such 

distributions. For (5 . 1 a) and 
b 

Pb, • 	/4(. 
(5.2) 	plb* 14.1 	* 

(11* ) 

we have, independence being presumed, 
a. b 

as pb • X *4 * - * * * * 
(5.3) 	pla 1  b  IX*7  4 1 - 

a (X* ) P(11* ) 

and 

(5.4) 	Plc IX 	} - 
* * * 	a(X* ) P(I1* ) 

with 

Ye  (X4 ,11* ) 

c = a + b* 

b, 
11  ) = 	aa Pb , a b =c 	* * * 

(5.6) 

and 

(5.7) 
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Accordingly 

a b*  
af3 	X 	1.), a lb * * 

p{a .b  Ic I X 1 11A = ------ ------- (5.8) 	 * * 

is  (Xla ) 9  * 

which for 

( 5.9) 
	

X* = 

becomes independent of the common parameter: 

as pb 
* * p 	b c 	— 7 	* 	re 

-* 

aa Pb Yc * 	a*+b*=c * 

(5.10) then is a specifically objective statement, and it 
is a nescessary condition for (5.9). That it is also sufficient, 

thus specific for (5.9), is seen by identifying (5.10) with 

(5.8) which leads to 

(5.12) 
a* b* 

* Ye (X*' 11* )  = Ye 	X  

as holding for any pair (a *l b* ) satisfying (5.6). It follows 
that 

a -a 	k X ai 
(5.13) 	X *11 ** = 

 i=1 

must remain constant under the passible variation of a *  which 
is defined by 

(5.14) 0 < a. 	c. = 	= 

* * * * 



1 	0 x * p{x 16 } =• e * * 	7177-7 
a(x ) 

+Do 6..*x y(0 ) = f e 	*a(x.)dx 
I 

k 
= II dx. . 

i=1 1  

- 17 - 

Ifforan,yjwithc
i  >

1wetakea..1 , all the other 
= 	 J 

a.i ls=0,itieseenthatX=Ili .Thus (5.9) must hold, except- 
ing elements with the corresponding c

j 
 = 0 . 

The properties demonstrated in some cases have, of course, 
to do with the Darmois-Koopman or Exponential family of • 

distributions. 

Without going into the general theory of this family I may 

just indicate how the same train of thought works in the fol-

lowing very simple case of k-dimensional differentiable 

distribution: With 

( 5.1 5 ) 

we consider 

1" k 

* 

For two distributions 

6 x 
(5.18) 1  pfx le 	= v* 1 	yOD 	

. 	v* via ( 	) 	v=1,2 x v v* v* 

of independent variables 

x v* = (x
v1'

xvk ) 

we have 

a
1 
(x1*  )a2 (x2*  ) c  01* 1* e* x-, 

(5.19) 	Pfx1* 2x2* 1 ei*$ 62
.

-;= }  
.Y1 (61)72(62) 
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Transforming to xi*  and 

	

(5.20) 	Z*  = X1*+X2* 

we get 

	

(5.21) 	p{x 	z 10 	0 2#
} 1*Y 	1* ,  2* 

(x1* )a2 (z* -x13 ) e
(el*  

(6 1* ).Y2 (e 2* )  

)x +e z 1* 2* * 

and on integration with respect to xi*  

(5.22) 	P {z* 1 	e2* } — — 
Y1 (el *) i2 (62* )  

+00 (0 -6 2 )t 
• f e 	

* *a 1 (t* )a° 

0 z 
2* * 

-t* )dt * 

On dividing this into (5.21) the conditional distribution 
of x1  , given z 	obtains: 

(0-1- -62*/ x1* (x )a (z -x )e 
(5.23) 	p 	1 z 	0 	- 1 	1* 	2  * 1*  1* 1* 1  1*/ 2* - +Do (0

1
-62 it  

f e 	 Lt* /a2 (z* -t* )dt 
_co 

which for 

(5.24) 	01* = 02* = 0* 

simplifies to 
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(5.25) 	Pbc1* lz1 , 0*  1 	+00
a 1 (x)a2 (z * -x1* ) 
 

f a
1  (t * )a2  (z -t * )dt 

This is a. probabilistic statement which is independent of 
the Common parameter and therefore Specifically objective. And 

being a consequence of the model (5.19) it is a neseessary 

condition for the validity of the hypothesis (5.24). However, 

it is also sufficient and therefore specific for the hypothesis, 

This is realized by identifying (5.25) with (5.23) 	which leads 

to the identity 

(5.26) (e1 , - e2* )dt * * 

= f 
+°° 

e
(e1 - 24k )t 4 a ( t ie ) 0:2 (z 	*)dt  -x- 

The right hand term being independent of x l*  , the exponential 

on the left must vanish; thus (5.24) follows. 
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