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Introduction  

Andersen (1970) proves that a conditional maximum likelihood 

procedure for Rasch item analysis produces consistent estimates 

of item parameters. Since, however, conditional estimation is 

impractical for tests of more than twenty items (Wright and Douglas, 

1977b), Wright and Panchapakesan (1969) developed an "unconditional" 

maximum likelihood procedure, UCON. Although this method is quite 

practical even for the largest tests it produces slightly biased 

estimates. Wright and Douglas (1977a, 1977b) describe a corrected 

unconditional estimation which should make the bias in UCON neg-

ligible. This corrected unconditional estimation procedure 

is incorporated into a practical and economical FORTRAN pro-

gram, BICAL (Wright and Mead, 1977), which calibrates items and 

analyzes fit between model and data according to the Rasch model. 

The purpose of this report is to document the extent to which 

the unconditional maximum likelihood procedure used in BICAL pro-

duces accurate and consistent estimates, and so, incidentally, to 

see if there is any practical need to attempt conditional estima-

tion of item difficulty parameters. 

To explore this question, a study of data simulated to fit 

the modal was performed. A comparison of estimates with their 

generating parameters was made for data generated from a variety 

of typical test and sample shapes. 

Definition of Test  and  Sample  

A test or a sample can be described adequately by four basic 

characteristics (Wright and Douglas, 1975a). The units in which 
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these properties will be expressed are logits. Logits are natural 

log odds of frequency data such as test and item scores which 

transform these frequency data into a linear scale. (For a dis-

cussion of logits apropos the Rasch model, see Wright, 1977.) 

Tests 

The first characteristic of a test is its difficulty level or 

height, H. This is the average difficulty of the test's items. 

A centered test is one with a height near the mean ability or center 

of the sample in use. 

Width, W, is the second characteristic of a test. This is the 

range of item difficulties covered by a test, from the easiest item 

to the hardest. 

Length, L, the number of items composing the test is the third 

characteristic of a test. 

Finally, the distribution of the item difficulties must be 

specified. Typically, either a normal or uniform distribution is 

adequate to describe test shape. Wright and Douglas (1975) show 

that uniformly distributed items are the best overall test shape 

strategy and that in general, "best" tests should be constructed 

that way. 

Samples  

The mean ability level, M, of a sample corresponds in inter-

pretation to the height of a test. In the construction of a scale, 

the origin, in general, is arbitrary. What is determined by the 

data is 	- S) or (M - H), the difference between sample and test. 

For the purposes of these simulations the height of the test was 
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set at zero and the difference (M - H) was varied by varying M. 

Therefore, a sample less able than the test is difficult would 

have a mean ability less than zero, while a sample more able 

than the test is difficult would have a mean greater than zero. 

Since the response model functions symmetrically, however, we need 

consider only one side of the scale when simulating persons in 

order to see how well the estimation algorithm works. 

The second characteristic of a sample is its dispersion, or 

standard deviation, S. Just as the width of a test is the range 

of item difficulties composing the tests, so S indicates the 

spread of person abilities in the sample. 

Sample size, N, is the third characteristic of a sample. 

The last characteristic is sample shape. For most practical 

purposes a normal distribution of people is an adequate repre-

sentation of sample shape. 

Scope of the Simulations  

Fifteen years experience in seven AERA Rasch presessions and 

innumerable consultations with many different tests used under a 

wide variety of circumstances, has shown that tests narrower than 

two logits or wider than six logits are extremely rare. The most 

frequent test widths encountered have been in the region of three 

to five logits. Therefore, the simulations were performed for 

tests of width two, four, and six logits to cover this experience. 

A few simulations made at one and three logits in order to see 

the trend around two are shown in the summary tables, but were 

not included in the graphical analyses. 
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Test lengths of twenty-one and forty-one items were chosen 

for the simulations. Few serious tests are shorter than twenty 

items and, as tests exceed forty or fifty items, the impact of 

the amount of data becomes sufficient to wipe out the problem 

of inconsistency in the unconditional estimates. Twenty-one was 

chosen because it occasionally happens that an in-class test or 

one subtest of a lengthy battery is as short as twenty items. 

Forty-one was chosen to show how increasing test length eases 

estimation problems and improves the estimates. A second reason 

was that sub-tests in many widely used batteries run about forty 

to fifty items. 

Two levels (means) of samples were chosen for the simulations. 

The first level was centered on the tests (M = 0), as that is the 

most desirable set-up. The second level was set at one logit above 

test center (M = 1), because calibration samples are often selected 

to be somewhat more able than the test is difficult, in order to 

diminish the effects of guessing. 

A variety of practical experience calibrating school tests 

has shown that within-grade ability standard deviations tend to 

run around one logit. In order to cover this, standard deviations 

of ability were simulated at 0.5, 1.0, and 1.5 logits. 

Sometimes attempts have been made to calibrate a test over 

several grade levels. In those circumstances ability standard 

deviations can reach 1.5 logits or even somewhat more. However, 

in the careful development of a calibrated bank of items, it is 

more efficient and more reliable to calibrate within-grade levels 

and to equate across grade levels by common item links, rather 
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than to include the possible vicissitudes of across grade level 

item instability in the initial estimates of item difficulties. 

Thus, the standard deviations of ability in these simulations 

did not exceed 1.5 logits. 

Sample sizes of four hundred and eight hundred persons were 

chosen, because in principle, given the model, four hundred suit-

ably chosen persons should be enough to determine item character-

istics effectively, and eight hundred persons should be more than 

sufficient. 

All of the simulations made in this study had an average 

item difficulty of zero, items that were uniformly distributed, 

and samples that were normally distributed. Two typical combina-

tions of test length and sample size produced two basic set-ups. 

The first set-up was a test of twenty-one items taken by four 

hundred persons. The second set-up was a test of forty-one items 

taken by eight hundred persons. For each of these two set-ups 

various plausible combinations of test width, sample mean, and 

sample dispersion were formed. The twenty-three combinations 

resulting are marked by x in Table 1. Five random replications 

of each of these combinations were then simulated and provide 

the data used here to investigate the extent to which BICAL 

evaluates fit and recovers the item difficulty parameters satis-

factorily. 

Not all possible combinations of the variables in Table 1 

were simulated, because some combinations generate unrealistic 

or nonsensical situations. For instance, it would be unreasonable 

to give a narrow test (W = 2) to a sample that was more able than 
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average (M = 1), because too many of the people would fall out-

side the range of the test. 

Recovery of Item Difficulties  

The first analysis of the simulation results concerns possible 

bias in the recovery of item difficulties. An examination of Table 

2 suggests that BICAL recovery is excellent at all combinations of 

the variables. A closer look reveals that for shorter and wider 

tests (L = 21, W = 6), the recovery of item difficulty dispersion 

runs one to five percent too large, while for the longer and wider 

tests (L = 41, W = 6), the recovery runs only one percent too 

large. Regardless of test width, the average excess in dispersion 

over all simultions is two percent for the shorter test and one 

percent for the longer test. This suggests that a slight addition-

al correction for bias based on test length might be useful for 

shorter tests (L < 30). 

Further analysis of calibration bias appears in Tables 3 and 

4. These tables show the regression of individual item difficulty 

estimates on their generating parameters, for the tests of twenty-

one by four hundred persons and forty-one items by eight hundred 

persons, respectively. It is hard to see how the BICAL recovery 

could be any better. Overall, the best estimates are recovered 

by the longer test. A closer examination of both Tables 3 and 4 

reveals again that the greatest recovery inflation (5%) occurs 

for the shorter wider tests with off-center samples (L = 21, 

W = 6, M = 1), either narrowly or widely dispersed (S = 0.5 or 

1.5) and for average tests which are off-center, but moderately 

dispersed (L = 21, W = 4, M = 1, S = 1.0), while for the longer 
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tests, the largest inflation (2%) occurs on the narrow test with 

centered, narrowly dispersed samples (L = 41, W = 2, M = 0, S = 

0.5) and on wider tests with off-center, narrowly dispersed samples 

(L = 41, W = 6, M = 1, S = 0.5). 

Figures 1 through 23 are graphs of the five replications of 

BICAL item estimates plotted against their generating parameters, 

for each of the twenty-three combinations of test and sample 

characteristics. It can be seen from these graphs that the item 

points are well-balanced around the identity line and that nearly 

all the estimates fall within three standard errors of that line. 

This documents the consistency of the estimates. 

Distribution of Fit Statistics  

In order to judge when data are adequately recovered by the 

model it is necessary to assess quantitatively the agreement be-

tween observed data and their expectation under the model. To 

evaluate the fit of the data to the model it is useful to develop 

a fit statistic for each item and for each person. 

These fit statistics for items and persons are formed by 

partitioning an approximate X 2  statistic for the overall fit of 

the data, 
NL x 2 	Ez z 2 .  
vi V1 

into L parts, one for each item, 

N 
)( 	Ez 2  1 v vi 

and into N parts, one for each person, 

L 
X 	EZ2' V i V1 
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where, 

(xvi  - pVI 
 

Z2 
vi p vi (1 - pvi ) 

and where, 

exp(bv  - d i ) 

Pvi = 1

• 

 + exp(bv 
- d.) 

The degrees of freedom are approximately [(N-1)(L-1)]/L for each 

item and approximately [(N-1)(L-1)]/N for each person. 

It is convenient to express these statistics in the form of 

mean square residuals. For the overall fit of item i this is 

N r 	
1 Vi = Ez 2 .1 	  

✓ viL(N-1)(L-1)J 

which has an expected value of one and a variance of 2L/[(N-1)(L-1)]. 

The corresponding mean square for the fit of person v is 

L 2  
Vv =  i zvi[(N-1)(L-1) 

which has an expected value of one and a variance of 2N/[(N-1)(L-1)]. 

The fit mean square residual for the entire test is given by 

	

NL r 	1  v = EEz 2  
v i viL(N-1)(L-1)j 

with an expected value of one and a variance of 2/[(N-1)(L-1)]. 

If we represent the expected value of the standard deviation 

of the item fit statistic Vi as aV  = /2/df, and its observed value 

over items in any particular calibration as s , the ratio s /a V 	 V V 

can become a useful part of the fit analysis, as it standardizes 
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the dispersion of the item mean squares around their expected value 

of one. 

The analysis of the fit statistic is illustrated in Tables 5 

and 6. In Table 5 the observed value of the test fit statistic 

V is compared with its expected value of one. One can see that 

the fits are closest to expectation when the test is narrow (W = 2). 

Regardless of test length the fits drift slightly below one as the 

test becomes wider, although the percent below one is greater for 

the shorter test (L = 21). Sample properties do not appear to have 

a significant influence on these fit statistics, as the departure 

below expectation is about the same at the different levels and 

dispersions of sample ability. Overall, the longer tests (L = 41) 

show the least departure below expectation in their fit statistics 

over the different test widths, two to three percent at all levels 

versus two to six percent for the shorter test (L = 21). 

The standard deviation of the item fit statistics is analyzed 

in Table 6. These show two interesting trends. There is a dis-

tinct inflation above expectation with short, wide tests (L = 21, 

W = 6). The ratio (sV  /aV 
 ) becomes as large as two for wider tests 

(W = 6), regardless of test length. This is twice the expected 

value of one and indicates that the item mean squares for data 

simulated to fit the model are substantially more dispersed around 

one than the elementary theory concerning these residuals implies. 

Further examination of Table 6 shows that the expected ratio 

of one is found on the narrow tests with centered and moderately 

dispersed samples (W = 2, M = 0, S = 1.0) and on the average 

width tests with off-center, narrowly dispersed samples (W = 4, 



-10- 

M = 1, S = 0.5) for tests of both lengths. But as the theoretical 

ratio of one is too low compared to the ratios (s v/av ) observed 

for wide tests (W > 4) taken by dispersed samples (S > 1.0), some 

adjustments will be required in the reference values used when 

judging item fit in real data collected under those circumstances. 

The examination of the fit statistics for these tests and 

their items shows how BICAL functions with data known to fit the 

model. From these simulations it seems desirable to work with 

longer tests of moderate width well-targeted on their calibration 

samples (e.g., L = 41, W = 4, M = 0, S = 1.0). Although it is 

best to develop an item bank using well-matched tests and people, 

these simulations show that moderate deviations from this ideal 

can still yield useful results. 

Conclusions 

The Rasch response model used by BICAL implies ideal conse-

quences for residuals from the model. The residuals actually 

observed in a calibration are summarized into mean square residual 

fit statistics for individual items and for the test as a whole. 

It is unrealistic to expect the results of simulations to match 

the ideal consequences exactly, but one can ask, "To what extent 

do the results, and hence the algorithm they document, approximate 

these ideals?". This is an important question, as the ideals are 

the frame of reference from which an experimenter must judge the 

fit of any real data. 

The simulations in this study indicate that, when test and 

sample properties are in approximate rapport, the fit statistics 

can be used to evaluate fit and, when fit is obtained, that good 
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parameter estimates are also obtained. However, these simulations 

also show that when sample and/or test properties are pushed to 

extremes, residuals not fully anticipated by the model can obtain. 

As sample and test spread beyond typical values, variation 

among the item mean squares, for data simulated to fit the model, 

increases to twice as much as expected from the model. At the 

same time, the total mean square falls slightly below its expected 

value of one. Therefore, when judging the fit of real data, for 

either a wide test (W > 4), a wide sample (S > 1.0), or both, one 

might be tolerant of item mean square dispersion larger than ex-

pected. Also, one should work toward overall mean squares falling 

slightly less than one. 

In serious practice, however, genuine attempts are ordinarily 

made to avoid extreme situations. Should extreme conditions never-

theless arise, the experimenter can qualify the interpretation of 

his results in terms of the trends shown in these simulations. 
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TABLE 1 

COMBINATIONS OF TESTS AND SAMPLES WHICH WERE SIMULATED 

Test: H=0, W, L=21 	 Sample: M, S, N=400 

M=0 	 M=1 
\ S 
W 	0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

1---- I 1  

1 
2 : x 	x 	 * 	, 

3 	 * 	* 	* 	* 	* 

4 	x 	x 	x 	x 

6 i 	x 	x 	x 	x , x . 

Test: H=0, W, L=41 	 Sample: M, S, N=800 

\ 	M=0 	 M=1 
, S 

W\ 0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

r- 	 --1 
1 

2 : x 	x 

3 

4 	x 	x 	x 	x 	x  

. 	 . . 	 . 
6 	 x 	x 	x 	x 	* i 

1  	 i 

x - data based on five replications and reported fully 

* - additional data of five or more replications which were 
generated prior to the final simulations of this report 
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TABLE 2A 

BICAL RECOVERY OF ITEM DIFFICULTY DISPERSION 

Test: H=0, W, L=21 	 Sample: M, S, N=400 

Estimated Dispersion sd  

M=0 	 M=1 
Generated 	S 
Dispersion 	W 	0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

ad 

0.31 	1 	0.31 	0.31 

0.62 	2 	0.63 	0.61 	0.63 	0.62 0.62 

0.93 	3 	 0.94 	0.95 	0.94 	0.93 0.93 

1.24 	4 	1.24 	1.24 	1.27 	1.26 1.30 

1.86 	6 	 1.91 1.92 	1.96 1.88 1.95 

Ratio sd/ad  

M=0 

\ 	

M=1 
S 

W 	0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

1 	1.00 1.00 

2 	1.01 	0.99 1.02 	1.00 1.00 

3 	 1.01 1.02 	1.01 1.00 1.00 

4 	1.00 1.00 1.02 	1.02 1.05 

6 	 1.03 1.03 	1.05 1.01 1.0 
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TABLE 2B 

BICAL RECOVERY OF ITEM DIFFICULTY DISPERSION 

Test: H=O, W, L=41 	 Sample: M, S, N=800 

	

Estimated Dispersion 	sd  

M=0 	 M=1 
Generated 	\ S 
Dispersion W 	0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

ad 

	

0.30 	1 

	

0.60 	2 	0.61 	0.60 

	

0.90 	3 

	

1.20 	4 	1.21 1.21 1.20 	1.21 1.19 

	

1.80 	6 	 1.82 1.82 	1.84 1.80 1.81 

Ratio 	sd/ad  

M=0 	 M=1 
S 

W \ 0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

1 

2 	1.02 1.00 

3 

4 	1.01 1.01 1.00 	1.01 	0.99 

6 	 1.01 1.01 	1.02 	1.00 1.011 



TABLE 3 

THE REGRESSION OF BICAL ITEM ESTIMATES ON THEIR GENERATING PARAMETERS - 21 ITEMS BY 400 PERSONS 

	---! 	
Test 	 Sample 	Correlation 	Standard 	 Regression of 	 Regression of 

H=0 L=21 	N=400 	 Between 1  

	

Deviation 	Estimate on Parameter Parameter on Estimate 
Width 	Mean Std.Dev. Estimate and 	of 	 Mean Square 	 Mean Square 

W 	M 	S 	Parameter 	Param. Est. 	Slope 	Residual 	Slope 	Residual 

2 	0 	0.5 	i 	0.985 	0.608 	0.615 0.996 	0.0113 	0.974 	0.0111 
2 	0 	1.0 	0.983 	0.608 	0.600 0.969 	0.0125 	0.997 	0.0128 

4 	0 	0.5 	0.995 	1.217 	1.215 0.994 	0.0142 	0.996 	0.0142 
4 	0 	1.0 	0.996 	1.217 	1.219 0.998 	0.0127 	0.994 	0.0127 
4 	0 	1.5 	0.994 	1.217 	1.248 1.019 	0.0192 	0.969 	0.0182 

6 	0 	1.0 	0.997 	1.825 	1.871 1.022 	0.0233 	0.972 	0.0221 
6 	0 	1.5 	0.997 	1.825 	1.877 1.025 	0.0246 	0.969 	0.0233 

4 	1 	0.5 	0.995 	1.217 	1.241 1.014 	0.0170 	0.975 	0.0163 
4 	1 	1.0 	0.995 	1.217 , 1.274 1.041 	0.0179 	0.950 	0.0163 

6 	1 	0.5 	0.992 	'1.825 	1.929 1.048 	0.0620 	0.939 	0.0555 
6 	1 	1.0 	0.996 	11.825 	1.841 ,  1.006 	0.0206 	1 0.989 	0.0202 

1 	1.5 6 2 	 0.996 	1.828 	1.912 1.042 	0.0317 	0.952 	0.0290 
1 

i 	 i  	

1 Because these statistics combined five replications, the degrees of freedom used in the calculation 
of the standard deviations were 104 instead of 5x20 = 100. As a result, these values are .98 of 
the ones found in Table 2A. The ratios are comparable. 

2 These calculations were based on four replications rather than the five used in the other combina-
tions. 

rn 



TABLE 4 

THE REGRESSION OF BICAL ITEM ESTIMATES ON THEIR GENERATING PARAMETERS - 41 ITEMS BY 800 PERSONS 

t 	 -- 	 -- 	
Test 	 Sample 	' Correlation 1 Standard 	Regression of 	 Regression of 

H=0 L=41 	N=800 	i Between 	1 Deviation ) 	Estimate on Parameter 	Parameter on Estimate 
Width 	Mean Std.Dev. Estimate and 	of 	, 	 Mean Square 	 Mean Square 

W 	M 	S 	Parameter 	Param. Est. 	Slope 	Residual 	Slope 	Residual 

	

I 	 , 
' 	 1 

2 	0 	1 	0.5 	0.993 	0.593 	0.602 1.009 	i 	0.0051 	0.978 	0.0049 
2 	0 	

1 	
1.0 	0.990 	0.593 	0.600 1.001 	0.0071 	0.979 	0.0070 

4 	0 	0.5 	0.997 	1.186 	1.200 1.009 	0.0075 	0.986 	0.0073 
4 	0 	1.0 	0.998 	1.186 	1.195 1.005 	

1 	0.0071 	0.990 	0.0070 
4 	0 	1.5 	0.997 	1.186 	1.191 1.001 	0.0080 	0.993 	0.0079 

6 	0 	1.0 	0.999 	1.779 1 1.798 	1.009 	0.0091 	0.988 	0.0089 	1 
6 	0 	1.5 	0.998 	1.779 	1.803 1.012 	0.0109 	0.985 	0.0106 

1 

4 	1 	0.5 	0.996 	1.186 	1.202 1.010 	0.0105 	0.983 	F 	0.0102 
4 	1 	1.0 	0.997 	1.186 	1.182 0.993 	0.0092 	1.000 	0.0093 

6 	1 	0.5 	0.998 	1.779 	1.818 1.020 	0.0129 	0.977 	0.0124 
6 	1 	1 	1.0 	0.998 	11.779 	1.787 	1.002 	0.0121 	0.994 	

pp 
	0.0120 

	

i 	 1 	 i  

1 Because these statistics combine five replications, the degrees of freedom used in the calculation 
of the standard deviations were 204 instead of 5x40 = 200. As a result, these values are .99 of 
the ones found in Table 2B. The ratios are comparable. 
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TABLE 5 

AVERAGE MEAN SQUARE FIT STATISTIC OVER ITEMS 

Test: H=0, W, L=21 	 Sample: M, S, N=400 

Average Fit Statistic V 

M=0 	 M=1 
S 

W 	0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

1 	1  0.99 	0.99 	
1 

2 	0.99 	0.99 	0.99 	0.99 	0.98 

3 	 0.98 	0.98 	0.98 	0.98 	0.97 

4 	0.97 	0.96 	0.97 	0.96 	0.97 

6 	 0.95 	0.94 	0.93 	0.94 	0.94 1  

Test: H=0, W, L=41 	 Sample: M, S, N=800 

Average Fit Statistic V 

M=0 	 M=1 
S 

W 	0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

1  
1 

2 	0.99 	0.99 

3 

4 	0.98 	0.98 	0.98 	0.98 	0.98 

6 	; 0.97 	0.96 	0.97 	0.98 	0.98 
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TABLE 6A 

STANDARD DEVIATIONS OF MEAN SQUARE 
FIT STATISTIC OVER ITEMS 

Test: H=O, W, L=21 	 Sample: M, S, N=400 

Standard Deviation of Fit Statistic 	sv 

M=0 	 M=1 
S 

av 	
W ''1 0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

.05 	1 	1 .03 	.05 

.05 2 

	

.04 	.05 	.07 	.04 	.07 

.05 	3 	 .06 	.07 	j 	.06 	.07 	.08 

.07 	4 	! .06 	.07 	.09 	.07 	.10 

.07 	6 	 .14 	.16 	.12 	.13 	.17 
L_ 	 

Ratio sV/aV  

M=0 	 M=1 
S 

W \\) 0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

1 	1 0.6 	1.0 

2 	0.8 	1.0 	1.4 	0.8 	1.4 

3 	 1.2 	1.4 	1.2 	1.4 	1.6 

4 	0.9 	1.0 	1.3 	1.0 	1.4 

6 	L 	2.0 	2.3 	1.7 	1.9 	2.4 
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TABLE 6B 

STANDARD DEVIATIONS OF MEAN SQUARE 
FIT STATISTICS OVER ITEMS 

Test: H=0, W, L=41 	Sample: M, S, N=800 

Standard Deviation of Fit Statistic 	sv 

M=0 	 M=1 
\ S 

a
V 	W 	0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

.05 	1 

.05 	2 	s .03 	.05 

.05 	3 

.05 	4 	t.04 	.06 	.08 	.05 	.07 

.05 	6 .08 	.12 	.07 	.15 	.13 

Ratio sV/aV 

M=0 	 M=1 
S 

W 	\ 0.5 	1.0 	1.5 	0.5 	1.0 	1.5 

1 

2 	0.6 	1.0 

3 

4 	0.8 	1.2 	1.6 	1.0 	1.4 

6 	 1.6 	2.4 	1.4 	3.0 	2.6 



FIGURE 1 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

	

TEST: H=0 W=2 L=21 	SAMPLE: M=0 S=0.5 N=400 

	

REGRESSION: 	Y=1.00X 	X=0.97Y 



FIGURE 2 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=2 L=21 	SAMPLE: 	M=0 5=1.0 N=400 

	

REGRESSION: 	Y=0.97X 	X=1.00Y 



FIGURE 3 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

	

TEST: H=0 W=4 L=21 	SAMPLE: M=0 S=0.5 N=400 

	

REGRESSION: 	Y=0.99X 	X=1.00Y 



FIGURE 4 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

	

TEST: H=0 W=4 L=21 	SAMPLE: 	M=0 S=1.0 N=400 

	

REGRESSION: 	Y=1.00X 	X=0.99Y 



FIGURE 5 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=11 L=21 	SAMPLE: 	M=0 5=1.5 N= 1400 

	

REGRESSION: 	Y=1.02X 	X=0.97Y 



FIGURE 6 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=21 	SAMPLE: 	M=0 S=1.0 N=400 

	

REGRESSION: 	1=1.02X 	X=0.971 



FIGURE 7 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=21 	SAMPLE: 	M=0 S=1.5 N=400 

	

REGRESSION: 	Y=1.02X 	X=0.97Y 



FIGURE 8 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=4 L=21 	SAMPLE: 	M=1 S=0.5 N=400 

	

REGRESSION: 	Y=1.01X 	X=0.981 



FIGURE 9 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=4 	L=21 	SAMPLE: 	M=1 	5=1.0 N= 1400 

	

REGRESSION: 	Y=1.0 14X 	X=0.951 



FIGURE 10 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

EST: 	H=0 W=6 L=21 	SAMPLE: 	M=1 S=0.5 N=400 

	

REGRESSION: 	Y=1.05X 	X=0.94Y 



FIGURE 11 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=21 	SAMPLE: 	M=1 	5=1.0 N=400 

	

REGRESSION: 	Y=1.01X 	X=0.99Y 



FIGURE 12 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=2I 	SAMPLE: 	M=1 	S=1.5 N=400 

	

REGRESSION: 	1=1.04X 	X=0,95Y 



FIGURE 13 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

	

TEST: H=0 W=2 L=41 	SAMPLE: 	M=0 S=0.5 N=800 

	

REGRESSION: 	Y=1.01X 	X=0.98.1 



FIGURE 14 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

	

TEST: H=0 W=2 L=41 	SAMPLE: M=0 S=1.0 N=800 

	

REGRESSION: 	1=1.00X 	X=0.98Y 



FIGURE 15 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=4 L=41 	SAMPLE: 	M=0 5=0.5 N=800 

	

REGRESSION: 	T=1.°1X 	X=0.99T 



FIGURE 16 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=4 L=41 	SAMPLE: 	M=0 5=1.0 N=800 

	

REGRESSION: 	1=1.00X 	X=0.99T 



FIGURE 17 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=4 L=41 	SAMPLE: 	M=0 5=1.5 N=800 

	

REGRESSION: 	1=1.00X 	X=0.991 



FIGURE 18 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=41 	SAMPLE: 	M=0 5=1.0 N=800 

	

REGRESSION: 	1=1.01X 	X=0.991 



FIGURE 19 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=41 	SAMPLE: 	M=0 S=1.5 N=800 

	

REGRESSION: 	T=1.01X 	X=0.99Y 



FIGURE 20 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=4 L=41 	SAMPLE: 	M=1 S=0.5 N=800 

	

REGRESSION: 	11 =1.01X 	X=0.98Y 



FIGURE 21 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=4 L=41 	SAMPLE: 	M=1 	5=1.0 N=800 

	

REGRESSION: 	Y=0.99X 	X=1.0011 



FIGURE 22 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=41 	SAMPLE: 	M=1 S=0.5 N=800 

	

REGRESSION: 	Y=1.02X 	X=0.98Y 



FIGURE 23 

REGRESSION OF BICAL ESTIMATES ON THEIR PARAMETERS 

TEST: 	H=0 W=6 L=41 	SAMPLE: 	M=1 	S=1.0 N=800 

	

REGRESSION: 	Y=1.00X 	X=0.99Y 
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