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Shows how the Rasch model is a unit-maintaining pro-
cess (Thurstone, 1931) which enables the construc-—
tion of additivity (Campbell, 1920) and hence funda-
mental measurement (Luce and Tukey, 1964). Provides
the basic statistics for determining the extent to
which additivity has been approximated with partic-
ular data. (A note reviews the obstacles to main-
taining units or constructing additivity encoun-
tered by binomial response models with more than one

item parameter.)
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INTRODUCTION

The realization that additivity can be cqnstructed for psychological
research is often traced to Luce and Tukey (1964). They show that a
conjoint. additivity as good'for measuring as that produced by physical
concatenation can be obtained from responses produced by the interaction of
two kinds of objects (e.g., persons and test items). All that is necessary
is that the interaction be conducted so that its outcomes (e.g., the
persons' responses to the items) are dominated by a linear combination of

two kinds of quantities (e.g., person measures and item calibrations).

Thurstone's 1927 Law of Comparative Judgement contains the same idea
(Andrich, 1978) and his empirical work of 1928, 1929 and 1931 provides
rough examples of additivity. The construction of additivity also occurs
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in Bradley and Terry (1952) and Rasch (1958, 1960, 1966).

The additivity which follows from Rasch's "specific objectivity"” is
developed in Rasch 1960, 1961, 1967 and 1977. Specific objectivity and
cstimation sufficiency are two sides of the same approach to inference,
i.e., that the statistical model on which inference is to be based be
factorable in its parameters. Andersen (1977) shows that the only response
processes which support specific objectivity and hence additivity are those

which have sufficient statistics for their parameters.

Several authors find additive conjoint measurement in Rasch's work (Keats,
1967; Fischer, 1968; Brogden, 1977). Perline, Wright and Wainer (1977)
provide two examples of the extent to which the Rasch process can organize
data so that they satisfy the monotonicity and double cancellation
requirements of conjoint measurement. Wright and Stone (1979) show how to
obtain additivity from mental tests, Wright and Masters (1982) give
examples of the construction of additivity from rating scale and partial

credit data.
MAINTAINING A UNIT

“"All measurement implies the recreation or restatement of the attribute
measured to an abstract linear form. . . . A unit of measurement is always
a process of some kind which can be repeated without modification in the

different parts of the measurement continuum’ (Thurstome, 1931, 257).

Rasch (1960, 171-172) shows that, if
P = exp(b - d)/G
G= 1+ exp(b - d)

]

Is the way person ability b and item difficulty d combine to govern the
probability of a successful outcome and, if Event AB 1is person A
succeeding but person B failing on some item, while Event BA 1is person
B succeeding but person A failing on the same item, a distance between
persons A and B on a scale defined by a set of items of a single kind
can be estimated by

b, = b, =~ log N

A B - log N

AB BA

where NAR i the number of times A succeeds but B fails and NBA is
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the number of times B succeeds but A fails on any set of these items.

This happens because,

Py = Pall - Pp)

exp(bA - d)/GAGB

and = PB(l -P) = exp(bB - d)/GAGB

PBA A
so that d cancels out of the odds for Event AB over Event BA
PAB /PBA = exp(bA - bB)

causing the log odds (logit)

log(P,, /Py, ) = b, = by

BA
to be a distance which holds regardless of the value of d . This makes
Rasch's model for specifying measures a unit-maintaining process of the

kind Thurstone requires.
CONSTRUCTING ADDITIVITY

Campbell (1920) identifies additivity as the hallmark of measurement. The
way to construct additivity for psychologocal measurement is to devise an
operation which answers the question: "If person A has more ability than
person B , then how much 'ability' must be added to B to make the

performance of B appear the same as the performance of A ?"

To answer this we review how ability becomes known. In order to observe
the abilities of persons A and B we must expose them to situations
which provoke manifestations of their ability. This narrows the question
to: "What change in the situation through which we find out about person
ability, say by testing persons with items, will give B the same
probability of success as A ?" To be specific, "What item j will make
the performance of person B appear the same as the performance of person

A on item i ?"

According to the Rasch process, the way to get PBj = PAi

is to make bB -d, = bA - d1 .

h|
The 'addition’ required to cause B to perform like A is
bB + (bA - bB) = bA .

The way to perform this taddition' {8 to test person B with an ltem ]
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of difficulty

d, =d, + -
P AR

The way to evaluate the quality of this 'addition' is to observe the extent
to which the performance of person B on items like j is statistically
equivalent to the performance of person A on items like i . This is the
kind of equivalence which is checked when response residuals are analyzed

for their fit to the Rasch process.
GUIDING THE CONSTRUCTION OF ADDITIVITY BY ANALYZING FIT

In order to go forward with the construction of additivity, we need a way
to evaluate how well we are doing at each step. We need to know the extent

to which the arithmetic we plan to do with our measures will hold up.

The best way to evaluate the extent of additivity (i.e., scale invariance)
obtained by the Rasch process from a particular set of data is to compose a
score residual y = x - Ex for each response x and then to accumulate
these score residuals and their squares over the item-person response
subsets for which scale invariance is suspect. Response subsets can be
defined by any combination of items and persons which might interact in a

way that disturbs additivity.

The expected response Ex is estimated from the current Rasch estimates of
person ability b and item difficulty d . (For binomial data
x =0or 1, Ex is the probability, P = exp(b - d)/(1 + exp(b - d)) .

For comparable statistics for rating scale, partial credit, repeated trial

and Poisson data see Wright and Masters, 1982, 100).

If we let (f1 - fo) represent the extent to which a particular subset of
responses fails to maintain the additivity implied by the majority of items
and persons, then the sum of score residuals for that subset, Ly ,

estimates

(fl - fo) I(dy/df) .

The differential of y wlith respect to f
dy/df = dT/df = Vx = w
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is the parameter information in the observed response and also the score
variance and the inverse of the logit variance. (For the binomial case

dy/df = dP/df = P(1 - P) =w .)

We can use Iy ~ (f1 - fo) Iw
to form (f1 - fo) ~ Iyltw =g so that
the BIAS g = Ly/iw

estimates the logit discrepancy in scale invariance (f1 - fo) associated

with the response subset specified.

The noise within a response subset can be evaluated by comparing the

observed squared residual y2 with its expectation w .

fhe mean square standardized residual,

u = L(y2/w)/I1 = £22/351
is sensitive to unexpected responses when (b - d) is absolutely large
because w diminishes exponentially as the distance between b and d
increases. This makes u useful for detecting episodic outliers like

lucky guesses and careless mistakes.

The mean square information weighted residual,

v = Swz2/tw = L(wy2/w)/Iw = Iy%/Iw
focuses on responses from proximate b and d which contribute most to
their estimation. This makes v useful for detecting systematic

disturbances like loss of local independence and loss of unidimensionality.

Values of u and v substantially greater than one signal disruptions in
additivity of the kind caused by ambiguities and errors in task
presentation, response representation, recording and scoring. Values
substantially less than one signal loss of independence of the kind caused
by systematic omissions, item confounding, person collusion, prior exposure

and curriculum interaction.

When data approximate the Rasch process, the expectations and variances of
these fit statistics can be represented closely enough by Eg =0 |,
Vg = 1/Iw , Eu=Ev=1 and Vu= Vv = 2/Il to provide a

frame of reference for supervising the construction of additivity.
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This representation can be improved by dividing g and by multiplying u
and v by a factor which corrects for the use of parameter estimates in
the calculation of response expectations Ex . The factor is obtained by
dividing the total number of responses X in the subset by the degrees of
freedom which remain after the number of parameter estimates needed to

calculate the corresponding Ex has been deducted.

It is convenient to work with cube root standardizations of u and Vv

(Wright and Masters, 1982, 100) referred to as:

OUTFIT for g(u) , because it detects outliers in the outer regions of

person—item interactions where (b = d) is absolutely large, and

INFIT for g(v) , because it is weighted by the parameter information
borne by response X and evaluates the inner region of person—item

{nteractions where (b - d) 1is absolutely small.

CONCLUSIONS

It has long been customary in psychological research to construct scores by
counting answers (scored by their ordinal position in a sequence of ordered
response possibilities) and then to use these scores (and monotonic
transformations of them) as measures. When the questions asked have only
two answer categories, we count right answers. When the questions offer an
ordered series of answer categories, we count how many categories from
'least' to 'most' ('worst' to "best', 'weakest' to 'strongest') have been

surpassed.

1f there has been any progress in quantitative psychology, this kind of
counting must have been useful. This has implications. Counting this way
implies a particular measurement process. Counting implies a process which

derives counting as the necessary and sufficient scoring procedure.

Whether particular data can be organized to follow the Rasch process can
only be discovered by applying the process and examining the consequences.
It is worth noticing, however, that whenever we have deemed it useful to

count right answers (as in educational testing) or to add scale ratings (as
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in Likert scaling), we have taken it for granted that the data concerned
did, in fact, follow a process identical to the Rasch process well enough
to suit our purposes. This is because the Rasch process is the only
response process for which counts and additions are the sufficient

statistics.

Since the Rasch process constructs conjoint additivity whenever data are
valid for such a construction, we have, in our counting, been taking the
first steps toward additivity all along. All we need do now is to take
this implication of our actions seriously and to complete our data analyses

by verifying the extent to which our data fit the Rasch process.

If we subscribe to Thurstone's and Campbell's requirements for measurement,
then fitting the Rasch process becomes more than a convenience, it becomes
the essential criterion for data good enough to support the construction of
additivity. When data can be organized to fit well enough to be useful,
then we can use the results to define Thurstone linear scales and to make

Luce and Tukey fundamental measures oOn them.

Note concerning the failure of binomial response processes with two and

three item parameters to maintain units or enable the construction of

additivity.

Consider the three item parameter binomial process
Q=c+ (1 -0c)P P exp(a(b - d))/G
1-Q=( -1 - P) G 1 + exp(a(d - d))
and form the odds for Event AB over Event BA as before,

Qu5/Q, = Q{1 - Q) /Q(1 - Q)

1]

c(l - PB) + (1 - c)PA(l - PB)

c(l - PA) + (1 - c)PB(l - PA)

If all three item parameters remain variable, there is no way to cancel any
of them out of this expression in order to maintain a unit among b's over
the ranges of the item parameters. There is also no way to cancel b out
of this expression in order to enable a sample-free estimation of any of

the item parameters.
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If we make ¢ a known constant, always the same for all items and persons

no matter how much persons differ in their guessing behavior, we could use
————— = -———-= = exp(a( - d))

to eliminate the influence of this one common ¢ and concentrate on the
problems caused by the interaction of b with a . But when c¢ varies
from item to item, then, even when its values are known, the differential
consaquences of b wvariation on

(c/(1 - )Y - PB) versus (c¢/( 1 -2¢)(1 - PA)
prevent the Q process from maintaining a fixed distance between persons

A and B over the range of d and c¢ .

Nor can we construct an addition for the Q process. There is no fixed

amount which, when 'added' to bB’ will make so that the

Qg5 = Qi
performance of person B can become stochastically equivalent to the
performance of person A . The amount to add necessarily varies with the

varying values of ¢ and a .

If we abandon ¢ as a variable, and focus on a response model with two

item parameters, then
PAB/PBA = exp(a(bA - d))/exp(a(bB - d))

and 1og(PAB/PBA) = a(bA - bB) .

The item parameter d is gone, so that a(bA - bB) is

maintained over the range of d . But what shall we do if parameter a

is allowed to vary?

If we advance a as a second item parameter, we have to estimate a
different unit for every item. The distance between A and B can only
be maintained if every a for every item can be known independently of
every b to be compared. That prevents us from using the behavior of
persons to estimate the values of a . This happens because when we try
to estimate a we find that we cannot separate it from its interactions
with the estimation of the b's used for its estimation. When we try to
estimate these b's we find that we cannot separate them from thelr
interactions with a , (Advancing a as a second person parameter runs

{nto the same kind of trouble but with d {nstead of b )
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We can maintain the distance between A and B only when a 1is a
constant over persons and items, that is, when we are back to the Rasch

process,

Nor can the process which includes a as a variable support additivity.

When P = exp(a(b - d))/(1 + exp(a(b - 4)))
then PBj = PAi

implies that aj(bB - dj) = ai(bA - di)

so that b, =d; + (aj/ai)(bB - dj)

An 'addition' which will equate the performances of persons A and B 1is
uniquely defined only over persons and items for which a is a constant so

that (aj/ai) =1

and bA - bB = (di - dj)

as in the Rasch process.

If measurement is our aim, nothing can be gained by chasing after extra
item (or person) parameters like ¢ and a . We must seek, instead, for
items which can be managed by an observation process in which any
potentially misleading disturbances are kept slight enough to preserve the

necessary scale stability.
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