SlideShare a Scribd company logo
Professor	
  Glenda	
  Anthony	
  
Massey	
  University	
  
	
  
Feb	
  2013	
  
1	
  
Why	
  differen+ate	
  instruc+on?	
  	
  
— Engage	
  all	
  students	
  in	
  instruction	
  and	
  
learning	
  	
  
— Enables	
  teachers	
  to	
  consider	
  the	
  different	
  
ways	
  that	
  students	
  learn	
  without	
  pre-­‐
defining	
  their	
  capacity	
  for	
  learning	
  	
  
— Values	
  to	
  diversity	
  of	
  students’	
  thinking	
  	
  
2	
  
Differen+a+on	
  is	
  	
  
— “an	
  organized	
  yet	
  flexible	
  way	
  of	
  proactively	
  
adjusting	
  teaching	
  and	
  learning	
  to	
  met	
  kids	
  
where	
  they	
  are	
  and	
  help	
  to	
  achieve	
  
maximum	
  growth	
  as	
  learners”	
  	
  
(Tomlinson,	
  1999)	
  	
  
3	
  
Valuing	
  the	
  diversity	
  of	
  students’	
  
thinking	
  	
  
— In	
  one	
  cupboard	
  you	
  have	
  3	
  
shelves	
  with	
  4	
  boxes	
  on	
  each	
  
shelf.	
  	
  
— There	
  are	
  3	
  cupboards	
  in	
  the	
  
room.	
  
— How	
  many	
  boxes	
  are	
  stored	
  in	
  
the	
  room?	
  
4	
  
— What	
  different	
  ways	
  could	
  
students	
  respond	
  to	
  the	
  
problem?	
  
5	
  
How	
  can	
  you	
  make	
  use	
  of	
  the	
  
differen+ated	
  responses?	
  
— Anticipate	
  as	
  many	
  responses	
  as	
  possible	
  –	
  
knowing	
  your	
  students.	
  
— Understand	
  the	
  mathematics	
  represented	
  
in	
  the	
  different	
  student	
  responses.	
  
— The	
  instructional	
  decision	
  and	
  interaction	
  
with	
  students	
  must	
  be	
  responsive	
  to	
  their	
  
mathematical	
  ideas,	
  strategies,	
  and	
  
communication.	
  	
  
	
  
6	
  
What	
  instruc+onal	
  response	
  is	
  
appropriate	
  for	
  these	
  scenarios	
  
—  Liam	
  raises	
  his	
  hand	
  and	
  waits	
  for	
  the	
  teacher	
  to	
  help	
  him.	
  
—  Angela	
  draws	
  a	
  picture	
  of	
  one	
  of	
  the	
  cupboards	
  and	
  counts	
  
the	
  boxes.	
  
—  Dan	
  draws	
  a	
  picture	
  of	
  3	
  cupboards	
  and	
  counts	
  the	
  3	
  
shelves	
  in	
  each	
  but	
  not	
  the	
  boxes.	
  
—  Tara	
  uses	
  addition	
  and	
  writes	
  4+4	
  +4	
  +4	
  +4	
  +4	
  +4	
  +4+4.	
  
—  John	
  uses	
  addition	
  and	
  writes	
  4	
  +4+4	
  =12;	
  12+12+12	
  =	
  36	
  
—  Rebecca	
  uses	
  multiplication	
  and	
  addition	
  writing	
  	
  
	
  	
  	
  	
  3	
  x	
  4	
  =	
  12	
  and	
  12+	
  12+	
  12	
  =	
  36.	
  	
  
7	
  
Principles	
  to	
  differen+a+ng	
  tasks	
  
1.  The	
  focus	
  on	
  instruction	
  must	
  be	
  on	
  
the	
  big	
  ideas	
  being	
  taught.	
  
2.  There	
  must	
  be	
  some	
  aspect	
  of	
  choice	
  
for	
  the	
  student:	
  in	
  content,	
  in	
  
process,	
  or	
  product.	
  
3.  Prior/formative	
  assessment	
  to	
  
determine	
  the	
  need.	
  
8	
  
Two	
  core	
  strategies:	
  	
  
Open	
  ques+ons	
  and	
  parallel	
  tasks	
  
— An	
  open	
  task/question	
  	
  involves	
  a	
  
variety	
  of	
  possible	
  responses	
  or	
  
approaches.	
  	
  
9	
  
Comparing	
  open	
  and	
  closed	
  task	
  
Question	
  1:	
  	
  
—  To	
  which	
  fact	
  family	
  does	
  the	
  fact	
  3	
  x	
  4	
  =	
  12	
  belong?	
  	
  
Question	
  2:	
  	
  
—  Describe	
  the	
  picture	
  below	
  by	
  using	
  a	
  mathematical	
  
equation	
  /	
  sentence?	
  	
  
	
   	
   	
   	
  X	
  	
  X	
  	
  X	
  	
  X	
  
	
   	
   	
   	
  X	
  	
  X	
  	
  X	
  	
  X	
  
	
   	
   	
   	
  X	
  	
  X	
  	
  X	
  	
  X	
  
10	
  
How	
  can	
  we	
  create	
  open	
  
ques+ons?	
  
— Turning	
  around	
  the	
  question	
  
— Asking	
  for	
  similarities	
  and	
  difference	
  
— Replacing	
  a	
  number	
  with	
  a	
  blank	
  
— Asking	
  for	
  a	
  number	
  sentence	
  
— Changing	
  the	
  question	
  
11	
  
 
Turning	
  around	
  a	
  ques+on	
  
— Give	
  the	
  answer	
  and	
  ask	
  for	
  the	
  question.	
  
— How	
  could	
  you	
  turn	
  around	
  :	
  	
  
(i)	
   	
  3	
  +	
  4	
  	
  =	
  ?	
  
	
  
(ii)	
   	
  What	
  is	
  half	
  of	
  20?	
  
	
   12	
  
Asking	
  for	
  similari+es	
  and	
  
differences	
  
— How	
  is	
  the	
  number	
  85	
  and	
  100	
  alike/
different?	
  
— How	
  are	
  10	
  and	
  12	
  alike?	
  	
  
— How	
  is	
  the	
  number	
  √2	
  and	
  √5	
  alike	
  ?	
  
13	
  
Asking	
  for	
  a	
  number	
  sentence	
  
— Create	
  a	
  sentence	
  that	
  includes	
  the	
  
numbers	
  3	
  and	
  4	
  along	
  with	
  the	
  words	
  ‘and’	
  
and	
  ‘more.’	
  
— Create	
  a	
  sentence	
  that	
  includes	
  the	
  words	
  
“linear’	
  and	
  “increasing’	
  as	
  well	
  as	
  the	
  
numbers	
  4	
  and	
  9.	
  
14	
  
Changing	
  the	
  ques+on	
  in	
  the	
  text	
  
— Rae	
  has	
  4	
  boxes	
  of	
  pencils.	
  There	
  are	
  6	
  
pencils	
  in	
  each	
  box.	
  How	
  many	
  pencils	
  
does	
  Rae	
  have?	
  	
  
	
  	
  
15	
  
Rae	
  has	
  4	
  boxes	
  
of	
  pencils.	
  There	
  
are	
  6	
  pencils	
  in	
  
each	
  box.	
  	
  
How	
  many	
  
pencils	
  does	
  Rae	
  
have?	
  	
  
Rae	
  has	
  some	
  
boxes	
  of	
  
pencils.	
  There	
  
are	
  2	
  more	
  
pencils	
  in	
  each	
  
box	
  than	
  the	
  
number	
  boxes.	
  
How	
  many	
  
pencils	
  does	
  
Rae	
  have	
  in	
  all?	
  
16	
  
Try	
  changing	
  
— A	
  biscuit	
  has	
  a	
  diameter	
  of	
  5.75	
  cm	
  .	
  Express	
  
the	
  diameter	
  as	
  a	
  fraction	
  in	
  simplest	
  form.	
  
17	
  
What	
  about	
  other	
  areas	
  other	
  than	
  
number?	
  	
  
— Big	
  idea	
  in	
  Measurement:	
  The	
  same	
  object	
  can	
  be	
  
described	
  by	
  using	
  different	
  measurements.	
  
— Open	
  question:	
  Which	
  shape	
  is	
  bigger	
  how	
  do	
  
you	
  know?	
  
18	
  
Early	
  algebra	
  
— A	
  pattern	
  begins	
  like	
  this:	
  	
  2,	
  6,	
  ...	
  	
  How	
  
might	
  it	
  continue?	
  	
  
— How	
  could	
  you	
  adapt	
  this	
  problem?	
  
19	
  
Recap	
  	
  
— What	
  defines	
  an	
  open	
  question?	
  
— What	
  is	
  important	
  for	
  the	
  teacher	
  to	
  
consider?	
  
— What	
  is	
  important	
  in	
  receiving	
  the	
  answers	
  
to	
  open	
  questions?	
  	
  
— What	
  to	
  avoid	
  in	
  an	
  open	
  question	
  
20	
  
Parallel	
  tasks	
  
— Sets	
  of	
  tasks,	
  usually	
  two	
  or	
  three,	
  that	
  are	
  
designed	
  to	
  meet	
  the	
  needs	
  of	
  students	
  at	
  
different	
  developmental	
  levels	
  BUT	
  get	
  at	
  
the	
  same	
  big	
  idea	
  and	
  are	
  close	
  enough	
  in	
  
context	
  that	
  they	
  can	
  be	
  discussed	
  
simultaneously.	
  	
  
— What	
  are	
  the	
  benefits?	
  
21	
  
Big	
  idea:	
  recognising	
  when	
  
mul+plica+on	
  is	
  appropriate	
  
Option	
  1:	
  
Create	
  a	
  word	
  problem	
  
that	
  could	
  be	
  solved	
  by	
  
multiplying	
  two	
  one-­‐
digit	
  numbers.	
  
Option	
  2:	
  	
  
Create	
  a	
  word	
  problems	
  
that	
  could	
  be	
  solved	
  by	
  
multiplying	
  two	
  
numbers	
  between	
  10	
  
and	
  100.	
  	
  	
  
What	
  discussion	
  questions	
  might	
  follow?	
  	
  
22	
  
Crea+ng	
  a	
  parallel	
  task	
  	
  
— Variations	
  that	
  allow	
  struggling	
  students	
  to	
  be	
  
successful	
  and	
  proficient	
  students	
  to	
  be	
  
challenged.	
  	
  
— Important	
  to	
  think	
  about	
  how	
  students	
  might	
  
differ	
  developmentally	
  in	
  approaching	
  the	
  idea.	
  	
  
— Differences	
  	
  in	
  task:	
  	
  
— what	
  operations	
  the	
  students	
  might	
  use	
  ?	
  
— size	
  of	
  numbers	
  they	
  can	
  handle?	
  
— What	
  meanings	
  of	
  an	
  operation	
  make	
  sense	
  to	
  
students?	
  
23	
  
A	
  parallel	
  task	
  
Option	
  1:	
  
There	
  were	
  583	
  
students	
  in	
  Ira’s	
  
school	
  in	
  the	
  
morning.	
  199	
  of	
  the	
  
Year	
  3	
  students	
  
went	
  on	
  a	
  trip.	
  
How	
  many	
  
students	
  are	
  left	
  in	
  
the	
  school?	
  
Option	
  2:	
  	
  
There	
  are	
  61	
  Year	
  
2	
  students	
  in	
  Ira’s	
  
school.	
  19	
  of	
  them	
  
are	
  in	
  the	
  library.	
  
How	
  many	
  Year	
  2	
  
students	
  	
  are	
  left	
  
in	
  their	
  
classrooms?	
  
24	
  
Parallel	
  tasks:	
  
583-­‐199	
  	
  and	
  61-­‐	
  19	
  
—  Attend	
  to	
  the	
  ‘what	
  is	
  the	
  same	
  and	
  what	
  is	
  different’	
  
—  How	
  did	
  you	
  know	
  that	
  most	
  of	
  the	
  students	
  were	
  left?	
  
—  How	
  did	
  you	
  decide	
  how	
  many	
  were	
  left?	
  
—  I	
  notice	
  that	
  Tui	
  solved	
  it	
  by	
  subtracting.	
  Why	
  does	
  
subtraction	
  make	
  sense?	
  
—  I	
  notice	
  that	
  Lisa	
  solved	
  it	
  by	
  adding.	
  Why	
  might	
  adding	
  
make	
  sense?	
  
—  How	
  would	
  your	
  answer	
  have	
  changed	
  if	
  one	
  more	
  student	
  
had	
  left?	
  
—  How	
  would	
  your	
  answer	
  have	
  changed	
  if	
  there	
  had	
  been	
  
one	
  extra	
  student	
  to	
  start	
  with?	
  
—  How	
  would	
  your	
  answer	
  have	
  changed	
  if	
  there	
  was	
  an	
  extra	
  
student	
  to	
  start	
  with,	
  but	
  one	
  extra	
  student	
  left?	
  
—  Which	
  problem	
  is	
  easier	
  for	
  you	
  to	
  solve?	
  
25	
  
 
	
  
Measurement:	
  Knowledge	
  of	
  the	
  size	
  of	
  
benchmarks	
  assists	
  in	
  measuring	
  	
  
A	
  table	
  is	
  5	
  pencils	
  long.	
  
—  How	
  many	
  paper	
  clips	
  long	
  would	
  it	
  be?	
  
—  How	
  many	
  centimetres	
  long	
  would	
  it	
  be?	
  	
  
—  Questions?	
  	
  
26	
  
Big	
  idea	
  in	
  Number:	
  
There	
  are	
  many	
  ways	
  to	
  represent	
  numbers	
  	
  
—  Draw	
  a	
  picture	
  to	
  show	
  two	
  equivalent	
  fractions	
  for	
  
2/8.	
  	
  
—  Two	
  fractions	
  are	
  equivalent.	
  If	
  you	
  add	
  the	
  
numerators,	
  the	
  result	
  is	
  22	
  less	
  than	
  if	
  you	
  add	
  the	
  
denominators.	
  What	
  could	
  the	
  fractions	
  be?	
  
27	
  
Linear	
  versus	
  area	
  measurement	
  
—  Someone	
  suggests	
  that	
  the	
  school	
  driveway	
  is	
  
4,ooo,ooo	
  mm	
  long.	
  Is	
  it	
  a	
  long	
  driveway?	
  
—  Someone	
  suggest	
  that	
  a	
  shopping	
  mall	
  might	
  be	
  
4,000,000	
  cm2	
  in	
  area.	
  Do	
  you	
  think	
  that	
  is	
  
reasonable?	
  
28	
  
 
	
  Newspapers	
  :	
  Adap+ng	
  text	
  ques+ons	
  
—  Suppose	
  4	
  students	
  were	
  delivering	
  176	
  newspapers	
  
and	
  decided	
  to	
  share	
  the	
  task	
  evenly.	
  How	
  many	
  
papers	
  would	
  each	
  deliver?	
  
—  PARALLEL:	
  
—  Suppose	
  2	
  students	
  were	
  delivering	
  24	
  newspapers	
  
and	
  decided	
  to	
  share	
  the	
  task	
  evenly.	
  How	
  many	
  
papers	
  would	
  each	
  deliver?	
  
29	
  
What	
  are	
  some	
  cri+cal	
  discussion	
  ques+ons?	
  
—  What	
  operation	
  did	
  you	
  use	
  to	
  decide	
  how	
  many	
  
papers	
  each	
  person	
  would	
  deliver?	
  
—  Why	
  would	
  you	
  use	
  that	
  operation?	
  
—  Is	
  there	
  another	
  way	
  you	
  could	
  have	
  worked	
  out	
  the	
  
answer?	
  
—  How	
  did	
  you	
  know	
  that	
  each	
  person	
  had	
  to	
  deliver	
  
more	
  than	
  10	
  papers?	
  
—  How	
  did	
  you	
  know	
  that	
  each	
  person	
  had	
  to	
  deliver	
  
fewer	
  than	
  100	
  papers?	
  
—  How	
  did	
  you	
  figure	
  out	
  how	
  many	
  papers	
  each	
  
student	
  had	
  to	
  deliver?	
  
30	
  
What	
  about	
  choice?	
  
—  Sometimes	
  the	
  teacher	
  should	
  decide	
  who	
  does	
  what	
  
but	
  most	
  of	
  the	
  time	
  allow	
  the	
  students	
  to	
  choice.	
  
—  Choice	
  is	
  very	
  empowering.	
  
31	
  
Summing	
  up	
  parallel	
  tasks	
  
— Generated	
  from	
  a	
  single	
  original	
  task	
  by	
  changing	
  
the	
  complexity	
  of	
  the	
  numbers,	
  shapers,	
  graphs,	
  
patterns,	
  equations,	
  or	
  measurements	
  being	
  
employed	
  or	
  the	
  complexity	
  of	
  the	
  situations	
  
being	
  addressed.	
  	
  
— The	
  context	
  being	
  the	
  same	
  allows	
  common	
  
discussion.	
  
— It	
  is	
  important	
  to	
  set	
  up	
  the	
  situation	
  so	
  that	
  there	
  
are	
  common	
  questions	
  beyond	
  simple	
  What	
  did	
  
you	
  do?	
  
32	
  
1.  Moves	
  that	
  a	
  teacher	
  uses	
  before	
  a	
  
students	
  arrives	
  at	
  a	
  correct	
  answer	
  .	
  
2.  Extending	
  moves	
  that	
  a	
  teacher	
  uses	
  
after	
  a	
  correct	
  answer.	
  
—  Adapted	
  from	
  Jacobs,	
  V.,	
  &	
  Ambrose,	
  R.	
  (2008).	
  Making	
  the	
  most	
  of	
  story	
  problems.	
  Teaching	
  Children	
  Mathematics,	
  15,	
  260-­‐266.	
  
	
  
	
  
Teacher	
  ac+ons	
  	
  to	
  support	
  and	
  
extend	
  students’	
  thinking	
  	
  
— Ask	
  her	
  to	
  explain	
  what	
  she	
  knows	
  about	
  
the	
  problem	
  –	
  possibly	
  with	
  the	
  use	
  of	
  
manipulatives	
  	
  -­‐	
  “model	
  of”	
  	
  
— Rephrase	
  the	
  problem	
  
— Use	
  a	
  more	
  familiar	
  or	
  personalized	
  context	
  
(put	
  yourself	
  or	
  her	
  in	
  the	
  story)	
  	
  
— Suggest	
  a	
  different	
  representation	
  -­‐	
  acting	
  
out	
  etc.	
  	
  
	
  
Ensure	
  that	
  the	
  child	
  understands	
  
the	
  problem	
  
— Easier	
  numbers	
  	
  -­‐	
  then	
  back	
  to	
  harder	
  
numbers,	
  looking	
  for	
  generalisation	
  of	
  
structure,	
  strategy.	
  	
  
— Fold	
  back	
  to	
  easier	
  mathematical	
  structure:	
  	
  
	
  	
  	
  	
  Jan	
  had	
  12	
  cookies.	
  Sue	
  had	
  3	
  cookies.	
  How	
  
many	
  more	
  cookies	
  than	
  Sue	
  did	
  Jan	
  have?	
  
— What	
  would	
  be	
  an	
  easier	
  problem	
  that	
  still	
  
involves	
  12-­‐3?	
  	
  
Change	
  the	
  mathema+cs	
  to	
  match	
  
the	
  child’s	
  level	
  of	
  understanding	
  	
  
— What	
  sort	
  of	
  questions	
  can	
  you	
  use?	
  
— Are	
  these	
  the	
  same	
  sorts	
  of	
  questions	
  
that	
  children	
  can	
  use	
  in	
  their	
  groups?	
  
Explore	
  what	
  the	
  child	
  has	
  already	
  
done	
  
Sometimes	
  need	
  to	
  give	
  permission	
  to	
  
move	
  on	
  and	
  try	
  an	
  alternative	
  way	
  
— changing	
  a	
  representation,	
  	
  
— trying	
  a	
  new	
  tool,	
  	
  
— reminding	
  of	
  a	
  strategy	
  used	
  in	
  the	
  
past.	
  	
  
Remind	
  the	
  child	
  to	
  use	
  other	
  
strategies	
  
 
	
  
Promoting	
  reflection	
  on	
  the	
  strategy	
  just	
  
completed	
  (i.e.,	
  view	
  the	
  problem	
  solving	
  as	
  
a	
  context	
  for	
  having	
  a	
  mathematical	
  
conversation)	
  
— Asking	
  for	
  a	
  strategy	
  explanation	
  or	
  
clarification.	
  	
  
Ways	
  to	
  respond	
  aer	
  a	
  correct	
  
answer	
  
—  This	
  morning	
  I	
  had	
  some	
  muesli	
  bars.	
  Then	
  I	
  gave	
  you	
  
five	
  muesli	
  bars.	
  Now	
  I	
  have	
  six	
  muesli	
  bars	
  left.	
  How	
  
many	
  bars	
  did	
  I	
  have	
  this	
  morning	
  before	
  I	
  gave	
  some	
  
to	
  you?	
  	
  
“Five	
  pus	
  five,	
  if	
  you	
  took	
  one	
  
	
  away	
  ,	
  is	
  ten	
  and	
  then	
  one	
  more	
  
	
  is	
  eleven,	
  so	
  you	
  had	
  eleven.”	
  
Be	
  specific	
  to	
  the	
  details	
  	
  
	
  
What	
  would	
  you	
  ask	
  to	
  probe	
  the	
  child’s	
  
thinking	
  ?	
  	
  
— “I	
  don’t	
  know.	
  I	
  just	
  added	
  them	
  
together.”	
  	
  
Promo+ng	
  reflec+on	
  	
  
—  Generate	
  another	
  way	
  
—  Think	
  of	
  another	
  way	
  that	
  is	
  connected	
  to	
  the	
  first	
  
strategy.	
  	
  	
  
—  Asking	
  for	
  a	
  mental	
  strategy	
  that	
  is	
  an	
  abstraction	
  of	
  
work	
  with	
  manipulative	
  –	
  could	
  you	
  solve	
  it	
  in	
  your	
  
head?	
  	
  
—  Explicitly	
  compare	
  and	
  contrast	
  strategies.	
  
—  Comparing	
  a	
  successful	
  strategies	
  to	
  an	
  earlier	
  
unsuccessful	
  strategy.	
  	
  
Explora+on	
  of	
  mul+ple	
  strategies	
  
and	
  the	
  mathema+cal	
  connec+ons	
  	
  
— Record	
  the	
  strategy	
  that	
  you	
  used	
  
to	
  solve	
  the	
  problem.	
  
— Generate	
  a	
  number	
  sentence	
  that	
  
goes	
  with	
  the	
  problem.	
  
Connect	
  the	
  children’s	
  thinking	
  to	
  
symbolic	
  nota+on	
  
— Build	
  on	
  the	
  children’s	
  thinking.	
  
	
  	
  	
  	
  
	
  Rene	
  was	
  collecting	
  tomatoes.	
  She	
  has	
  nine	
  
baskets,	
  and	
  she	
  put	
  ten	
  tomatoes	
  in	
  each	
  
basket.	
  So	
  how	
  many	
  tomatoes	
  did	
  she	
  have	
  
altogether?	
  	
  
	
  
— How	
  could	
  you	
  extend/build	
  on	
  this	
  thinking?	
  
Generate	
  follow	
  up	
  	
  
problems	
  	
  
—  Oh,	
  I	
  get	
  it,	
  Well	
  there’s	
  already	
  ten	
  in	
  each	
  basket	
  so	
  
that’s	
  90.	
  
—  So	
  I	
  count	
  up	
  nine,	
  one	
  more	
  nine.	
  
—  I	
  mean	
  nine	
  ones.	
  	
  
—  I	
  ‘m	
  going	
  to	
  add	
  nine	
  ones.	
  	
  
—  So	
  there’s	
  already	
  ninety,	
  so	
  ninety-­‐one,	
  ninety-­‐
two....ninety-­‐nine.	
  	
  
—  What	
  big	
  idea	
  has	
  been	
  advanced	
  
— 9	
  x	
  11	
  =	
  9	
  x	
  (10	
  +	
  1)	
  =	
  9	
  x	
  10	
  +	
  9	
  
Response	
  
—  Ensure	
  child	
  understands	
  the	
  problem	
  
—  Change	
  the	
  maths	
  to	
  match	
  understanding	
  
—  Explore	
  what	
  they	
  have	
  already	
  done	
  
—  Remind	
  child	
  to	
  use	
  other	
  strategies	
  
—  Promote	
  reflection	
  on	
  strategy	
  just	
  completed	
  
—  Explore	
  multiple	
  strategies	
  and	
  connections	
  
—  Connect	
  child’s	
  thinking	
  to	
  symbolic	
  notation	
  
—  Generate	
  linked	
  follow-­‐up	
  problems.	
  
Teacher	
  moves	
  	
  (Summary)	
  
Ad

More Related Content

What's hot (20)

Math Lesson Plan Oct 7
Math Lesson Plan Oct 7Math Lesson Plan Oct 7
Math Lesson Plan Oct 7
daohoanu
 
Sustained & active_engagement_with_every_child - Pratima Nayak
Sustained &  active_engagement_with_every_child - Pratima NayakSustained &  active_engagement_with_every_child - Pratima Nayak
Sustained & active_engagement_with_every_child - Pratima Nayak
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Minilessons for math_practice_g3-5
Minilessons for math_practice_g3-5Minilessons for math_practice_g3-5
Minilessons for math_practice_g3-5
Dania493634
 
Tips to solve math phobia
Tips to solve math phobiaTips to solve math phobia
Tips to solve math phobia
Vaishu Raji
 
Math teaching approaches that work
Math teaching approaches that workMath teaching approaches that work
Math teaching approaches that work
Sargodhains' Institute for Professional Development
 
Problem solving in mathematics
Problem solving in mathematicsProblem solving in mathematics
Problem solving in mathematics
Colleen Young
 
Blake School Presentation Grade 1
Blake School Presentation Grade 1Blake School Presentation Grade 1
Blake School Presentation Grade 1
Jimmy Keng
 
problem solving of mathematics
problem solving of mathematicsproblem solving of mathematics
problem solving of mathematics
guest74d3e9
 
Fractions Resources
Fractions ResourcesFractions Resources
Fractions Resources
Colleen Young
 
Urban Conference Walsh Presentation
Urban Conference Walsh PresentationUrban Conference Walsh Presentation
Urban Conference Walsh Presentation
jstutzman
 
Spots for M.A.T.H. Profession​al Development​ Events
Spots for M.A.T.H. Profession​al Development​ Events Spots for M.A.T.H. Profession​al Development​ Events
Spots for M.A.T.H. Profession​al Development​ Events
Nechemia Weiss
 
Learning & Teaching GCSE Mathematics
Learning & Teaching GCSE MathematicsLearning & Teaching GCSE Mathematics
Learning & Teaching GCSE Mathematics
Colleen Young
 
Lesson plan about statistics math 7
Lesson plan about statistics math 7Lesson plan about statistics math 7
Lesson plan about statistics math 7
Jaybie09
 
Differentiates expression from equation, Translate word phrase to numerical e...
Differentiates expression from equation, Translate word phrase to numerical e...Differentiates expression from equation, Translate word phrase to numerical e...
Differentiates expression from equation, Translate word phrase to numerical e...
April Rose Anin
 
Mathematical thinking ~ Kinder network
Mathematical thinking ~ Kinder networkMathematical thinking ~ Kinder network
Mathematical thinking ~ Kinder network
The Australian Association of Mathematics Teachers (AAMT) Inc.
 
Innovative math
Innovative mathInnovative math
Innovative math
MAYLONMANALOTO
 
Math Plus Kansas City
Math Plus Kansas CityMath Plus Kansas City
Math Plus Kansas City
Jimmy Keng
 
8 step model drawing
8 step model drawing8 step model drawing
8 step model drawing
SitiIshak7
 
Limacon2012
Limacon2012Limacon2012
Limacon2012
A Jorge Garcia
 
Ece141day8class
Ece141day8classEce141day8class
Ece141day8class
Emily McMason
 
Math Lesson Plan Oct 7
Math Lesson Plan Oct 7Math Lesson Plan Oct 7
Math Lesson Plan Oct 7
daohoanu
 
Minilessons for math_practice_g3-5
Minilessons for math_practice_g3-5Minilessons for math_practice_g3-5
Minilessons for math_practice_g3-5
Dania493634
 
Tips to solve math phobia
Tips to solve math phobiaTips to solve math phobia
Tips to solve math phobia
Vaishu Raji
 
Problem solving in mathematics
Problem solving in mathematicsProblem solving in mathematics
Problem solving in mathematics
Colleen Young
 
Blake School Presentation Grade 1
Blake School Presentation Grade 1Blake School Presentation Grade 1
Blake School Presentation Grade 1
Jimmy Keng
 
problem solving of mathematics
problem solving of mathematicsproblem solving of mathematics
problem solving of mathematics
guest74d3e9
 
Urban Conference Walsh Presentation
Urban Conference Walsh PresentationUrban Conference Walsh Presentation
Urban Conference Walsh Presentation
jstutzman
 
Spots for M.A.T.H. Profession​al Development​ Events
Spots for M.A.T.H. Profession​al Development​ Events Spots for M.A.T.H. Profession​al Development​ Events
Spots for M.A.T.H. Profession​al Development​ Events
Nechemia Weiss
 
Learning & Teaching GCSE Mathematics
Learning & Teaching GCSE MathematicsLearning & Teaching GCSE Mathematics
Learning & Teaching GCSE Mathematics
Colleen Young
 
Lesson plan about statistics math 7
Lesson plan about statistics math 7Lesson plan about statistics math 7
Lesson plan about statistics math 7
Jaybie09
 
Differentiates expression from equation, Translate word phrase to numerical e...
Differentiates expression from equation, Translate word phrase to numerical e...Differentiates expression from equation, Translate word phrase to numerical e...
Differentiates expression from equation, Translate word phrase to numerical e...
April Rose Anin
 
Math Plus Kansas City
Math Plus Kansas CityMath Plus Kansas City
Math Plus Kansas City
Jimmy Keng
 
8 step model drawing
8 step model drawing8 step model drawing
8 step model drawing
SitiIshak7
 

Viewers also liked (7)

ياري لافنيون المعلمون عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...
ياري لافنيون المعلمون  عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...ياري لافنيون المعلمون  عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...
ياري لافنيون المعلمون عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...
IEFE
 
Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...
Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...
Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...
IEFE
 
التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...
التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...
التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...
IEFE
 
المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...
المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...
المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...
IEFE
 
الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...
الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...
الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...
IEFE
 
تصميم عمليات تقويم المناهج
تصميم عمليات تقويم المناهجتصميم عمليات تقويم المناهج
تصميم عمليات تقويم المناهج
IEFE
 
تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...
تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...
تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...
IEFE
 
ياري لافنيون المعلمون عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...
ياري لافنيون المعلمون  عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...ياري لافنيون المعلمون  عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...
ياري لافنيون المعلمون عامل أساسي لنظم التعليم الناجحةالانعكاسات القائمة على ...
IEFE
 
Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...
Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...
Dr. Harvey Rude - Supporting Strong Leadership for Special Education - IEFE F...
IEFE
 
التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...
التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...
التعليم الدولي في مرحلة انتقاليةإعداد متعلمي القرن الحادي والعشرين منظور من س...
IEFE
 
المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...
المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...
المعلمون عامل أساسي لنظم التعليم الناجحة الانعكاسات القائمة على تعليم المدرسي...
IEFE
 
الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...
الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...
الاستراتيجيات الرئيسية لتنفيذ أنظمة شاملة لضمان الجودة وتطبيق التقويم الذاتي ...
IEFE
 
تصميم عمليات تقويم المناهج
تصميم عمليات تقويم المناهجتصميم عمليات تقويم المناهج
تصميم عمليات تقويم المناهج
IEFE
 
تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...
تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...
تقويم البرامج التعليمية متطلبات تكوينية وإجمالية ومتطلبات المساءلة للتقويم بغ...
IEFE
 
Ad

Similar to اختلاف التعليم في مهام الرياضيات (20)

Dll math 5 q1_w3 (june19-23, 2017) -
Dll math 5 q1_w3 (june19-23, 2017) -Dll math 5 q1_w3 (june19-23, 2017) -
Dll math 5 q1_w3 (june19-23, 2017) -
Rigino Macunay Jr.
 
Kazemi pm talk_powerpoint
Kazemi pm talk_powerpointKazemi pm talk_powerpoint
Kazemi pm talk_powerpoint
kdtanker
 
DLL_MATHEMATICS 5_Q1_W2.pdf
DLL_MATHEMATICS 5_Q1_W2.pdfDLL_MATHEMATICS 5_Q1_W2.pdf
DLL_MATHEMATICS 5_Q1_W2.pdf
RoyCEstenzo
 
Numeracy Oct 23 -Denise Flick
Numeracy Oct 23 -Denise FlickNumeracy Oct 23 -Denise Flick
Numeracy Oct 23 -Denise Flick
School District #20
 
Better mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondaryBetter mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondary
Ofsted
 
Better mathematics workshop pack spring 2015: primary
Better mathematics workshop pack spring 2015: primaryBetter mathematics workshop pack spring 2015: primary
Better mathematics workshop pack spring 2015: primary
Ofsted
 
Inspire and Cultivate Algebraic Thinking
Inspire and Cultivate Algebraic ThinkingInspire and Cultivate Algebraic Thinking
Inspire and Cultivate Algebraic Thinking
DreamBox Learning
 
Maths Mastery Presentation 2020.ppt
Maths Mastery Presentation 2020.pptMaths Mastery Presentation 2020.ppt
Maths Mastery Presentation 2020.ppt
JerimieDelaCruz1
 
Gr6-Term1- LP-Wk-3-9.09.24-13.09.24.docx
Gr6-Term1- LP-Wk-3-9.09.24-13.09.24.docxGr6-Term1- LP-Wk-3-9.09.24-13.09.24.docx
Gr6-Term1- LP-Wk-3-9.09.24-13.09.24.docx
manila25
 
Blake Grade 1
Blake Grade 1Blake Grade 1
Blake Grade 1
Jimmy Keng
 
Presentation math workshop#may 25th new
Presentation math workshop#may 25th newPresentation math workshop#may 25th new
Presentation math workshop#may 25th new
Umber Tariq
 
Maths inset june 2015 multiplication
Maths inset june 2015 multiplicationMaths inset june 2015 multiplication
Maths inset june 2015 multiplication
markward20
 
Math Common Core Unpacked kindergarten
Math Common Core Unpacked kindergartenMath Common Core Unpacked kindergarten
Math Common Core Unpacked kindergarten
JC Sawyer Dolphins
 
lesson 5 adding 2 digit numbers
lesson 5 adding 2 digit numberslesson 5 adding 2 digit numbers
lesson 5 adding 2 digit numbers
susan70
 
Parent Information Night 2010
Parent Information Night 2010Parent Information Night 2010
Parent Information Night 2010
tpteach
 
blake institute june 2014 complete
blake institute june 2014 completeblake institute june 2014 complete
blake institute june 2014 complete
Jimmy Keng
 
Blake Institute June 2014 complete
Blake Institute June 2014 completeBlake Institute June 2014 complete
Blake Institute June 2014 complete
Jimmy Keng
 
Audio
AudioAudio
Audio
Julianna Flores
 
Connect with Maths~ Teaching maths through problem solving
Connect with Maths~ Teaching maths through problem solvingConnect with Maths~ Teaching maths through problem solving
Connect with Maths~ Teaching maths through problem solving
Renee Hoareau
 
DLL_MATHEMATICS 5_Q2_W8.docx
DLL_MATHEMATICS 5_Q2_W8.docxDLL_MATHEMATICS 5_Q2_W8.docx
DLL_MATHEMATICS 5_Q2_W8.docx
NiwregZoen
 
Dll math 5 q1_w3 (june19-23, 2017) -
Dll math 5 q1_w3 (june19-23, 2017) -Dll math 5 q1_w3 (june19-23, 2017) -
Dll math 5 q1_w3 (june19-23, 2017) -
Rigino Macunay Jr.
 
Kazemi pm talk_powerpoint
Kazemi pm talk_powerpointKazemi pm talk_powerpoint
Kazemi pm talk_powerpoint
kdtanker
 
DLL_MATHEMATICS 5_Q1_W2.pdf
DLL_MATHEMATICS 5_Q1_W2.pdfDLL_MATHEMATICS 5_Q1_W2.pdf
DLL_MATHEMATICS 5_Q1_W2.pdf
RoyCEstenzo
 
Better mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondaryBetter mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondary
Ofsted
 
Better mathematics workshop pack spring 2015: primary
Better mathematics workshop pack spring 2015: primaryBetter mathematics workshop pack spring 2015: primary
Better mathematics workshop pack spring 2015: primary
Ofsted
 
Inspire and Cultivate Algebraic Thinking
Inspire and Cultivate Algebraic ThinkingInspire and Cultivate Algebraic Thinking
Inspire and Cultivate Algebraic Thinking
DreamBox Learning
 
Maths Mastery Presentation 2020.ppt
Maths Mastery Presentation 2020.pptMaths Mastery Presentation 2020.ppt
Maths Mastery Presentation 2020.ppt
JerimieDelaCruz1
 
Gr6-Term1- LP-Wk-3-9.09.24-13.09.24.docx
Gr6-Term1- LP-Wk-3-9.09.24-13.09.24.docxGr6-Term1- LP-Wk-3-9.09.24-13.09.24.docx
Gr6-Term1- LP-Wk-3-9.09.24-13.09.24.docx
manila25
 
Presentation math workshop#may 25th new
Presentation math workshop#may 25th newPresentation math workshop#may 25th new
Presentation math workshop#may 25th new
Umber Tariq
 
Maths inset june 2015 multiplication
Maths inset june 2015 multiplicationMaths inset june 2015 multiplication
Maths inset june 2015 multiplication
markward20
 
Math Common Core Unpacked kindergarten
Math Common Core Unpacked kindergartenMath Common Core Unpacked kindergarten
Math Common Core Unpacked kindergarten
JC Sawyer Dolphins
 
lesson 5 adding 2 digit numbers
lesson 5 adding 2 digit numberslesson 5 adding 2 digit numbers
lesson 5 adding 2 digit numbers
susan70
 
Parent Information Night 2010
Parent Information Night 2010Parent Information Night 2010
Parent Information Night 2010
tpteach
 
blake institute june 2014 complete
blake institute june 2014 completeblake institute june 2014 complete
blake institute june 2014 complete
Jimmy Keng
 
Blake Institute June 2014 complete
Blake Institute June 2014 completeBlake Institute June 2014 complete
Blake Institute June 2014 complete
Jimmy Keng
 
Connect with Maths~ Teaching maths through problem solving
Connect with Maths~ Teaching maths through problem solvingConnect with Maths~ Teaching maths through problem solving
Connect with Maths~ Teaching maths through problem solving
Renee Hoareau
 
DLL_MATHEMATICS 5_Q2_W8.docx
DLL_MATHEMATICS 5_Q2_W8.docxDLL_MATHEMATICS 5_Q2_W8.docx
DLL_MATHEMATICS 5_Q2_W8.docx
NiwregZoen
 
Ad

More from IEFE (20)

Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...
Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...
Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...
IEFE
 
Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...
Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...
Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...
IEFE
 
Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion...
 Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion... Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion...
Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion...
IEFE
 
د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...
د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...
د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...
IEFE
 
ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي...
 ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي... ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي...
ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي...
IEFE
 
د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...
د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...
د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...
IEFE
 
د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...
د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...
د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...
IEFE
 
د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...
د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...
د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...
IEFE
 
Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...
Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...
Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...
IEFE
 
Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...
Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...
Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...
IEFE
 
Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...
Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...
Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...
IEFE
 
Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...
Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...
Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...
IEFE
 
Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...
Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...
Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...
IEFE
 
Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014
Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014
Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014
IEFE
 
Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...
Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...
Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...
IEFE
 
Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...
Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...
Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...
IEFE
 
Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...
Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...
Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...
IEFE
 
Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...
Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...
Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...
IEFE
 
Charlie Henry - The inspection of provision for disabled pupils and those wit...
Charlie Henry - The inspection of provision for disabled pupils and those wit...Charlie Henry - The inspection of provision for disabled pupils and those wit...
Charlie Henry - The inspection of provision for disabled pupils and those wit...
IEFE
 
Dr. Angela kerins - Education, Training and Rehabilitation for People with ...
Dr. Angela kerins  -  Education, Training and Rehabilitation for People with ...Dr. Angela kerins  -  Education, Training and Rehabilitation for People with ...
Dr. Angela kerins - Education, Training and Rehabilitation for People with ...
IEFE
 
Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...
Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...
Daved Evans, PhD - Examination of Teacher Attitudes Towards Education of Stud...
IEFE
 
Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...
Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...
Dr. Michelle P. Kelly - Empowering Parents and Teachers with Effective Eviden...
IEFE
 
Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion...
 Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion... Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion...
Dr. Mona Al Haddad - Preparation of General Education Teachers for Inclusion...
IEFE
 
د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...
د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...
د.هشام بن محمد الحيدري - مركز الأمير سلطان بن عبدالعزيز للخدمات المسانده للتر...
IEFE
 
ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي...
 ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي... ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي...
ناصر الموسى - تجربة المملكة العربية السعودية في مجال دمج التلاميذ ذوي الاحتي...
IEFE
 
د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...
د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...
د. فيصل العامري - مفاهيم وتطبيقات حديثة في التطوير المهني لمعلمي الموهوبين وا...
IEFE
 
د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...
د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...
د. فوزية اخضر - تطبيق تجربة مدرسة المستقبل الشاملة - المعرض والمنتدى الدولي ل...
IEFE
 
د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...
د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...
د. خالد المالكي - أمراض الصوت لدى المعلمين والمعلمات في مدينة الرياض - المعرض...
IEFE
 
Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...
Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...
Wendy Lee - Key Strategies for Meeting the Speech, Language and Communication...
IEFE
 
Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...
Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...
Stephen Shore, Ed.D. - COMPARING DIFFERENT APPROACHES FOR SUPPORTING CHILDREN...
IEFE
 
Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...
Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...
Dr. Deirdre MacIntyre & Dr. Moya O’Brien - Special Education Needs The Irish ...
IEFE
 
Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...
Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...
Dr.Martin o’brien & Carol Allen - Evidence Based Practice methods and ideas i...
IEFE
 
Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...
Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...
Margaret J. Mclaughlin - Improving the Educational Outcomes of Students with ...
IEFE
 
Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014
Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014
Malcolom Reeve - Improving outcomes for SEN Pupils & Students - IEFE Forum 2014
IEFE
 
Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...
Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...
Dr. Irmgarda Kasinskaite Buddeberg - Empowerment of Persons with Disabilities...
IEFE
 
Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...
Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...
Elise Frattura, Ph.D - Leading Beyond Inclusion: An International Perspective...
IEFE
 
Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...
Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...
Dee Ried - Helping Pupils with Special Needs Achieve their Potential - IEFE F...
IEFE
 
Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...
Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...
Christine Ann Raymond - Safeguarding Disabled Children Training Seminar - IEF...
IEFE
 
Charlie Henry - The inspection of provision for disabled pupils and those wit...
Charlie Henry - The inspection of provision for disabled pupils and those wit...Charlie Henry - The inspection of provision for disabled pupils and those wit...
Charlie Henry - The inspection of provision for disabled pupils and those wit...
IEFE
 
Dr. Angela kerins - Education, Training and Rehabilitation for People with ...
Dr. Angela kerins  -  Education, Training and Rehabilitation for People with ...Dr. Angela kerins  -  Education, Training and Rehabilitation for People with ...
Dr. Angela kerins - Education, Training and Rehabilitation for People with ...
IEFE
 

Recently uploaded (20)

CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
Dr. Nasir Mustafa
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)
Mohamed Rizk Khodair
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptxU3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
Mayuri Chavan
 
*"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"**"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"*
Arshad Shaikh
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
Final Evaluation.docx...........................
Final Evaluation.docx...........................Final Evaluation.docx...........................
Final Evaluation.docx...........................
l1bbyburrell
 
Cultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptxCultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptx
UmeshTimilsina1
 
Overview Well-Being and Creative Careers
Overview Well-Being and Creative CareersOverview Well-Being and Creative Careers
Overview Well-Being and Creative Careers
University of Amsterdam
 
Cultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptxCultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptx
UmeshTimilsina1
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx
*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx
*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx
Arshad Shaikh
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast BrooklynBridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
i4jd41bk
 
Myopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduateMyopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduate
Mohamed Rizk Khodair
 
CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
Dr. Nasir Mustafa
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)
Mohamed Rizk Khodair
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptxU3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
Mayuri Chavan
 
*"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"**"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"*
Arshad Shaikh
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
Final Evaluation.docx...........................
Final Evaluation.docx...........................Final Evaluation.docx...........................
Final Evaluation.docx...........................
l1bbyburrell
 
Cultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptxCultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptx
UmeshTimilsina1
 
Overview Well-Being and Creative Careers
Overview Well-Being and Creative CareersOverview Well-Being and Creative Careers
Overview Well-Being and Creative Careers
University of Amsterdam
 
Cultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptxCultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptx
UmeshTimilsina1
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx
*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx
*"The Segmented Blueprint: Unlocking Insect Body Architecture"*.pptx
Arshad Shaikh
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast BrooklynBridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
i4jd41bk
 
Myopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduateMyopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduate
Mohamed Rizk Khodair
 

اختلاف التعليم في مهام الرياضيات

  • 1. Professor  Glenda  Anthony   Massey  University     Feb  2013   1  
  • 2. Why  differen+ate  instruc+on?     — Engage  all  students  in  instruction  and   learning     — Enables  teachers  to  consider  the  different   ways  that  students  learn  without  pre-­‐ defining  their  capacity  for  learning     — Values  to  diversity  of  students’  thinking     2  
  • 3. Differen+a+on  is     — “an  organized  yet  flexible  way  of  proactively   adjusting  teaching  and  learning  to  met  kids   where  they  are  and  help  to  achieve   maximum  growth  as  learners”     (Tomlinson,  1999)     3  
  • 4. Valuing  the  diversity  of  students’   thinking     — In  one  cupboard  you  have  3   shelves  with  4  boxes  on  each   shelf.     — There  are  3  cupboards  in  the   room.   — How  many  boxes  are  stored  in   the  room?   4  
  • 5. — What  different  ways  could   students  respond  to  the   problem?   5  
  • 6. How  can  you  make  use  of  the   differen+ated  responses?   — Anticipate  as  many  responses  as  possible  –   knowing  your  students.   — Understand  the  mathematics  represented   in  the  different  student  responses.   — The  instructional  decision  and  interaction   with  students  must  be  responsive  to  their   mathematical  ideas,  strategies,  and   communication.       6  
  • 7. What  instruc+onal  response  is   appropriate  for  these  scenarios   —  Liam  raises  his  hand  and  waits  for  the  teacher  to  help  him.   —  Angela  draws  a  picture  of  one  of  the  cupboards  and  counts   the  boxes.   —  Dan  draws  a  picture  of  3  cupboards  and  counts  the  3   shelves  in  each  but  not  the  boxes.   —  Tara  uses  addition  and  writes  4+4  +4  +4  +4  +4  +4  +4+4.   —  John  uses  addition  and  writes  4  +4+4  =12;  12+12+12  =  36   —  Rebecca  uses  multiplication  and  addition  writing            3  x  4  =  12  and  12+  12+  12  =  36.     7  
  • 8. Principles  to  differen+a+ng  tasks   1.  The  focus  on  instruction  must  be  on   the  big  ideas  being  taught.   2.  There  must  be  some  aspect  of  choice   for  the  student:  in  content,  in   process,  or  product.   3.  Prior/formative  assessment  to   determine  the  need.   8  
  • 9. Two  core  strategies:     Open  ques+ons  and  parallel  tasks   — An  open  task/question    involves  a   variety  of  possible  responses  or   approaches.     9  
  • 10. Comparing  open  and  closed  task   Question  1:     —  To  which  fact  family  does  the  fact  3  x  4  =  12  belong?     Question  2:     —  Describe  the  picture  below  by  using  a  mathematical   equation  /  sentence?            X    X    X    X          X    X    X    X          X    X    X    X   10  
  • 11. How  can  we  create  open   ques+ons?   — Turning  around  the  question   — Asking  for  similarities  and  difference   — Replacing  a  number  with  a  blank   — Asking  for  a  number  sentence   — Changing  the  question   11  
  • 12.   Turning  around  a  ques+on   — Give  the  answer  and  ask  for  the  question.   — How  could  you  turn  around  :     (i)    3  +  4    =  ?     (ii)    What  is  half  of  20?     12  
  • 13. Asking  for  similari+es  and   differences   — How  is  the  number  85  and  100  alike/ different?   — How  are  10  and  12  alike?     — How  is  the  number  √2  and  √5  alike  ?   13  
  • 14. Asking  for  a  number  sentence   — Create  a  sentence  that  includes  the   numbers  3  and  4  along  with  the  words  ‘and’   and  ‘more.’   — Create  a  sentence  that  includes  the  words   “linear’  and  “increasing’  as  well  as  the   numbers  4  and  9.   14  
  • 15. Changing  the  ques+on  in  the  text   — Rae  has  4  boxes  of  pencils.  There  are  6   pencils  in  each  box.  How  many  pencils   does  Rae  have?         15  
  • 16. Rae  has  4  boxes   of  pencils.  There   are  6  pencils  in   each  box.     How  many   pencils  does  Rae   have?     Rae  has  some   boxes  of   pencils.  There   are  2  more   pencils  in  each   box  than  the   number  boxes.   How  many   pencils  does   Rae  have  in  all?   16  
  • 17. Try  changing   — A  biscuit  has  a  diameter  of  5.75  cm  .  Express   the  diameter  as  a  fraction  in  simplest  form.   17  
  • 18. What  about  other  areas  other  than   number?     — Big  idea  in  Measurement:  The  same  object  can  be   described  by  using  different  measurements.   — Open  question:  Which  shape  is  bigger  how  do   you  know?   18  
  • 19. Early  algebra   — A  pattern  begins  like  this:    2,  6,  ...    How   might  it  continue?     — How  could  you  adapt  this  problem?   19  
  • 20. Recap     — What  defines  an  open  question?   — What  is  important  for  the  teacher  to   consider?   — What  is  important  in  receiving  the  answers   to  open  questions?     — What  to  avoid  in  an  open  question   20  
  • 21. Parallel  tasks   — Sets  of  tasks,  usually  two  or  three,  that  are   designed  to  meet  the  needs  of  students  at   different  developmental  levels  BUT  get  at   the  same  big  idea  and  are  close  enough  in   context  that  they  can  be  discussed   simultaneously.     — What  are  the  benefits?   21  
  • 22. Big  idea:  recognising  when   mul+plica+on  is  appropriate   Option  1:   Create  a  word  problem   that  could  be  solved  by   multiplying  two  one-­‐ digit  numbers.   Option  2:     Create  a  word  problems   that  could  be  solved  by   multiplying  two   numbers  between  10   and  100.       What  discussion  questions  might  follow?     22  
  • 23. Crea+ng  a  parallel  task     — Variations  that  allow  struggling  students  to  be   successful  and  proficient  students  to  be   challenged.     — Important  to  think  about  how  students  might   differ  developmentally  in  approaching  the  idea.     — Differences    in  task:     — what  operations  the  students  might  use  ?   — size  of  numbers  they  can  handle?   — What  meanings  of  an  operation  make  sense  to   students?   23  
  • 24. A  parallel  task   Option  1:   There  were  583   students  in  Ira’s   school  in  the   morning.  199  of  the   Year  3  students   went  on  a  trip.   How  many   students  are  left  in   the  school?   Option  2:     There  are  61  Year   2  students  in  Ira’s   school.  19  of  them   are  in  the  library.   How  many  Year  2   students    are  left   in  their   classrooms?   24  
  • 25. Parallel  tasks:   583-­‐199    and  61-­‐  19   —  Attend  to  the  ‘what  is  the  same  and  what  is  different’   —  How  did  you  know  that  most  of  the  students  were  left?   —  How  did  you  decide  how  many  were  left?   —  I  notice  that  Tui  solved  it  by  subtracting.  Why  does   subtraction  make  sense?   —  I  notice  that  Lisa  solved  it  by  adding.  Why  might  adding   make  sense?   —  How  would  your  answer  have  changed  if  one  more  student   had  left?   —  How  would  your  answer  have  changed  if  there  had  been   one  extra  student  to  start  with?   —  How  would  your  answer  have  changed  if  there  was  an  extra   student  to  start  with,  but  one  extra  student  left?   —  Which  problem  is  easier  for  you  to  solve?   25  
  • 26.     Measurement:  Knowledge  of  the  size  of   benchmarks  assists  in  measuring     A  table  is  5  pencils  long.   —  How  many  paper  clips  long  would  it  be?   —  How  many  centimetres  long  would  it  be?     —  Questions?     26  
  • 27. Big  idea  in  Number:   There  are  many  ways  to  represent  numbers     —  Draw  a  picture  to  show  two  equivalent  fractions  for   2/8.     —  Two  fractions  are  equivalent.  If  you  add  the   numerators,  the  result  is  22  less  than  if  you  add  the   denominators.  What  could  the  fractions  be?   27  
  • 28. Linear  versus  area  measurement   —  Someone  suggests  that  the  school  driveway  is   4,ooo,ooo  mm  long.  Is  it  a  long  driveway?   —  Someone  suggest  that  a  shopping  mall  might  be   4,000,000  cm2  in  area.  Do  you  think  that  is   reasonable?   28  
  • 29.    Newspapers  :  Adap+ng  text  ques+ons   —  Suppose  4  students  were  delivering  176  newspapers   and  decided  to  share  the  task  evenly.  How  many   papers  would  each  deliver?   —  PARALLEL:   —  Suppose  2  students  were  delivering  24  newspapers   and  decided  to  share  the  task  evenly.  How  many   papers  would  each  deliver?   29  
  • 30. What  are  some  cri+cal  discussion  ques+ons?   —  What  operation  did  you  use  to  decide  how  many   papers  each  person  would  deliver?   —  Why  would  you  use  that  operation?   —  Is  there  another  way  you  could  have  worked  out  the   answer?   —  How  did  you  know  that  each  person  had  to  deliver   more  than  10  papers?   —  How  did  you  know  that  each  person  had  to  deliver   fewer  than  100  papers?   —  How  did  you  figure  out  how  many  papers  each   student  had  to  deliver?   30  
  • 31. What  about  choice?   —  Sometimes  the  teacher  should  decide  who  does  what   but  most  of  the  time  allow  the  students  to  choice.   —  Choice  is  very  empowering.   31  
  • 32. Summing  up  parallel  tasks   — Generated  from  a  single  original  task  by  changing   the  complexity  of  the  numbers,  shapers,  graphs,   patterns,  equations,  or  measurements  being   employed  or  the  complexity  of  the  situations   being  addressed.     — The  context  being  the  same  allows  common   discussion.   — It  is  important  to  set  up  the  situation  so  that  there   are  common  questions  beyond  simple  What  did   you  do?   32  
  • 33. 1.  Moves  that  a  teacher  uses  before  a   students  arrives  at  a  correct  answer  .   2.  Extending  moves  that  a  teacher  uses   after  a  correct  answer.   —  Adapted  from  Jacobs,  V.,  &  Ambrose,  R.  (2008).  Making  the  most  of  story  problems.  Teaching  Children  Mathematics,  15,  260-­‐266.       Teacher  ac+ons    to  support  and   extend  students’  thinking    
  • 34. — Ask  her  to  explain  what  she  knows  about   the  problem  –  possibly  with  the  use  of   manipulatives    -­‐  “model  of”     — Rephrase  the  problem   — Use  a  more  familiar  or  personalized  context   (put  yourself  or  her  in  the  story)     — Suggest  a  different  representation  -­‐  acting   out  etc.       Ensure  that  the  child  understands   the  problem  
  • 35. — Easier  numbers    -­‐  then  back  to  harder   numbers,  looking  for  generalisation  of   structure,  strategy.     — Fold  back  to  easier  mathematical  structure:            Jan  had  12  cookies.  Sue  had  3  cookies.  How   many  more  cookies  than  Sue  did  Jan  have?   — What  would  be  an  easier  problem  that  still   involves  12-­‐3?     Change  the  mathema+cs  to  match   the  child’s  level  of  understanding    
  • 36. — What  sort  of  questions  can  you  use?   — Are  these  the  same  sorts  of  questions   that  children  can  use  in  their  groups?   Explore  what  the  child  has  already   done  
  • 37. Sometimes  need  to  give  permission  to   move  on  and  try  an  alternative  way   — changing  a  representation,     — trying  a  new  tool,     — reminding  of  a  strategy  used  in  the   past.     Remind  the  child  to  use  other   strategies  
  • 38.     Promoting  reflection  on  the  strategy  just   completed  (i.e.,  view  the  problem  solving  as   a  context  for  having  a  mathematical   conversation)   — Asking  for  a  strategy  explanation  or   clarification.     Ways  to  respond  aer  a  correct   answer  
  • 39. —  This  morning  I  had  some  muesli  bars.  Then  I  gave  you   five  muesli  bars.  Now  I  have  six  muesli  bars  left.  How   many  bars  did  I  have  this  morning  before  I  gave  some   to  you?     “Five  pus  five,  if  you  took  one    away  ,  is  ten  and  then  one  more    is  eleven,  so  you  had  eleven.”   Be  specific  to  the  details      
  • 40. What  would  you  ask  to  probe  the  child’s   thinking  ?     — “I  don’t  know.  I  just  added  them   together.”     Promo+ng  reflec+on    
  • 41. —  Generate  another  way   —  Think  of  another  way  that  is  connected  to  the  first   strategy.       —  Asking  for  a  mental  strategy  that  is  an  abstraction  of   work  with  manipulative  –  could  you  solve  it  in  your   head?     —  Explicitly  compare  and  contrast  strategies.   —  Comparing  a  successful  strategies  to  an  earlier   unsuccessful  strategy.     Explora+on  of  mul+ple  strategies   and  the  mathema+cal  connec+ons    
  • 42. — Record  the  strategy  that  you  used   to  solve  the  problem.   — Generate  a  number  sentence  that   goes  with  the  problem.   Connect  the  children’s  thinking  to   symbolic  nota+on  
  • 43. — Build  on  the  children’s  thinking.            Rene  was  collecting  tomatoes.  She  has  nine   baskets,  and  she  put  ten  tomatoes  in  each   basket.  So  how  many  tomatoes  did  she  have   altogether?       — How  could  you  extend/build  on  this  thinking?   Generate  follow  up     problems    
  • 44. —  Oh,  I  get  it,  Well  there’s  already  ten  in  each  basket  so   that’s  90.   —  So  I  count  up  nine,  one  more  nine.   —  I  mean  nine  ones.     —  I  ‘m  going  to  add  nine  ones.     —  So  there’s  already  ninety,  so  ninety-­‐one,  ninety-­‐ two....ninety-­‐nine.     —  What  big  idea  has  been  advanced   — 9  x  11  =  9  x  (10  +  1)  =  9  x  10  +  9   Response  
  • 45. —  Ensure  child  understands  the  problem   —  Change  the  maths  to  match  understanding   —  Explore  what  they  have  already  done   —  Remind  child  to  use  other  strategies   —  Promote  reflection  on  strategy  just  completed   —  Explore  multiple  strategies  and  connections   —  Connect  child’s  thinking  to  symbolic  notation   —  Generate  linked  follow-­‐up  problems.   Teacher  moves    (Summary)