Abstract
A non-abelian generalization of the usual formulas for bosonization of fermions in 1+1 dimensions is presented. Any fermi theory in 1+1 dimensions is equivalent to a local bose theory which manifestly possesses all the symmetries of the fermi theory.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Coleman, S.: Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D11, 2088 (1975)
Mandelstam, S.: Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D11, 3026 (1975)
Baluni, V.: The Bose form of two-dimensional quantum chromodynamics. Phys. Lett.90 B, 407 (1980)
Steinhardt, P.J.: Baryons and baryonium in QCD2. Nucl. Phys. B176, 100 (1980)
Amati, D., Rabinovici, E.: On chiral realizations of confining theories. Phys. Lett.101 B, 407 (1981)
Wess, J., Zumino, B.: Consequences of anomalous word identities. Phys. Lett.37 B, 95 (1971)
D'Adda, A., Davis, A.C., DiVecchia, P.: Effective actions in non-abelian theories. Phys. Lett.121 B, 335 (1983)
Polyakov, A.M., Wiegmann, P.B.: Landau Institute preprint (1983)
Alvarez, O.: Berkeley preprint (1983)
Witten, E.: Global aspects of current algebra. Nucl. Phys. B (to appear)
Novikov, S.P.: Landau Institute preprint (1982)
Polyakov, A.M.: Interaction of Goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett.59 B, 79 (1975)
Belavin, A.A., Polyakov, A.M.: Metastable states of two-dimensional isotropic ferromagnets. JETP Lett.22, 245 (1975)
Nappi, C.R.: Some properties of an analog of the chiral model. Phys. Rev. D21, 418 (1980)
Goto, T., Imamura, I.: Note on the non-perturbation-approach to quantum field theory. Prog. Theor. Phys.14, 396 (1955)
Schwinger, J.: Field-theory commutators. Phys. Rev. Lett.3, 296 (1959)
Jackiw, R.: In: Lectures on current algebra and its applications, Treiman S.B., et al. (eds.): Princeton, NJ: Princeton University Press 1972
Coleman, S., Gross, D., Jackiw, R.: Fermion avatars of the Sugawara model. Phys. Rev.180, 1359 (1969)
Kac, V.G.: J. Funct. Anal. Appl.8, 68 (1974)
Lepowsky, J., Wilson, R.L.: Construction of the affine Lie algebra.A 1(1). Commun. Math. Phys.62, 43 (1978)
Frenkel, I.B.: Spinor representations of affine Lie algebras. Proc. Natl. Acad. Sci. USA77, 6303 (1980); J. Funct. Anal.44, 259 (1981)
Feingold, A.J., Frenkel, I.B.: IAS preprint (1983)
Belavin, A.M., Polyakov, A.M., Schwar, A.S., Tyupkin, Yu.S.: Pseudoparticle solutions of the Yang-Mills equations. Phys. Lett.59 B, 85 (1975)
't Hooft, G.: Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett.37, 8 (1976);
Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D14, 3432 (1976)
Callan, C.G., Jr., Dashen, R., Gross, D.J.: The structure of the gauge theory vacuum. Phys. Lett.63 B, 334 (1976)
Jackiw, R., Rebbi, C.: Vacuum periodicity in a Yang-Mills quantum theory. Phys. Rev. Lett.37, 172 (1976)
Segal, G.: Unitary representations of some infinite-dimensional groups. Commun. Math. Phys.80, 301 (1981)
Frenkel, I., Kac, V.G.: Basic representations. Invent Math.62, 23 (1980)
Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308 (1981)
Frenkel, I.: Private communication
Frishman, Y.: Quark trapping in a model field theory. Mexico City 1973. Berlin, Heidelberg, New York: Springer 1975
Deser, S., Jackiw, R., Templeton, S.: Three-dimensional massive gauge theories. Phys. Rev. Lett.48, 975 (1982); Topologically massive gauge theories. Ann. Phys. (NY)140, 372 (1982)
Author information
Authors and Affiliations
Additional information
Communicated by A. Jaffe
Supported in part by NSF Grant PHY-80-19754
Rights and permissions
About this article
Cite this article
Witten, E. Non-abelian bosonization in two dimensions. Commun.Math. Phys. 92, 455–472 (1984). https://doi.org/10.1007/BF01215276
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01215276