Hacker News new | past | comments | ask | show | jobs | submit login

> Interactions between particles, waves, fields, etc. are quantized,

Yes.

> which means there is a set of distances at which a given interaction can happen, and a set of distances at which it can't.

... that's not how quantization works. The exact ways in which quantum effects are actually discrete is much subtler than in most popularizations. In fact, sharp effects with distance are more likely to be seen in classical models than in quantum ones because the quantum models often allow for classically forbidden effects to happen with small probability, which decreases as the distances increase. You only really see sharp transitions for "bound states"; for everything else (e.g. scattering experiments) there are wider or narrower peaks of more likely to occur depending on both spatial and other parameters.

The radius really is measuring "over about how much space is this particle spread", and while the exact details of how you define that can give different numbers, they are all measuring interaction widths -- how close something has to be to feel its direct effect. I say direct effect, because obviously the indirect effects such as through the EM field can be felt at great distances.

Note that this measure of spread is distinct from the how the wavefunction of the center of a particle is spread, which in the right states can be highly delocalized, even though the particle hasn't gotten any wider. Electron orbitals, for instance, can have different radii in different states (or topology, as you note, if you pick a cutoff that splits high-density regions in two), but the electron still has the same negligible (usually modeled as zero) radius in comparison to any orbital.




Join us for AI Startup School this June 16-17 in San Francisco!

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: