"Overkill" tends to disappear when you consider the cost of your time. You are not penalized for not using all, or even most, of a platform's capability. Silicon is cheap, programmers are expensive.
The pi shines at doing complex tasks that involve physical I/O when the device is manufactured in low unit volumes. e.g., a few years ago, I built a machine to do a proof of concept for a physician. It was based on a Pi 2B solely because he wanted a touchscreen. The entire thing could have been built with an Arduino, but the hardware cost to do it on a Pi was only about $40 more than on an Arduino. That difference was more than an order of magnitude less than I would have had to charge to do the touchscreen software on an arduino.
When I was working for an engineering services company, there many applications that we could have put a Pi or a Pi Compute Module into, even at larger volumes but for one reason or the other the company would suggest a ground-up CPU board design to the customer...
"Overkill" tends to disappear when you consider the cost of your time. You are not penalized for not using all, or even most, of a platform's capability. Silicon is cheap, programmers are expensive.
The pi shines at doing complex tasks that involve physical I/O when the device is manufactured in low unit volumes. e.g., a few years ago, I built a machine to do a proof of concept for a physician. It was based on a Pi 2B solely because he wanted a touchscreen. The entire thing could have been built with an Arduino, but the hardware cost to do it on a Pi was only about $40 more than on an Arduino. That difference was more than an order of magnitude less than I would have had to charge to do the touchscreen software on an arduino.
When I was working for an engineering services company, there many applications that we could have put a Pi or a Pi Compute Module into, even at larger volumes but for one reason or the other the company would suggest a ground-up CPU board design to the customer...