If the power is out, do you imagine that all the load that is out there disappears too?
If I'm in a blackout and put my multimeter into the grid socket, will the measurement be something that my local inverter can drive an AC load through with no problems?
And if that's not possible, how do we get an AC wave out to my 5000 local solar panel neighbors? And if we don't get any carrier wave to synch it to, then how do all these thousands of individual inverters decide on the unison synchronization necessary to all start jumping together?
And if they try and fail, will all the connected load accept a graceful out of synch mixed power noise at 0-220v until things properly latch together?
The problem isn't like playing a sine tune of acoustic sound that's merely audible to your local neighbor, who can dial in his own tune, and then daisy chaining this until it matches on a grid sized level.
There's a bunch of sources if you search for "grid-forming", "islanding events", "auto-synchronization" and similar terms in combination with PV inverters.
If the power is out, do you imagine that all the load that is out there disappears too?
If I'm in a blackout and put my multimeter into the grid socket, will the measurement be something that my local inverter can drive an AC load through with no problems?
And if that's not possible, how do we get an AC wave out to my 5000 local solar panel neighbors? And if we don't get any carrier wave to synch it to, then how do all these thousands of individual inverters decide on the unison synchronization necessary to all start jumping together?
And if they try and fail, will all the connected load accept a graceful out of synch mixed power noise at 0-220v until things properly latch together?
The problem isn't like playing a sine tune of acoustic sound that's merely audible to your local neighbor, who can dial in his own tune, and then daisy chaining this until it matches on a grid sized level.