!!! This is a SiteProxy proxied website, do not enter your personal information. Refer to: https://github.com/netptop/siteproxy for details !!!×
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Higgs boson decay to charmonia via c-quark fragmentation

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 04 August 2022
  • Volume 2022, article number 73, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Higgs boson decay to charmonia via c-quark fragmentation
Download PDF
  • Tao Han1,
  • Adam K. Leibovich  ORCID: orcid.org/0000-0001-9115-81771,
  • Yang Ma  ORCID: orcid.org/0000-0002-9419-65981 &
  • …
  • Xiao-Ze Tan1,2 

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A preprint version of the article is available at arXiv.

Abstract

We calculate the decay branching fractions of the Higgs boson to J/ψ and ηc via the charm-quark fragmentation mechanism for the color-singlet and color-octet states in the framework of non-relativistic QCD. The decay rates are governed by the charm-quark Yukawa coupling, unlike the decay H → J/ψ + γ, which is dominated by the γ∗-J/ψ mixing. We find that the decay branching fractions can be about 2×10−5 for \( H\to c\overline{c}+J/\psi \), and 6 × 10−5 for \( H\to c\overline{c}+{\eta}_c \). We comment on the perspective of searching for the Higgs boson to J/ψ transition at the High-Luminosity LHC for testing the charm-quark Yukawa coupling.

Article PDF

Download to read the full article text

Similar content being viewed by others

Direct constraint on the Higgs–charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector

Article Open access 18 August 2022

Higgs Boson Decay into \(D^{*\pm }\) Meson Via Fragmentation

Article 26 August 2024

Production and decay of the Higgs boson in association with top quarks

Article Open access 25 February 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Decay Processes
  • Nuclear and Particle Physics
  • Nuclear Physics
  • Particle Physics
  • RNA decay
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. ATLAS collaboration, Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ∗ → 4ℓ decay channels at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 786 (2018) 114 [arXiv:1805.10197] [INSPIRE].

  4. ATLAS collaboration, Study of (W/Z)H production and Higgs boson couplings using H → WW∗ decays with the ATLAS detector, JHEP 08 (2015) 137 [arXiv:1506.06641] [INSPIRE].

  5. CMS collaboration, Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 791 (2019) 96 [arXiv:1806.05246] [INSPIRE].

  6. ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].

  7. CMS collaboration, Observation of \( t\overline{t}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].

  8. ATLAS collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector, JHEP 04 (2015) 117 [arXiv:1501.04943] [INSPIRE].

  9. CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].

  10. ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  11. ATLAS collaboration, Observation of H → \( b\overline{b} \) decays and V H production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

  12. CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].

  13. CMS collaboration, Combined measurements of Higgs boson couplings in proton–proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].

  14. ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].

  15. ATLAS collaboration, Observation of the Higgs decay to beauty quarks, J. Phys. Conf. Ser. 1390 (2019) 012046 [INSPIRE].

  16. ATLA collaboration, Projections for measurements of Higgs boson cross sections, branching ratios, coupling parameters and mass with the ATLAS detector at the HL-LHC, ATL-PHYS-PUB-2018-054 (2018).

  17. CMS collaboration, Sensitivity projections for Higgs boson properties measurements at the HL-LHC, CMS-PAS-FTR-18-011 (2018).

  18. T. Plehn and D. L. Rainwater, Higgs decays to muons in weak boson fusion, Phys. Lett. B 520 (2001) 108 [hep-ph/0107180] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Han and B. McElrath, h → μ+ μ− via gluon fusion at the LHC, Phys. Lett. B 528 (2002) 81 [hep-ph/0201023] [INSPIRE].

    Article  ADS  Google Scholar 

  20. ATLAS collaboration, Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment, Phys. Rev. Lett. 120 (2018) 211802 [arXiv:1802.04329] [INSPIRE].

  21. CMS collaboration, A search for the standard model Higgs boson decaying to charm quarks, JHEP 03 (2020) 131 [arXiv:1912.01662] [INSPIRE].

  22. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  23. G. T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G. T. Bodwin, H. S. Chung, J.-H. Ee, J. Lee and F. Petriello, Relativistic corrections to Higgs boson decays to quarkonia, Phys. Rev. D 90 (2014) 113010 [arXiv:1407.6695] [INSPIRE].

    Article  ADS  Google Scholar 

  25. G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev. D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].

    Article  ADS  Google Scholar 

  27. I. Brivio, F. Goertz and G. Isidori, Probing the charm quark Yukawa coupling in Higgs+charm production, Phys. Rev. Lett. 115 (2015) 211801 [arXiv:1507.02916] [INSPIRE].

    Article  ADS  Google Scholar 

  28. LHCb collaboration, Search for H0 → \( b\overline{b} \) or \( c\overline{c} \) in association with a W or Z boson in the forward region of pp collisions, LHCb-CONF-2016-006 (2016).

  29. T. Han, B. Nachman and X. Wang, Charm-quark Yukawa coupling in h → \( c\overline{c}\gamma \) at LHC, Phys. Lett. B 793 (2019) 90 [arXiv:1812.06992] [INSPIRE].

  30. L. Alasfar, R. Corral Lopez and R. Gröber, Probing Higgs couplings to light quarks via Higgs pair production, JHEP 11 (2019) 088 [arXiv:1909.05279] [INSPIRE].

    Article  ADS  Google Scholar 

  31. N. M. Coyle, C. E. M. Wagner and V. Wei, Bounding the charm Yukawa coupling, Phys. Rev. D 100 (2019) 073013 [arXiv:1905.09360] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. A. Aguilar-Saavedra, J. M. Cano and J. M. No, More light on Higgs flavor at the LHC: Higgs boson couplings to light quarks through h + γ production, Phys. Rev. D 103 (2021) 095023 [arXiv:2008.12538] [INSPIRE].

    Article  ADS  Google Scholar 

  33. ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays to charm quarks with the ATLAS detector, ATLAS-CONF-2021-021 (2021).

  34. B. Carlson, T. Han and S. C. I. Leung, Higgs boson to charm quark decay in vector boson fusion plus a photon, Phys. Rev. D 104 (2021) 073006 [arXiv:2105.08738] [INSPIRE].

    Article  ADS  Google Scholar 

  35. ATLAS collaboration, Searches for exclusive Higgs and Z boson decays into J/ψγ, ψ(2S)γ, and ϒ(nS)γ at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 786 (2018) 134 [arXiv:1807.00802] [INSPIRE].

  36. CMS collaboration, Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 94 [arXiv:1810.10056] [INSPIRE].

  37. G. Isidori, A. V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via h → \( V\mathcal{F} \) decays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive window onto Higgs Yukawa couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. König and M. Neubert, Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings, JHEP 08 (2015) 012 [arXiv:1505.03870] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Z. Sun and Y. Ma, Inclusive productions of ϒ(1S, 2S, 3S) and χb(1P, 2P, 3P) via the Higgs boson decay, Phys. Rev. D 100 (2019) 094019 [arXiv:1909.08548] [INSPIRE].

    Article  ADS  Google Scholar 

  41. C.-F. Qiao, F. Yuan and K.-T. Chao, Quarkonium production in SM Higgs decays, J. Phys. G 24 (1998) 1219 [hep-ph/9805431] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Jiang and C.-F. Qiao, Bc production in Higgs boson decays, Phys. Rev. D 93 (2016) 054031 [arXiv:1512.01327] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G. Apollinari, O. Brüning, T. Nakamoto and L. Rossi, High luminosity large hadron collider HL-LHC, CERN Yellow Rep. (2015) 1 [arXiv:1705.08830] [INSPIRE].

  44. G. T. Bodwin, E. Braaten and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

  45. E. J. Eichten and C. Quigg, Quarkonium wave functions at the origin: an update, arXiv:1904.11542 [INSPIRE].

  46. G. T. Bodwin, H. S. Chung, U.-R. Kim and J. Lee, Fragmentation contributions to J/ψ production at the Tevatron and the LHC, Phys. Rev. Lett. 113 (2014) 022001 [arXiv:1403.3612] [INSPIRE].

    Article  ADS  Google Scholar 

  47. K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang and Y.-J. Zhang, J/ψ Polarization at Hadron Colliders in Nonrelativistic QCD, Phys. Rev. Lett. 108 (2012) 242004 [arXiv:1201.2675] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Y. Feng, B. Gong, C.-H. Chang and J.-X. Wang, Remaining parts of the long-standing J/ψ polarization puzzle, Phys. Rev. D 99 (2019) 014044 [arXiv:1810.08989] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  50. J. H. Kühn, M. Steinhauser and C. Sturm, Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].

    Article  ADS  Google Scholar 

  51. R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

  52. V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

    Article  ADS  Google Scholar 

  53. V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: new features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].

  54. T. Han, Y. Ma and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D 103 (2021) L031301 [arXiv:2007.14300] [INSPIRE].

    Article  ADS  Google Scholar 

  55. para: A Mathematica package to set up the SM parameters, https://github.com/YangPhy/para/releases/tag/v1.0.0 (2021).

  56. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  57. K. G. Chetyrkin, J. H. Kühn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].

  58. F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].

    Article  ADS  Google Scholar 

  59. CMS collaboration, Measurement of quarkonium production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 780 (2018) 251 [arXiv:1710.11002] [INSPIRE].

  60. P. Artoisenet, J. P. Lansberg and F. Maltoni, Hadroproduction of J/ψ and ϒ in association with a heavy-quark pair, Phys. Lett. B 653 (2007) 60 [hep-ph/0703129] [INSPIRE].

    Article  ADS  Google Scholar 

  61. E. Chapon et al., Prospects for quarkonium studies at the high-luminosity LHC, Prog. Part. Nucl. Phys. 122 (2022) 103906 [arXiv:2012.14161] [INSPIRE].

    Article  Google Scholar 

  62. X.-A. Pan, Z.-M. Niu, M. Song, Y. Zhang, G. Li and J.-Y. Guo, J/ψ associated production with a bottom quark pair from the Higgs boson decay in next-to-leading order QCD, Phys. Rev. D 105 (2022) 014032 [arXiv:2201.05832] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Pittsburgh Particle Physics, Astrophysics and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA, 15260, USA

    Tao Han, Adam K. Leibovich, Yang Ma & Xiao-Ze Tan

  2. School of Physics, Harbin Institute of Technology, 92 Xidazhi St, Harbin, 150001, People’s Republic of China

    Xiao-Ze Tan

Authors
  1. Tao Han
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Adam K. Leibovich
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Yang Ma
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Xiao-Ze Tan
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Yang Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2202.08273

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Leibovich, A.K., Ma, Y. et al. Higgs boson decay to charmonia via c-quark fragmentation. J. High Energ. Phys. 2022, 73 (2022). https://doi.org/10.1007/JHEP08(2022)073

Download citation

  • Received: 28 February 2022

  • Revised: 31 May 2022

  • Accepted: 30 June 2022

  • Published: 04 August 2022

  • DOI: https://doi.org/10.1007/JHEP08(2022)073

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Properties
  • Quarkonium
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature